STATE OF ILLINOIS HENRY HORNER, GOVERNOR DEPARTMENT OF REGISTRATION AND EDUCATION DIVISION OF THE STATE GEOLOGICAL SURVEY M. M. LEIGHTON, Chief

BULLETIN No. 62

Classification and Selection of Illinois Coals

GILBERT H. CADY

PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS

URBANA, ILLINOIS 1935 REPRINTED, 1936

January 14, 1965

Illinois Geological Survey Bulletin 62, "Classification and Selection of Illinois Coals" (1936) Supplement to Bulletin 62, "Analyses of Illinois Coals" (1948)

Identity of Illinois mine index numbers of mines abandoned and identified in Bulletin 62, pp. 327-329 and Supplement, pp. 71-74, mines abandoned since publication of the Supplement, and mines identified in United States Bureau of Mines publications.

Mine Index No,	Coal Bed	Company	Mine	Location
		BOND COUNTY		
218	No, 6	Pocahontas Mining Co.	#1	3-4N-4W
		BUREAU COUNTY		
1	No. 2	Spring Valley C. C.	#5	24-16N-11E
8	No. 2	Marquette Third Vein C.M.Co.	#1	31-16N-11E
10	No. 2	Cherry C. C.	Cherry	27-17N-11E
532	No. 7	Cherry C. C.	Cherry	27-17N-11E
651	No. 6	Coal Creek N. C.	Coal Creek Strip	31-16N-7E
		CHRISTIAN COUNTY		
21	Assumptio	n Assumption C. & M. Co.	#1	2-12N-1E
219	No. 6	Peabody C. C.	#9	19-13N-2W
220	No. 6	Peabody C. C.	#8	8-13N-3W
221=BM56	No. 6	Smith Lohr C. C.	#1 Springside	15-11N-1E
222	No. 6	Pana C. C.	#2	15-11N-1E
		CLINTON COUNTY		
84	No. 6	Southern C. & M. Co.	#9	17-1N-5W
85	No. 6	Breese-Trenton M. Co.	Buxton	22-2N-3W
		(Beckemeyer C. C.)		
198	No. 6	Breese-Trenton C. C.	Breese	22-2N-4W
199	No. 6	Breese-Trenton M. Co.	North Breese	23-2N-4W
		EDGAR COUNTY		
614	No. 5 & 7	Edgar County C. C.	#1	20-14N-10W
		FRANKLIN COUNTY		
50-PM22	No 6	Old Pop C. Comp	#16	10-50-25
SU=DMZZ	NO. O	Dia Ben G. Corp.	1/ LO 	19-70-2E
. 	NO. O	$(\text{Parbody } C \ C \ \#19)$	17 L L	10=12=20
50	No 6	(reabody C. C., 117)	11-2	30-66-38
52	No. 6	Poll & Zollow M C	The star #1	19-79-18
56	No. 6	U D Pond Collignian Co	HELEE WA	13#73-15
50	NO, U	(Old Ben C. Corp., #19)	1 F 1.	4-00-20
57=BM16	No. 6	Franklin County C. & C. Co.	#7	23-75-1E
58=BM14	No. 6	Old Ben Coal Corp.	#12	30-6S-2E
134	No. 6	Interstate C. C.	Sesser #22	12-5S-1E
136	No. 6	Old Ben Coal Corp.	Valier #22	1-6S-1E
139	No. 6	U. S. Fuel Co.	Middlefork	21-6S-3E
140	No. 6	Black Starr C. C.	Logan	35-6S-3E

	·	:		
Mine Index No	Cool Rod	AND CONTRACTOR AT STA	Mino	Tooottoo
Index No.	COAL DEG	company	Mine	LOCALION
с. Параления Параления		FRANKLIN COUNTY (Cont'd.)		. ¹
143=BM66	No. 6	Old Ben C. Corp.	#8	25-7S-2E
145	No. 6	Bell & Zoller C. C.	#2	26-7S-1E
147=BM68	No. 6	Western C. & M. C.	Bush #2	31-7S-1E
256	No. 6	Peabody C. C.	#18	8-7S-3E
655=BM13	No. 6	Old Ben C. Corp.	#14	20-6S-2E
BM15	No. 6	Chi. Wil. & Franklin C. C.	Orient #1	10-7S-2E
BM19	No. 6	Brewerton C. C.		24-7S-2E
BM21	No. 6	Old Ben C. Corp.	#10	24-6S-1E
BM64	No. 6	Old Ben C. Corp.	#11	14-6S-1E
BM65	No. 6	Old Ben C. Corp.	#9 #	20-7S-3E
BM67	No. 6	Franklin County C. C.	#5	33-7S-2E
		FULTON COUNTY		
28	No. 5	Monmouth C. C.	"A"#1	11-7N-4E
29	No. 5	Alden C. C.	#6	27-8N-4E
30	No. 5	Maplewood C. C.	#2	15-8N-4E
31	No. 5	Big Creek C. C.	#2	16-6N-4E
32	No. 5	Star C. C.	#1	28-7N-3E
105	No. l	Spoon River Colliery C.	Ellisville	28-8N-2E
111	No. 5	Alden C. C.	#8	3-8N-4E
112	No. 5	Silver Creek Colliery Co.	Silver Creek	4-8N-4E
113	No. 5	Maplewood C. C.	#1	11-8N-4E
114	No. 5	Canton C. C.	#1	34-8N-4E
115	No. 5	Coal Creek M. C.	Parrville #1	30-8N-3E
116	No. 5	Simmons C. C.	Simmons	14-7N-4E
118	No. 5	E. G. Bader C. C.	Eclipse	14-3N-1E
367	NO. 5	Linkenfelter & Sons	#1 Dritt	26-/N-3E
520.	NO. J	Iom Wilson	Wilson	3-3N-2E
		GALLATIN COUNTY		
47	No. 5	Gallatin C. & C. Co.	#1	20-9S-8E
135	No. 5	Hickory Hill C. C.	Hickory Hill	23-9S-8E
223	No. 6	Sam Black	Bentley	13-10S-8E
230	No. 5	J. H. Booten	Booten	18-10S-8E
631	Lower Willi	s E. V. Schneider	E. V. Schneider	30-10S-9E
640	No. 5	Cedar Hill M. C.	Cedar Hill	19-10S- 9 E
648	No. 5	Logan Highway C. C.	Hickory Hill	14-9S-8E
659	No. 5	Roy Thurman	Colbert	18-10S-8E
		GREENE COUNTY		
329	No. 4	Greenfield M. C.	Greenfield	27-11N-10W
347	No. 4	Greene County C. C.	Poli	28-11N-10W
		GRUNDY COUNTY		:
5	No. 2	Wilmington Star M. C.	#7	5-32N-8E
6	No. 2	Big Four Wilmington C. C.	#6	26-33N-8E
7	No. 2	Chi., Wil., & Vermilion C.C.	#1	14-31N-8E
530	No, 6	Wright Bros. C. C.	#l Verona	23-32N-6E
625	No. 2	Morris C. & M. Co.	#2(Morocco)	34-34N-7E
652	No. 6	Clark City-Wilmington C. C.	Clark City	25-31N-8E

Mine		an a		и
Index No.	Coal Bed	Company	Mine	Location
		HANCOCK COUNTY		
609	No. 2	Three Counties C. Corp.	2	27-3N-5W
		HENRY COUNTY		
237 252 354 527 619 635	No. 1 No. 1 No. 1 No. 6 No. 2 No. 6	Warner C. C. Blossomberg C. C. Rodamsky and White W. T. Lamb C. C. Midland Electric C. C. Pettit and Head	Rex Blossomberg Local Lamb Atkinson Strip Pettit and Head	3-16N-1E 19-17N-1E 28-17N-2E 16-15N-5E 36-17N-4E 9-15N-5E
		JACKSON COUNTY		- -
12 13 14 15 16 55 183 419 602 604 607	Murphysboro Murphysboro Murphysboro Murphysboro Murphysboro No. 6 No. 5 & 6 No. 6 Murphysboro Murphysboro Murphysboro Murphysboro	Gus Blair Big Muddy C. C. Big Muddy C. & Iron Co. Gartside C. C. Big Muddy C. & Iron Co. Gus Blair Big Muddy C. C. Muddy Valley C. C. Union Colliery Co. Truax Traer C. C. J. P. Swofford C. C. Templeton C. C. Thomas G. Phillips	#2 #9 #4 Harrison #10 #1 Muddy Valley Kathleen Black Servant #2 Slope Drift	32-8S-2W 34-8S-2W 29-8S-2W 33-8S-2W 29-8S-2W 29-7S-1W 5-7S-1W 18-7S-1W 36-9S-1W 36-9S-1W
		JEFFERSON COUNTY		
BM 63	No. 6	Illinois C. Corp.	#10	15-4S-2E
		KNOX COUNTY		
236 355 526 632	No. 4 No. 1 No. 6 No. 1	Adcock M. C. Galesburg M. C. Diehle Mine Knoxville M. C.	Soperville Galesburg Diehle Knoxville	21-12N-1E 16-11N-2E 29-14N-4E 23-11N-2E
		LASALLE COUNTY		
2 3 9 99 102 103 231 358 370 620 645 657	No. 2 No. 2 No. 2 No. 6 No. 2 No. 2 No. 6 No. 2 No. 2 No. 6 Spring Lake No. 2	Oglesby C. C. LaSalle Carbon C. C. Illinois Zinc Co. Chi., Wil., & Vermilion C. C. LaSalle County Carbon C. C. Rutland C. C. Matthieson and Hegeler Peru Deep Vein C. C. Osage C. C. French C. C. Spring Lake C. C. McElwain C. C.	Oglesby LaSalle Black Hollow #3 Cedar Point Rutland M. and H. #3 Osage #1 Local Spring Lake Echo	25-33N-1E 15-33N-1E 30-33N-2E 24-31N-3E 4-32N-1E 18-29N-2E 14-33N-1E 16-33N-1E 14-33N-2E 3-31N-3E 22-31N-3E 8-33N-4E

Mine Index No,	Coal Bed	Company	Mine	Location
	nenne, and an	LIVINGSTON COUNTY		an a
215 216 600	No. 6 No. 6 No. 6	Pontiac C. M. C. Fairbury C. C. Fairbury Coop. C. C.	#1 Fairbury	15-28N-5E 5-26N-6E 11-26N-6E
		LOGAN COUNTY		
33 109	No. 5 No. 5	Latham C. C. Citizens C. C.	North shaft Citizens	30-20N-2W 32-20N-2W
· · · · ·		MCDONOUGH COUNTY		
22 213	No. 2 No. 2	Colchester C. C. Elmer Hamílton	Shaft M. G. Davis	13-5N-4W 4-6N-4W
	,	MCLEAN COUNTY		
100	No. 2 & 5	McLean County C. C.	Bloomington	5-23N-2E
	2 	MACON COUNTY		
41 42	No. 5 No. 5	Decatur C. C. Manufacturers & Consumers C. (Macon County C. C.)	Niantic C. #1	12-16N-1W 14-16N-2E
		MACOUPIN COUNTY		
66 67 68 69 185 186 187 188 189 190 503 534=BM31	No. 6 No. 6	Superior C. C. Glenridge C. C. Consolidated C. C. Carlinville C. C. Chi., Wil., & Franklin C. C. Illinois Coal & Coke Co. Standard Oil Co. Superior C. C. Consolidated C. C. Superior C. C. Superior C. C. Superior C. C.	#3 North #15 Carlinville Royal Empire #4 # 1 #4 #7 #4 #2 #1	36-8N-7W 9-12N-6W 9-7N-6W 28-10N-7W 8-12N-6W 32-12N-6W 21-10N-7W 10-7N-7W 21-7N-6W 30-7N-6W 6-7N-6W 29-8N-6W
		MADISON COUNTY		
70 71 72 75 191 192 627 629 644	No. 6 No. 6 No. 6 No. 6 No. 6 No. 6 No. 6 No. 6 No. 6	Madison C. Corp. Lumaghi C. C. Livingston & Mt. Olive C. C. Mt. Olive & Staunton C. C. Madison County M. C. Abbey C. C. Carlin C. C. Stiers Bros. Construction Co. Chicopee C. C.	#2 #2 #1 #2 Madison County Abbey Bethalto Stiers Bros. Troy	34-4N-8W 25-3N-8W 16-6N-6W 10-6N-6W 10-4N-8W 33-3N-8W 6-5N-8W 31-6N-8W 9-3N-7W

Mine Index No.	Coal Be	ed Company	Mine	Location
		MARION COUNTY		
87	No. 6	Odin C. C.	Odin	13-2N-1E
206	No. 6	Chicago, Sandoval C. C.	#2	17-2N-1E
207	No. 6	Marion County C. C.	Glen Ridge	31-2N-1E
		MARSHALL.COUNTY		
			Useens	24-20N-1F
4	No. 2	Wenona C. C.	Wenona #1 and #2	24-JON-15 8-20N-1F
11	No. 2	Toluca C. C.	1/1 and 1/2	
360	No. /	Lopeman and Butler		34-12N-9E
361	No. 7	E. L. Colwell	a 1 1	$\frac{33-13N-9E}{15}$
362	No. 7	Spar and Reed	Sparland	LJ-LZN-YE
363	No. 7	Tony Turk		Z~12N-9E
364	No. 7	Bartol Biwar		14-12N-9E
365	No. 7	Callear and Pitcher		34-12N-9E
		MENARD COUNTY		
~ /			40	36-18N-6W
34	No. 5	Wabash C. C.	1r2 Constantions	26-10N-6U
531	No. 5	Greenview M. C.	Greenview	20-19N-0W
612	No. 5	Johnson Valley C. C.	#L	70-13N-3M
		MERCER COUNTY		
17	No 1	Cont Vallov C C	#2	4-15N-1W
10	NO. I	Coal Walley C. C.	4L2	27-15N-2W
TO		Alder C C	#7	27-15N-2W
19	NO. L		Montin	32-1/N-2W
233	NO. L	W. F. WILLIAMS	Plack Diamond	2-14N-2W
356	NO. L	Black Diamond C. C.	DIACK DIAMONG	2
		MONTGOMERY COUNTY		
76=BM45	No. 6	Cosgrove Meehan C. C.	#5	22-7N-4W
10/	No. 6	Indiana and Illinois C. C.	#10	10-10N-2W
105	No. 6	Tilinois C. C.	Nokomis #1	27-10N-2W
N . N . N .	100 0	(Nokomis C. C. Reliance)		
106	No 6	Indiana and Illinois C. Corp.	#12	6-9N-2W
190	No. 6	Indiana and Illinois C. Corp.	#11	5-8N-3W
		MOULTRIE COUNTY		
336	No. 6	Lovington C. C.	Lovington	27-15N-5E
		PEORIA COUNTY		
0.5	Ν Γ	Clerk C. C	<i>\$</i>	10-8N-7F
25	NO. 5	ULATK U. U.	rancent #1	12_9NL-7F
26	No. 5	Urescent U. U.	Jescent #1	2_7N_7D
106	No. 5	M. E. Case		0~/N~/L 00 7N 6P
107	No. 5	Newsam Bros. C. C.	GLASIOTO #4	LO-/N-OL
348=BM3	No. 5	Dorthel C. C.	WL.	10-0N-0E
349	No. 5	Pocahontas C. C.	Mapleton	JU-/N-/E
601	No. 5	Crescent M. C.	116	8-/N-/E
BM2	No. 5	Colliers' Coop. C. C.	Colliers'	26-8N-7E

Mine Index No.	Coal	Bed	Company	Mine	Location
ŦŢĸŎŢŎĊĊĹŶĬĊĬĊĬŢŎĸĸŢĸĸĸŎŎĸĸŔŎŎĸĬĬĊĸŔĸŎĬĊŢŎĸĸŢŢ		nan peringana arrend finan a dina na	PERRY COUNTY		n an Arana an Arana Ta
					15 60 111
54=BM61	No. 6		Paradise C. C.	Paradise	15-65-1W
88	No. 6		Willisville C. & M. C.	ŦF 1	30-65-4W
89	No. 6		Brilliant C. & C. Co.	Horn	19-65-1W
90	No. 6		Ritchey C. C. (Pinckneyville M. C., #5)	#1	23-58-3W
175	No. 6		Victory Collieries Co.	#1	20-4S-1W
176	No. 6		Perry C. C.	Perry County	18-4S-4W
178	No. 6		Bailey Bros. C. C.	Diamond	30-5S-1W
179	No. 6		Kanawha Fuel Co.	Old Abe	32-5S-1W
180=BM29	No. 6		Peabody C. C.	Majestic	23-65-1W
182	No. 6	100	Brewerton C. C.	#44	5-65-4W
184	No. 6		Willis C. & M. C.	Willis #8	30-65-4W
623	No. 6		Truax-Traer Coal Co.	Pyramid	36-55-3W
633	No. 6		Peabody C. C.	Gav1e #15	32-5S-1W
BM73	No. 6		Security C. & M. C.	Security	29-65-1W
			RANDOLPH COUNTY		
00	37- (Marca o	41-1	9 5 C 51J
03	NO, O		Moliner C. C.	If L Concerned a 1	5-49-50
208	NO. O		Madison C. Corp.	JIL JIL	16 50 50
209	NO. 6		Lilinois fuel Co.	#4 #6	10-35-3W
210	No. 6		WILLIB C. & M. C.	1FD _//O	14-05-JW
229	NO. 5		Willis C. & M. C.	119	11-05-3W
337	No. 5		Stanway	Stanway	30-35-0W
613	No. 6		Illinois Missouri C. C.	Wilson	1-55-6W
630	No. 6		Welshan and West C. C.		15-55-6W
654	No. 6		St. Louis C. C.	Florida	10-45-5W
			ROCK ISLAND COUNTY		
234	No. 1		Price M. Co.	Section 1	1-16N-1W
			ST. CLAIR COUNTY		
70	No 6		Superior C & M C	Superior	1 - 1 N - 9W
70	No. C		Superior C. & M. C.	#8	17 - 1N - 7W
19	NO. O		Boutlern J. & n. U.	Tro Dominant H1	27-20-6U
00	NO . O		borders u. u.	DULUELS TL	2/-33-0W
10	NO. O		Joseph Laytor C. C.	40 Bloch Ecolo	24-21V-0W
82	NO. 6		St. Louis and O'rallon C. C.	WZ DIACK Eagle	20.2N 6U
200	NO. 6		Premier C. M. C.	Premier Mar	10 011 011
201	NO. 6		Consolidated C. C.	#L/	TO TH ON
203	No. 6		Southern C. & Coke M. C.	Little Oak #/	18-1N-/W
205	No. 6		Egyptian C. & M. C.	₩L	36-35-6W
626	No. 6		Prairie C. C.	Prairie	27-2N-8W
628	No. 6		Ed Lill	Lill	2-15-9W
650	No. 6		Vinegar Hill C. C.	Vinegar Hill	2-35-7W
			SALINE COUNTY		
42	No. 5		O'Gara C. C.	#9	21-9S-6E
44	No. 5		Peabody C. C.	#43 (old mine)	17-9S-6E
45	No. 5		Wasson C. C.	#1	36-8S-6E

Mine Todex No.	Coal I	Bed	Company	Mine		Location
Biggingeringeringeringeringeringeringerin		newsengh second and designed	สมารณ์สารระบบสระบบริเมษ และเหมืองสมารณะสมมัญญา เมษที่รับรุณสมารณ์และ 🖕 - สุรายารสระสมารณ์และระบบริเมษรณะ	৽ՠֈՠֈֈֈ֎ՠՠՠֈֈֈ՟ՠֈֈֈ֎ՠՠֈֈֈ֎ՠՠֈՠֈՠՠՠՠՠ֎֎֎֎֎֎֎֎	<u></u>	ŊġĊĸĸĸŢŢŢĊĸŶĸġĸĿĸŔŎŦĔĊſĊŨĬŎĊĊĊĸĸĸĊĊĊŎŢĸĸĊĸĔĊĬĬŢŎ
			SALINE COUNTY (cont'd)	i		
46	No. 5		Eldorado C. & M. C.	#1		15-8 S-7 E
48	No. 5		O'Gara C. C.	#7		36-9 S- 5E
49=BM8	No. 5		Harrisburg Southern C. C. (Peabody C. C., #46)	Nigger Hill		34-8S-7E
124	No. 5		Peabody C. C.	Harco #47		27-8S-5E
125=BM70	No. 5		Dering C. C.	#2		24-8S-6E
126	No. 5		O'Gara C. C.	#11	· · ·	20-8S-7E
127	No. 5		Sahara C. C.	#1		2-95-6E
128	No. 5		O'Gara C. C.	#14		30-9S-6E
129	No. 5		Saline County C. C.	#4		15-9S-5E
			(Peabody C. C., #44)			
130	No. 5		Wasson C. C.	#2		33-9S-5E
608=BM71	No. 5		Sahara (O'Gara) C. C.	#3		15-9S-6E
610	No. 5		Blue Bird C. C.	Blue Bird		5-10S-5E
646	No. 5		White Star C. C.	. 5		23-9S-7E
647	No. 5		Rocky Branch C. C.	#1		22-9S-7E
BM72	No. 5		Saline County C. C.	Saline #2		36-9S-5E
			SANGAMON COUNTY			
36	No. 5		Springfield C. M. C. (Peabody C. C., #52)	律2		10-16N-4W
37	No. 5		Peabody C. C.	#59 Peerless		13-16N-5W
38	No. 5		Woodside G. C.	Woodside		3-15N-5W
20	2104 2		(Peabody C. C. #53)			•
30	No. 5		Tilinois Midland C. C.	#6		36-17N-5W
57	1.01 3		(Peabody C_{a} , C_{a} , $\#6$)	<i>n</i> •		-
40	No. 5		Williamsville C. C.	Selbytown		17-17N-4W
74	No. 6		Madison C. C.	#6		21-13N-5W
75	No. 6		Black Diamond C. C. (Peabody C. C., #54)	Black Diamond		15-13N-6W
119	No. 5		Illinois C. & Coke Corp.	Empire #1		14-16N-5W
120	No. 5		Spring Creek C. C.	Spring Creek		19-16N-5W
121	No. 5		Bissell C. C.	Clear Lake		8-16N-4W
122	No. 5		Jefferson C. M. C.	Brewerton #81		1-15N-5W
193	No. 6		Panther Creek C. C.	Panther Creek		35-14N-6W
616	No. 5		Central Illinois C. M. C. (Citizens C. C.)	"A"		32-16N-5W
617	No. 5		Central Illinois C. M. C.	"B"		31-16N-5W
618	No 5		Panther Creek C. C.	#L.		29-16N-5W
624	No 5		Rethel C. C.	Rethel		25-17N-8W
6/1	No 5		Farrand C. C	Farrand		12 - 16N - 4W
047	MO 8 2		a call celler to a to a	2. 64 d. 2. 64 4 2 4		
			SCHUYLER COUNTY			
214	No. 2		Simpson and Gory			36-3N-1W
327	No. 5		Vonach M. C.	Vonach		20-2N-1W
कर्त्तु केला ह	~~~ @ ~		a na manana sa ka manga Sut (b).	a dia kaominina any amin'ny fi		and the Bank of a Bank of a
			SHELBY COUNTY			
217	No. 5		Moweaqua C. M. & Mfg. Co.	#1		31-14N-2E
615	Trowbri	dge	Curry Brothers			11-10N-6E

Mine Index No.	Coal	Bed Company	Mine	Location
		STARK COUNT	Y	
528 529	No. 6 No. 6	Frank Kingen and Son Jake McDaniels	Kingen McDaniels	18-13N-7E 25-13N-6E
		TAZEWELL CO	JNTY	an an Ara An Ara An Ara
27	No. 5	Tazewell County C. C	. Tazewell	6-24N-4W
108	No. 5	Crescent C. C.	#2, Groveland	18-25N-4W
		VERMILION CON	JNTY	
91	No. 6	Peabody C. C.	#24	15-18N-12W
92	No. 6	Sharon C. C.	Sharon	7-17N-11W
93	No. 6	Bunsen C. C.	Little Vermilia	on 19-18N-11W
94	No. 7	Electric C. C.	Electric	10-19N-12W
95	No. 6	W. C. Shafer	Shafer	7-19N-11W
97	No. 7	Fairmount C. C.	Fairmount	34-19N-13W
212	No. 6	Taylor English C. C.	#2	3-18N-12W
401	No. 6	U. S. Fuel Co.	Bunsenville	26-18N-12W
603	No. 7	M. and B. C. C.	M. and B.	10 - 19N - 12W
656	No. 7	Grape Creek M. C.	Grape Creek	5-18N-11W
		WABASH COU	NTY	
658	Friends	ville Painter and Bellissa (C. C. Hillcrest	29-25-13W
		WARREN COU	NTY	
246	NT- 1	1.7.5 % % 4	Christer	15 11N. 017
340 357	No. 1	A. L. Richardson	Richardson	24 - 12N - 2W
		WASHINGTON C	OUNTY	
07	37 C		JL r	00 181 117
00	NO. O	Centralia C. C.	if D	ZD-IN-IW 19 oc ou
627	No. 6	Dermstadt C C	Dermetadt	20-25-5W
	110 ° 0	Datustadt 0. 0.	Darmstaat	J020JW
		WHITE COUN	ΓY	
227	No. 6	Interstate Fuel & Po	wer Corp. #1	21-6S-8E
		WILLIAMSON	COUNTY	
50	NT- 6	Johnston Oltra C. C.	Mont	21-00-2F
	NO, 0 No 6	Boshady C. C.	Jka	24=03=2E 1_02_2F
00 61-0M27	NO. O	reabouy C. C. Contonuillo & Howrin		22-85-2E
01-Driz/	110 ° 0	(Pratt Brothers)	SU. JEILLEY	22-03-26
62	No. 6	Chi., Wil., & Frankl	in C. C. "A"	19-8S-2E
63	No. 6	Big Muddy C. and Iro	n Co. #8	14-8S-1E
64	No. 6	Hater Washed C. C.	#3	30-05-1E
65	No. 6	Chicago and Big Mudd	y U. U. Big Muddy	Z=95-25
146 140	NO. 6	Uonscildated C. C. O	I DE. LOUIS (OLD) LAKE C	TEEK 10-05-35
150	NO_{2} 6	Jearis G. G. Johnston City Washed	C. C. White Ash	31-8S-3E
		مېلىنى يېزى 10 يىلى 10 مەلىكى يېزىلى 10 يىلى 10		

Mine	2		
Index	No.	Coal	Bed

Company

Mine Location

WILLIAMSON COUNTY (Cont'd.)

151	No. 6	Slogo C. Corp.	Slogo	32-8S-3E
152	No. 6	Cameron C. C.	Keystone	35 -85-3 E
154	No. 6	Cosgrove Meehan C. C.	Franco #1	11-8S-2E
155	No. 6	Old Ben C. Corp.	#18	12-8S-2E
156	No. 6	Chi., Wil., & Franklin C. C.	"B"	17-8S-2E
157	No. 6	Peabody C. C.	#26	25-8S-2E
158	No. 6	Taylor C. C.	#2	31-8S-2E
159	No. 6	Taylor C. C.	#1	32-8S-2E
160	No. 6	Sincerity C. C.	#2	34-8S-2E
163	No. 6	Madison C, Corp.	<i>#</i> 12	20-85-1E
165	No. 6	T. G. Warden C. C.	Sunnyside	25-8S-1E
166	No. 6	Peabody C. C.	#16	33-85 -1 E
167	No. 6	Madison C. Corp.	<i>#</i> 8	35-8 5-1 E
168	No. 6	Orchard C. C.	Orchard	2-95-3E
169	No. 6	West Virginia C. C.	West Virginia	5 -95- 3E
170	No. 6	William Stroud C. C.	Stroud	6-9S-3E
171	No. 6	George Brown	Blinkley	6-9S-3E
172	No. 6	Spiller and Lewis Co.	Sp iller & Lewis	6-9S-3E
173	No. 6	Henderson and Wallace C. C.	H. and W. #1	8-9S-3E
353	No. 5	Laclede C. & M. C.	Laclede	34-8S-2E
BM28	No. 6	Rend C. C.	#2	1-8S-1E
		(01d Ben C. Corp., #20)		
BM69	No. 6	Freeman C. & M. C.	Pond Creek	5-8S-2E
		WOODFORD COUNTY		
410	No. 2	W. G. Sutton	Minonk #2	6-28N-2E
611	No. 2	Roanoke Coal & Tile Co.	Roanoke	14-27N-1W

STATE OF ILLINOIS HENRY HORNER, GOVERNOR DEPARTMENT OF REGISTRATION AND EDUCATION DIVISION OF THE STATE GEOLOGICAL SURVEY

M. M. LEIGHTON, Chief

BULLETIN No. 62

Classification and Selection of Illinois Coals

GILBERT H. CADY

PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS

URBANA, ILLINOIS 1935 REPRINTED, 1936

STATE OF ILLINOIS

HON. HENRY HORNER, Governor

DEPARTMENT OF REGISTRATION AND EDUCATION

HON. JOHN J. HALLIHAN, Director

SPRINGFIELD

BOARD OF

NATURAL RESOURCES AND CONSERVATION

Hon. John J. Hallihan, Chairman

EDSON S. BASTIN, Ph.D., Geology WILLIAM A. NOYES, Ph.D., LL.D., Chem. D., D. Sc., Chemistry JOHN W. ALVORD, C.E., Engineering WILLIAM TRELEASE, D.Sc., LL.D., Biology HENRY C. COWLES, Ph.D., D. Sc., Forestry

ARTHUR CUTTS WILLARD, D. Engr., LL.D., President of the University of Illinois

STATE GEOLOGICAL SURVEY DIVISION

URBANA

M. M. LEIGHTON, Ph. D., Chief

Geological Resource Section Coal Division Oil and Gas Division Non-Fuels Division Areal and Engineering Geology Division Subsurface Geology Division Division of Stratigraphy and Paleontology Division of Petrography Division of Physics Geochemical Section Fuels Division Non-Fuels Division Analytical Division

Mineral Economics Section

Topographic Mapping Section (In cooperation with the United States Geological Survey)

Publications and Records

This Bulletin is a contribution from the Coal Division of the Geological Resource Section, with the assistance of the Geochemical Section under the direction of Dr. F. H. Reed, Chief Chemist.

Dedicated to the memory of PROFESSOR SAMUEL WILSON PARR friend and consultant and leader in chemical researches on Illinois coals

Preface

FOR NEARLY THIRTY YEARS the State Geological Survey has been investigating the chemical character of Illinois coal. In so doing there has been in mind the eventual standardization of the product of our coal mines, providing a basis for discriminating selection by the consumer and accurate representation by the vendor. This is an end that could not have been attained at once because of the necessity for perfecting and standardizing sampling and analytical procedure, for developing a satisfactory basis for comparison and evaluation, and for collecting samples from a sufficiently large number of mines through a period of years to justify confidence in the conclusions drawn.

From the time of the organization of the Survey until his death in 1931 the late Professor S. W. Parr of the University of Illinois either assisted in the planning and execution of the chemical studies in coal carried on by the Survey or was in friendly touch with the work that was being carried on. He searched diligently and we believe successfully for a basis of classification and selection that permits the accurate comparison of the quality of Illinois coals with one another and with competitive fuels. He did much to perfect the methods of sampling, and to improve and standardize analytical procedure.

Professor Parr's particular contribution to coal classification was the development of a relatively simple method of expressing the heat value of the pure, that is the mineral-matter-free, coal substance. This theoretically pure coal he believed was essentially uniform in character for each individual bed over considerable areas, where geological conditions are essentially uniform as in most of the Illinois coal basin. Local variations in the coal as produced are, if this theory is correct, due to variations in the quantity and character of the impurities. Systematic sampling by the Survey of 100 mines in the State in 1912 and the careful analysis of the several hundred samples under Professor Parr's direction gave definite support to the theory of the uniformity of the essential coal material over large areas such as counties. Since that time additional information has substantiated the validity of this early generalization.

The mineral-matter-free, or what he called the "unit coal", values were likewise regarded by Professor Parr as the basis for designating the rank classification of a coal. This method has been employed by the Survey for several years, and it is of interest to note that tentative specifications for the classification of coal by rank, recently announced by the American Society for Testing Materials and printed in Chapter II of this bulletin, are in close accordance with it. It seems particularly appropriate, therefore, that the first attempt at application should be made in Illinois coals, inasmuch as the proposals are in line with practice that has long been in use by this Survey. County and district rank averages have been published in our bulletins since 1914. The only important difference between averages presented in the present bulletin and those previously presented is the use of moist rather than dry mineral-matter-free values, this being the basis preferred by the Coal Classification Committee.

Since the publication of the last compilation of Illinois coal analyses in 1927 numerous mines have been sampled so that many more mining areas are now represented in our analytical files. Furthermore, the Coal Classification Committee has indicated the desirability of eliminating from the compilations analyses made before 1912. A revision of the published compilations is therefore desirable to exclude analyses of doubtful accuracy and to include new analyses.

Among the analyses and other experimental data presented will be found much information supplied by the United States Bureau of Mines. To this bureau the State Geological Survey is indebted for its vast amount of assistance in analytical work and for helpful criticism.

Many of the analytical results contained in this bulletin were made for us under the supervision of Professor J. M. Lindgren in the Chemical Testing Laboratory of the University of Illinois, for which we make grateful acknowledgment.

None of the work of determining the analytical character of Illinois coals would have been possible without the continuous hearty, confident support of the host of friends of the Survey through these many years among the producers and miners of coal. Cooperation in the task of collecting samples was invariable. It is impossible to detail the list of those in the coal mining industry who have helped in the accumulation of these data.

Our thanks is likewise given to the American Society of Testing Materials for their courtesy in extending the privilege of publishing the tentative specifications for the classification of coal by rank and grade found in Chapter II.

The bulletin presents a compilation of analytical data in regard to Illinois coal so interpreted that it is believed even the small user of coal with sufficient interest in the matter of the discriminating selection of coal to investigate its possibilities can find herein the means for making such selection. The Survey is ready at all times to answer inquiries in regard to the coals of the State and to advise with regard to the application of the criteria recommended for use.

M. M. LEIGHTON, Chief.

April 4, 1935.

Contents

Chapter I

......

Introduction, summary, and acknowledgments	11
Plan of the report	12
Summary of method of coal selection	12
Analytical data	13
Acknowledgments	13

CHAPTER II

Fentative specifications for rank and grade classification by the American Society for	
Testing Materials	15
Tentative specifications for classifications of coals by rank	15
Classification by rank	15
Sampling	17
Methods of analysis of tests	19
Calculation to mineral-matter-free basis	19
Appendix—Published analyses suitable for coal classification	21
Tentative specifications for classification of coals by grade	22
Classification by grade	22
Sampling	23
Methods of analysis	23

Chapter III

Problems of the classification of Illinois coal	25
Varieties of coal	25
Bases for difference in rank of Illinois coals	26
The mineral-matter-free basis of comparison	26
Derivation of the Parr ash-to-mineral-matter correction formula	27
"Unit" coal versus moist mineral-matter-free coal	28
Significance of moisture in rank classification	28
Values used in rank classification	2 9
Symbols for expressing rank classification	29
Physical properties determining rank	30
The specifications of grade classification	30
Weathering characteristics.	31

Chapter IV

Classification of Illinois coals	33
Classification by rank	33
Rank index and unit coal index by mine and county	33

ssification of Illinois coals by grade
Rank
"As received" calorific value and heat index
Ash
Ash softening temperature
Sulfur

CHAPTER

The use of grade rating specifications in selecting Illinois coals	41
General basis of coal selection	41
Price	40
Heat rating of Illinois coals	42
Moist mineral-matter-free coal and coals of identical ash and sulfur content	42
Coals of unequal ash and sulfur (or mineral matter) content	42
Range of variation in heat index	43
Ash	43
Fusion point of the ash	47
Sulfur	47
Other factors affecting the grading of Illinois coals	47
Coking strength	48
Weathering characteristics	48
Conclusion	49

Chapter VI

Commercially important coal beds in Illinois	53
Mining enterprises by bed	58
Selection of coal by bed	59

Chapter VII

Available chemical data and their reliability
Proximate and ultimate analyses
Purpose of analytical data
Release of analytical data
Tabulations
Standardization of laboratory procedure
Sampling methods.

APPENDIX I

Individual and average analyses of Illinois coals	67
Finding key to arrangement of analyses by coal bed	67
Table 1—Individual proximate analyses of face samples of Illinois coal beds	
arranged by bed, county, and mine	70
Table 2-Mine and county averages of proximate and ultimate analyses of Illi-	
nois coals, arranged by coal bed, county, and mine	208
Table 3—Average proximate and ultimate analyses of face samples used in the calculation of some mine analyses shown in Table 2, arranged by coal bed,	
county, and mine	292

- Table 5—Identity of Illinois mines, samples from which have been analyzed and the results published by the United States Bureau of Mines, and of certain abandoned mines sampled by and analyzed for the State Geological Survey... 327

Table 6-Ash softening temperature, dry ash content, and dry total sulfur, pyritic	
sulfur, and organic sulfur contents of certain Illinois coals, arranged by bed,	
county, and mine	330

Appendix II

Coal classification, price, and economy nomographs	345
Chart I-Coal classification nomograph	345
To determine mineral-matter-free values	345
To determine the dry mineral-matter-free (unit coal) and moist mineral-	
matter-free volatile matter	347
To determine "as received" B.t.u. and volatile matter values from mineral-	
matter-free values	347
Chart II—Nomograph for coal price and specification comparison	351
Comparison of heat value	531
Comparison of prices and costs	351
Chart III-Nonograph for comparing the economy of coal oil and gas as fuels	353
Chart III Thomograph for comparing the economy of coal, on, and gas as factors	252
Purpose	000
Illustration of use	353

Illustrations

Figure		Page
1.	County average rank indices	34
2.	Approximate known extent of areas of accumulation of coal beds of commercial importance in Illinois	54, 55
Plate		
I	Coal classification nomograph	346
II	Nomograph for coal comparison	350
III	Nomograph for comparing the economy of coal, oil, and gas as fuels	352

Classification and Selection of Illinois Coals

GILBERT H. CADY

CHAPTER I

INTRODUCTION, SUMMARY, AND ACKNOWLEDGMENTS

THIS REPORT has for its primary purpose the presentation of a compilation of available analyses of face samples of Illinois coal made by the State and Government laboratories between January, 1912, and October, 1934. The secondary purpose of the report is the application to Illinois coals of the system of rank and grade classification of coals recently announced by the American Society for Testing Materials and the explanation of a method for a discriminating selection of these coals based upon the proposed system of classification.

The analytical data presented indicate the nature of the coal as it exists in the bed, and the value of the data is primarily its usefulness in indicating the nature of the pure coal material—that is, the mineral-matter-free coal—which it is believed has an essentially uniform character for considerable areas within each bed. It is not desirable to use analyses of face samples as representative of coal as mined and prepared for shipment. They may be used, however, to indicate the character of the pure coal material, as the pure coal is probably not appreciably modified by the mining and preparation process.

The use of ash and sulfur values given in this report as an expression of the ash and sulfur content of the coal as loaded at the mine is particularly undesirable; only analyses of tipple or car samples can supply such information.

For some years a committee sponsored by the American Society for Testing Materials and working under the auspices of the American Standards Association, has been investigating North American coals for the purpose of recommending specifications for a practical and scientifically correct system of coal classification. Acceptance of proposed tentative specifications covering the classification of coal by rank and grade was finally announced by the American Society for Testing

INTRODUCTION

Materials in March, 1934¹, and details of the specifications were presented in the following April², followed by publication by the Society in September³.

Plan of the report.---The general plan of the report following the introductory chapter consists, first, of a presentation in full of the A.S.T.M. specifications for the classification by rank and grade. This is followed by a discussion of the general problem of coal classification and the nature of rank and grade. The specifications are then applied to Illinois coal and the application of the proposed scheme of classification to the problem of selection of Illinois coal by the user of small quantities of coal is explained. The discussion involves consideration of the distribution of variations in ash and sulfur in Illinois coals, the nature of variations in the softening temperature of coal ash, and in the agglutinating or coking strength of the coal. A general summary is given of the correlation, stratigraphic position, and distribution of the commercially important coal beds. The final chapter of the report discusses the nature of the analytical data given in the tables in the appendix and elsewhere in the report. The analytical tables in the appendix consist of proximate analyses of individual samples, with a few ultimate analyses of individual samples in a separate table, mine and county average proximate and ultimate analyses, and a table showing ash softening temperatures of a large number of Illinois coals. In the text are tables giving the county average ash values for face samples for each county and agglutinating and slacking indices for various coals. Graphical methods of determining the "as received" heat value and certain other analytical values from mineral-matter-free values, and for comparison of the price of coals and of coal, oil, and gas are presented in Appendix II.

Summary of method of coal selection.—The plan that is recommended for the selection of Illinois coal is based upon the well established fact of the uniformity of rank of the individual beds of Illinois coal over fairly large areas, commonly as large as a county. The rank of a coal, as is explained, is indicated by the heat value of the moist, mineral-matter-free coal. It is therefore proposed to designate the B.t.u. value of such coal, expressed to the nearest hundred units, the rank index, this being a value of sufficient precision for most purposes of comparison. The rank index of each coal bed and for many mines is given in the tables accompanying the report as are also the county average indices. The character of the coal produced at the individual mine in a county expressed in terms of its "as received" heat value can be readily ascertained from the rank index if the amount of mineral matter present in the coal is known. The "as received" heat value thus or otherwise determined is called in this report the

¹ Bulletin American Society for Testing Materials, March, 1934, page 9. ² Fieldner, A. C., Coal classification is boon to industry: Industrial Standardization and Commercial Standards, pp. 63-65, April, 1934. ³ A.S.T.M. Standards on coal and coke, prepared by Committee D-5 on Coal and Coke: September, 1934. Tentative specifications for classification of coals by rank, A.S.T.M. Designation D 388-34T. Tentative specifications for classification of coals by grade, A.S.T.M. Designation D 389-34T.

ACKNOWLEDGMENTS

heat index when expressed to the nearest hundred B.t.u. A simple method for obtaining a value for mineral matter from the ash and sulfur values makes the derivation of the heat index from the rank index an easy multiplication. Thus, with the standard rank index for any coal available it is possible for the purchase and sale of coal to take place on the basis of amount of heat purchased for each unit of cost, provided specifications applying to a particular coal include accurate statements of its ash and sulfur content.

Analytical data.—The chemical analyses presented in the appendix and used as a basis for the discussion of the classification and selection of Illinois coals consist of a new compilation of all analyses of standard face samples of Illinois coal made during and since 1912 by the University of Illinois, the U. S. Bureau of Mines, and the Analytical Division of the State Geological Survey (since 1931), the character of which is explained more fully in the final chapter. This compilation supersedes that appearing in Illinois State Geological Survey's Cooperative Mining Series Bulletin 27 (originally designated as an extract), entitled "Analyses of Illinois Coals", compiled by G. W. Hawley, published in 1923.

The compilation of these data has been carried on interruptedly through a number of years. A preliminary task consisted in recalculating all analyses made before 1928, particularly the unit coal values. In 1929 the analyses available up to that date had been tabulated and mine and county averages had been determined, the latter values appearing in Bulletin 56, "Illinois Coal", by A. Bement (1929). The second edition of this bulletin, published in 1932, carried a revised list of county averages based upon a slightly enlarged and an otherwise somewhat modified list of analyses. Since 1931 a fairly large number of analyses have been made so that several counties and seams are better represented than formerly in the analytical files of the State Geological Survey. The fact that during the meetings of the Coal Classification Committee doubt was thrown on the comparative value of analyses made before 1912,⁴ made it seem best to omit such analyses. Accordingly for the present report it was necessary to revise earlier lists, eliminating analyses made before 1912 and adding new analyses made since 1931 and to calculate new mine and county averages (Appendix). Furthermore, with the adoption of the moist, mineral-matter-free values as the basis of rank classification, it became necessary to provide such values, at least for mine and county averages. The present list also contains unit coal (dry, mineral-matter-free), volatile, and fixed carbon values not presented in earlier compilations.

Acknowledgments.—The author is under great obligation to his associates on the staff for their willing assistance in making numerous calculations and in checking tables. It is a pleasure to refer particularly to Mr. John Hughes

⁴The date stated in the A.S.T.M. specification is 1913 (p. 21), but the methods used in 1912 in obtaining the analyses included herein were essentially those adopted by the American Society for Testing Materials in 1913.

INTRODUCTION

who assisted in the preliminary compilations, to Messrs. L. C. McCabe, Clayton G. Ball, E. T. Benson, and W. S. McCabe of the regular staff, and to Messrs. John F. West and W. A. Blomstran, temporary employees during the C. W. A. period. To Dr. M. M. Leighton, Dr. F. H. Reed, Dr. Gilbert Thiessen, and Dr. O. W. Rees of the Survey staff, and Professor D. R. Mitchell of the Department of Mining and Metallurgical Engineering of the University of Illinois, the author is indebted for helpful criticisms and suggestions.

The writer wishes to express his personal appreciation of and to acknowledge the indebtedness of the Survey for the helpful cooperation of Dr. A. C. Fieldner, Mr. W. A. Selvig, and Mr. H. M. Cooper of the United States Bureau of Mines in arranging for and carrying through many proximate and ultimate analyses of coal samples supplied by the Survey, for furnishing analytical data from the files of the Bureau, in supplying agglutinating and slacking indices for a considerable number of Illinois coals, and for running occasional check analyses as an assistance in standardizing the operations of local laboratories.

The bulletin contains many hundreds of analyses representing mine samples collected in nearly 300 mines in the State. This has required the services of many sampling parties and the helpful cooperation of the mine management of the numerous mines. The analytical work has been carried on by chemists in three laboratories, that of the Bureau of Mines for the last several years under the direction of Mr. H. M. Cooper, that of the University of Illinois under the direction of Mr. J. M. Lindgren, and that of the State Geological Survey under the direction of Dr. O. W. Rees, by Messrs. John W. Robinson, Jr., Carl Westerberg, C. E. Imhoff, L. D. McVicker, G. C. Finger, and W. F. Bradley. The author wishes to make appreciative acknowledgment in the name of the Survey of the cooperation and assistance of all those who have helped to make possible the existence and compilation of these data.

CHAPTER II

TENTATIVE SPECIFICATIONS FOR RANK AND GRADE CLASSIFICATION BY THE AMERICAN SOCIETY FOR TESTING MATERIALS

FOR THE CONVENIENCE of the reader and as a basis for the discussion that follows, the complete text of the tentative specifications for classification of coal by rank and grade is published herewith through the courtesy of the American Society for Testing Materials in whose publications the specifications have previously been published. The specifications for classification by rank have the A.S.T.M. designation D 388–34T, and the specification for classification by grade the designation D 389–34T. In both instances the standards are designated tentative and hence are subject to annual revision. Both specifications were issued in 1934. A single revision, but not one affecting the classification of Illinois coals, is in prospect for 1935. This will be noted at the proper place in the text.

TENTATIVE SPECIFICATIONS

FOR

CLASSIFICATION OF COALS BY RANK¹

Scope

1. These specifications cover the classification of coals by rank, that is, according to their degree of metamorphism, or progressive alteration, in the natural series from lignite to anthracite.

Basis of Classification

2. The basic scheme of classification is according to fixed carbon and calorific value (expressed in B.t.u.) calculated to the mineral-matter-free basis. The higher-rank coals are classified according to fixed carbon on the dry basis; and the lower-rank coals according to B.t.u. on the moist basis. Agglutinating and slacking indices are used to differentiate between certain adjacent groups.

CLASSIFICATION BY RANK

Classification by Rank

3. (a) Fixed Carbon and B.t.u.—Coals shall be classified by rank in accordance with Table 1. Coals having calorific values of 14,000 B.t.u. or more on the moist, mineral-matter-free basis, and coals having fixed carbon of 69 per cent or more on the dry, mineral-matter-free basis, shall be classified accord-

¹Under the standardization procedure of the Society, these specifications are under the jurisdiction of the Sectional Committee on Classification of Coals functioning under the procedure of the American Standards Association with the American Society for Testing Materials as sponsor.

A.S.T.M. TENTATIVE SPECIFICATIONS

ing to fixed carbon on the dry mineral-matter-free basis; coals having calorific values less than 14,000 B.t.u. on the moist, mineral-matter-free basis shall be classified according to B.t.u. on the moist, mineral-matter-free basis, provided the fixed carbon on the dry, mineral-matter-free basis is less than 69 per cent.

(b) Weathering Index.—Coals showing average weathering indices of less than 5 per cent shall be considered non-weathering, coals showing average weathering indices of 5 per cent or more shall be considered weathering from the standpoint of classification.

(c) Agglutinating Index.—Coals having average agglutinating indices of 500 g. or more at a ratio of 15 parts sand to 1 part coal shall be considered agglutinating from the standpoint of classification.

Class	Group	Limits of Fixed Carbon or B.t.u. Mineral-Matter-Free Basis	Requisite Physical Properties
I. Anthracitic	 Meta-anthracite Anthracite Semianthracite 	Dry F.C., 98 per cent or more (Dry V.M., 2 per cent or less) Dry F.C., 92 per cent or more and less than 98 per cent (Dry V.M., 8 per cent or less and more than 2 per cent) Dry F.C., 86 per cent or more and less than 92 per cent (Dry V.M., 14 per cent or less and more than 8 per cent)	Non-agglutinating <i>a</i>
II. Bituminousc	 Low volatile bituminous coal Medium volatile bitumi- nous coal High volatile A bitumi- nous coal Uict entrie B bitumi 	Dry F.C., 77 ² per cent or more and less than 86 per cent (Dry V.M., 23 per cent or less and more than 14 per cent) Dry F.C., 69 per cent or more and less than 77 ² per cent (Dry V.M., 31 per cent or less and more than 23 per cent) Dry F.C., less than 69 per cent (Dry V.M., more than 31 per cent); and moistb B.t.u., 14,000d or more	
	 4. High volatile B bitumi- nous coal 5. High volatile C bitumi- nous coal 	Moist b B.t.u. 13,000 or more and less than 14,000 d Moist B.t.u., 11,000 or more and less than 13,000 d	Either agglutinating or non-weatheringe
III. Subbituminous	 Subbituminous A coal Subbituminous B coal Subbituminous C coal 	Moist B.t.u., 11,000 or more and less than 13,000d Moist B.t.u., 9500 or more and less than 11,000d Moist B.t.u., 8300 or more and less than 9500d	Both weathering and non-agglutinating
IV. Lignitic $\left\{$	1. Lignite 2. Brown coal	Moist B.t.u., less than 8300 Moist B.t.u., less than 8300	Consolidated Unconsolidated

TABLE 1.—CLASSIFICATION OF COALS BY RANK. Legend: F.C.=Fixed Carbon V.M.=Volatile Matter. B.t.

B.t.u.=British thermal units.

^aIf agglutinating, classify in low-volatile group of the bituminous class.

^bMoist B.t.u. refers to coal containing its natural bed moisture but not including visible water on the surface of the coal.

^cPending the report of the Subcommittee on Origin and Composition and Methods of Analysis, it is recognized that there may be non-caking varieties in each group of the bituminous class.

^dCoals havig 69 per cent or more fixed carbon on the dry, mineral-matter-free basis shall be classified according to fixed carbon, regardless of B.t.u.

 c There are three varieties of coal in the High-volatile C bituminous coal group, namely. Variety 1, agglutinating and non-weathering; Variety 2, agglutinating and weathering: Variety 3, non-agglutinating and non-weathering.

 2 AUTHOR'S NOTE: This value has recently been changed to 78 and the following 23 has been changed to 22.

Symbols for Expressing Classification

4. (a) The position of a coal in the scale of rank may be expressed in condensed form as in the following example:

(62 - 146)

in which the parenthesis signifies that the contained numbers are on the mineralmatter-free basis. The first number represents fixed carbon on the dry basis, reported to the nearest whole per cent. The second number represents B.t.u. on the moist basis, expressed as hundreds of B.t.u. (to the nearest hundred); for example, 14,580 B.t.u. would be represented as 146.

(b) When agglutinating or weathering properties enter into the classification of a coal, they shall be expressed outside and immediately following the parenthesis by the following symbols:

- ag. agglutinating
- na. non-agglutinating

we. = weathering

nw. — non-weathering.

(c) Symbols describing the grade of coal shall be placed after the parenthesis, as shown in the following illustration:

(62-146) 132-A8-F24-S1.6

The numbers in parenthesis are on the mineral-matter-free basis, and give the position of the coal in the scale of rank as explained in Paragraph (a) of this section. The numbers and symbols following the parenthesis show the position of the coal according to classification by grade as shown in Section 2 of the Tentative Specifications for Classification of Coals by Grade (A.S.T.M. Designation: D 389 - 34T) of the American Society for Testing Materials.¹ That is, 132-A8-F24-S1.6 indicates a heating value of approximately 13,200 B.t.u., an ash content of 6.1 to 8.0 per cent, inclusive, an ash-softening temperature of 2400 to 2590 F., inclusive, and a sulfur content of 1.4 to 1.6 per cent, inclusive, all expressed on the basis of the coal as sampled.

SAMPLING

Bed Samples

5. (a) The classification of a coal bed, or part of a coal bed, in any locality shall be based on the average analysis and calorific value (and agglutinating and weathering index where required) of not less than three and preferably five or more face samples taken in different and uniformly distributed localities, either, within the same mine or closely adjacent mines representing a continuous and compact area not greater than approximately four square miles in regions of geological uniformity. In regions where conditions indicate that the coal probably varies rapidly in short distances the spacing of samples and groupings of analyses to provide average values shall not be such that coals of obviously different rank will be used in calculating average values.

(b) The samples shall be taken in accordance with the U. S. Bureau of Mines method¹ or its equivalent, and shall be placed in moisture-tight containers in the mine.

(c) Analyses of samples from outcrops or from weathered or oxidized coal shall not be used for classification by rank.

(d) In case the coal is likely to be classified on the "moist" basis, that is, containing the natural bed-moisture, the samples shall be taken at freshly exposed faces, which are free from visible surface moisture if possible. Samples of low-rank coals which appear dry at the time of collection frequently give off moisture which condenses on the inner surface of the sample containers, before they are opened for analysis. In the case of coals which were free from visible surface moisture when sampled, but which show moisture on the inner surface of the containers when opened, both the container and the coal shall be weighed before and after air-drying and the total loss in weight shall be reported as air-drying loss.

(e) If it is impossible to sample the coal without including visible surface moisture, and the coal is likely to be classified on the "moist" basis, the sampler shall include the following statement in the description: "Sample contains surface moisture." Samples so marked shall not be used for classification on a moist basis unless brought to a standard condition of moisture equilibrium at 30 C. in a vacuum desiccator containing a saturated solution of potassium sulfate (96 per cent humidity) as suggested by Stansfield and Gilbart.² Analyses of such wet samples which have been treated in this manner shall be designated as "wet samples equilibrated at 30 C. and 96 per cent humidity."

Tipple or Shipment Samples

18

6. (a) The classification of "run of mine" coal and prepared sizes of coal shall be based on representative samples taken in accordance with the Standard Method of Sampling Coal (A.S.T.M. Designation: D 21) of the American Society for Testing Materials.³

(b) In case the coal is likely to be classified on the "moist" basis, the samples shall be taken at the tipple or preparation plant and protected against loss of moisture as specified in Sections 8 and 9 of the Standard Method D 21. Samples which appear dry at the time of collection shall be handled in accordance with Section 5 (d) above to ensure correct determination of total air-drying loss. Samples which have visible surface moisture on the coal when sampled, and which are likely to be classified on the "moist" basis, shall be marked by the sampler, equilibrated, and the analyses designated in accordance with Section 5 (e) above.

¹ J. A. Holmes, "The Sampling of Coal in the Mine," U. S. Bureau of Mines *Technical* Paper No. 1 (1918).

 ² Edgar Stansfield and K. C. Gilbart, "Moisture Determination for Coal Classification," Transactions, Am. Inst. Mining and Metallurgical Engrs., Coal Division, p. 125 (1932).
 ⁸ 1933 Book of A.S.T.M. Standards, Part II, p. 318.

CLASSIFICATION OF COAL BY RANK

Methods of Analysis and Tests

Laboratory Sampling and Analysis

7. The coal shall be prepared and analyzed in accordance with the Standard Methods of Laboratory Sampling and Analysis of Coal and Coke (A.S.T.M. Designation: D 271) of the American Society for Testing Materials.¹

Weathering or Slacking Index

8. Pending the adoption of a method by the American Society for Testing Materials, the weathering or slacking characteristics of coals shall be determined by the U. S. Bureau of Mines method² modified with respect to the selection of a standard humidity. Briefly, the test consists of air-drying 500 to 1000 g. of approximately 1 to $1\frac{1}{2}$ in. lumps at a temperature of 30 to 35 C. and a humidity of 30 to 35 per cent for a period of 24 hr. and then immersing the lumps in water for 1 hr.; the water then being drained off, and the sample again air-dried for 24 hr. The amount of disintegration is determined by sieving on an 8-in. wire-mesh sieve with 0.263-in. square openings, and weighing the quantity of coal passing (undersize) and that retained on (oversize) the sieve. The percentage of coal passing the sieve (undersize), after deducting a blank sieving test, is the weathering or slacking index of the coal.

Agglutinating Index

9. Pending consideration of an agglomeration test now being investigated, the agglutinating index shall be determined in accordance with the Tentative Method of Test for Agglutinating Value of Coal (A.S.T.M. Designation: D — - 34 T) of the American Society for Testing Materials.³

CALCULATION TO MINERAL-MATTER-FREE BASIS

Calculation of Fixed Carbon and B.t.u.

10. (a) For classification of coal according to rank, fixed carbon and B.t.u. shall be calculated to the mineral-matter-free basis in accordance with either the Parr formulas⁴ (1), (2) and (3) or the approximation formulas (4), (5) and (6) given below. In case of litigation the appropriate Parr formula shall be used.

¹ 1933 Book of A.T.S.M. Standards, Part II, p. 269. ² A. C. Fieldner, W. A. Selvig and W. H. Frederic, "Accelerated Laboratory Test for Determination of Slacking Characteristics of Coal," U. S. Bureau of Mines *Report of Investi-gations No. 3055* (1930). ³ See preprint of annual Report of Committee D-5 on Coal and Coke to be presented at the Phinter correctly Asymptotic State of the American Society for Westing Moterials at Atlantic Citra

Thirty-seventh Annual Meeting of the American Society for Testing Materials at Atlantic City, N. J., June, 1934. 'S. W. Parr, "The Classification of Coal," Bulletin No. 180, Engineering Experiment Station, University of Illinois (1928).

Calculation from "moist" basis: Parr Formulas:

Dry, Mm-free F.C. =
$$\frac{F.C. - 0.15S}{100 - (M + 1.08A + 0.55S)} \times 100....(1)$$

Dry, Mm-free V.M.
$$= 100 - Dry$$
, Mm-free F.C.....(2)

Moist, Mm-free B.t.u. =
$$\frac{B.t.u. - 50S}{100 - (1.08A + 0.55S)} \times 100.....(3)$$

NOTE.—The above formula for fixed carbon is derived from the Parr formula for volatile matter.

AUTHOR'S NOTE: Mechanical methods of solving formula 3 and the Parr formula for volatile matter are given in Appendix II.

Approximation Form	ulas:	
Dry Mm-free F.C ==	F.C.	- X 100 (4)
Diy, Min-file F.e	100 - (M + 1.1A + 0.1S)	- X 100(+)
Dry, Mm-free V.M. =	100 — Dry, Mm-free F.C	(5)
Moist, Mm-free B.t.u.	= B.t.u. 100 - (11A + 01S)	× 100

where:

Ν

Mm = mineral matter;

B.t.u. = British thermal units;

F.C. = percentage of fixed carbon;

V.M. == percentage of volatile matter;

M = percentage of moisture;

A = percentage of ash;

 $S \coloneqq$ percentage of sulfur;

Moist refers to coal containing its natural bed moisture, but not including visible water on the surface of the coal. See Section 5 (d) and (e) and Section 6 (b) above.

Modifications for Coals High in

Carbonate

(b) In case of controversy, samples containing more than 1.0 per cent of carbon dioxide occurring as carbonates shall be either (1) crushed to pass through an 840-micron (No. 20) sieve and floated on a heavy liquid of such specific gravity as to reduce the carbon dioxide occurring as carbonate to 1.0 per cent or less on a dry basis, provided, however, that the recovery of float coal shall not be less than 75 per cent; or (2) shall be analyzed for mineral matter according to the Parr method¹ for coals with high calcium carbonate content. In case of litigation, method (1) shall be used.

20

¹ S. W. Parr, "Chemical Study of Illinois Coal," Illinois Coal Mining Investigations, State Geological Survey, Urbana, Ill., Bulletin No. 3, p. 35 (1916).

Appendix

PUBLISHED ANALYSES SUITABLE FOR COAL CLASSIFICATION

Only such published analyses as have been made in accordance with the standard methods of the American Society for Testing Materials shall be used in the classification of coal; and if classification is on the basis of moist B.t.u., then only those samples which have been taken and transported to the laboratory in such a manner as to preserve the true moisture content of the coal shall be used. In general, the principal sources of published analyses of samples suitable for coal classification are the publications of the U.S. Bureau of Mines, the U. S. Geological Survey, and the Canadian Department of Mines. Suitable analyses are published also by some of the State Surveys and some of the Provinces of Canada. However, it must be kept in mind that many of the bed sample analyses of the government organizations are from prospects in which the coal may have been altered by exposure. Such samples shall not be used for classification. Analyses published prior to 1904 are unlikely to represent the true moisture content of coal, and even after this date, analyses from sources other than governmental laboratories are not likely to be representative with respect to moisture.

In view of the importance of the fixed carbon determination in coal classification, special attention is called to the 1913 revision in this method by the American Chemical Society.¹ The new revision was substantially the same as that introduced by the U. S. Bureau of Mines² a few years earlier, as a result of finding large discrepancies between results of the Pittsburgh, Pa., and Washington, D. C., laboratories. A considerable number of analyses were made before it was discovered that the natural-gas burners at the Pittsburgh laboratory gave high results for fixed carbon.³ For this reason, the fixed carbon results of the U. S. Geological Survey or U. S. Bureau of Mines analyses designated by Laboratory Nos. 5147 to 9120, inclusive, shall not be used for the classification of coal.

All analyses made by any laboratory prior to 1913 should be rejected unless there is positive evidence that the methods of analysis were essentially those adopted by the American Society for Testing Materials in 1913.

¹ Preliminary Report of the Committee on Coal Analysis of the American Society for Testing Materials and the American Chemical Society, *Journal of Industrial and Engineering Chemistry*, Vol. 5, p. 517 (1913); see also Report of Subcommittee IV on Volatile Matter, *Proceedings*, Am. Soc. Testing Mats., Vol. XIV, Part I, p. 424 (1914).

² A. C. Fieldner, "Notes on the Sampling and Analysis of Coal," U. S. Bureau of Mines *Technical Paper No.* 76, p. 16 (1914).

³ N. W. Lord, J. A. Holmes, F. M. Stanton, A. C. Fieldner and S. Sanford, "Analyses of Coals in the United States," U. S. Bureau of Mines *Bulletin No.* 22, Part I, p. 28 (1913).

A.S.T.M. TENTATIVE SPECIFICATIONS

TENTATIVE SPECIFICATIONS

FOR

CLASSIFICATION OF COALS BY GRADE¹

Scope

1. These specifications cover the classification of coals according to quality, as determined by calorific value, ash and sulfur content, and ash-softening temperature. Other properties, such as resistance to breakage, screen size and caking properties are under consideration.

TABLE	2.—Symbols	3 FOR GRAD	ing Coal A	CCORDING	то Аѕн,	Softening	Temperature	ог Азн
	and Sulfur	(Analyses	Expressed	ON THE	BASIS OF	F THE COA	l as Sampled).	

	Ash ^a	Softening Ten	nperature of Ash ^b	Sulfur ^a		
Symbol	Per cent, inclusive	Symbol	Deg. Fahr., inclusive	Symbol	Per cent, inclusive	
A4 A6 A10 A10 A14 A14 A14 A14 A16 A18 A20 plus.	0.0 to 4.0 4.1 to 6.0 6.1 to 8.0 8.1 to 10.0 10.1 to 12.0 12.1 to 14.0 14.1 to 16.0 16.1 to 18.0 18.1 to 20.0 20.1 and higher.	F28 F26 F24 F22 F20 F20 minus.	2800 and higher 2600 to 2790 2400 to 2590 2200 to 2390 2000 to 2190 less than 2000	S0.7 S1.0 S1.3 S1.6 S2.0 S3.0 S5.0 S5.0 plus	0.0 to 0.7 0.8 to 1.0 1.1 to 1.3 1.4 to 1.6 1.7 to 2.0 2.1 to 3.0 3.1 to 5.0 5.1 and higher	

^aAsh and sulfur shall be reported to the nearest 0.1 per cent by dropping the second decimal figure when it is 0.01 to 0.04, inclusive, and by increasing the percentage by 0.1 per cent when the second decimal figure is 0.05 to 0.09, inclusive. For example, 4.85 to 4.94 per cent, inclusive, shall be considered to be 4.9 per cent.

^bAsh-softening temperatures shall be reported to the nearest 10 F. For example, 2635 to 2644 F., inclusive, shall be considered to be 2640 F.

CLASSIFICATION BY GRADE

Classification by Grade

2. Analyses shall be expressed on the basis of the coal as sampled. The calorific value of a coal shall be expressed in hundreds of B.t.u. to the nearest hundred, for example, 13,150 to 13,249 B.t.u., inclusive, shall be expressed as 132. The ash, softening temperature of ash, and sulfur content shall be expressed by symbols in accordance with Table 2. For example, a coal designated as 132-A8-F24-S1.6, indicates a heating value of approximately 13,200 B.t.u., an ash content of 6.1 to 8.0 per cent, inclusive, an ash-softening temperature of 2400 to 2590 F., inclusive, and a sulfur content of 1.4 to 1.6 per cent, inclusive.

¹Under the standardization procedure of the Society, these specifications are under the **jurisdiction** of the Sectional Committee on Classification of Coals functioning under the procedure of the American Standards Association with the American Society for Testing Materials as sponsor.

CLASSIFICATION OF COALS BY GRADE

Symbols for Expressing Classification

3. In reporting grade designations, the calorific value shall be given first, followed by the symbols separated by dashes, in the order shown in the example given in Section 2.

4. When both rank and grade of a coal are reported, the grade designation shall follow the rank designation as shown in Section 4 of the Tentative Specifications for Classification of Coals by Rank (A.S.T.M. Designation: D 388 - 34 T) of the American Society for Testing Materials,¹ and as illustrated in the following example:

(62 - 146) 132-A8-F24-S1.6

The numbers in parenthesis are on the mineral-matter-free basis and give the position of the coal in the scale of rank. The first number represents fixed carbon on the dry, mineral-matter-free basis reported to the nearest whole per cent. For example, 61.5 to 62.4 per cent fixed carbon, inclusive, shall be expressed as 62. The second number represents B.t.u. on the moist, mineral-matter-free basis, expressed as hundreds of B.t.u. to the nearest hundred. The meaning of 132-A8-F24-S1.6 is explained in Section 2.

SAMPLING

Sampling

5. The coal shall be sampled to represent its condition as sold. Sampling shall be performed in accordance with the Standard Method of Sampling Coal (A.S.T.M. Designation: D 21) of the American Society for Testing Materials.

Analysis

METHODS OF ANALYSIS

6. The coal shall be analyzed in accordance with the Standard Methods of Laboratory Sampling and Analysis of Coal and Coke (A.S.T.M. Designation: D 271) of the American Society for Testing Materials. Analyses shall be expressed on the basis of the coal as sampled.

CHAPTER III

PROBLEMS OF THE CLASSIFICATION OF ILLINOIS COAL

VARIETIES OF COAL

THE GENERAL PROBLEM of classification of coal involves determination of three fundamental characteristics, namely, the rank, the type, and the grade of the coal.

(1) By rank is indicated those differences in the pure coal material due to geological processes, technically designated as metamorphic, whereby the coal material changes from peat through lignite and bituminous coal to anthracite or even to graphite.

(2) By type is signified those differences due to variations in the kind of plant material of which the coal is composed, whereby such varieties as common banded coal, cannel coal, algal coal, and splint coal are produced.

(3) Grade distinctions separate coals of varying value and are determined by rank, amount and character of impurities, combustion behavior, screen size, and what ever else may affect the usefulness of a coal for general or for specific uses as the classification demands.

It is evident that the rank of a coal is an inherent characteristic unaffected by processing. Grade, on the other hand, is very largely determined by the mineral matter content and the characteristics of the mineral matter, and may be considerably modified by preparation processes. The extent to which type affects rank or grade has not been worked out. It seems probable, however, that a considerable range of variation among Illinois coals will eventually be possible on this basis.

The tentative specifications for classification concern primarily the grade and rank of the common banded type of coal. There has been no agreement on the details of type classification except to the extent of recognizing the common banded coals, cannel, and algal coals as broad general types. These may eventually be subdivided into several natural sub-types and it is possible that artificially produced sub-types may be recognized.

BASES FOR DIFFERENCE IN RANK OF ILLINOIS COALS

The several values recommended by the committee of classification as bases for rank classification consist of the familiar items of the standard com-

PROBLEMS OF COAL CLASSIFICATION

26

mercial proximate analysis, particularly moisture, fixed carbon, and heat value (B.t.u.), these values to be expressed on a pure coal, that is a mineral matterfree basis, either moist or dry, as explained below, and also of standard determinations of the somewhat less familiar agglutinating (coking) and weathering properties.

THE MINERAL-MATTER-FREE BASIS OF COMPARISON

For determining the rank of a coal on the basis of the items of the proximate analysis, 1 the committee proposes the use of values on a mineral-matter-free rather than on an ash-free basis. A little consideration reveals the error of regarding the ash residue of coal combustion as identical with the mineral matter present in the coal before combustion. It differs both in kind and amount. It has been shown² that the mineral matter in Illinois coals consists primarily of three minerals, pyrite, calcite, and kaolinite, which latter mineral commonly is in the familiar form of clay, whereas inspection of the ash reveals the presence of none of these minerals. Accordingly the mineral matter must change its character in its reduction to ash.

The changes involved in the formation of ash from mineral mattter are conceived as being, in general, relatively simple. Certain volatile materials, particularly carbon dioxide, moisture, and sulfur, the last also being combustible, are lost from the mineral matter during combustion of the coal and constitute part of the material measured either as volatile matter, or, to a less extent, as fixed carbon, in the proximate analysis. The problem arises, therefore, in order to express the values of the proximate analyses on a mineral-matter-free basis, of determining a satisfactory method for increasing the ash value to represent the quantity of mineral matter originally present in the raw coal, for it is as yet chemically impossible to determine the amount or kind of mineral matter directly.

Fortunately for the solution of this problem the committee had the benefit of long years of investigation by the late Professor S. W. Parr of the University of Illinois in cooperation with the State Geological Survey. Before 1910,³ he

³ Parr, S. W., and Wheeler, W. F., Unit Coal and the composition of coal ash: University of Illinois Eng. Exp. Sta. Bull. No. 37, 1909. Parr, Samuel W., The classification of coal: University of Illinois Eng. Exp. Sta. Bull. No. 180, 1928.

¹ In America this form of analysis usually gives the following values: Moisture, volatile matter, fixed carbon, and ash totaling 100 per cent. In addition the amount of sulfur is usually shown and the heat value of the coal is given in British thermal units (B.t.u.) per pound, a B.t.u. being the heat required to raise one pound of water at its maximum density (39.2°F.) one degree Fahrenheit. In some publications heat values are also given in calories per gram, 1.8 B.t.u. per pound being equivalent to 1 calorie per gram. Values are commonly given on one or more of three bases, namely "as received", moisture-free or "dry", and ash-and moisture-free. Analyses publishd by the Illinois State Geological Survey and the University of Illinois Engineering Experiment Station also commonly give heat values on a unit coal (moisture and mineral-matter-free basis and in some tables accompanying this bulletin on the recommended moist, mineral-matter-free basis.

² Ball, C. G., The mineral matter of No. 6 bed coal, West Frankfort, Franklin County, Illinois : Illinois State Geol. Survey Report of Investigations No. 33, 1935.
PARR ASH-TO-MINERAL-MATTER CORRECTION FORMULA

had announced a simple mathematical procedure for deriving mineral matter values from the reported ash values of the proximate analysis, namely,

Mineral matter = $1.08 \times \text{Ash} + 0.55 \times \text{Sulfur}$.

This ash correction formula has been tested through more than twenty years of investigation of Illinois and other coals, and, with respect to Illinois coals at least, has established its superiority to any substitute or alternative that has been proposed. It was accepted after thorough consideration by the classification committee as the standard method of obtaining mineral matter values. The mineral-matter-free basis of comparison also requires the elimination of the heat of the sulfur from the calorific values. This is accomplished by subtracting 50 B.t.u. for each per cent of sulfur present from the as received calorific value before applying the ash correction. By the use of either one of the two following formulae, the mineral matter correction and the correction for the heat of the sulfur are both automatically performed. The second formula (2) gives slightly more accurate results.

Mineral matter (including heat of sulfur) = $1.1 \times Ash + 0.1 \times Sulfur^4$ (1) Mineral matter (including heat of sulfur) = $1.08 \times Ash + 0.21 \times Sulfur^5$ (2)

It may be well to state that no single ash correction formula can be devised that will provide an absolutely accurate determination of mineral matter values from ash and sulfur values provided by the proximate analysis. The best that can be hoped for is a close approximation to a correct value.

DERIVATION OF THE PARR ASH-TO-MINERAL-MATTER CORRECTION FORMULA

The calculation of mineral matter values from ash values by the Parr formula proceeds on the assumption that the mineral matter consists entirely of clay and pyrite, and that the sulfur in the coal is entirely in the form of iron pyrites (pyrite). The change from mineral matter to ash during combustion accordingly consists in the dehydration of (or loss in water from) the clay and the substitution of oxygen for sulfur in the pyrite, whereby the latter is changed to iron oxide. Thus it is assumed that ash consists entirely of dehydrated clay minerals and iron oxide, and the Parr correction formula indicates the mathematical procedure which restores the moisture to the dehydrated clay minerals and substitutes the sulfur for the oxygen in the iron oxide. Actually more minerals than clay and pyrite are present, and more or less of the sulfur is organically combined, but the proved general fitness of the formula for providing a satisfactory mineral matter value is ascribed to the probable compensation of opposing errors involved in the calculation.⁶

In connection with the work of the Coal Classification Committee, mem-

⁴See approximate formula (4), p. 20.

⁶ Thiessen, Gilbert, A proposed simplification of the Parr unit coal formula: Illinois State Geol. Survey Report of Investigations No. 32, pp. 7-25, 1934.

^e Ball, C. G., The mineral matter of No. 6 bed coal at West Frankfort, Franklin County, Illinois: Illinois State Geol. Survey Report of Investigations No. 33, pp. 69-73, 1935.

PROBLEMS OF COAL CLASSIFICATION

bers of the Survey have recently investigated at some length the validity of the Parr formula. The results of these investigations have been assembled and recently published in Report of Investigation No. 32^7 to which the reader who may be interested in the technical verification of the Parr formula is referred.

"UNIT" COAL VERSUS MOIST MINERAL-MATTER-FREE COAL

In selecting moist mineral-matter-free coal as the basis of coal classification, the committee rejected unit coal, that is, dry mineral-matter-free coal as less satisfactory for the purpose. A short explanation is pertinent to this discussion.

""Unit" coal is a term proposed by Parr more than 20 years ago as a name for "dry mineral-matter-free" coal. In this report these two phrases are used interchangeably. For many years the State Geological Survey has regarded the unit coal B.t.u. values as the most satisfactory for the commercial standardization and comparison of Illinois coals. Values on this basis for a given mine and area are regarded as more uniform than corresponding values on a moist basis. They are particularly useful for checking the accuracy of analyses. In the present bulletin, therefore, these values are presented for all individual and average analyses. Moisture values themselves are more variable than corresponding unit coal values, hence moist mineral-matter-free values are more variable for a given coal than the corresponding dry values. The unit coal value still continues, therefore, to have an important use as a basis for checking the accuracy of analyses, particularly B.t.u. values, and establishing standard values for the individual mine or for regions. The relative merits of the "moist" and "dry" mineral-matter-free values can be observed by comparing the range of variation of the rank and unit coal indices from mine to mine for individual counties (Table 3, Appendix).

In the matter of rank classification for the entire range of coals, the classification committee agreed that the original or bed moisture content was one of the essential considerations in determining the rank of the high-moisture, high-volatile bituminous coals such as are common in the middle west, and of the sub-bituminous coals and lignites.

SIGNIFICANCE OF MOISTURE IN RANK CLASSIFICATION

Because the rank of a coal is determined by its mineral-matter-free value on the moist basis, no special consideration of the moisture in Illinois coals is necessary. The hundreds of analyses of face samples that are available (Table 2, Appendix) indicate that in Illinois, moisture values are essentially uniform for an individual bed in areas larger than those occupied by single mines. Once the coal leaves the face it is subject to continuous change in its moisture content.

⁷ Contributions to the Study of Coal. (a) A proposed simplification of the Parr unit coal formula by Gilbert Thiessen; (b) Ash-to-mineral matter correction in coal analyses by Gilbert Thiessen; (c) Unit coal as a basis of coal standardization as applied to Illinois coals by G. H. Cady and O. W. Rees: (d) Studies of the graphical method of calculating pure coal calorific value by Gilbert Thiessen and Frank H. Reed: Illinois State Geol. Survey Report of Investigations No. 32, 1934.

The only moisture value, therefore, that possesses any degree of constancy is the bed moisture value. Allowance being made for the presence of this moisture in the calorific value when expressed on a moist basis, no further consideration need be given this inert component of the coal.

VALUES USED IN RANK CLASSIFICATION

Only two analytical values are used in rank classification throughout the entire range of coal material—fixed carbon and heat value (B.t.u.). Agglutinating value and slacking index are also used at certain positions. For coals having moist mineral-matter-free heat values exceeding 14,000 B.t.u. per pound, classification is on the basis of unit (dry mineral-matter-free) fixed carbon (which equals 100 per cent minus the per cent of dry mineral-matter-free volatile matter). For coals having a heat value of less than 14,000 B.t.u. per pound on the moist mineral-matter-free basis, rank classification is solely on the moist heat value basis irrespective of fixed carbon. Such coals possessing either agglutinating or non-slacking characteristics are placed in the bituminous groups of coals, those that are both non-agglutinating and slacking are classified as subbituminous coals.

It is well to emphasize that in this classification system B.t.u. values are always compared on the moist mineral-matter-free basis, whereas fixed carbon values are always compared on the unit coal or dry mineral-matter-free basis.

SYMBOLS FOR EXPRESSING RANK CLASSIFICATION

It has been tentatively proposed that the rank of a coal be indicated by a symbol consisting of two numbers separated by a hyphen and inclosed in a parenthesis. The first number represents the percentage of fixed carbon on the dry mineral-matter-free basis reported to the nearest whole number and the second number represents the B.t.u. on the moist mineral-matter-free basis expressed as hundreds of B.t.u. to the nearest hundred. Thus the symbols (62-146) represent coal having 62 per cent fixed carbon (dry, mineral-matter-free basis) and a B.t.u. value of 14,600 (moist, mineral-matter-free basis). The particular coal used in this illustration belongs to the only group for which both heat and fixed carbon values are desirable for designating the classification, that is, coals with less than 69 per cent fixed carbon but more than 14,000 B.t.u. per pound. Only Illinois coals from Eagle Valley in southern Gallatin County belong in this group, although certain coals in Saline and northern Gallatin counties lie very close to the boundary.

All high volatile bituminous coals having less than 14,000 B.t.u. (moist mineral-matter-free basis) per pound, are classified on a heat value basis, hence for all Illinois coals except as noted in the preceding paragraph, the only symbol necessary for rank classification is that indicating the B.t.u. value to the nearest hundred B.t.u. Accordingly a symbol such as (138) is herein designated the

rank index of the coal, indicating in this particular case a coal having 13,800 B.t.u. per pound.

With respect to coals having more than 14,000 B.t.u. per pound (moist, mineral matter-free basis) the *rank index* should in general be designated by a symbol for fixed carbon, viz., (62). However, since none of the Illinois coals belonging in this group has more than 69 per cent fixed carbon on a dry, mineral-matter-free, or unit coal basis, and hence all belong to the bituminous class, High Volatile A group, it is desirable for purposes of uniformity and comparison to use the symbol for B.t.u. value as the index of rank for these coals likewise. No shipping mines exploit these coals so at present they are commercially unimportant.

PHYSICAL PROPERTIES DETERMINING RANK

It has previously been stated that coking or agglutinating value and the slacking or weathering property are classification criteria. Since all Illinois coals are positively agglutinating or coking, they belong in the bituminous grades rather than in the sub-bituminous rank. Some Illinois coals may be slacking coals, although this has not been definitely established, but this property for our coals is a matter of grade rather than of rank. The method of designation of this property with a symbol and the significance of the term is explained below.

THE SPECIFICATIONS OF GRADE CLASSIFICATION

Grade classification must be based upon a variety of considerations other than the rank of a coal, but four have been tentatively selected as of outstanding importance—the "as received" heat value, the ash content, the softening temperature of the ash, and the sulfur content. Eventually other properties such as coking and weathering properties, resistance to breakage, size of pieces, etc., may be added to the list.

Symbols have been devised to assist in grading coal according to the four considerations noted above (Table 2, p. 22). These symbols for grade follow that indicating the rank of the coal, thus:

(138)-123-A8-F22-S3

The significance of these symbols is explained in the "Tentative specifications for the classification of coals by grade" (pp. 23) but as the symbols given there apply to coals of somewhat different grade than those found in Illinois, an interpretation of the symbols given above may be helpful toward their understanding. The first number (in parenthesis) is the rank index and indicates a coal of 13,800 B.t.u. on a moist, mineral-matter-free basis. The symbol "123" is the "as received" heat value of the coal in hundreds of B.t.u. expressed to the nearest hundred. The symbol "A8" represents an ash content between 6.1 and 8.0. "F22" indicates a softening temperature of the ash of between 2200° and 2390° F., and the symbol "S3" represents a sulfur content of between 2.1 and 3.0 per cent.

If information in regard to the amount of dry, mineral-matter-free (unit) fixed carbon is desired, the symbol representing this value expressed to the nearest whole number may be inserted in the parenthesis, thus:

(60-138)-123-A8-F22-S3

the "60" signifying a unit fixed carbon content of 60 per cent. However, as previously stated, this value is not necessary for rank classification of Illinois coals.

WEATHERING CHARACTERISTICS

When weathering characteristics enter into the classification of a coal they may be expressed by the following symbols

we = weathering

nw = non-weathering

These symbols should be placed immediately following the symbol for rank index and outside the parenthesis, thus:

(60-138)nw-123-A8-F22-S3

The weathering characteristics of a coal are determined by a standard weathering test devised by the United States Bureau of Mines.⁸ In brief the test consists of air-drying 500 to 1000 grams of approximately 1 to $1\frac{1}{2}$ -inch lumps at a temperature of 30° to 35° C., for a period of 24 hours, and then immersing the lumps in water for one hour. The water is then drained off, and the sample is again dried for 24 hours. The amount of disintegration is determined by sieving. Coals showing average slacking indices, that is, an amount of fine coal of less than 5 per cent, are considered nonslacking or nonweathering. As has been suggested, the weathering characteristics of Illinois coals is best regarded as one of the minor attributes of grade and is considered again farther on.

⁸ Fieldner, A. C., Selvig, W. A., and Fredericks, W. H., Accelerated laboratory test for determination of slacking characteristics of coal; U. S. Bureau of Mines Report of Investigations Serial No. 3055, 1930, 24 pp.

CHAPTER IV

CLASSIFICATION OF ILLINOIS COALS

CLASSIFICATION BY RANK

I LLINOIS COALS fall into three groups of the high volatile Bituminous Rank, group 1 (low volatile) and group 2 (medium volatile) not being represented: Group 3, High-volatile A bituminous coal.—Coal with dry, mineral-matter-free (or unit coal) fixed carbon less than 69 per cent (dry, mineral-matterfree volatile matter more than 31 per cent), and moist, mineral-matter-free B.t.u. of 14,000 or more. (Rank index 140 +.)

Group 4, High-volatile B bituminous coals.—Coal with moist, mineral matter-free B.t.u. between 13,000 and 13,990. (Rank index 130 to 139.)

Group 5, High-volatile C bituminous coals.—Coal with moist, mineral matter-free B.t.u. between 11,000 and 12,990. (Rank index 110-129.)

So far as known, coals of group 3 (high-volatile A) are found in Illinois only in southeastern Illinois (Fig. 1) in a small area in southern Gallatin and southeastern Saline County known as Eagle Valley where there are no shipping mines. There may be small bodies of such coal here and there at other places along the southern margin of the coal basin, particularly south of the outcrops of the main bodies of Harrisburg (No. 5) coal and Herrin (No. 6) coal. The dry, mineral-matter-free (unit coal) fixed carbon values of these coals are not known to exceed 63 per cent.

Coals of Group 4 (high-volatile B) are found only in southern Illinois, in the Murphysboro, DuQuoin, Franklin-Williamson, and Harrisburg districts and farther south.

The remaining Illinois coals belong to Group 5 or high-volatile C bituminous coals. (Fig. 1.)

RANK INDEX AND UNIT COAL INDEX BY MINE AND COUNTY

The rank index (p. 30) of coal for individual mines and for counties is shown in the Appendix, Table 3; and for counties alone in the Appendix, Table 5. The *unit coal index*, that is the unit coal B.t.u. value expressed in hundreds of B.t.u. to the nearest hundred, is shown in the same tables, and for individual face samples in the Appendix, Table 2.

[33]

CLASSIFICATION OF ILLINOIS COALS

Fig. 1—County average rank indices (moist mineral-matter-free B.t.u. values expressed to the nearest hundred B.t.u.) for Illinois coals. High volatile A—Rank index above 140. High volatile B—Rank index 130-139. High volatile C—Rank index 110-129.

CLASSIFICATION BY GRADE

CLASSIFICATION OF ILLINOIS COALS BY GRADE

Grade classification, as previously stated, is determined by rank classification, by "as received" B.t.u. value, by ash content, by the softening temperature of the ash, and by sulfur content. These items as they apply to Illinois coals are considered briefly in order.

Rank.—The first basis for grade classification of Illinois coals, or any coal, is the rank of the coal in terms of the moist, mineral-matter-free heat value. The rank index of Illinois coals varies from 112 to 145 (11,200 to 14,500 B.t.u.) (Appendix, Tables 2 and 3), but the range of the present commercially important coals is between 11,200 and 14,000 B.t.u. per pound. The coals are all of the high-volatile bituminous groups with coals present representing each group, A, B, and C. The classification of Illinois coals by rank has already been discussed at length.

"As received" calorific value and heat index. - The second basis for grade classification is the calorific value of the coal on the "as received" basis. This important value is represented by a symbol, hereinafter designated the **heat index**, which is the "as received" B.t.u. value expressed in hundreds of B.t.u. to the nearest hundred. (Thus, if the "as received" B.t.u. value is 11,670, the heat index is 117.) Heat indices are not given in the tables of analyses found in the Appendix, since the relative quality of a coal as it enters the market may not be correctly represented by values based upon face samples, due to the difference in the mineral matter content of the face sample and the coal as produced. The mineral matter content usually differs not only from place to place in a coal bed but likewise among different sizes and different shipments of the prepared coal. In general any considerable portion of a coal of established rank, such as a car or truck load, will possess the heat index (as received B.t.u. value) of the bed average for the mine provided the mineral matter content is approximately the same as the bed average. This generalization is subject to certain qualifications particularly applicable where coal preparation tends very definitely toward the concentration of any of the banded ingredients and hence to change materially the type of the coal.

Ash.—The third basis for grade classification of coals is ash content. For this purpose analyses of face samples such as accompany this bulletin are only partially satisfactory. Such analyses do not indicate strictly the quantity and character of the ash in the coal as produced but rather the amount of ash derived from samples collected at several points, usually three or more, in the mine, exclusive of such coarse mineral components of the bed as would be eliminated by the miner under the usual conditions of hand loading. It is particularly important to understand that the mine or county average ash (or sulfur) values are not a correct expression of the actual ash (or sulfur) content of the coal as mined and loaded at the individual mines in the respective counties. The ash (or sulfur) content of the coal as produced can be definitely known only by

CLASSIFICATION OF ILLINOIS COALS

analysis of tipple or car samples, or samples of a similar nature. In general the average ash (or sulfur) content of mine-run hand-loaded coal probably does not differ greatly from mine average values based upon analyses of several face samples, but when coal is subjected to some form of mechanical cleaning, the ash (or sulfur) content of all coal so treated usually is reduced to less than the mine average for the face samples.

In general it is believed that the mine average ash value based upon several face samples taken in different parts of the mine is a close approximation to the minimum ash value that may be expected in sized and hand picked coal which has not been subjected to some form of mechanical cleaning. The amount of ash remaining in mechanically cleaned coal depends entirely upon the cleaning method and the extent to which coal can be sacrificed for the sake of reducing the quantity of ash. It is possible to obtain coal with less than 5 per cent ash from any of the Illinois mines but in general this would entail such a high loss in coal as to be impracticable.¹ Nevertheless, ash reduction to between 5 and 10 per cent is generally practicable for the commercially important coals.² The ash values presented here for the face samples should not be used as a basis for judging the amount of impurity in mechanically cleaned coal. Such coal is commonly sold under a guarantee in regard to ash content that is well supported by commercial analyses.

The ash values given in the average proximate analyses (Table 2, Appendix) provide an excellent index of the *relative* ash content of the different coals as received at the mine tipple. Whether or not the coal as shipped will be lower in ash depends upon the preparation it receives, but it is reasonable to believe that a coal with a natural low ash content in the face sample will yield a cleaner product than one with a natural high ash content, if neither one is mechanically cleaned.

The average ash content of face samples of Illinois coals, based upon 252 mine averages (Table 2, Appendix) is 9.78 per cent (as received), the distribution of values being given in Table 3.

Ash content per cent	Number of mines	Ash content per cent	Number of mines
4 to 4.9	3	10 to 10.9	64
5 to 5.9	5	11 to 11.9	40
6 to 6.9	8	12 to 12.9	12
7 to 7.9	22	13 to 13.9	5
8 to 8.9	44	14 to 14.9	2
9 to 9.9	45	15 to 15.9	2

TABLE 3.—AVERAGE ASH CONTENT OF FACE SAMPLES OF ILLINOIS COALS

¹ Callen, Alfred C., and Mitchell, David R., Washability tests of Illinois coals: University of Illinois Eng. Exp. Sta. Bull. 217, 1930. ²McCabe, L. C., Mitchell, D. R., and Cady, G. H., Banded Ingredients of No. 6 coal and their heating values as related to washability characteristics: Illinois State Geol. Survey Report of Investigations No. 34, 1934.

ASH-SOFTENING TEMPERATURE

The mines that have been sampled are distributed in the different districts in about the proportion of the relative importance of coal mining now or in the past in the districts. Inasmuch, therefore, as the coal in 191 out of the 252 mines represented in the tabulation has an average ash content of less than 11 per cent, it is apparent that a very large proportion of Illinois coal is produced where the coal beds contain less than this quantity of ash. In 1933, 74 per cent of the coal in the State was produced from localities where the coal beds contained less than 10 per cent ash.

The ash content of each coal bed is fairly uniform over considerable areas, as shown by the mine and county averages (Table 2, Appendix I).

The relative desirability of a coal is probably too commonly determined solely on the basis of ash content. Such a single criterion for selection serves fairly well in areas within which the rank of the coal varies but little, but if generally applied, other more important differences will be ignored. The range of heat value for Illinois coal on a moist mineral-matter-free basis is about 2800 B.t.u., or 20 per cent on a 14,000 B.t.u. basis. This range in heat value is obviously more significant than that which would be produced by a 10 per cent variation in ash content.

Ash softening temperature.—The fourth item in determining grade classification is the softening temperature of the ash as determined under standard conditions.⁸ The grades of fusion temperature of the ash of Illinois coals vary from F20- to F26 (Table 2) with grades F20- to F22 being most common. Herrin (No. 6) coal bed in eastern Perry, Williamson, Franklin, and Jefferson counties commonly yields ash with a softening temperature exceeding 2200° F. The same bed in eastern Jackson County and Harrisburg (No. 5) coal in Saline County also generally yield ash of relatively high softening temperature of 2100 to 2200° F., and in some instances coals mined elsewhere in the State produce ash of this character. Preparation of any coal, particularly by mechanical cleaning processes, may modify the fusion temperature of the ash.

Sulfur.—The sulfur content of a coal is the fifth item determining grade classification.

Sulfur occurs in coal mainly in two ways: (1) combined with iron as the mineral pyrite (or marcasite), an iron sulphide (FeS₂), and (2) in organic combination. Some sulfate sulfur ($\frac{1}{4}$ to $\frac{1}{2}$ of one per cent) is commonly present but the amount is so small that for purposes of this discussion it need not be considered. The mineral gypsum (CaSO₄.2H₂O), commonly regarded as the form in which sulfate sulfur occurs, is rarely found in fresh Illinois coal although it has often been listed as a common mineral.⁴

There has been no determination of the nature of the distribution of the

^a Selvig, W. A., and Fieldner, A. C., Fusibility of ash from coals of the United States: U. S. Bureau of Mines Bull. 209, 1922. See also A.S.T.M. D271-33. ⁴ Ball, Clayton G., The mineral matter of No. 6 bed coal at West Frankfort, Franklin County, Illinois: Illinois State Geol. Survey Report of Investigations No. 33, 1935.

organically combined sulfur among the plant constituents of Illinois coal, although it is probable that certain constituents will contain more sulfur than others. This is a matter suitable for investigation, but in the meantime the organic sulfur must be regarded as homogeneously combined with the coal material.

The greater the amount of the total sulfur in Illinois coal, the greater is the relative amount of pyritic as compared with organic sulfur (Appendix, Table 6).⁵ Coals with less than 1.5 per cent of sulfur contain pyritic and organic sulfur in about equal proportions, whereas in high-sulfur coals the pyritic sulfur commonly accounts for two-thirds of the sulfur present and organic sulfur rarely exceeds 2.5 per cent of the coal. The quantity of organic sulfur is much more constant than the amount of total or pyritic sulfur.

It is generally true that when the amount of organic sulfur exceeds 2 per cent of the coal, the amount of pyritic sulfur is in excess of 3 per cent and may be much higher. In such coals pyrite in nodules and bands is common and lends unevenness to the sulfur content.

The distribution of sulfur is irregular within the geographical area of each bed. In most beds in Illinois there are more or less restricted areas in which the sulfur content does not exceed 2.0 per cent. Why this is true is not fully known but it is thought by the writer⁵ that the coals characterized by low sulfur content are those which represent a relatively high proportion of preservation of the plant material. The position of the various low sulfur areas in the commercially important beds is of interest and are briefly described in the stratigraphic order of the beds concerned.

ROCK ISLAND OR MURPHYSBORO (No. 1) COAL.—The area of low sulfur coal in No. 1 seam is in central Jackson County near Murphysboro. The coal here is generally known as Murphysboro (No. 2) coal, and except for small outlying areas has been worked out and the mining district abandoned by commercial mines. Whether the low sulfur area extends into the present marginal operations is not known but these are all mines having small output. The sulfur content in the low sulfur area was generally less than 2.0 per cent and commonly less than 1.5. Locally it was less than 1.0 per cent.

LA SALLE (No. 2) COAL.—There are two low sulfur areas of La Salle (No. 2) coal, both located in the northern part of the coal basin. One area lies east and northeast of Coal City in Will County and the other in northeastern Woodford County. The extent of these low sulfur areas is not known except that they are probably not large. At the present time only a single mine in each area is producing coal. The sulfur content in this area is usually less than 2.0 per cent and commonly less than 1.5 per cent (dry basis).

⁵ Cady, Gilbert H., Distribution of sulfur in Illinois coals and its geological significance: Illinos State Geol. Survey Report of Investigations No. 35, 1935.

SULFUR

HARRISBURG (No. 5) COAL.—Low sulfur areas of relatively small size are known here and there in the Harrisburg district. Several mines in this district are known to contain areas of this bed of coal in which the sulfur content is less than 2.0 per cent.

SPRINGFIELD (No. 5) COAL.—If the recent correlation, by Dr. J. M. Weller and Dr. H. R. Wanless of the Survey staff, of the Grape Creek coal in Vermilion County with the Springfield (No. 5)⁶ coal is correct, the Vermilion County area contains the only known occurrence of relatively low sulfur No. 5 bed coal. The area in which the seam has been commercially developed lies chiefly south of Westville and the sulfur content will probably average between 2.0 and 2.5 per cent (dry basis) with as little as 1.75 per cent being found in some samples.

HERRIN (No. 6) COAL.—A large area of No. 6 coal with low sulfur content extends through much of the west half of Franklin County northward into southern Jefferson County and southward into Williamson County to the outcrop of the seam between Carterville and Marion, and westward into Perry . County up to but not across the DuQuoin anticline. This is undoubtedly the largest tract of low sulfur coal in the State and it probably contains coal with the lowest sulfur content, locally not exceeding 0.5 to 0.6 per cent. The coal is rapidly being depleted so that its complete exhaustion within fifty years seems highly probable.

The amount of coal produced from the low sulfur areas during 1933 amounted to about ten million tons or between one-third and one-fourth of the total production in that year of relatively small out-put. Under more normal conditions the production from the low sulfur areas is probably relatively smaller.

Sulfur is heat producing to the extent of about 5,000 B.t.u. per pound. Accordingly mineral matter containing more or less pyrite has heat value, compared with non-pyritic mineral matter which has none. This would be a clear gain in calorific value for a coal containing pyrite as compared with one containing the *same amount of mineral matter* but no pyrite. Sulfur in organic combination is likewise heat producing, although less so than the hydrogen and carbon it displaces.

⁶Personal communication.

CHAPTER V

THE USE OF GRADE RATING SPECIFICATIONS IN SELECTING ILLINOIS COALS

I N GENERAL, considerations other than its grade rating determine the prices at which Illinois coals are bought and sold. This condition exists largely because the consumer has an indefinite idea of the nature and significance of the variations among coals. The only possibility of reformation of price practice probably lies in a wider knowledge of the significant criteria for evaluating coal. This is a matter which it may take years to accomplish; the present bulletin, it is hoped, will prove a step in the desired direction.

GENERAL BASIS OF COAL SELECTION

Classification of Illinois coals by the consumer, in the present state of knowledge in regard to coal, is essentially individual. Grade classification assumes that coals shall be rated with respect to their value, but since conditions under which coals are burned and the particular requirements of utilization vary, standards of values will likewise vary, so that no general classification based on several criteria will be satisfactory to all users. Furthermore the lack of standardization, both in the character and in maintenance of combustion devices, makes it improbable that any grade classification devised will accord with the variations obtained in practice. Determination by test of the most suitable fuel for individual conditions is becoming the common practice, but even so, coals are certain to be classified by the consumer with respect to probable fitness for trial, mainly on the bases for grade classification that have been proposed.

Coals may be selected for various reasons, assuming that there has been a definite process of selection by the consumer. Price, calorific value, ash content, sulfur content, ash softening temperature, size, dustiness, resistance to weathering, storage characteristics, coking characteristics, friability, and other characteristics affect individually or in combination the choice of a coal. Of these characteristics, price and ash content, irrespective of the effect of the ash on the heat value of a coal, are probably the two most universally used bases of selection. Within recent years ash softening temperature is being rather generally accepted as a criterion of value, but unlike some of the other criteria no absolute scale of values can be adopted because what is preferred by one group of users

is found undesirable by another. With respect to such characteristics, classification will undoubtedly have to be in accordance with particular requirements.

PRICE

The most general first consideration in the selection of a coal by the average consumer is probably price per ton modified by a more or less indefinite knowledge in regard to the rank of the coal as indicated by its trade name or some knowledge of its source. Undoubtedly in a great many cases source is the first consideration, but in that case price is of next importance. Instead of price per ton, price is, not uncommonly and to somewhat better advantage, expressed in terms of price per million B.t.u., or in the quantity of B.t.u. available per unit of price. These latter methods, if used, indicate a desirable realization on the part of the consumer that what he is buying is not coal but heat. The number of B.t.u. per pound of coal obtainable for a unit price is readily determined and the relative desirability of coals on this basis thus ascertained.

HEAT RATING OF ILLINOIS COALS

Moist mineral-matter-free coal and coals of identical ash and sulfur content.—The symbols indicating the rank index of Illinois coals (Table 3, Appendix I) have a numerical range from 112 to 142 (11,200 to 14,200 B.t.u.), the highest index being in the order of 26 per cent greater than the lowest. This represents the approximate range of variation in the heat of combustion of theoretically pure, moist, mineral-matter-free Illinois coals as determined from mine averages. Coals containing identical amounts of mineral matter (or sulfur and ash) can be compared on this basis. The maximum difference in the heat rating of Illinois coals and hence of their value when referred to this basis is accordingly only about 26 per cent.

Coals of unequal ash and sulfur (or mineral matter) content.— Identical sulfur and ash or mineral matter content is very rare among coals, so that the rank index is rarely a suitable basis for comparison. Instead coals are more satisfactorily compared on an "as received" basis. In making such a comparison, the heat index (p. 35) may be conveniently used as an abbreviation of the full expression of B.t.u. value or heat rating of the "as received" coal.

Unless specific information is available concerning the ash and sulfur content of the coals under consideration, comparison must be made on the basis of mine average B.t.u. values (Table 3, Appendix I) on the assumption that for similar sizes of coal there will be similar variations from the mine average values.

In estimating the value of a coal it is essential to have some information in regard to its actual or probable ash and sulfur content.

THE MINERAL MATTER CORRECTION.—The calculation of the heat index, or symbol indicating the "as received" B.t.u. value, from the rank index requires determination of the mineral matter value from the ash and sulfur values and a

RANGE OF VARIATION IN HEAT INDEX

correction for the heat of the sulfur. Since only a rough approximation to accuracy is necessary, mineral matter values (adjusted to include the heat of the sulfur) corresponding to various combinations of ash and sulfur values may be obtained by reference to the accompanying table (Table 4). Thus if the ash and sulfur symbols are respectively A-12 and S-3 the mineral matter content (including the heat of the sulfur) will be found to be 13.6 per cent. The factor for converting the rank index symbol to the heat index symbol is .864 (1.000–0.136), appearing in the adjacent column. Thus 138 (rank index) \times .864 = 119 (heat index).

Unless unusual precision is demanded in the determination of the heat index the values obtained by the use of the table are satisfactory. The most accurate method of determining the mineral matter value from ash and sulfur values has been described (p. 27). It is also possible to obtain the heat index from the rank index quickly by the use of nomographs I and II given in Appendix II. These can be used with sufficient precision to determine the "as received" B.t.u. value within about 10 units of accuracy, but use of generalized indices and symbols will be sufficiently accurate for most purposes.

Range of variation in heat index.—For Illinois coals, the range of variation in the heat index, that is the "as received" B.t.u. value, with variations in the rank index from 112 to 142, in ash from 4 to 20 per cent, and in sulfur from 0.5 to 5 per cent is from 85 to 135. The heat index probably rarely exceeds 130 (13,000 B.t.u.) and for marketable coal probably rarely falls below 90 (9,000 B.t.u.).

With an approximate range of variation of about 4,000 B.t.u. it is apparent that distinctions should be drawn only with respect to fairly large differences, at least as much as 5 per cent. This being the case grade symbols as a basis of calculation are sufficiently accurate.

Ash.—In this section we are concerned with ash as a nuisance rather than as a diluent of coal, as considered in the preceding section. Ash in quantities above that necessary for grate protection in certain types of combustion apparatus is undesirable and should be reduced to the lowest possible amount under which efficient combustion can take place. Some allowance should be made for the excess ash. Furthermore, when coals of different ash content are available for purchase, it is desirable that the buyer have some idea of the significance of these differences in terms of the fuel value.

The loss in heat value due to the presence of ash is taken care of when coal is bought as a quantity of heat. There is, however, an additional loss due to the expense of handling and disposal of the ash, and particularly due to the loss of efficiency of the fuel. Thus coal with 40 per cent ash is essentially worthless, in spite of the 60 per cent of coal present. Relative value, therefore, decreases more rapidly than the increase in $ash.^1$

¹ Parr, S. W., Fuel, Gas, Water and Lubricants: Chapter XII, Coal Contracts, pp. 103-115, McGraw-Hill, 1932.

	A-4 (Ash, 0-4%)		A-6 (Ash, 4.1-6%)		A-8 (Ash, 6.1-8%)		A-10 (Ash, 8.1-10%)	
	Mineral Matter ^a	Factor ^b						
S 0	4.3	.957	6.5	.935	8.6	. 914	10.8	. 892
S 0.7 (Sulfur, 07)	4.5	.955	6.6	.934	8.8	.912	10.9	. 891
S 1	4.5	.955	6.6	.934	8.9	.911	11.0	. 890
S 1.3 (Sulfur, 1.1-1.3)	4.6	. 954	6.7	.933	8.9	.911	11.1	. 889
S 1.6 (Sulfur, 1.4-1.6)	4.7	.953	6.7	.933	9.0	. 910	11.1	. 889
S 2.0 (Sulfur, 1.7-2.0)	4.7	.953	6.8	.932	9.1	. 909	11.2	. 888
S 3 (Sulfur, 2.1-3.0)	5.0	. 950	7.0	. 930	9.3	. 907	11.4	. 886
S 5 (Sulfur, 3.1-5.0)	5.4	.946	7.5	.925	9.7	. 903	11.9	. 881

TABLE 4.—PERCENTAGE OF MINERAL MATTER CONTENT FOR THE DIFFERENT GRADES OF ASH AND SULFUR

a Calculated by formula: Mineral matter (including heat of the sulfur) = $1.08 \times Ash + .21 \times Sulfur$, using numerical values of respective symbols for Ash and Sulfur. (Thiessen, Gilbert, Proposed simplification of the Parr unit coal formula, Illinois State Geol. Survey Report of Investigations No. 32, 1934.)

 b Factor by which rank index is to be multiplied to determine heat index or as received B.t.u. expressed to nearest hundreds of B.t.u. = (100% of mineral matter, expressed as decimal).

Солі	ls and Ca	LCULATION	Factor f	or Use W	ITH RANK	AND HEAT	r Ind:
A-14 h, 12.1-14%)		A-16 (Ash, 14.1-16%)		A- . (Ash, 16.	18 . 1-18%)	A-20 (Ash, 18.1-20	
ieral ter ^a	Factor ^b	Mineral Matter ^a	Factor ^b	Mineral Matter ^a	Factor ^b	Mineral Matter ^a	Fact
5.1	. 849	17.3	. 827	19.4	. 806	21.6	. 7
5.3	. 847	17.4	. 826	19.6	. 804	21.7	.7
5.3	. 847	17.5	.825	19.7	. 803	21.8	. 7

CONTENT OF COMMERCIAL ICES. _____

A-12 (0%)(Ash, 10.1-12%) (As Factor b Mineral Min Matter^a Mat 13.0 .870 15 84 83 13.1 .869 15 13.2 . 868 15.3 782 .781 13.2 .868 15.4.846 17.6 .824 19.7 . 803 21.9 13.3 .867 15.5 . 845 17.6 .82419.8 . 802 21.9 .781 13.4 .866 15.5 . 845 17.7. 823 19.9 . 801 22.0.780 13.6 .864 15.8 .842 17.9 .821 20.1 .799 22.2.778 .773 .795 14.0.860 16.2 .838 18.3 .817 20.5 22.7

In determining the relative value of two or more Illinois coals of a different ash content the following procedure may be used:

(a) Determine their relative value on the basis of the heat index.

(b) Decrease the value of the coal of higher heat index if it has more ash than the coal of lower heat index, or increase it if it has less ash than the coal of lower heat index, according to the following scheme.

Symbol of				Correc	tions in c	ents per	ton		
lc	wer ash	- 2	4	7	-12	18	25	35	50
	coal	Symbols of higher ash coal							
A 4	(0.0- 4.0)	A 6	A 8	A10	Λ12	A14	A16	A18	A20
A 6	(4.1-6.0)	A 8	A10	A12	A14	A16	A18	A20	
A 8	(6.1- 8.0)	A10	A12	A14	A16	A18	A20		
A10	(8.1-10.0)	A12	A14	A16	A18	A20			
A12	(10.1-12)	A14	A16	A18	A20		`		
A14	(12.1-14)	A16	A18	A20					
A16	(14.1-16)	A18	A20						
A18	(16.1-18)	A20							

TABLE 5.-CORRECTIONS FOR DIFFERENCES IN ASH a

a Adapted from Bulletin 378, United States Geological Survey. Results of Purchasing Coal under Government Specifications, quoted in Illinois State Geological Survey Bulletin 29, page 75. Purchase and sale of Illinois Coal on Specifications, by S. W. Parr, 1914.

Thus, for example, suppose in the case of two coals correctly valued on a heat index basis at \$7.00 and \$7.50, the lower priced coal has 6 per cent ash (symbol A6) and the higher priced coal 12 per cent ash (symbol A12). The values of the two coals become \$7.00 and \$7.43 (\$7.50-0.07) when adjustment is made for the difference in ash content. On the other hand, were ash values reversed the prices would be \$7.00 and \$7.57. In other words, if the higher rank coal could be purchased at any price less than \$7.57 in competition with the lower rank coal at \$7.00 it would presumably be to the advantage of the consumer to buy it.

It should be noted that the adjustment for increase in ash is not a proportionate value but is a definite amount added to the sales price of the coal and hence it is relatively more important for coal used near the mine than at a distance where the mine cost of the coal is increased by transportation charges.

Fusion point of the ash.—It is not apparent that data in regard to the fusion point of the ash can be interpreted in terms of monetary value. There seems in general to be two grades of Illinois coal, one with fusion point generally below 2100–2200° F. and the other with higher fusion point. The requirements of the combustion equipment determines whether the best results will be obtained with easily melting or relatively refractory ash. The usual form of domestic equipment usually works somewhat at a disadvantage with coal which forms heavy clinker. Selection for such use, therefore, would tend to avoid

COKING STRENGTH

that kind of coal irrespective of the fuel value. In certain types of stokers, on the other hand, clinkering is desirable. Unfortunately the standard fusion test does not tell the whole story about the melting point of a coal ash, for considerable variations in this temperature are possible depending upon whether oxidizing or reducing conditions obtain in the fuel bed.

Sulfur.—There are large supplies of Illinois coal obtained from beds which, where they are being mined, contain not more than 2 per cent of sulfur. Cleaning plants in other places are able to produce coal similarly free from sulfur, particularly in the form of pyrites. It is therefore possible for the domestic consumer, if he buys with care, to obtain coal containing relatively little sulfur.

Where its cheapness makes desirable the use of coal having sulfur in excess of 2 per cent, the heat index of such coal for comparative purposes should be calculated to a sulfur-free basis. This will provide a means for compensating in price for the disadvantage residing in the presence of an excess of sulfur. The heat index should be reduced by one unit if the sulfur symbol is S-3, by two units if the symbol is S-5, and by three units if the sulfur exceeds 5 per cent. Thus if the heat index of coal is 110 and the sulfur symbol is S-5, the heat index modified for the sulfur content becomes 110 - 2 = 108.

Other factors affecting the grading of Illinois coals.—Factors other than the four selected as of chief importance in the specifications for grading coals have more or less significance in a grade classification. These are particularly the coking strength, resistance to weathering, and friability.

With respect to Illinois coals data are still meager in regard to these characteristics, and, what is more important, the methods of testing these characteristics to obtain comparable values are, with the possible exception of the weathering tests, not completely standardized. Such tests as have been made by the same laboratory under similar conditions give some idea in regard to variations among the coals tested but comparison of values derived by different laboratories is likely to be misleading.

Coking strength.—Coking strength is determined by what is known as an agglutinating test which involves determining the weight which a mixture of sand (15 parts) and coal (1 part) will support without crushing after heating as in the volatile matter determinations.²

The inability of different laboratories to attain the same results on the same coal led to the discovery³ that the character of the sand used in the tests was an important factor in determining the strength of the button obtained, etched sands giving results different from those obtained from unetched sands. The agglutinating results on Illinois coals (Table 6) were made before the

² Selvig, W. A., Beattie, B. B., and Clelland, J. B., Agglutinating value test for coal: Amer. Soc. for Testing Materials, Proc. 33 (2): 1933. ³ Information obtained through correspondence between Mr. W. A. Selvig, U. S. Bureau of Mines, and Dr. Gilbert Thiessen, Illinois State Geological Survey, and conveyed orally to the writer.

ratio of 15 parts of sand to 1 part of coal had been established, and are, therefore, reported on a basis of 14 parts of sand to 1 part of coal. The values reported in the table are kilograms of weight sustained without crushing. In certain instances the button developed abnormal characteristics that made testing impossible. The values where obtained probably record real differences among the coals, but must be used with caution when compared with values obtained by other laboratories on these or other coals. Agglutinating coals have average agglutinating indices of at least 500 g. ($\frac{1}{2}$ kilogram). All Illinois coals are regarded as agglutinating.

In general the higher the rank of Illinois coal the higher its agglutinating index (Table 6, p. 51) and presumably the greater its coking strength. It is desirable to have such tests verified by actual coking tests on a laboratory scale in order that there may be a definite significance to the agglutinating index. Such coking tests on Illinois coals are being carried on by Dr. Gilbert Thiessen of the Illinois Geological Survey.

Intelligent discrimination among coals on the basis of relatively slight differences in the coking properties of Illinois coals calls for a fairly high degree of technical knowledge in regard to the combustion process and combustion apparatus. The fact that all Illinois coals are coking coals, although of varying strength, is probably sufficient distinction between these and noncoking coals from outside the State.

Weathering characteristics.—The rank of a coal more or less determines its tendency to slack when exposed to the air; the higher the rank of the coal, in general the more resistant it is to the slacking tendency. The Bureau of Mines⁴ has standardized an accelerated weathering test for determining within a relatively short period of time the relative tendency of a coal to weather (p. 19).

Illinois coals that have been tested by the Bureau of Mines, as shown in Table 6—and only one other series of tests is known⁵—indicate in general slacking indices less than 5 per cent, except for No. 6 coal in counties in western Illinois for which slacking indices as high as 14 per cent were obtained. They are evidently coals which slack readily and hence probably would not retain themselves in large lump sizes more than a few weeks if exposed to the weather. There has been no systematic observation of the extent of such slacking and the sizes to which the coal is commonly reduced before the process stops or considerably slows down. Undoubtedly such coals will give most satisfactory service in equipment designed to burn fine sizes of coal.

FRIABILITY.—Friability is a quality commonly possessed by loosely cemented sandstones that crumble readily under pressure or from a blow. Coals possess

⁴ Fieldner, A. C., Selvig, W. A., and Frederick, W. H., Accelerated laboratory test for determining the slacking characteristics of coal: United States Bureau of Mines, Report of Investigations 3055: 24 pages, 1930.

⁵ Mitchell, D. R., Accelerated slacking tests of some Illinois coals: Illinois Acad. Sci., Trans. 23 (3): 421-425, March 1931.

CONCLUSION

this quality to a greater or lesser degree, due probably to the variations in the amount of jointing. It is a quality which concerns the producer and dealer as, together with the brittleness of certain components, and the tendency to slack in the air, it determines the proportions of the different sizes that the mine will produce, the extent to which small sizes will be produced in shipping and in transfers in the dealers yard, and the amount of "slack" in mine run coal.

No accepted standard method for deriving a numerical value for friability has been perfected. Dropping tests have been applied⁶ to more than 40 samples of freshly mined Illinois coal but the results obtained are comparable only among themselves, the conclusion drawn from the investigation being that distinctive differences in the friability of coals exist from place to place and from seam to seam in the coal basin.

Discrimination between friable and non-friable coal is of little importance to the person buying sized coal since the operation of sizing effects most of the important degradation. Where coal is purchased directly from the mine, however, its friability may have important effects upon the size of the coal received or in the proportion of sizes in mine run coal. In general, however, coal is purchased in large sizes because of the supposed advantage in greater freedom from mineral impurities of such coal. Where such coal is shipped directly from the mine to the consumer, no change in ash content takes place, regardless of the amount of degradation. Where the coal passes through a coal yard, however, rescreening of "lump" coal is necessary, and the disposal of the "fines" may become a matter of some difficulty to the dealer, so that he is much interested in friability as well as in weathering degradation.

CONCLUSION

It is suggested as desirable to rate coals primarily on the basis of their heat value, comparison being made with the use of the heat index—consisting of the as received B.t.u. value of the coal expressed in the nearest hundreds of units. (This value doubled gives the number of thousand heat units per 1 ct. of cost assuming the coal could be purchased at \$1.00 per ton. It is thus easy to compare the relative value of two coals and their relative desirability at any price.) A method is suggested for compensating for differences in ash value, the compensation being respectively 2, 4, 7, 12, 18, 25, 35, and 50 cents per ton for each successive two per cent increase or decrease of difference in ash content. Sulfur of 3 per cent or more is penalized to the extent of the heat value of the sulfur, that is approximately 50 B.t.u. for each per cent of sulfur. Ash fusion temperature, coking strength, sulfur content, friability and slacking tendency of coals are considerations, the importance of each of which or any combination of

⁶ Smith, C. M., The Friability of Illinois Coals: University of Illinois Engineering Experiment Station, Bulletin 218, 1930.

which depends largely on special conditions and determines for special reasons the suitability or unsuitability of a coal.

An example of the method of comparison of two coals is presented as an illustration of the procedure recommended:

Coal No. 1: Rank index 120; ash content 15 per cent; sulfur content 3 per cent; priced at \$5.00.

- Coal No. 2: Rank index 131; ash content 12 per cent; sulfur content 1.5 per cent; priced at \$6.00.
- Coal No. 1: Ash content symbol A16; sulfur content symbol S3. The mineral matter content by Table 4 is therefore 17.9 per cent and the calculation factor .821. Heat index: $120 \times .821 = 99$ (9,900 B.t.u. as received basis.) (Subtract 1 for heat of sulfur: 99 - 1 = 98.

Thousands of B.t.u. per 1 cent at \$1.00 per ton: $98 \times 2 = 196$.

Coal No. 2: Ash content symbol A12; sulfur content symbol S1.6. The mineral matter content by Table 4 is 13.3 and the calculation factor .867.

Heat index: $131 \times .867 = 114$ (11,400 B.t.u. as received basis) Thousands of B.t.u. per 1 cent at \$1.00 per ton: $114 \times 2 = 228$.

- Coal No. 1 at \$5.00 per ton supplies 196/5 = 39 thousand B.t.u. per 1 cent of cost.
- Coal No. 2 at \$6.00 per ton supplies 228/6 = 38 thousand B.t.u. per 1 cent of cost.
- Coal No. 2 if purchased at the same rate as coal No. 1 would cost 228/39 = \$5.85 approximately, to which two cents should be added as an allowance for the difference in ash content making a total of \$5.87.

A graphical method for determining the relative value of coals using rank indices or actual B.t.u. values, ash and sulfur symbols, or actual values, is given in Plate II, Appendix II, and a similar method of comparing the relative economy of coals, fuel oil, and gas is given in Plate III, Appendix II.

This general method for the classification and selection of Illinois coals by the use of rank indices provided by the tables of analyses and the additional use of generalized ash and sulfur symbols based upon the ash and sulfur content of the coals as prepared for the market will enable the purchaser of small quantities of coal to make discriminating selection among the fairly wide variety of coals mined in Illinois. It is essential, however, that reliable data are available in regard to the ash and sulfur content of the coal as prepared for shipment at the mine. Unfortunately not all of the mines systematically collect samples of prepared coal for analysis. The purchaser often, therefore, must judge the quality of the coal offered for sale by the data provided by face samples as given in the mine and county averages (Table 3, Appendix I). This at best gives approxi-

CONCLUSION

mate values only, for as has been previously pointed out, the methods of mining and preparing coal for market are of great importance in determining the extent to which extraneous ash and sulfur is included with the coal or is removed at the face or at the tipple.

It needs to be emphasized that heat value, although of great importance in the selection of a fuel, is not always the only important consideration. The extent to which other factors must be taken into consideration depends largely upon the peculiar requirements of the individual device for utilization.

Index No.	Coal No.	Laboratory No.	Agglutination Index 14 Sand : 1 Coal Kg.	First Cycle Slacking Index Per Cent
			•	
532	7	A86596	3.0	5.9
		A86597	2.8	3.5
136	6	A90715	3.9	1.9
		A90716	4.0	0.8
		A90717	4.7	0.7
BM19	6	A90785	4.8	2.6
		A90786	4.7	1.8
		A90787	4.7	1.7
530	6	A86302	6.1	2.0
		A86303	6.2	3.1
232	1	A90505	4.2	1.8
		A90506	4.3	0.1
		A90507	3.9	0.4
527	6	A86458	1.1	7.9
		A86459	1.1	14.1
· 419	6	A90723	4.7	1.2
		A90724	7.5	0.1
		A90725	7.4	0.6
526	6	A86455	2.1	11.3
		A86456	2.1	13.0
600	5?	A90312	8.7	1.4
		A90313	8.4	1.6
		A90314	7.2	1.3
531	5N	A86593	4.7	5.7
		A86594	3.8	4.6
601	5N	A90424	5.2	1.4
		A90425	5.4	1.5
		A90519	5.7	1.3
	Index No. 532 136 BM19 530 232 527 419 526 600 531 601	Index No. Coal No. 532 7 136 6 BM19 6 530 6 232 1 527 6 419 6 526 6 600 5? 531 5N 601 5N	Index No. Coal No. Laboratory No. 532 7 A86596 532 7 A86597 136 6 A90715 A90716 A90716 A90717 BM19 6 530 6 A86303 232 1 A90505 A90507 527 6 419 6 A90723 A90725 526 6 600 5? A90312 A90313 A90314 A90314 531 5N A86594 601 5N A90519	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 6.—AGGLUTINATING AND SLACKING INDICES OF CERTAIN ILLINOIS COALS, SHOWING THE RESULTS OF TESTS BY THE UNITED STATES BUREAU OF MINES, USING BUREAU OF MINES METHODS IN 1933-1934.

USE OF SPECIFICATIONS IN SELECTING COALS

County	Index No.	Coal No.	Laboratory No.	Agglutination Index 14 Sand : 1 Coal Kg.	First Cycle Slacking Index Per Cent
Saline	127	58?	A90719	87	0.0
		001	A90720	6.2	0.0
			A90721	6.9	0.0
	BM71 = 608	5S	A91426	6.3	0.5
			A91427	6.2	0.3
			A91428	7.1	0.6
Stark	528	6	A86466	3.1	7.9
			A86463	2.6	9.9
Vermilion	401	5N	A90658	Abnormal	5.9
			A90659	7.0	3.6
			A90660	Abnormal	10.4
	603	7	A90627	6.8	0.2
			A90628	7.2	0.6
			A90629	7.2	0.9
Will	359	2	A90366	Abnormal	4.8
			A90367	Abnormal	5.3
			A90369	Abnormal	2.5
			A90370	Abnormal	4.7
Woodford	410	2	A90282	Abnormal	4.9
			A90283	4.9	6.5
				(Slightly Abnormal)	
			A90284	Abnormal	3.6
	1 1		1		

TABLE 6-Continued.

CHAPTER VI

COMMERCIALLY IMPORTANT COAL BEDS IN ILLINOIS

I N THE PRESENT BULLETIN the following commercially important coal beds are recognized, being listed in order from the lowest in the stratigraphic column upward:

Coal No. 1	Rock Island and Murphysboro bed					
	Lower Assumption bed (possibly same as Coal No. 1)					
	Upper Assumption bed (possibly same as Coal No. 1)					
Coal No. 2	Colchester and LaSalle bed ("Third Vein" in Longwall dis-					
	trict)					
Coal No. 4	Summum bed					
Coal No. 5	Harrisburg bed (possibly the same as coal No. 4)					
(south)						
Coal No. 5	Springfield, Grape Creek (Vermilion County) bed					
(north)						
Coal No. 6	Herrin bed (also Streator and LaSalle "Second Vein" bed)					
Coal No. 7	Danville and Sparland bed (also "First Vein" in LaSalle					
	County)					

None of these coal beds is continuous beneath the coal basin, at least in workable thickness. Each bed occurs in workable thickness in more or less well defined, usually large areas (Fig. 2) beyond which, although the coal bed may be present, it is thin. Not uncommonly it is entirely absent although closely associated beds, indicating its approximate position, may be present.

The original thickness of the Pennsylvanian system or "Coal Measures" was probably at least 3000 feet. The upper half of the system contains no coals of present commercial importance although there are seams of sufficient thickness to be worked for local trade. The lower third of the system also lacks seams of commercial thickness but contains beds worked for local supplies. The intermediate portion of the system, with a maximum thickness of about 600 to 700 feet contains all the seams listed at the beginning of the chapter, and corresponds fairly closely with what is called the Carbondale formation, the top of that formation, however, being at the top of coal No. 6 rather than coal No. 7.

Toward the north and west margins of the basin the thickness of this productive series is not more than half what it is in the southern and central

54

Fig. 2—Approximate known extent of areas of thick accumulation of coal beds of commercial importance in Illinois, shown by seam. Approximate margins of the areas of thick accumulation are indicated by a full or broken line; by the latter if very indefinite. Present erosional margin of each coal bed is indicated by a line of dots. (Some of the data presented are based on field studies by J. M. Weller and H. R. Wanless.) (Cady, G. H., Distribution of Sulfur in Illinois Coals and its Geological Implications: Illinois State Geol. Survey Report of Investigations No. 35, 1935.)

part of the basin. In these marginal areas the upper part of the system may be entirely eroded and the lower part be absent so that coal No. 1 or even coal No. 2 may lie within a few feet of rocks of much greater age.

The "Coal Measures" rocks below coal No. 1 contain several coal beds, probably there are five or six coal horizons, but the beds are rarely if ever more than three feet thick. These coal beds have no numbers, but are referred to by name such as "Willis," "Ice House," and "Battery Rock" coals in southern Illinois. Coal beds of about the same age in northern Illinois are crowded closely together, commonly being separated only by underclays and also commonly consisting of little more than smut bands.

Above No. 7 coal are a large number of coal beds, probably as many as twenty-five, some of which are commonly represented by little more than sooty streaks, and others of which attain a thickness of between 1 and 3 feet over fairly large areas. A few of these beds like the "Shelbyville" coal bed, the "Neoga" coal bed (between Trowbridge and Neoga in southeastern Shelby County), the "Calhoun" coal bed in Richland County,¹ and the "Friendsville" coal bed in Wabash County, are fairly important sources of coal used locally.

Whereas it was formerly supposed that there were less than twenty coal beds in the Illinois "Coal Measures", it is now known that there are at least twice that many and possibly nearer three times. None of the original numbers applied by Worthen in the eight volumes of the Geological Survey of Illinois² was consistently applied to the same bed throughout the basin. This being the case with the workable, and more easily traceable beds, it means even greater confusion with respect to the thinner less readily identified beds. It is, therefore, desirable to avoid the use of numbers and refer to beds by names which usually have a local significance and make designation more definite. The well established use of numbers in the coal trade, however, makes some use of numbers unavoidable but it is important that their designation be thoroughly understood.

In no previous report has exactly the same system of bed numbers and names been employed as is used here, several changes in correlation and identification having resulted from investigations and discoveries made in the last few years by the Stratigraphic Division under the direction of Dr. J. Marvin Weller with the assistance of Dr. H. R. Wanless. As an aid in the identification of beds the following table is provided:

¹ Noé, A. C., Our present knowledge of American coal ball plants: Illinois Acad. Sci. Trans. 26 (3): 103, March, 1934. ² Published—1866-1890.

COMMERCIALLY IMPORTANT COAL BEDS

Present Coal Nos.	Present names and alternate names	Correlation of Cooperative Investigations 1912-1930	Correlation prior to 1912 (Worthen Survey)
No. 7	Danville (Sparland) (LaSalle "First Vein")	Streator, Danville LaSalle "First Vein"	Streator, Danville, LaSalle First Vein (No. 6 in places in Southern Illinois)
No. 6	Herrin (Brereton) (LaSalle "Second Vein") Streator	Herrin, Grape Creek Springfield or LaSalle "Second Vein" in Northern Illinois	No. 6 (in places in southern and western Illinois) No. 5 and LaSalle "Second Vein" in Northern Illinois
No. 5 (north)	Springfield (Grape Creek)	Springfield, Harris- burg	No. 5 in western Illinois, locally called No. 4
No. 5 (south)	Harrisburg (possibly same as Summum) (Blair)	Springfield or Harris- burg (Blair)	No. 6 in parts of southern Illinois
No. 4	Summum (Soperville) possibly Harrisburg	Not recognized	Not recognized. (No. 5 called No. 4 in places in western Illinois, but not the same coal as Summum coal)
No. 3	Not recognized	Not recognized	No. 2 coal locally called No. 3
No. 2	LaSalle (Colchester)	LaSalle, LaSalle "Third Vein", Col- chester Murphysboro	No. 2; locally called No. 3 in western Illinois
No. 1	Rock Island, Mur- physboro (Curlew)	Rock Island	Rock Island

TABLE 7.—COMPARISON OF PRESENT AND FORMER SYSTEMS OF NAMES AND NUMBERS OF THE COMMERCIALLY IMPORTANT SEAMS IN ILLINOIS.

MINING ENTERPRISES BY BED

At the present time no shipping mine is producing coal from more than one bed and, for the most part, operations of this kind in each mining district are in but one bed, although two or more beds may be present in a district and worked for local uses. For this reason geographic distinctions correspond to differences in bed source.

South from Chatham, Edinburgh, and Blue Mound, Herrin (No. 6) is the only coal bed worked by railroad mines except for small mines in Williamson County and the mines in Saline and Gallatin counties where the Harrisburg coal is exclusively mined. The Harrisburg bed is mined for local trade in Williamson, Randolph, and St. Clair counties, and the Herrin coal bed is so mined in Saline and Gallatin counties. The Murphysboro district in central Jackson County is an essentially abandoned field where Murphysboro No. 1 (formerly called No. 2) bed is worked out except for small areas providing supplies of locally used coal. Two beds near or at the horizon of Rock Island (No. 1) coal were formerly worked at Assumption, where No. 6 coal bed is missing.

In central Illinois from Springfield and Moweaqua on the south to Bloomington on the north, southern Vermilion (Grape Creek district) on the east and Rushville, St. David, Cuba, Canton, and Farmington on the west and northwest, the Springfield (No. 5) is the only bed commercially developed, except in Vermilion County. At places both higher and lower beds of workable thickness are present and at times have been mined.

In Vermilion County, Springfield No. 5, the Grape Creek bed (formerly called No. 6) is worked in the main south of Westville, and the Danville (No. 7) bed north of this point, the lower bed thinning to the north and the upper bed to the south.

In western Illinois beyond the outcrop of Springfield No. 5 coal bed in Fulton and Schuyler counties, there are numerous mines supplying local trade from various seams, but particularly from the Colchester (No. 2) and the Rock Island (No. 1) beds. In southwestern Henry County at Alpha and near Galesburg, Knox County, are the only railroad mines in the State now obtaining coal from the Rock Island (No. 1) bed. Formerly there were fifteen to twenty such mines in the Rock Island and Mercer county regions and the Murphysboro district.

In the northern part of the Illinois coal basin is the large Longwall district so-called from the method of mining the LaSalle (No. 2) bed, the principle coal bed of the district. This area extends from Bureau County on the west to the western portion of Will County on the east with some interruptions in LaSalle County, and from LaSalle County on the north to McLean County (Bloomington) on the south. In this area there are at present only 6 shipping mines, one each at Peru, Granville, Ottawa, Wilmington, Minonk, and Roanoke. Twenty years ago this was one of the important mining districts in the State with 30 shipping mines. The abandonment of the district is due not, as in the case of the Murphysboro and Rock Island districts to exhaustion of the coal supply, but to inability to meet the competition with mines working thicker and higher rank coal in the southern and central part of the State.

Here and there in the district coals other than No. 2 are being or have been worked by shipping mines and also for local trade, as the Danville No. 7 bed at Sparland, the Herrin No. 6 bed at Streator (Streator coal is commonly known as coal No. 7), worked near Verona, Grundy County (probably No. 6), and the bed worked at Pontiac and Fairbury, here called No. 5 but of uncertain identity. The position of the seams in close proximity to the axis of the LaSalle anticline may explain the anomalous high rank of this coal.

SELECTION OF COAL BY BED

No uniformity exists with respect to the characteristics of the coal in the respective beds; the variations from place to place in the same seam are as great

SELECTION OF COAL BY BED

as variations from bed to bed. The bed source of Illinois coal is usually signified by the geographic location of the mine from which it comes. This is particularly true with respect to the coal from the larger mines, because in general all such mines in a mining district work the same coal bed. This is the case for practically all mines with railroad connections. It is generally true that more definite information is available in regard to the characteristics of the coal bed generally worked in any district than about other beds, so that extravagant claims regarding the quality of such unusual coals cannot be so readily refuted as in the case of the more generally worked coals. Claims with respect to the unusual quality of one coal in a region as compared with another originating in the same region must be regarded with some suspicion because differences, although they do exist, are small, and mainly have to do with differences in mineral matter (ash) content.

In general a slight increase in rank is to be noticed from bed to bed with increase in depth or age.³ The deepest and oldest coal in any district will generally have slightly the highest rank.

^aCady, G. H. and Rees, O. W., Unit coal as a basis of coal standardization as applied to Illinois coals: Illinois State Geol. Survey Report of Investigations No. 32, 1934.

CHAPTER VII

AVAILABLE CHEMICAL DATA AND THEIR RELIABILITY

PROXIMATE AND ULTIMATE ANALYSES

The characteristics of coal that are recorded in the usual form of commercial analyses of coal consist of the following items:

Proximate analysis

Moisture Volatile matter Fixed carbon Ash

Ultimate analysis

Hydrogen Carbon Nitrogen Oxygen Sulfur Ash

The calorific (B.t.u.) value and the sulfur content is usually reported with each form of analysis, although the sulfur is strictly not part of the proximate analysis and the heat value determination is part of neither. Other values commonly reported with either or both forms are

Mineral CO₂

Forms of sulfur (organic, pyritic, and sulfate sulfur)

"Softening" temperature of the ash, commonly called the "fusion point of the ash".

There are available a few complete elementary analyses of coal, including both coal material and ash.

PURPOSE OF ANALYTICAL DATA

The analytical data are compiled primarily to show the character of regional variations in Illinois coals rather than to show the character of the coal produced at the individual mine. For this primary purpose the results of analyses of abandoned mines, which make up a large part of the tabulations, are just as important as analyses of face samples from active mines. The tables are so compiled as to emphasize the importance of regional averages for each workable bed rather than the character of the coal in the individual mine.

[61]

CHEMICAL DATA AND THEIR RELIABILITY

RELEASE OF ANALYTICAL DATA

It is realized that specific information in regard to the character of the coal bed in a particular mine is often desired. This can be obtained, however, only by correspondence with the Survey except in so far as the identity of the mine may be shown in Table 5, Appendix I, which lists certain long inactive or abandoned mines and certain mines for which analyses included in Table 1 (Appendix I) have been published by the United States Bureau of Mines without concealment of identity. If analyses of the coal in the mine concerning which there is particular inquiry are represented in the present tabulations or in Survey files, a request for its release for a specific purpose will be made by the Survey to the operator concerned. When this consent is gained the information will be supplied to the inquirer. The Survey is willing to undertake this service, and in the past has usually found the individual operator quite willing to release the information provided he knows to whom it is supplied.

TABULATIONS

The individual analyses given in the Appendix, Table 1, consist only of proximate analyses and B.t.u. values. Very few ultimate analyses of individual samples of Illinois coals are available. Ultimate analyses have most commonly been made of samples composited of a group of face samples collected in an individual mine in the same sampling trip and represent a laboratory average of from two to five such samples, usually of three to five. Most such ultimate analyses of Illinois coal made before 1931 were made in the Bureau of Mines Experiment Station at Pittsburgh. Since 1931 a number of ultimate analyses of composite samples have been made by the Analytical Division of the Survey. In the table of mine averages (Table 2, Appendix I) the ultimate values are commonly those obtained by analysis of a composite sample, indicated by a single laboratory number. Mine average ultimate values are adjusted to conform to average ash and sulfur values for all analyses from the same mine or for all mine averages for the same county.

In order that all values used in compiling mine averages (Table 2, Appendix I) may be presented, it is necessary to give intermediate average or composite values for certain groups of analyses. Table 3 (Appendix I) gives at least two such averages or composite analyses for each mine represented, the average of these two or more analyses being the mine average shown in Table 2. Where it is possible to do so without revealing the source of the samples represented by the averages, the averages are grouped together in Table 3. However, in the case of certain counties it is necessary to group analyses numbered in the B.M. series separately from those not so numbered because the identity of the mines in the B.M. series is given in Table 5 (Appendix I). Where such is the case it is not possible to know what two or more averages were used in the calculation of the mine average given in Table 2 without having a key to the identity of the
STANDARDIZATION OF LABORATORY PROCEDURE

mines. This can not be avoided so long as it is the policy to conceal the identity of mines other than those revealed by published Bureau of Mines analyses. All composite analyses of samples represented by groups of single analyses in Table 1 appear either in Table 2 or Table 3. None appear in Table 1.

Available information in regard to the softening temperature of the ash of certain Illinois coals, the ash content, the total sulfur content of these coals, and their content of pyritic and organic sulfur are presented in Table 6 (Appendix I).

STANDARDIZATION OF LABORATORY PROCEDURE

In setting forth the specifications for classification with chemical data it is stated that the coal shall be analyzed in accordance with standard methods of laboratory procedure as established by the American Society for Testing Materials (A.S.T.M. Designation: D 271-33). The determinations of the values herein presented were made in accordance with this procedure by one or the other of three laboratories: the Chemical Testing Laboratory of the University of Illinois, the United States Bureau of Mines Experiment Station, Pittsburgh, or the Analytical Division of the State Geological Survey.

To avoid the possibility of including analyses made under conditions giving results of more or less uncertain reliability all analyses made before 1912 were excluded from the tables.¹ The standard methods² adopted in 1916 had been in use by the Bureau of Mines for several years and at least as early as 1912 by the Chemical Testing Laboratory of the University of Illinois. An important change from the earlier methods of analysis which concerned the method of volatile matter determinations and which was standardized in 1913 had been developed in earlier years by the Bureau and was also in use by the University of Illinois laboratory in 1912. Uncertainty in regard to the quality of analyses made in earlier years required their elimination.

During 1912 a series of about 100 mines was sampled to provide sets of three or more, usually only three, analyses for each mine, as a basis for accurate generalizations in regard to regional variations in the character of Illinois coals. Analyses were run by the Chemical Testing Laboratory of the University of Illinois under the direction of Professor S. W. Parr and the direct supervision of Mr. J. M. Lindgren. Analyses were run in duplicate by different analysts, and numerous check analyses were made by the Experiment Station Laboratory of the Bureau of Mines at Pittsburgh. The results obtained by both laboratories on duplicate samples are included in the present report, and the set may be identified by index numbers less than 101 and dates of analysis as of 1912. These analyses were first published in 1914 in Bulletin 29, "Purchase and Sale of Illinois Coal on Specification", by S. W. Parr, and were again published

¹ Fieldner, A. C. Review of methods used in coal analysis with particular reference to classification of coal: Amer. Inst. Mining and Metallurgical Engineers, Transactions, Coal Division, 1930: 585-596, 1930. ² Proposed tentative methods for sampling and analysis of coal: Amer. Soc. Testing Materials Year Book 1915: 596-624.

in Cooperative Mining Series Bulletin 3, "Chemical Study of Illinois Coals," by the same author. These analyses were again published in a compilation of available analyses of Illinois coals printed as Cooperative Mining Series Bulletin 27 (or Extract from Bulletin 27) compiled by G. W. Hawley.

From 1912 to 1933 there were numerous analyses of Illinois coal made by the Bureau of Mines Experiment Station, Pittsburgh. Some have been published in one or another of the various compilations of the Bureau. Such published analyses are indicated in the tables (Tables 1, 2, and 3, Appendix) by a symbol B.M. preceding the index number.

In addition to these published analyses there are others made by the U. S. Bureau of Mines under special arrangement with the Survey in regard to publication, and still others which although made without special arrangement in regard to publication have not yet been published. Such analyses have the Bureau of Mines analysis numbers and the mine index numbers are prefixed by the initial "A."

Analyses not made by the U. S. Bureau of Mines since 1912 were made either by the Chemical Testing Laboratory of the University of Illinois, J. M. Lindgren in charge, or in the Analytical Laboratory of the Survey under the supervision of Dr. F. H. Reed, Head of the Chemistry Section, and in immediate charge of Dr. O. W. Rees. Both laboratories operate under standard conditions and the results of both have been frequently checked by comparison with results obtained by the Experiment Station Laboratory of the Bureau of Mines by exchange of a riffled sample. Several examples of such analyses made by two laboratories in 1932 and 1933 appear in Table 2.

Most of the analyses made between 1912 and 1931 by the Chemical Testing Laboratory of the University of Illinois were made about 1921 in anticipation of the publication of the compilation which appeared in Cooperative Mining Series Bulletin 27, previously mentioned.

The analyses made from 1931 to 1933 by the Survey laboratory (prefixed by "C.") and by the U. S. Bureau of Mines were made in connection with investigations of the agglutinating and slacking characteristics of Illinois coals to assist in establishing criteria for differentiating between bituminous and subbituminous ranks of coal. Analyses made since 1933 have been largely for the purpose of making the record more complete and up-to-date before the present publication.

Although the analyses here assembled were made in three laboratories through a period of more than 20 years it is believed that the values are comparable within the range of error allowable in general classifications as have been suggested.

IDENTITY OF MINES

SAMPLING METHODS

The present bulletin gives analyses only of face samples of coal. The purpose of such sampling is to obtain an analysis which will represent as closely as possible the composition of the entire seam of the coal except for gross impurities such as would be discarded by the miner under ordinary conditions of hand mining. To obtain a sample that will give this result, each layer of the seam must be proportionately represented in the sample and there must be as little loss in moisture and occluded gases as possible. Standard sampling methods require the collection of three or more channel samples at a freshly mined face representing the bed or that portion of it being mined, and further require that the samples shall be sealed in the mine in a container in which it is transported to the laboratory. Generally where samples must be transported a considerable distance the original sample is crushed down in the mine to less than 1/4-inch mesh and then quartered or riffled down to a weight of about 3 pounds. This sample is then sealed in the container in the mine whence it is taken to the laboratory. The entire sample weighing 5 to 15 pounds per foot of coal may be sealed in a large tin such as a 50-pound lard container and taken to the laboratory and very quickly run through a large jaw crusher and riffled to the size necessary for a laboratory sample. The amount of time for this procedure is considerably less than that required for grinding or tamping the sample to $\frac{1}{4}$ inch size in the mine and comparison of results obtained by the two methods shows no appreciable difference in the character of the laboratory samples obtained. This method has been employed in collecting samples analyzed by the Analytical Division of the Survey during 1934.

APPENDIX I

INDIVIDUAL AND AVERAGE ANALYSES OF ILLINOIS COALS

FINDING KEY TO ARRANGEMENT OF ANALYSES

by Coal Bed

		1 ···	
Coal Bed and Counties	Table 1 Page	Table 2 Page	Table 3 Page
Coal No. 1 (Rock Island, Murphysboro) Rock Island	70- 74	208–212	292
Murphysboro (formerly called No. 2)	75- 76	212-214	
Lower Assumption (formerly called No. 1) (Christian County)	76- 77	214	
Upper Assumption (formerly called No. 2)	77	215	н
Coal No. 2 (LaSalle, Colchester) (Bureau, Grundy, Henry, LaSalle, McDonough, McLean, Marshall, Schuyler, Will, and Woodford counties)	77-87	215-223	292–294
Coal No. 4 (Summum, Soperville)	88- 89	223–224	294
Coal No. 5 (4?) (Harrisburg, Blair) (Gallatin, Randolph, Saline, and Williamson counties)	89–91	225–231	294–297
Coal No. 5 (Grape Creek, Springfield) Grape Creek.	101–107	231-234	297–299
(Edgar, Livingston, and Vermilion counties) Springfield (Fulton, Logan, McLean, Macon, Menard, Peoria, Sanga-	107–128	235–248	299–302
mon, Schuyler, Shelby, and Tazewell counties) Coal No. 6 (Herrin, LaSalle "Second Vein", Streator)			
Northern and Western Illinois (Fulton-Peoria, Grundy, Henry, Knox, LaSalle, and Stark counties)	129–132	249–251	302–303
Central, southwestern, and southern Illinois	132–201	252–287	304–311
Moultrie, Perry, Randolph, St. Clair, Sangamon, Wash- ington, White, and Williamson counties)	201-206	287_200	311_312
(Bureau, Marshall, and Vermilion counties)	201-200	201-290	511515

Finding Key to Arrangement of Analyses by County

County, Coal No., Part of State	Table 1 Page	Table 2 Page	Table 3 Page
Bond (No. 6) (Southwestern Illinois)	132	252	
Bureau (No. 2) (Northern Illinois)	77	215	292
Bureau (No. 7) (Northern Illinois)	201	287	311
Christian (Lower Assumption) (Central Illinois)	76	214	
Christian (Upper Assumption) (Central Illinois)	77	215	
Christian (No. 6) (Central Illinois)	133	252	304
Clinton (No. 6) (Southwestern Illinois)	135	253	
Edgar (No. 5?) (Eastern Illinois)	101	231	
Franklin (No. 6) (Southern Illinois)	136	255	304
Fulton (No. 1) (Western Illinois)	70	208	
Fulton (No. 5) (Western Illinois)	107	235	299
Fulton (No. 6) (Western Illinois)	129	249	
Gallatin, N. of Eagle Valley (No. 5 (4?)) (Southern Illinois)	89	225	
Gallatin, Eagle Valley (No. 5 (4?)) (Southern Illinois)	90	225	
Gallatin, Eagle Valley (No. 6) (Southern Illinois)	151	260	
Greene (No. 4) (Central Illinois)	88	223	294
Grundy (No. 2) (Northern Illinois)	78	216	
Grundy (No. 6) (Northern Illinois)	129	249	302
Henry (No. 1) (Western Illinois)	70	208	292
Henry (No. 2) (Western Illinois)	80	217	
Henry (No. 6) (Western Illinois)	129	249	303
Jackson (No. 1) (Southern Illinois)	75	213	
Jackson (No. 6) (Southern Illinois)	151	261	
Jefferson (No. 6) (Southern Illinois)	155	262	
Knox (No. 1) (Western Illinois)	71	209	
Knox (No. 4) (Western Illinois)	88	224	
Knox (No. 6) (Western Illinois)	130	250	303
LaSalle (No. 2) (Northern Illinois)	80	218	
LaSalle (No. 6) (Northern Illinois)	130	250	
LaSalle district (formerly called coal No. 5)			
LaSalle (No. 6) (Northern Illinois)		251	
Streator district (formerly called Streator No. 7 coal)		-	
Livingston (No. 5?) (Eastern Illinois)	101	231	
Logan (No. 5) (Central Illinois)	114	238	
McDonough (No. 2) (Western Illinois)	82	219	-
McLean (No. 2) (Central Illinois)	83	221	
McLean (No. 5) (Central Illinois)	115	239	200
Macon (No. 5) (Central Illinois)	115	239	299
Macoupin (No. 6) (Southwestern Illinois)	155	262	307
Madison (No. 0) (Southwestern Illinois)	160	265	
Marion (No. 0) (Centralia district, Southwestern Illinois)	162	267	
warshall (western Illinois)	84	.221	
	ļ		1

FINDING KEY TO ANALYSES

Finding Key to Arrangement of Analyses by County

County, Coal No., Part of State	Table 1 Page	Table 2 Page	Table 3 Page
Marshall (No. 7) (Western Illinois)	201	288	312
Menard (No. 5) (Central Illinois)	116	240	300
Mercer (No. 1) (Western Illinois)	72	210	
Montgomery (No. 6) (Southwestern Illinois)	164	268	307
Moultrie (No. 6?) (Central Illinois)	167	270	
Peoria (No. 5) (Western Illinois)	118	241	300
Perry (E) (No. 6) (Southern Illinois)	173	273	308
Perry (W) (No. 6) (Southwestern Illinois)	167	270	308
Randolph (No. 5 (4?)) (Southwestern Illinois)	90	226	
Randolph (No. 6) (Southwestern Illinois)	177	274	
Rock Island (No. 1) (Western Illinois)	74	211	
St. Clair (No. 6) (Southwestern Illinois)	179	276	
Sangamon (No. 5) (Central Illinois)	122	243	301
Sangamon (No. 6) (Central Illinois)	184	278	
Saline (No. 5 (4?)) (Southern Illinois)	91	227	294
Schuyler (No. 2) (Western Illinois)	84	223	
Schuyler (No. 5) (Western Illinois)	127	247	
Shelby (No. 5) (Central Illinois)	127	247	
Stark (No. 6) (Western Illinois)	131	251	303
Tazewell (No. 5) (Central Illinois)	128	247	
Vermilion (No. 5) (Eastern Illinois)	102	233	297
Vermilion (No. 7) (Eastern Illinois)	203	289	313
Warren (No. 1) (Western Illinois)	74	212	
Washington (No. 6) (Southwestern Illinois)	186	279	310
White (No. 6) (Southern Illinois)	187	280	
Will (No. 2) (Northern Illinois)	85	222	293
Williamson (No. 5 (4?)) (Southern Illinois)	100	231	
Williamson (No. 6) (Southern Illinois)	187	281	311
Woodford (No. 2) (Northern Illinois)	86	222	293

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES OF ILLINOIS COAL BEDS ARRANGED BY BED, COUNTY, AND MINE

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
12469	*105	1921	Fulton	1	1 2 3 4	11.38	38.66 43.62 49.46	39.51 44.58 50.54	10.45 11.80	4.52 5.10 5.78	.87 .98 1.11	11447 12917 14645 14993
12470	*105	1921	Fulton	1	1 2 3 4	11.42	38.17 43.09 48.78	40.07 45.24 51.22	10.34 11.67	$4.76 \\ 5.37 \\ 6.08 $.45 .51 .58	11409 12880 14582 14934
12471	*105	1921	Fulton	1	1 2 3 4	10.84	38.42 43.09 48.43	40.91 45.88 51.57	9.83 11.03	5.61 6.29 7.06	.54 .61 .69	11554 12959 14566 14941
14387	232	1924	Henry	1	1 2 3 4	13.36	40.10 46.28 52.46	36.34 41.94 47.54	10.20 11.78	5.83 6.73 7.63	.97 1.12 1.27	10820 12488 14155 14539
14388	232	1924	Henry	1	1 2 3 4	15.17	40.10 47.28 51.80	37.32 43.99 48.20	7.41 8.73	4.85 5.72 6.27	.99 1.17 1.28	11058 13036 14283 14584
BM-A90505	232	1933	Henry	1	1 2 3 4	14.8	37.4 43.9 49.5	38.2 44.8 50.5	9.6 11.3	5.3 6.2 7.0	.42 .50	10730 12590 14200 14552
BM-A90506	232	1933	Henry	1	1 2 3 4	14.6 	38.4 45.0 50.0	38.5 45.1 50.0	8.5 9.9	5.6 6.5 7.2	.90 1.04	10890 12750 14160 14493

ROCK ISLAND (NO. 1) COAL (WESTERN ILLINOIS)

*Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
BM-A90507	232	1933	Henry	1	1 2 3 4	14.7 	37.4 43.9 49.9	37.7 44.1 50.1	10.2 12.0	6.4 7.5 8.5	. 82 . 96	10680 12520 14220 14647
14385	237	1924	Henry	1	1 2 3 4	17.36	36.31 43.93 47.13	40.73 49.29 52.87	5.60 6.78	2.92 3.53 3.79	.79 .96 1.03	11035 13353 14324 14522
14386	237	1924	Henry	1	1 2 3 4	17.40 	35.72 43.24 47.98	38.72 46.88 52.02	8.16 9.88	3.84 4.65 5.16	.99 1.20 1.33	10650 12894 14308 14592
14383	252	1924	Henry	1	1 2 3 4	14.13 	36.22 42.17 49.44	37.02 43.12 50.56	12.63 14.71	7.63 8.89 10.42	.62 .72 .84	10246 11932 13989 14500
14384	252	1924	Henry	1	1 2 3 4	15.02	35.45 41.71 47.75	38.78 45.64 52.25	10.75 12.65	5.66 6.66 7.62	.60 .71 .81	10334 12161 13922 14307
15691	354	1927	Henry	1	1 2 3 4	17.45	36.52 44.24 49.22	37.68 45.65 50.78	8.35 10.11	3.48 4.21 4.68	1.26 1.53 1.70	10539 12767 14203 14472
15692	354	1927	Henry	1	1 2 3 4	16.83	36.25 43.58 48.81	38.00 45.70 51.19	8.92 10.72	3.80 4.57 5.12	1.35 1.62 1.81	10585 12727 14255 14550
15493	355	1926	Knox	1?	1 2 3 4	13.88 	36.92 42.87 47.65	40.55 47.09 52.35	8.65 10.04	4.34 5.04 5.60	.90 1.04 1.16	11146 12942 14386 14689
					- 1			1				

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

	1.101											
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
15494	355	1926	Knox	1?	1 2 3 4	14.68 	36.48 42.75 46.71	41.61 48.78 53.29	7.23 8.47 	4.74 5.55 6.06	.90 1.05 1.15	11188 13111 14324 14617
5371	*17	1912	Mercer	1	1 2 3 4	17.75 	39.50 48.03 53.30	34.61 42.08 46.70	8.14 9.89 	5.53 6.72 7.46	.86 1.05 1.17	10435 12687 14079 14425
5372	*17	1912	Mercer	1	1 2 3 4	17.50 	38.78 47.00 53.53	33.66 40.80 46.47	10.06 12.20	4.51 5.46 6.22	.29 .35 .40	10238 12409 14133 14478
5359	*18	1912	Mercer	1	1 2 3 4	14.58 	39.49 46.23 51.76	36.82 43.09 48.24	9.11 10.68	5.60 6.56 7.34	.15 .18 .20	10894 12754 14279 14642
5360	*18	1912	Mercer	1	1 2 3 4	15.07 	38.14 44.91 50.47	37.44 44.07 49.53	9.35 11.02	$4.85 \\ 5.71 \\ 6.42 \\ \dots \dots$.34 .38 .43	10790 12705 14278 14618
5361	*18	1912	Mercer	1	1 2 3 4	14.10 	39.60 46.09 51.87	36.73 42.76 48.13	9.57 11.15 	3.92 4.56 5.13	.23 .27 .30	10956 12753 14353 14660
5338	*19	1912	Mercer	1	1 2 3 4	13.23	40.29 46.43 51.99	37.20 42.88 48.01	9.28 10.69	4.37 5.04 5.64	.41 .47 .53	11104 12797 14329 14641
5339	*19	1912	Mércer	. 1	1 2 3 4	15.24	37.66 44.44 51.52	35.73 42.15 48.68	11.37 13.41 	4.80 5.66 6.54	1.47 1.73 1.99	10353 12214 14106 14478

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory: 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

	IADL	E 1. 1	NDIVIDUAL FRO	A.1.41	TALL	11111111111	S OF FR		20 000			
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
5340	*19	1912	Mercer	1	1 2 3 4	15.15 	39.06 46.03 50.37	38.48 45.36 49.63	7.31 8.61	3.30 3.89 4.26	.17 .19 .21	11252 13260 14509 14753
5363	*19	1912	Mercer	1	1 2 3 4	14.97 	38.27 44.99 50.78	37.07 43.61 49.22	9.69 11.40 	3.75 4.95 5.58	.33 .43 .48	10840 12749 14389 14712
5364	*19	1912	Mercer	- 1	1 2 3 4	14.46 	40.42 47.24 53.34	35.33 41.32 46.66	9.79 11.44 	4.23 4.94 5.58	.59 .69 .78	10780 12603 14231 14551
5365	*19	1912	Mercer	1	1 2 3 4	14.07	39.95 46.49 54.01	34.01 39.59 45.99	11.97 13.92	4.55 5.29 6.15	.78 .91 1.06	10525 12247 14227 14604
13812	†233	1923	Mercer	1	1 2 3 4	16.19 	36.17 43.16 49.20	37.35 44.56 50.80	10.29 12.28	3.82 4.56 5.31	Trace Trace	10428 12442 14184 14500
13813	†233	1923	Mercer	1	1 2 3 4	16.49 	36.97 44.27 48.90	38.63 46.26 51.10	7.91 9.47	3.13 3.75 4.14	. 29 . 35 . 39	10739 12860 14205 14448
13814	†233	1923	Mercer	1	1 2 3 4	15.35	38.43 45.40 50.00	38.43 45.40 50.00	7.79 9.20	3.72 4.39 4.83	.11 .13 .14	10945 12930 14240 14501
15414	†356	1926	Mercer	1	1 2 3 4	16.38	37.80 45.21 49.25	38.96 46.59 50.75	6.86 8.20	4.35 5.20 5.66	.66 .79 .81	11001 13156 14331 14608

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

†Local or captive mine (those sampled before 1930 largely abandoned). *Shipping mine abandoned or long idle. 73

Wrone and a second s												
Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
15415	†356	1926	Mercer	1	1 2 3 4	14.51	37.94 44.38 49.50	38.71 45.28 50.50	8.84 10.34	5.04 5.90 6.58	.68 .80 .89	11024 12892 14385 14722
13815	†234	1923	Rock Island	1	1 2 3 4	16.81 	35.35 42.49 47.17	39.58 47.58 52.83	8.26 9.93	4.78 5.75 6.38	.37 .44 .49	10597 12738 14142 14458
13816	†234	1923	Rock Island	1	1 2 3 4	17.11 	35.55 42.88 48.03	38.45 46.39 51.97	8.89 10.73	$4.76 \\ 5.74 \\ 6.43 \\ \dots$.31 .38 .43	10507 12676 14200 14532
13817	†234	1923	Rock Island	1	1 2 3 4	15.92	36.08 42.91 47.60	39.72 47.24 52.40	8.28 9.85	4.93 5.86 6.50	.31 .37 .41	10741 12775 14171 14490
13708	† 3 46	1923	Warren	1	1 2 3 4	13.34 	37.77 43.58 50.35	37.24 42.97 49.65	11.65 13.45 	6.92 7.99 9.23	.15 .17 .20	10713 12362 14283 14755
13808	†346	1923	Warren	1	1 2 4 4	16.04 	36.79 43.82 49.24	37.93 45.18 50.76	9.24 11.00	$5.57 \\ 6.64 \\ 7.46 $.18 .21 .24	10676 12716 14288 14661
15416	†357	1926	Warren	1	1 2 3 4	13.03	40.77 46.88 50.75	39.56 45.49 49.25	6.64 7.63	4.88 5.61 6.07	.04 .05 .05	11583 13318 14418 14703
15417	†357	1926	Warren	1	1 2 3 4	10.21	42.44 47.27 51.06	40.68 45.31 48.94	6.67 7.42 	4.70 5.23 5.65	.05 .06 .06	11946 13304 14370 14636

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSFS OF FACE SAMPLES—Continued

+Local or captive mine (those sampled before 1930 largely abandoned).

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ash-free; 4 = dry mineral-matter-free (unit coal).

·	- 1101		norribenii inc	/ 25. 1. 14.		11111111111		CD DIVINI	520 000			
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
	MU	RPHY	SBORO (N	0. 3	1?)	a COAI	(SOU	THER	N ILLII	NOIS)		
5251	*12	1912	Jackson	1	1 2 3 4	9.51	33.13 36.62 38.87	52.12 57.59 61.13	5.24 5.79	.66 .73 .77	.94 1.03 1.09	12500 13814 14663 14759
5252	*12	1912	Jackson	1	1 2 3 4	9.37	33.39 36.84 40.39	49.29 54.38 59.61	7.95 8.78	2.11 2.32 2.54	.94 1.03 1.13	11972 13208 14479 . 14670
5253	*12	1912	Jackson	1	1 2 3. 4	9.99	32.51 36.12 38.53	51.88 57.63 61.47	5.62 6.25	.62 .69 .74	. 20 . 22 . 23	12308 13673 14585 14686
5248	*13	1912	Jackson	1	1 2 3 4	9.88 	33.23 36.87 38.79	52.43 58.18 61.21	4.46 4.95	.70 .77 .81	.33 .36 .38	12709 14103 14837 14926
5249	*13	1912	Jackson	1	1 2 3 4	10.91	33.51 37.61 39.56	51.20 57.47 60.44	4.38 4.92	1.14 1.28 1.35	.20 .23 .24	12503 14034 14760 14864
5250	*13	1912	Jackson	1	1 2 3 4	9.76	33.45 37.06 39.11	52.07 57.71 60.89	4.72 5.23 	1.08 1.20 1.27	.51 .56 .59	12629 13996 14768 14874
5225	*14	1912	Jackson	1	1 2 3 4	7.72 	35.09 38.02 41.95	48.56 52.62 58.05	8.63 9.36	2.01 2.18 2.41	.29 .31 .34	12248 13272 14643 14841
5226	*14	1912	Jackson	1	1 2 3 4	8.77 	32.78 35.93 39.32	50.58 55.44 60.68	7.87 8.63	2.00 2.19 2.39	.02 .03 .03	12253 13430 14698 14887

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

a Previously called No. 2 coal. *Shipping mine abandoned or long idle.

75

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
5228	*14	1912	Jackson	1	1 2 3 4	9.18 	34.70 38.20 40.21	51.58 56.80 59.79	4.54 5.00	.60 .66 .69	.05 .06 .06	52 12740 14079 14764 148
5286	*15	1912	Jackson	1	1 2 3 4	8.32	35.28 38.49 40.85	51.10 55.74 59.15	5.30 5.77	1.39 1.53 1.62	.19 .21 .22	12671 13822 14668 14791
5287	*15	1912	Jackson	1	1 2 3 4	8.86 	35.00 38.40 41.30	49.74 54.57 58.70	6.40 7.03	1.69 1.85 1.99	.07 .08 .08	12436 13645 14677 14830
5288	*15	1912	Jackson	1	1 2 3 4	8.91	34.03 37.36 39.03	53.17 58.37 60.97	3.89 4.27	1.15 1.26 1.32	.07 .07 .07	12844 14101 14730 14824
5496	*16	1912	Jackson	1	1 2 3 4	9.25	34.67 38.20 40.69	50.53 55.68 59.31	5.55 6.12	1.41 1.56 1.66	.13 .14 .15	12528 13804 14704 14834
5497	*16	1912	Jackson		1 2 3 4	9.56	34.52 38.16 40.60	50.47 55.83 59.40	5.45 6.01	1.32 1.46 1.55	.27 .30 .32	12483 13802 14685 14809
5498	*16	1912	Jackson	1	1 2 3 4	9.20	34.48 37.97 40.55	50.54 55.66 59.45	5.78 6.37	1.44 1.59 1.70	.19 .21 .22	12481 13746 14681 14815
	LOW	ER A	SSUMPTIO	N (NO	. ?)a C(DAL (C	ENTR.	AL ILL	INOIS))	
5229	*21	1912	Christian	?	1 2 3 4	11.27	38.68 43.59 48.82	40.55 45.70 51.18	9.50 10.71	2.07 2.33 2.61	.33 .37 .41	11445 12898 14445 14666

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

a Previously called No. 1 coal. *Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2 -	B.t.u.
5230	*21	1912	Christian	?	1 2 3 4	11.52 	38.78 43.83 48.60	41.01 46.35 51.40	8.69 9.82	2.42 2.73 3.03	.97 1.10 1.22	11648 13164 14597 14822
5231	*21	1912	Christian	?	1 2 3 4	11.13	39.21 44.12 48.72	41.26 46.43 51.28	8.40 9.45	2.56 2.88 3.18	.61 .69 .76	11715 13183 14559 14779
	UPP	ER AS	SUMPTION	IC	NO.	?)» C(AL (C	ENTR	AL TLL	INOIS)		
5205	*21	1912	Christian	?	$\begin{vmatrix} 1 \\ 2 \\ 3 \\ 4 \end{vmatrix}$	12.07	39.36 44.77 48.44	41.91 47.66 51.56	6.66 7.57	$ \begin{array}{c c} 3.74 \\ 4.26 \\ 4.61 \\ \dots \end{array} $.07 .09 .10	11776 13393 14490 14730
5206	*21	1912	Christian	5	1 2 3 4	12.53	38.60 44.12 48.72	40.62 46.44 51.28	8.25 9.44	3.67 4.22 4.65	.31 .35 .39	11389 13020 14377 14641
5207	*21	1912	Christian	?	1 2 3 4	14.30	39.54 46.14 49.53	40.30 47.02 50.47	5.86 6.84	2.00 2.33 2.50	.24 .28 .30	11609 13544 14538 14702
L	ASAI	LE A	ND COLCH	ES	TE	R (NO.	2) CO	AL (N	ORTH	ERN A	ND	
				'ES	TE.	RN ILI	INOIS)				
5324	*1	1912	Bureau	2	1 2 3 4	16.65, 	36.66 43.99 48.73	38.58 46.29 51.27	8.11 9.72	3.40 4.07 4.51	.67 .80 .89	10740 12884 14271 14531
5325	*1	1912	Bureau	2	1 2 3 4	15.08	40.12 47.25 52.47	36.35 42.80 47.53	8.45 9.95	3.68 4.33 4.81	.91 1.07 1.19	10831 12754 14163 14431
5326	*1	1912	Bureau	2	1 2 3 4	16.83	36.54 43.93 48.24	39.19 47.12 51.76	7.44 8.95	2.64 3.17 3.48	.89 1.07 1.18	10788 12970 14244 14461

TABLE 1.--INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

b Previously called No. 2 coal. *Shipping mine abandoned or long idle.

						-						
Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
5348	*8	1912	Bureau	2	1 2 3 4	15.19	39.67 46.78 50.64	38.69 45.60 49.36	6.45 7.62	2.20 2.62 2.84	.99 1.17 1.27	11206 13213 14303 14480
5349	*8	1912	Bureau	2	1 2 3 4	17.34	37.12 44.90 48.58	39.28 47.52 51.42	6.26 7.58	2.80 3.38 3.66	.49 .59 .64	11006 13314 14406 14612
5350	*8	1912	Bureau	2	1 2 3 4	16.97 	38.66 46.56 52.60	34.83 41.95 47.40	9.54 11.49	2.25 2.71 3.06	2.29 2.91 3.28	10397 12522 14147 14386
5312	*10	1912	Bureau	2	1 2 3 4	14.88 	38.69 45.45 50.95	37.25 43.76 49.05	9.18 10.79	3.83 4.50 5.04	1.07 1.25 1.40	10685 12553 14071 14357
5313	*10	1912	Bureau	2	1 2 3 4	17.43	38.07 46.10 49.12	39.44 47.76 50.88	5.06 6.14	2.68 3.25 3.46	.52 .63 .67	11070 13407 14284 14462
5314	*10	1912	Bureau	2,	1 2 3 4	16.07	39.68 47.28 50.84	38.36 45.71 49.16	5.89 7.01	2.96 3.53 3.79	.57 .63 .68	11216 13363 14370 14571
5373	*5	1912	Grundy	2	1 2 3 4	17.29 	38.61 46.68 51.27	36.69 44.36 48.73	7.41 8.96	2.87 3.47 3.81	1.44 1.74 1.91	10708 12947 14221 14447
5374	*5	1912	Grundy	2	1 2 3 4	13.73	39.87 46.22 48.59	42.19 48.90 51.41	4.21 4.88	2.04 2.37 2.49	1.47 1.71 1.80	11787 13662 14362 14496

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
5377	*5	1912	Grundy	2	1 2 3 4	17.01 	39.48 47.57 51.80	36.74 44.27 48.20	6.77 8.16	$3.32 \\ 4.00 \\ 4.36 \\ \dots$	1.05 1.27 1.38	10834 13055 14215 14446
5367	*6	1912	Grundy	2	1 2 3 4	19.97	38.16 47.68 50.47	37.45 46.79 49.53	4.42 5.53	$ \begin{array}{r} 1.82 \\ 2.27 \\ 2.40 \\ \dots \end{array} $.65 .79 .84	10936 13664 14464 14605
5368	*6	1912	Grundy	2	1 2 3 4	18.95	37.60 46.39 49.58	38.23 47.16 50.42	5.22 6.45 	2.46 3.04 3.25	.64 .79 .84	10787 13309 14226 14400
5369	*6	1912	Grundy	2	1 2 3 4	19.66 	37.01 46.06 49.23	38.16 47.50 50.77	5.17 6.44 	2.03 2.53 2.70	.83 1.03 1.10	10734 13360 14279 14438
5375	*7	1912	Grundy	2	1 2 3 4	16.84 	38.37 46.13 48.22	41.19 49.53 51.78	3.60 4.34	1.74 2.09 2.19	.04 .05 .05	11508 13838 14466 14585
5376	*7	1912	Grundy	2	1 2 3 4	15.81	38.29 45.48 49.05	39.77 47.24 50.95	6.13 7.28	2.30 2.73 2.94	.24 .28 .30	11212 13318 14363 14543
5378	*7	1912	Grundy	2	1 2 3 4	16.23	38.71 46.22 48.81	40.61 48.47 51.19	4.45 5.31	2.47 2.94 3.10	.32 .38 .40	11461 13683 14450 14610
C-943	†625 ,	1934	Grundy	2	1 2 3 4	16.9 	34.3 41.3 45.9	$ \begin{array}{c} 40.4 \\ 48.6 \\ 54.1 \\ \dots \\ \end{array} $	8.4 10.1 	4.67 5.62 6.25	.55 .66 	10730 12912 14359 14687

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle. †Local or captive mine (those sampled before 1930 largely abandoned).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
C-944	†625	1934	Grundy	2	1 2 3 4	15.9 	34.4 40.9 45.2	41.6 49.5 54.8	8.1 9.6	4.09 4.86 5.38	.95 1.14 	10899 12959 14334 14623
C-945	†625	1934	Grundy	2	1 2 3 4	16.7 	34.3 41.2 44.6	42.8 51.3 55.4	6.2 7.5	3.01 3.62 3.91	.79 .94	11055 13275 14345 14563
C-836	619	1934	Henry	2	1 2 3 4	15.0 	37.0 43.6 48.9	38.8 45.6 51.1	9.2 10.8	3.3 3.9 4.4	1.0 1.2 	10694 12586 14117 14376
C-837	619	1934	Henry	2	1 2 3 4	14.2 	37.4 43.6 49.1	38.9 45.3 50.9	9.5 11.1 	3.4 4.0 4.5	1.2 1.4 	10751 12532 14091 14371
C-838	619	1934	Henry	2	1 2 3 4	14.4 	37.0 43.3 49.6	37.6 43.9 50.4	11.0 12.8	3.6 4.3 4.9	2.2 2.5	10414 12168 13957 14260
5388	*2	1912	LaSalle	2	1 2 3 4	14.22	39.49 46.03 51.67	36.94 43.06 48.33	9.35 10.91	4.46 5.20 5.84	.80 .93 1.04	10887 12691 14245 14563
5389	*2	1912	LaSalle	2	1 2 3 4	15.16	40.13 47.32 51.32	38.10 44.88 48.68	6.61 7.80	2.99 3.51 3.81	.64 .70 .76	11147 13136 14249 14460
5390	*2	1912	LaSalle	2	1 2 3 4	14.43	40.01 46.75 52.71	35.89 41.94 47.29	9.67 11.31	4.47 5.23 5.90	1.03 1.21 1.36	10678 12478 14069 14388
	1.1	1	1	1	1	1	1	1	1	1	4	1

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

tLocal or captive mine (those sampled before 1930 largely abandoned). *Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ash-free; 4 = dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
5306	*3	1912	LaSalle	2	1 2 3 4	14.29 	41.35 48.24 51.64	38.73 45.18 48.36	5.63 6.58	2.09 2.44 2.61	.19 .22 .24	11487 13401 14345 14504
5307	*3	1912	LaSalle	2	1 2 3 4	16.05 	37.03 44.11 49.97	37.06 44.16 50.03	9.86 11.73	4.35 5.18 5.87	.59 .70 .79	10459 12458 14113 14440
5311	*3	1912	LaSalle	2	1 2 3 4	14.82	40.93 48.05 53.76	35.20 41.33 46.24	9.05 10.62	3.42 4.02 4.50	.99 1.17 1.31	10760 12632 14133 14402
5351	*9	1912	LaSalle	2	1 2 3 4	16.52	38.88 46.57 51.58	36.50 43.72 48.42	8.10 9.71	2.87 3.44 3.81	1.02 1.22 1.35	10686 12800 14177 14411
5352	*9	1912	LaSalle	2	1 2 3 4	17.77	39.05 47.48 53.33	34.15 41.55 46.67	9.03 10.97	3.92 4.76 5.35	1.25 1.52 1.71	10279 12500 14040 14336
5353	*9	1912	LaSalle	2	1 2 3 4	18. 0 6	39.02 47.62 54.22	32.94 40.20 45.78	9.98 12.18	2.74 3.34 3.80	2.20 2.69 3.06	10209 12460 14188 14460
BM 84450	*102	1922	LaSalle	2	1 2 3 4	14.5 	36.0 42.0 46.2	41.7 48.9 53.8	7.8 9.1	3.5 4.1 4.5 \ldots	.67 .79 	11130 13010 14310 14565
BM 84451	*102	1922	LaSalle	2	1 2 3 4	14.0 	34.9 40.6 44.7	43.2 50.3 55.3	7.9 9.1	2.3 2.7 2.9	.90 1.04 	11240 13070 14380 14585

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition *	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co₂	B.t.u.
BM 84452	*102	1922	LaSalle	2	1 2 3 4	15.7 	33.9 40.2 44.7	41.9 49.7 55.3	8.5 10.1	4.0 4.8 5.3	.59 .70	10800 12800 14240 14528
10263	*103	1917	LaSalle	2	1 2 3 4	12.19 	39.93 45.47 49.85	40.17 45.75 50.15	7.71 8.78	2.56 2.91 3.19		11667 13289 14568 14782
10264	*103	1917	LaSalle	2	1 2 3 4	12.61 	38.89 44.51 47.88	42.36 48.46 52.12	6.14 7.03	2.66 3.04 3.26	• • • • • • • • • • • • • • • • • • •	11892 13608 14637 14830
BMA 51404	† 3 58	1929	LaSalle	2	1 2 3 4	11.9 	37.5 42.6 48.6	39.7 45.0 51.4	10.9 12.4 	4.1 4.7 5.4	• • • • • • • • • • • • • • • • • • •	11080 12580 14350 14692
BMA 51405	†358	1929	LaSalle	2	1 2 3 4	10.8 	39.6 44.5 49.4	40.6 45.4 50.6	9.0 10.1	3.5 3.9 4.3	• • • • • • • • • • • • • • • • • • •	11540 12940 14390 14658
BMA 51406	†358	1929	LaSalle	2	1 2 3 4	15.4	36.2 42.8 46.6	41.5 49.0 53.4	6.9 8.2 	3.0 3.6 3.9		11150 13170 14340 14569
5232	*22	1912	McDonough	2	1 2 3 4	19.35	31.70 39.31 43.84	40.61 50.35 56.16	8.34 10.34	2.31 2.87 3.20	.37 .46 .51	10392 12885 14373 14605
5233	*22	1912	McDonough	2	1 2 3 4	16.46	33.94 40.63 44.42	42.46 50.83 55.58	7.14 8.54	1.71 2.04 2.23	.11 .14 .15	11064 13246 14483 14660

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

†Local or captive mine (mines sampled before 1930 largely abandoned).

*Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfurø	CO2	B.t.u.
5234	*22	1912	McDonough	2	1 2 3 4	16.39 	34.26 40.97 45.30	41.36 49.47 54.70	7.99	2.04 2.44 2.70	.33 .40 .44	10977 13130 14518 14726
9728	†213	1916	McDonough	2	1 2 3 4	14.89 	35.48 41.68 46.54	40.75 47.88 53.46	8.88 10.44 	3.78 4.43 4.95	· · · · · · · · · · · · · · · · · · ·	10969 12887 14389 14678
9729	†213	1916	McDonough	2	1 2 3 4	16.83 	34.68 41.71 46.58	39.79 47.83 53.42	8.70 10.46	3.94 4.74 5.29	· · · · · · · · · · · · · · · · · · ·	10628 12778 14271 14566
5426	*100	1912	McLean	2	1 2 3 4	10.13 	45.00 50.07 55.61	35.92 39.97 44.39	8.95 9.96	3.27 3.59 3.99	.74 .82 .91	11710 13029 14470 14723
5427	*100	1912	McLean	2	1 2 3 4	11.34 	40.05 45.17 50.55	39.18 44.19 49.45	9.43 10.64 	3.18 3.58 4.01	.90 1.01 1.13	11394 12851 14381 14643
5428	*100	1912	McLean	2	1 2 3 4	10.61 	41.87 46.84 53.81	35.94 40.21 46.19	11.58 12.95 	3.79 4.24 4.87	.92 1.03 1.18	11225 12557 14425 14752
5429	*100	1912	McLean	2	1 2 3 4	12.31 	42.17 48.09 52.58	38.03 43.37 47.42	7.49 8.54 	2.69 3.07 3.36	.94 1.07 1.17	11636 13270 14509 14722
5430	*100	1912	McLean	2	1 2 3 4	12.00	42.00 47.73 52.53	37.96 43.14 47.47	8.04 9.13	2.37 2.70 2.97	1.23 1.40 1.54	11634 13220 14548 14759

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

tLocal or captive mine (those sampled before 1930 largely abandoned).
*Shipping mine abandoned or long idle.

83

	TABL	.E 1.—1	NDIVIDUAL PRO	XIM	ATE	ANALYSE	S OF FAC	E SAMPL	es—Con	tinued		
Laboratory No.	Mine Index No.	Date	County	Coal bed	$Condition^{x}$	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
5433	*100	1912	McLean	2	1 2 3 4	. 11.27	42.17 47.53 51.79	39.27 44.25 48.21	7.29 8.22	2.91 3.28 3.57	1.12 1.26 1.37	11784 13279 14468 14684
5357	*4	1912	Marshall	2	1 2 3 4	16.46 	38.48 46.06 50.14	38.27 45.80 49.86	6.79 8.14	2.91 3.48 3.78.	.28 .34 .37	11162 13360 14544 14764
5356	*4	1912	Marshall	2	1 2 3 4	16.79 	36.81 44.23 47.70	40.34 48.49 52.30	6.06 7.28	2.59 3.11 3.35	.41 .49 .53	11130 13375 14425 14620
5358	*4	1912	Marshall	2	1 2 3 4	17.54 	37.42 45.37 48.27	40.11 48.63 51.73	4.93 6.00	2.19 2.56 2.72	.42 .50 .53	11273 13669 14542 14703
5412	*11	1912	Marshall	2	1 2 3 4	12.92 	41.69 47.87 52.57	37.61 43.19 47.43	7.78 8.94	2.38 2.73 3.00	.64 .73 .80	11597 13319 14627 14836
5413	*11	1912	Marshall	2	1 2 3 4	13.10 	38.73 44.56 49.42	39.64 45.61 50.58	8.53 9.83	3.47 3.99 4.42	.65 .75 .83	11414 13134 14566 14835
5414	*11	1912	Marshall	2	1 2 3 4	13.82	41.34 47.97 53.53	35.88 41.64 46.47	8.96 10.39	3.28 3.81 4.25	.50 .59 .66	11296 13106 14626 14901
9709	†214	1916	Schuyler	2	1 2 3 4	12.34 	38.11 43.48 47.40	42.29 48.24 52.60	7.26 8.28	4.32 4.92 5.36		11841 13507 14726 15009

[†]Local or captive mine (those sampled before 1930 largely abandoned).

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
9708	†214	1916	Schuyler	2	1 2 3 4	12.73 	37.56 43.04 47.28	41.88 47.99 52.72	7.83 8.97	4.77 5.46 6.00		11621 13316 14628 14939
°BMA 52979.	359	1929	Will	2	1 2 3 4	15.9	30.2 35.9 38.3	48.6 57.7 61.7	5.3 6.4	1.3 1.6 1.7		11210 13330 14230 14369
°BMA 52980.	359	1929	Will	2	1 2 3 4	1 6.2	31.8 37.9 40.2	47.2 56.4 59.8	4.8 5.7	1.8 2.1 2.2		11290 13480 14300 14430
°BMA 52981.	359	1929	Will	2	1 2 3 4	1 4.4	31.9 37.3 39.6	48.6 56.7 60.4	5.1 6.0	1.8 2.1 2.2		11490 13430 14280 14426
°BMA 52153.	359	1929	Will	2	1 2 3 4	16.0	36.1 42.9 46.4	41.7 49.7 53.6	6.2 7.4	1.7 2.0 2.1		11150 13280 14340 14498
°BMA 52154.	359	1929	Will	2	1 2 3 4	13.9	35.1 40.7 43.9	44.8 52.1 56.1	6.2 7.2	2.0 2.3 2.5		11500 13350 14390 14551
°16888	359	1929	Will	2	1 2 3 4	15.57	39.65 46.96 50.18	39.36 46.62 49.82	5.42 6.42	1.75 2.07 2.21		11341 13433 14335 14500
°16889	359	1929	Will	2	1 2 3 4	13.17	37.65 43.36 46.54	43.24 49.80 53.46	5.94 6.84	2.17 2.50 2.68	• • • • • • • • •	11446 13182 14150 14311
		1										

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

†Local or captive mine (those sampled before 1930 largely abandoned).
°Duplicate samples sent to University of Illinois and U. S. Bureau of Mines Experiment Station.

Ð

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
°16959	359	1929	Will	2	1 2 3 4	18.60 	29.61 36.37 39.04	46.23 56.80 60.96	5.56 6.83	1.34 1.65 1.77	· · · · · · · · · ·	10779 13242 14212 14348
°16961	359	1929	Will	2	1 2 3 4	15.50	32.96 39.01 41.50	46.46 54.98 58.50	5.08 6.01	1.83 2.16 2.30	· · · · · · · · · · · · · · · · · · ·	11282 13351 14205 14344
°16962	359	1929	will	2	1 2 3 4	14.08 	33.85 39.40 42.09	46.59 54.22 57.91	5.48 6.38	1.86 2.17 2.31		11359 13221 14122 14266
BMA 90366	359	1933	Will	2	1 2 3 4	15.4	34.8 41.2 43.5	45.3 53.5 56.5	4.5 5.3 	1.4 1.7 1.8	.50 .59 	11420 13510 14260 14383
BMA 90367	359	1933	Will	2	1 2 3 4	14.5	35.6 41.7 44.2	45.1 52.6 55.8	4.8 5.7	1.4 1.6 1.7	.68 .79	11560 13520 14330 14457
BMA 90369	359	1933	Will	2	1 2 3 4	16.5	36.2 43.4 45.2	43.9 52.5 54.8	3.4 4.1	1.3 1.5 1.6	.11 .13	11440 13710 14290 14391
BMA 90370	359	1933	Will	2	1 2 3 4	16.5	36.0 43.2 45.1	44.0 52.6 54.9	3.5 4.2	1.1 1.3 1.4	.29 .34	11470 13730 14340 14422
17002	410	1929	Woodford	2	1 2 3 4	14.79 	31.57 37.05 40.13	47.10 55.28 59.87	6.54 7.67	1.21 1.42 1.54	.63 .74 .80	11559 13565 14692 14838
		1		1	1			1				

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

^oDuplicate samples sent to University of Illinois and U. S. Bureau of Mines Experiment Station. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory: 2=moisture-free; 3=moisture- and ash-free: 4=dry mineral-matter-free (unit coal).

.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
17003	410	1929	Woodford	2	1 2 3 4	15.24 	32.09 37.87 40.43	47.30 55.80 59.57	5.37 6.33	1.36 1.61 1.72	.32 .37 .40	11671 13769 14699 14837
BMA 90282	410	1933	Woodford	2	1 2 3 4	15.1	31.9 37.6 39.8	48.1 56.7 60.2	4.9 5.7	.6 .7 .8	.66 .77	11690 13770 14600 14696
BMA 90283	410	1933	Woodford	2	1 2 3 4	15.0 	33.2 39.1 42.0	45.9 54.0 58.0	5.9 6.9	1.3 1.5 1.6	.66 .77	11560 13590 14600 14735
BMA 90284	410	1933	Woodford	2	1 2 3 4	14.4 	33.3 38.9 41.5	47.0 55.0 58.5	5.3 6.1	.7 .8 	.67 .78	11690 13660 14550 14650
C-595	611	1934	Woodford	2	1 2 3 4	14.3	36.7 42.8 46.7	41.9 48.9 53.3	7.1 8.3	3.16 3.68 4.02	.41 .48 .52	11275 13152 14348 14569
C-596	611	1934	Woodford	2	1 2 3 4	14.1 	36.7 42.8 46.4	42.5 49.3 53.6	6.7 7.9	2.80 3.26 3.54	.46 .54 .59	11437 13320 14455 14672
C-597	611	1934	Woodford	2	1 2 3 4	13.9	37.4 43.4 46.7	42.5 49.4 53.3	6.2 7.2	2.76 3.21 3.46	.58 .68 .73	11511 13370 14404 14603
C-598	611	1934	Woodford	2	1 2 3 4	14.5 	38.8 45.4 48.8	40.7 47.6 51.2	6.0 7.0	2.54 2.98 3.20	.63 .73 .78	11445 13389 14400 14581

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

kens	TUDD	<u> </u>				THUR DIDE	0 01 1110					
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
13799	†329	1922	Greene	4?	1 2 3 4	13.75 	36.60 42.43 47.76	40.03 46.41 52.24	9.62 11.16	3.27 3.81 4.29	· · · · · · · · · · · · · · · · · · ·	11022 12779 14384 14662
13800	†329	1922	Greene	4?	1 2 3 4	16.68 	34.87 41.85 47.52	38.51 46.21 52.48	9.94 11.94	3.83 4.60 5.22	· · · · · · · · ·	10619 12745 14473 14797
13801	†329	1922	Greene	4?	1 2 3 4	13.76	36.75 42.61 47.32	40.90 47.43 52.68	8.59 9.96	4.21 4.88 5.42	· · · · · · · · · ·	11233 13025 14466 14766
°16396	†347	1928	Greene	4?	1 2 3 4	14.63	36.38 42.61 47.53	40.15 47.03 52.47	8.84 10.36	3.65 4.28 4.77		10778 12625 14084 14355
°16397	†347	1928	Greene	4?	1 2 3 4	13.85	36.46 42.32 47.88	39.68 46.06 52.12	10.01 11.62	4.23 4.91 5.56		10744 12506 14150 14467
°BMA 45160.	†347	1928	Greene	4?	1 2 3 4	14.3 	35.7 41.6 46.6	40.9 47.8 53.4	9.1 10.6	3.8 4.4 4.9	· · · · · · · · ·	10860 12670 14170 14455
°BMA 45161.	†347	1928	Greene	. 4?	1 2 3 4	13.7	36.2 42.0 47.5	40.0 46.3 52.5	10.1 11.7	4.3 4.9 . 5.6		10810 12520 14180 14497
13809	†236	1923	Knox	. 4	1 2 3 4	13.91	38.28 44.47 48.73	40.28 46.78 51.27	7.53 8.75	3.43 3.98 4.36	.28 .32 .35	11416 13261 14533 14782

SUMMUM (NO. 4) COAL (CENTRAL AND WESTERN ILLINOIS) TABLE 1 -- INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

	1 ABL	E 11	NDIVIDUAL PRO	XIM	ATE	ANALYSI	S OF FAC	CE SAMPL	ESC01	iinuea	1.755	
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
13810	†236	1923	Knox	4	1 2 3 4	16.06 	36.80 43.84 48.80	38.61 46.00 51.20	8.53 10.16	4.15 4.94 5.50	.19 .23 .26	10909 12996 14466 14771
13811 H	†236 ARRIS	1923 SBUR(Knox	4 IR	1 2 3 4 (N	14.97	38.83 45.67 49.85	39.07 45.94 50.15	7.13 8.39 OUTHI	4.02 4.73 5.16 ERN A	.12 .14 .15 	11340 13336 14557 14828
5025	*47	1912	SOUT Gallatin	HW	/ES 1 2 3 4	STERN 5.37	ILLIN 36.54 38.62 44.77	OIS) 45.10 47.65 55.23 	12.99 13.73	3.99 4.22 4.89	1.38 1.45 1.68	11883 12558 14557 14900
5029	*47	1912	Gallatin	5	1 2 3 4	5.57	35.49 37.59 42.24	48.53 51.39 57.76	10.41 11.02	3.12 3.31 3.72	.78 .83 .93	12338 13066 14684 14953
5032	*47	1912	Gallatin	5	1 2 3 4	6.21 	35.28 37.61 43.14	46.49 49.57 56.86	12.02 12.82	3.30 3.52 4.04	.87 .93 1.07	11938 12728 14600 14904
12940	*135	1921	Gallatin	5	1 2 3 4	4.37	34.39 35.96 41.12	49.23 51.48 58.88	12.01 12.56	3.85 4.03 4.61	.35 .37 .42	12270 12831 14674 14995
12941	*135	1921	Gallatin	5	1 2 3 4	4.04	35.68 37.18 41.20	50.92 53.06 58.80	9.36 9.76	3.23 3.37 3.73	.24 .24 .27	12828 13368 14814 15066

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

a It seems probable that this coal is not the same as the Springfield (No. 5) Coal of Central Illinois †Local or captive mine (those sampled before 1930 largely abandoned). *Shipping mine abandoned or long idle.

	I ADI		INDIVIDUAL FR	JAIN	IAIE	ANALIS	ES OF FA	CE SAMPI	_E3C07	unneu		
Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
12942	*135	1921	Gallatin	5	1 2 3 4	3.49	36.09 37.39 41.66	50.54 52.37 58.34	9.88 10.24	3.04 3.15 3.51	.18 .18 .20	12707 13162 14663 14912
5492	†230 ^b	1912	Gallatin	5	1 2 3 4	4.20	34.41 35.92 39.54	52.63 54.92 60.46	8.76 9.16	2.85 2.97 3.27	.01 .01 .01	12997 13566 14934 15164
5493	*230 ^b	1912	Gallatin	5	1 2 3 4	4.07	33.99 35.43 39.09	52.96 55.21 60.91	8.98 9.36	3.61 3.76 4.15	.03 .03 .03	12975 13526 14922 15186
12583	*229	1921	Randolph	5	1 2 3 4	8.46	37.00 40.42 45.53	44.26 48.35 54.47	10.28 11.23	3.69 4.03 4.54	.29 .32 .36	11333 12381 13947 14219
12584	*229	1921	Randolph	5	1 2 3 4	8.71	37.46 41.04 46.59	42.94 47.04 53.41	10.89 11.92	4.45 4.88 5.54	.09 .09 1.07	11155 12220 13874 14181
12585	*22¦9	1921	Randolph	5	1 2 3 4	8.00	38.05 41.36 46.59	43.63 47.42 53.41	10.32 11.22	3.69 4.01 4.52	.16 .18 .20	11338 12324 13881 14151
8835	†337	1915	Randolph	5	1 2 3 4	13.90	35.33 41.03 46.09	41.33 48.00 53.91	9.44 10.97	4.84 5.63 6.32	· · · · · · · · · · · · · · · · · · ·	11015 12793 14369 14710
8836	†337	1915	Randolph	5	1 2 3 4	12.21 	35.22 40.12 45.85	41.61 47.40 54.15	10.96 12.48	4.47 5.10 5.83	· · · · · · · · · · · ·	11037 12572 14365 14711

TANER 1 INDUZIDITAT DROWINATE ANALYSES OF FACE SAMPLES-Continued

b Located in Eagle Valley.
†Local or captive mine (those sampled before 1930 largely abandoned).
*Shipping mine abandoned or long idle.
x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory;
2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
°4985	*43	1912	Saline	5	1 2 3 4	6.34 	37.72 40.27 43.90	48.20 51.46 56.10	7.74 8.27	2.03 2.16 2.35	.61 .65 .71	12620 13474 14689 14869
°4986	^b *43	1912	Saline	5	1 2 3 4	6.40	37.11 39.65 42.81	49.59 52.97 57.19	6.90 7.38	2.27 2.43 2.62	.40 .43 .46	12678 13546 14625 14802
°4987	* 43	1912	Saline	5	1 2 3 4	8.85	32.53 35.65 38.66	51.52 56.57 61.34	7.10 7.78	.92 1.00 1.08	.66 .72 .78	12321 13502 14641 14774
°4989	*43	1912	Saline	5	1 2 3 4	6.80	35.06 37.61 41.02	50.39 54.07 58.98	7.75 8.32	2.30 2.46 2.68	.03 .03 .03	12514 13428 14646 14839
°4990	*43	1912	Saline	5	1 2 3 4	6.02	38.23 40.68 44.58	47.53 50.58 55.42	8.22 8.74	2.67 2.84 3.11	.45 .48 .53	12538 13341 14619 14831
°4992	*43	19 12	Saline	5	1 2 3 4	7.39	35.38 38.20 41.08	50.73 54.78 58.92	6.50 7.02	2.15 2.32 2.50	.01 .01 .01	12642 13650 14681 14848
°BM 14110	*43	1912	Saline	5	1 2 3 4	6.63	36.72 38.26 41.83	49.69 53.21 58.17	7.96 8.53	2.09 2.94 2.45	· · · · · · · · · · ·	
°BM 14111	*43	1912	Saline	5	1 2 3 4	8,60 	32.92 36.02 39.14	51.19 56.00 60.86	7.29 7.98	.83 .91 .99	· · · · · · · · · · · · · · · · · · ·	
	1	1	1	1	1	1	1	1	L. S. S.	1	1	1

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

b Same mine as BM-7.
*Duplicate samples sent to University of Illinois and U. S. Bureau of Mines Experiment Station.
*Shipping mine abandoned or long idle.

١.

91

atory	lex							1.	1			
Labor	Mine Ind No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
°BM 14112	*43	1912	Saline	5	1 2 3 4	6.7 0 	37.62 40.32 44.00	47.87 51.31 56.00	7.81 8.37	2.26 2.42 2.64		· · · · · · · ·
°BM 14113	*43	1912	Saline	5	1 2 3 4	6.90 	36.60 39.31 42.53	49.44 53.11 57.47	7.06 7.58	2.10 2.26 2.45		
°BM 14138	*43	1912	Saline	5	1 2 3 4	7.27	36.18 39.02 42.01	49.95 53.86 57.99	6.60 7.12	2.03 2.19 2.36	· · · · · · · · · · ·	~~ · · · · · ·
°BM 14139	*43	1912	Saline	5	1 2 3 4	5.54	39.77 42.10 46.04	46.61 49.35 53.96	8. 0 8 8.55	2.63 2.78 3.04	· · · · · · · · · · · ·	· · · · · · · ·
4991	44	1912	Saline	5	1 2 3 4	6.49 	35.85 38.34 41.53	50.46 53.97 58.47	7.20 7.69	2.82 3.02 3.27	.01 .01 .01	12634 13511 14637 14839
4993	44	1912	Saline	5	1 2 3 4	6.71	35.68 38.24 41.82	49.64 53.21 58.18	7.97 8.55	2.69 2.88 3.15	.00 .00 .00	12482 13379 14630 14839
4994	44	1912	Saline	5	1 2 3 4	6.90	34.42 36.97 41.48	48.55 52.16 58.52	10.13 10.87	2.16 2.32 2.60	.03 .03 .03	12088 12984 14567 14793
4997	45	1912	Saline	5	1 2 3 4	6.71	35.59 38.14 41.58	49.98 53.59 58.42	7.72 8.27	2.38 2.55 2.78	.14 .16 .17	12092 13332 14534 14725

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

^oDuplicate samples sent to University of Illinois and U. S. Bureau of Mines Experiment Station. *Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory: 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
4999	45	1912	Saline	5	1 2 3 4	7.45	34.18 36.94 40.66	49.88 53.90 59.34	8.49 9.16	2.78 3.01 3.31	.01 .01 .01	12336 13329 14673 14899
5001	45	1912	Saline	5	1 2 3 4	6.94 	34.56 37.14 40.43	50.93 54.72 59.57	7.57 8.14	2,30 2.46 2.68	. 16 . 18 . 20	12485 13415 14604 14792
C-952	45	1934	Saline	5	1 2 3 4	7.2	33.5 36.1 40.1	50.2 54.1 59.9	9.1 9.8	2.28 2.46 2.72	· · · · · · · · · ·	12210 13156 14589 14800
C-953	45	1934	Saline	5	1 2 3 4	7.0	32.9 35.4 38.6	52.5 56.4 61.4	7.6 8.2	2.03 2.18 2.37	· · · · · · · · · · · · · · · · · · ·	12467 13404 14600 14782
C-954	45	1934	Saline	5	1 2 3 4	7.2	33.0 35.5 39.1	51.5 55.5 60.9	8.3 9.0	2.19 2.36 2.59	· · · · · · · ·	12261 13211 14516 14715
5019	*46	1912	Saline	5	1 2 3 4	8.08	35.26 38.35 42.21	48.25 52.50 57.79	8.41 9.15	2.60 2.83 3.12	.38 .41 .45	12192 13263 14598 14816
5020	*46	1912	Saline	5	1 2 3 4	7.70	35.48 38.44 42.17	48.66 52.72 57.83	8.16 8.84	2.52 2.74 3.01	.32 .36 .39	12304 13331 14624 14833
5021	*46	1912	Saline	5	1 2 3 4	8.25	34.98 38.12 42.29	47.73 52.03 57.71	9.04 9.85	2.40 2.61 2.90	.85 .92 1.02	11964 13040 14465 14682

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
5022	*46	1912	Saline	5	1 2 3 4	7.72	34.09 36.94 40.92	49.22 53.34 59.08	8.97 9.72	3.31 3.58 3.97	.23 .25 .28	12050 13057 14463 14712
5023	*46	1912	Saline	5	1 2 3 4	8.14	34.60 37.66 41.84	48.10 52.36 58.16	9.16 9.98	2.42 2.64 2.93	.74 .80 .89	11989 13051 14498 14719
5024	*46	1912	Saline	5	1 2 3 4	7.85	33.72 36.59 40.61	49.30 53.50 59.39	9.13 9.91	3.48 3.78 4.20	. 24 . 26 . 29	11971 12990 14419 14676
4995	*48	1912	Saline	5	1 2 3 4	7.57	34.36 37.18 41.57	48.30 52.25 58.43	9.77 10.57	2.42 2.62 2.93	1.75 1.89 2.11	11956 12934 14463 14692
5002	*48	1912	Saline	5	1 2 3 4	7.45	33.71 36.42 39.66	51.27 55.40 60.34	7.57 8.18	2.63 2.84 3.09	.31 .35 .38	12400 13398 14592 14794
5010	*48	1912	Saline	5	1 2 3 4	7.99 	33.63 36.55 39.64	51,20 55.65 60.36	7.18 7.80	2.61 2.84 3.08	.05 .05 .05	12346 13419 14554 14750
5012	*49	1912	Saline	5	1 · 2 3 4	5.19	38.37 40.47 45.52	45.92 48.43 54.48	10.52 11.10	4.06 4.28 4.81	.46 .49 .55	12260 12932 14547 14847
5015	*49	1912	Saline	5	1 2 3 4	5.52	36.89 39.04 44.56	45.89 48.58 55.44	11.70 12.38	4.97 5.26 6.00	.72 .76 .87	11962 12662 14451 14807

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
5016	*49	1912	Saline	5	1 2 3 4	4.90	38.93 40.94 45.90	45.90 48.26 54.10	10.27 10.80	4.77 5.01 5.62	.47 .49 .55	12355 12991 14564 14887
12931	124	1921	Saline	5	1 2 3 4	7.10	33.38 35.93 39.38	51.37 55.30 60.62	8.15. 8.77	2.58 2.78 3.05	.13 .14 .15	12354 13313 14593 14802
12932	124	1921	Saline	5	1 2 3 4	6.78 	33.62 36.07 39.29	51.96 55.74 60.71	7.64 8.19	2.40 2.58 2.81	.11 .11 .12	12490 13399 14594 14788
12933	124	1921	Saline	5	1 2 3 4	6.62	32.79 35.11 38.54	52.27 55.98 61.46	8.32 8.91	1.74 1.86 2.04	.42 .45 .49	12463 13347 14653 14832
12934	125	1921	Saline	5	1 2 3 4	6.65 	33:52 35.91 38.98	52.48 56.22 61.02	7.35 7.87	1.93 2.07 2.25	.13 .13 .14	12609 13507 14661 14834
12935	125	1921	Saline	5	1 2 3 4	6.28	33.35 35.58 39.31	51.48 54.93 60.69	8.89 9.49	3.07 3.28 3.62	.09 .09 .10	12357 13185 14567 14805
12936	125	1921	Saline	5	1 2 3 4	6.85 	33.65 36.13 39.17	52.28 56.12 60.83	7.22	2.11 2.27 2.46	.05 .05 .05	12612 13539 14676 14854
12937	*126	1921	Saline	5	1 2 3 4	5.75 	33.90 35.97 38.92	53.21 56.46 61.08	7.14 7.57	2.29 2.43 2.63	.04 .04 .04	12624 13394 14491 14668

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

k-stand and a first to the												
Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
12938	*126	1921	Saline	5	1 2 3 4	6.13 	34.28 36.52 39.81	51.83 55.22 60.19	7.76 8.26	2.44 2.60 2.83	. 27 . 29 . 32	12615 13439 14649 14846
12939	*126	1921	Saline	5	1 2 3 4	6.18 	33.97 36.21 39.52	51.99 55.42 60.48	7.86 8.37	2.65 2.82 3.08	.16 .17 .19	12508 13332 14395 14753
12901	127	1921	Saline	5	1 2 3 4	5.51	33.34 35.28 38.44	53.39 56.51 61.56	7.76 8.21	1.92 2.03 2.21	.34 .36 .39	12687 13427 14628 14803
12902	127	1921	Saline	5	1 2 3 4	6.05 	34.38 36.59 39.86	51.87 55.21 60.14	7.70 8.20	1.98 2.11 2.30	.42 .44 .48	12580 13390 14586 14763
12903	127	1921	Saline	5	1 2 3 4	5.50	33.64 35.60 39.06	52.49 55.54 60.94	8.37 8.86	2.51 2.66 2.92	.51 .54 .59	12576 13308 14602 14809
BMA 90721	127	1933	Saline	5	1 2 3 4	6.8 	33.7 36.2 39.3	52.0 55.7 60.7	7.5 8.1	2.0 2.2 2.4	. 24 . 26 	12640 13550 14750 14926
BMA 90720	127	1933	Saline	5	1 2 3 4	7.7	32.9 35.7 38.8	52.0 56.3 61.2	7.4 8.0	1.5 1.7 1.8	. 15 . 17 	12510 13560 14740 14902
BMA90719	127	1933	Saline	5	1 2 3 4	5.7	34.6 36.6 40.3	51.1 54.3 59.7	8.6 9.1	2.5 2.7 2.9	.37 .39	12700 13470 14820 15036

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

•

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
C748	127	1934	Saline	5	1 2 3 4	6.2 	34.2 36.5 39.6	52.3 55.7 60.4	7.3 7.8	1.8 1.9 2.1	· · · · · · · · · · ·	12620 13450 14590 14750
C749	127	1934	Saline	5	1 2 3 4	6.4 	34.5 36.9 40.4	51.1 54.5 59.6	8.0 8.6	1.9 2.0 2.2	· · · · · · · · · · · · · · · · · · ·	12490 13350 14590 14780
C750	127	1934	Saline	5	1 2 3 4	5.5	35.1 37.1 40.6	51.2 54.3 59.4	8.2 8.6	2.3 2.5 2.7	· · · · · · · · · · · ·	12640 13370 14640 14830
12911	*128	1921	Saline	5	1 2 3 4	6.52	33.57 35.91 39.06	52.37 56.02 60.94	7.54 8.07	2.57 2.75 2.99	.03 .03 .03	12552 13428 14607 14805
12 9 12	*128	1921	Saline	5	1 2 3 4	6.84	30.30 32.52 38.68	48.02 51.55 61.32	14.84 15.93	1.46 1.57 1.87	.03 .03 .04	11343 12176 14483 14764
12 913	*128	1921	Saline	5	1 2 3 4	6.17	32.87 35.03 38.04	53.54 57.06 61.96	7.42 7.91	1.60 1.71 1.86	.13 .14 .15	12631 13462 14618 14777
12917	*129	1921	Saline	5	1 2 3 4	5.62	34.61 36.67 39.72	52.52 55.65 60.28	7.25 7.68	2.02 2.14 2.32	.08 .09 .10	12781 13542 14669 14840
12918	*129	1921	Saline	5	1 2 3 4	5.75	35.01 37.15 39.94	52.65 55.86 60.06	6.59 6.99	2.05 2.18 2.34	.05 .05 .05	12800 13581 14602 14763
					1							

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

97

	1.1101		NDIVIDUAL INC									
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
12919	*129	1921	Saline	5	1 2 3 4	6.58 	32.89 35.21 38.17	53.29 57.04 61.83	7.24 7.75	2.06 2.20 2.38	.14 .15 .16	12565 13450 14580 14754
12914	*130	1921	Saline	5	1 2 3 4	6.05 	33.67 35.84 39.55	51.48 54.79 60.45	8.80 9.37	2.72 2.90 3.20	.34 .35 .39	12401 13200 14565 14786
12915	*130	1921	Saline	5	1 2 3 4	6.6 9	32.54 34.88 38.75	51.44 55.13 61.25	9.33 9.99	2.62 2.81 3.12	.06 .07 .08	12225 13101 14555 14785
12916	*130	1921	Saline	5	1 2 3 4	5.93	33.79 35.92 39.61	51.51 54.76 60.39	8.77 9.32	2.63 2.80 3.09	.10 .11 .12	12393 13174 14528 14746
BMA91427	6 0 8	1933	Saline	5	1 2 3 4	6.3 	36.6 39.1 43.4	47.7 50.9 56.6	9.4 10.0	3.1 3.3 3.6	.60 .64	12470 13310 14790 15042
BMA91426	608	1933	Saline	5	1 2 3 4	6.6 	33.9 36.3 40.2	50.4 54.0 59.8	9.1 9.7	3.4 3.6 4.0	.46 .49 	12430 13310 14750 14998
BMA91428	608	1933	Saline	5 -	1 2 3 4	5.9 	37.0 39.3 43.7	47.6 50.6 56.3	9.5 10.1	2.5 2.6 2.9	.82 .87	12500 13280 14780 15001
C-361	610	1933	Saline	5	1 2 3 4	5.8	35.0 37.2 40.6	51.3 54.4 59.4	7.9 8.4	2.40 2.55 2.78		12677 13463 14696 14895

TABLE 1 --INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
C-360	610	1933	Saline	5	1 2 3 4	6.0	35.2 37.4 40.8	51.0 54.3 59.2	7.8 8.3	2.81 2.99 3.26	· · · · · · · · · · · · · · · · · · ·	12609 13417 14626 14842
BM28448	^b *BM8	1917	Saline	5	1 2 3 4	4.73 	37.88 39.76 44.26	47.70 50.07 55.74	9.69 10.17	4.13 4.34 4.83	· · · · · · · · · · · · · · · · · · ·	12463 13082 14563 14851
BM28449	⁵*BM8	1917	Saline	5	1 2 3 4	4.94 	39.50 41.55 46.31	45.79 48.17 53.69	9.77 10.28	3.94 4.14 4.61	· · · · · · · · · · · · · · · · · · ·	12420 13065 14562 14844
BM33091	*BM8	1919	Saline	5	1 2 3 4	5.13	35.38 37.29 43.53	45.89 48.37 56.47	13.60 14.34 	4.94 5.21 6.08		11864 12506 14600 14998
BM33092	*BM8	1919	Saline	5	1 2 3 4	5.82	37.18 39.48 44.02	47.28 50.20 55.98	9.72 10.32	3.70 3.93 4.38	· · · · · · · · · · · ·	12323 13084 14591 14866
BM33093	*BM8	1919	Saline	5	1 2 3 4	4.90	36.21 38.07 43.41	47.19 49.63 56.59	11.70 12.30	3.41 3.59 4.09	· • • • • • • • • •	12119 12744 14531 14827
BM33101	BM70	1919	Saline	5	1 2 3 4	7.48	33.92 36.66 40.49	49.85 53.88 59.51	8.75 9.46	2.20 2.38 2.63	· · · · · · · · · ·	12204 13190 14569 14774
BM33102	BM70	1919	Saline	5	1 2 3 4	7.89	33.78 36.67 40.20	50.24 54.55 59.80	8.09 8.78	2.83 3.07 3.37	· · · · · · · · · ·	12245 13295 14575 14794
		I.	1		- 1	1		I				

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

b Fieldner, A. C., and others, Analyses of Coal: U. S. Bureau of Mines Bull. 193, p. 33, 1922.
 *Shipping mine abandoned or long idle.

	TABL	Е 1.—I	NDIVIDUAL PRO	XIM	ATE	ANALYSI	ES OF FAC	CE SAMPL	.es—Con	tinued		
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
BM33103	BM70	1919	Saline	5	1 2 3 4	8. 31 	33.30 36.32 40.19	49.56 54.05 59.81	8.83 9.63	2.59 2.82 3.12	· · · · · · · · · ·	12112 13210 14618 14843
BM33081	BM71	1919	Saline	5	1 2 3 4	5.61 	36.08 38.22 42.85	48.12 50.98 57.15	10.19 10.80	3.69 3.91 4.38		12283 13012 14587 14871
BM33082	BM71	1919	Saline	5	1 2 3 4	6.09 	35.78 38.10 41.72	49.99 53.23 58.28	8.14 8.67 	2.88 3.07 3.36	· · · · · · · · · · · · · · · · · · ·	12577 13392 14663 14883
BM33083	BM71	1919	Saline	5	1 2 3 4	6.67 	32.61 34.94 39.17	50.64 54.26 60.83	10.08 10.80	3.72 3.99 4.47	· · · · · · · · · · · ·	12182 13054 14634 14922
BM31381	*BM72	1927	Saline	5	1 2 3 4	10.4	31.2 34.8 38.2	50.6 56.5 61.8	7.8 8.7	2.0 2.3 2.5	· · · · · · · · · ·	12000 13390 14680 14859
BMA31382	*BM72	1927	Saline	5	1 2 3 4	5.1 	33.0 34.8 38.0	54.0 56.9 62.0	7.9 9.3	2.1 2.2 2.4	· · · · · · · · · · · · · · · · · · ·	12900 13600 14840 15 0 18
BMA51411	*353	1929	Williamson .	5	1 2 3 4	6.1 	34.1 36.3 40.9	49.2 52.5 59.1	10.6 11.2	3.0 3.2 3.6	· · · · · · · · · · · · · · · · · · ·	12160 12950 14580 14847
BMA51412	*353	1929	Williamson .	5	1 2 3 4	7.5	33.7 36.4 42.3	46.0 49.7 57.7	12.8 13.9	4.1 4.5 5.2	· · · · · · · · · · · · · · · · · · ·	11520 12450 14460 14815

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

	I ABI	JE 1J	INDIVIDUAL PRO	JAIN	MIE	ANALIS	LO OF FA	CE SAMPI	163-007	unnueu		
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BMA51413	*353	1929	Williamson .	5	1 -2 3 4	7.3	34.2 36.9 41.4	48.4 52.2 58.6	10.1 10.9	3.4 3.7 4.1		11990 12930 14520 14786
GRAI	PE CR	EEK	(SPRINGEI	EL	n	(NO 5	2) CO	AL (E	ASTER	N TLL	INOIS)	
C 670	+614	1024	Edman	1 E S	1 1	110 5	26 0	10 E		[2 14	LI 51	11004
C-070	1014	1934	Edgar	ər	1 2 3 4	12.5 	42.1 47.7	40.5 46.2 52.3	10.2 11.7	3.44 3.93 4.45	. 51 . 59 . 67	11094 12679 14353 14650
C-671	†614	1934	Edgar	5?	1 2 3 4	13.0	37.1 42.7 48.0	40.3 46.3 52.0	9.6 11.0	2.58 2.96 3.33	.88 1.01 1.13	11225 12903 14499 14747
C-672	†614	1934	Edgar	5?	1 2 3 4	12.2	38.1 43.4 48.8	40.0 45.5 51.2	9.7 11.1	3.33 3.79 4.26	.60 .68 .76	11254 12815 14415 14694
10519	*215	1918	Livingston	5?ª	1 2 3 4	10.22	36.56 40.72 46.45	42.14 46.94 53.55	11.08 12.34	3.09 3.44 3.92		11630 12955 14779 15077
10523	*215	1918	Livingston	5?ª	1 2 3 4	10.05	32.49 36.12 46.36	37.59 41.80 53.64	19.87 22.08	7.61 8.46 10.86	· · · · · · · · · · · ·	10125 11256 14446 15151
10524	*215	1918	Livingston	5?ª	1 2 3 4	7.95	38.03 41.31 46.61	43.55 47.31 53.39	10.47 11.38	3.52 3.82 4.31	· · · · · · · · · · · · · · · · · · ·	12020 13057 14734 15029
10520	*216	1918	Livingston	5?ª	1 2 3 4	13.23	36.19 41.71 48.03	39.16 45.13 51.97	11.42 13.16	1.46 1.69 1.95		10924 12590 14498 14738

INDIVIDUAL PROVIMATE ANALYSES OF FACE SAMPLES Continued Tanzn 1

†Local or captive mine (those sampled before 1930 largely abandoned). *Shipping mine abandoned or long idle. u This may be Herrin No. 6 coal.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
10521	*216	1918	Livingston	5?ª	1 2 3 4	14.03 	36.36 42.29 47.81	39.69 46.17 52.19	9.92 11.54	2.74 3.18 3.59	· · · · · · · · · · · ·	11124 12939 14627 14897
10522	*216	1918	Livingston	5?ª	1 2 3 4	14.04	34.76 40.44 47.75	38.03 44.24 52.25	13.17 15.32	5.25 6.11 7.22		10502 12216 14426 14871
BMA90312	†600	1933	Livingston	5?ª	1 2 3 4	12.6	33.5 38.3 46.3	38.8 44.4 53.7	15.1 17.3	3.0 3.4 4.1	.46 	10520 12030 14550 14928
BMA90313	†600	1933	Livingston	5? ^a	1 2 3 4	13.1 	32.4 37.3 45.1	39.6 45.5 54.9	14.9 17.2	4.0 4.6 5.6	.67 .77 	10500 12080 14590 15020
BMA90314	†6 00	1933	Livingston	5?ª	1 2 3 4	12.2	35.0 39.8 47.1	39.2 44.7 52.9	13.6 15.5	2.7 3.1 3.6	.83 .94	10830 12330 14590 14934
°4741	91	1912	Vermilion	5 ^b	1 2 3 4	13.63	34.56 40.01 45.62	41.19 47.69 54.38	10.62 12.30	2.91 3.36 3.83	.78 .90 1.03	10954 12683 14462 14747
°4742	91	1912	Vermilion	5	1 2 3 4	14.50	35.98 42.09 47.06	40.49 47.35 52.94	9.03 10.56	2.43 2.83 3.15	.44 .52 .58	11090 12971 14502 14740

TABLE 1.--INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

a This may be Herrin No. 6 coal.

b This and following analyses of Vermilion County coal represent coal formerly called No. 6 coal (Grape Creek).

^oDuplicate samples sent to University of Illinois and U. S. Bureau of Mines Experiment Station. †Local or captive mine (those sampled before 1930 largely abandoned).

*Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory: 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
°4743	91	1912	Vermilion	5	1 2 3 4	14.20	35.79 41.71 45.98	42.05 49.01 54.02	7.96 9.28	1.83 2.13 2.35	.34 .39 .43	11295 13165 14512 14703
°4744	91	1912	Vermilion	5	1 2 3 4	13.99	35.26 40.99 45.23	42.68 49.63 54.77	8.07 9.38	1.67 1.94 2.14	.98 1.14 1.26	11271 13104 14460 14647
°4745	91	1912	Vermilion	5	1 2 3 4	14.79 	34.44 40.42 44.65	42.69 50.10 55.35	8.08 9.48	1.72 2.02 2.23	.98 1.15 1.27	11053 12971 14329 14519
°4746	91	1 9 12	Vermilion	5	1 2 3 4	15.14	33.70 39.72 45.62	40.19 47.34 54.38	10.97 12.94	2.50 2.95 3.39	.61 .72 .83	10663 12565 14433 14712
°BM13567	91	1912	Vermilion	5	1 2 3 4	15.85	32.65 38.80 44.47	40.77 48.45 55.53	10.73 12.75	2.42 2.88 3.30	· · · · · · · · · · · ·	· · · · · · · ·
°BM13568	91	1 9 12	Vermilion	5	1 2 3 4	14.15 	33.67 39.22 44.33	42.29 49.26 55.67	9.89 11.52	2.17 2.53 2.86	· · · · · · · · · · · ·	· · · · · · · ·
°BM13569	91	1912	Vermilion	5	1 2 3 4	14.86 	34.59 40.63 45.16	42.01 49.34 54.84	8.54 10.03	2.30 2.70 3.00	· · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •
°4702	†92	1912	Vermilion	5	1 2 3 4	15.53	33.60 39.78 46.00	39.46 46.70 54.00	11.41 13.52	2.32 2.75 3.18	.98 1.15 1.33	10404 12317 14243 14520

TABLE 1.---INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

°Duplicate samples sent to University of Illinois and U.S. Bureau of Mines Experiment Station. ;Local or captive mine (those sampled before 1930 largely abandoned).

							-	00 011011 1				
Laboratory No.	Mine Index No.	Date	County	. Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
°4703	†92	1912	Vermilion	5	1 2 3 4	15.70 	32.72 38.81 44.85	40.22 47.72 55.15	11.36 13.47	2.57 3.04 3.51	1.06 1.26 1.46	10392 12328 14247 14535
°4704	† 9 2	1912	Vermilion	5	1 2 3 4	15.27 	33.98 40.10 45.39	40.88 48.24 54.61	9.87 11.66	2.26 2.66 3.01	.69 .81 .92	10718 12649 14319 14563
°BM13467	†92	1912	Vermilion	5	1 2 3 4	15.87 	31.97 38.00 44.05	40.61 48.27 55.95	11.55 13.73	2.42 2.88 3.34	· · · · · · · · ·	· · · · · · · ·
°BM13469	† 9 2	1912	Vermilion.	5	1 2 3 4	15.16	33.15 39.07 44.14	41.94 49.44 55.86	9.75 11.49	1.99 2.35 2.66	· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
°BM13470	†92	1912	Vermilion	5	1 2 3 4	15.37	33.40 39.47 45.47	40.06 47.33 54.53	11.17 13.20	1.94 2.29 2.64		
°BM13443	*93	1912	Vermilion	5	1 2 3 4	13.23	37.09 42.75 47.83	40.46 46.62 52.17	9.22 10.63	2.35 2.71 3.03		
°BM13444	*93	1912	Vermilion	5	1 2 3 4	15.50	33.72 39.90 44.06	42.80 50.66 55.94	7.98 9.44	1.74 2.06 2.27	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·
°BM13445	*93	1912	Vermilion	5	1 2 3 4	16.19	33.83 40.37 44.79	41.70 49.75 55.21	8.28 9.88	1.82 2.17 2.41		
							1					

TABLE 1.---INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES--Continued

[°]Duplicate samples sent to University of Illinois and U. S. Bureau of Mines Experiment Station. †Local or captive mine (those sampled before 1930 largely abandoned). *Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory: 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
°BM13446	*93	1912	Vermilion	5	1 2 3 4	14.92 	34.07 40.05 44.52	42.48 49.92 55.48	8.53 10.03	1.97 2.32 2.58	 	
°BM13447	*93	1912	Vermilion	5	1 2 3 4	15.38 	$35.24 \\ 41.65 \\ 46.41 \\ \dots$	40.70 48.09 53.59	8.68 10.26	2.78 3.29 3.67	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
°BM13448	*93	1912	Vermilion	5	1 2 3 4	15.11	35.56 41.89 46.64	40.67 47.91 53.36	8.66 10.20	2.91 3.43 3.82		· · · · · · ·
°4670	*93	1912	Vermilion	5	1 2 3 4	13 .68	36.28 42.03 46.73	41.37 47.92 53.27	8.67 10.05	2.78 3.23 3.59	.45 .52 .58	11101 12861 14298 14535
°4671	*93	1912	Vermilion	5	1 2 3 4	15.50 	33.32 39.43 43.59	43.11 51.03 56.41	8.07 9.54	1.86 2.20 2.43	. 46 . 62 . 69	10976 12989 14359 14555
°4674	*93	1912	Vermilion	5	1 2 3 4	15.69 	34.52 40.95 45.00	42.22 50.07 55.00	7.57 8.98	1.56 1.85 2.03	.53 .63 .69	11019 13085 14376 14553
°4676	*93	1912	Vermilion	5	1 2 3 4	14.56	35.04 41.01 45.59	41.82 48.95 54.41	8.58 10.04	2.09 2.45 2.72	. 74 . 86 . 96	11006 12881 14319 14530
°4678	*93	1912	Vermilion	5	1 2 3 4	16.06 	34.67 41.32 45.99	40.75 48.53 54.01	8.52 10.15	1.79 2.14 2.38	.90 1.07 1.19	10810 12879 14334 14537

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

[°]Duplicate samples sent to University of Illinois and U. S. Bureau of Mines Experiment Station. *Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
°4679	*93	1912	Vermilion	5	1 2 3 4	15.95	34.66 41.23 45.17	42.06 50.05 54.83	7.33 8.72	1.41 1.68 1.84	.39 .46 .50	11041 13136 14391 14557
°4706	*95	1912	Vermilion	5	1 2 3 4	11.87	40.37 45.80 50.52	39 .52 44.86 49.48	8.24 9.34	3.07 3.48 3.84	.74 .84 .93	11416 12953 14287 14522
°4707	*95	1912	Vermilion	5	1 2 3 4	13.14	38.81 44.69 50.46	38.11 43.87 49.54	9.94 11.44	4.18 4.82 5.44	.88 1.02 1.15	10949 12604 14232 14546
°BM13450	*95	1912	Vermilion	5	1 2 3 4	12.44 	40.33 46.06 50.56	39.43 45.03 49.44	7.80 8.91	2.91 3.32 3.64		
°BM13451	*95	1912	Vermilion	5	1 2 3 4	13.14	38.42 44.23 49.96	38.48 44.30 50.04	9.96 11.47 	4.04 4.65 5.25		
BM84222	*212	1922	Vermilion	5	1 2 · 3 4	13.6	34.0 39.3 44.3	42.6 49.5 55.7	9.8 11.2	2.4 2.8 3.1	.83 .96 1.08	11020 12750 14380 14600
BM84223	*212	1922	Vermilion	5	1 2 3 4	13.8	35.2 40.8 46.0	41.3 48.0 54.0	9.7 11.2 	2.7 3.1 3.5	. 69 . 80 . 90	11010 12760 14370 14620
BM84224	*212	1922	Vermilion	5	1 2 3 4	15.3	32.8 38.7 42.6	44.1 52.1 57.4	7.8 9.2	1.8 2.1 2.3	.80 .94 1.04	11100 13110 14430 14630
	1	1	1	1	1	1	1	1	1	1	1	1

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

°Duplicate samples sent to University of Illinois and U.S. Bureau of Mines Experiment Station. *Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

	T ADI	/L I. I	NDIVIDONE TRO				.5 01 174		20 0.01			
Laboratory No.	Mine Index No.	Date ,	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
BMA90658	401	1933	Vermilion	5	1 2 3 4	16.5 	33.0 39.5 43.1	43.6 52.2 56.9	6.9 8.3	1.2 1.5 1.6	.65 .77 	11060 13250 14450 14605
BMA90659	401	1933	Vermilion	5	1 2 3 4	16.7	33.4 40.1 45.2	40.4 48.5 54.8	9.5 11.4 	1.9 2.2 2.5	.72 .86 	10740 12900 14550 14778
BMA90660	401	1933	Vermilion	5	1 2 3 4	17.7 	29.5 35.9 40.5	43.3 52.6 59.5	9.5 11.5	1.3 1.6 1.8	.89 1.08	10520 12780 14440 14648
SPR	RINGF	IELD	(NO. 5) CO	DAI	. ((CENTR	AL AN	D WE	STERN	ILLIN	NOIS)	
5292	*28	1912	Fulton	5	1 2 3 4	17.39 	37.00 44.79 •50.90	35.69 43.20 49.10	9.92 12.01	2.74 3.28 3.74	1.14 1.36 1.55	10273 12435 14132 14398
5295	*28	1912	Fulton	5	1 2 3 4	16.33	36.24 43.34 49.78	36.58 43.72 50.22	10.82 12.94 	3.40 4.06 4.66	1.94 2.32 2.66	10246 12247 14067 14373
5299	*28	1912	Fulton	5	1 2 3 4	16.33	36.75 43.92 49.15	38.02 45.44 50.85	8.90 10.64	2.59 3.10 3.47	1.02 1.22 1.37	10604 12674 14183 14423
5293	*29	1912	Fulton	5	1 2 3 4	17.13	36.23 43.72 51.27	34.44 41.55 48.73	12.20 14.73	3.03 3.66 4.29	1.79 2.16 2.53	9346 11882 13934 14252
5297	*29	1912	Fulton	5	1 2 3 4	16.59 	35.98 43.14 49.16	37.20 44.61 50.84	10.23 12.25	4.07 4.88 5.56	1.77 2.12 2.42	10271 12314 14033 14354

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
5300	*29	1912	Fulton	5	1 2 3 4	15.41 	35.67 42.16 47.74	39.04 46.15 52.26	9.88 11.69	3.31 3.92 4.44	.52 .61 .69	10579 12505 14160 14443
5345	*30	1912	Fulton	5	1 2 3 4	16.36 	33.91 40.54 47.03	38.19 45.66 52.97	11.54 13.80	2.93 3.50 4.01	1.27 1.51 1.75	10186 12179 14129 14431
5346	*30	1912	Fulton	5	1 2 3 4	16.33 	35.50 42.42 48.96	37.01 44.23 51.04	11.16 13.35	2.89 3.45 3.98	1.84 2.20 2.54	10220 12213 14094 14389
5347	*30	1912	Fulton	5	1 2 3 4	15.85	36.12 42.92 48.65	38.12 45.30 51.35	9.91 11.78	3.36 4.00 4.53	1.47 1.75 1.98	10494 12471 14136 14423
°5283	*31	1912	Fulton	5	1 2 3 4	15.18	37.17 43.82 51.39	35.17 41.45 48.61	12.48 14.73	3.45 4.07 4.77	1.70 2.00 2.35	10201 12026 14103 14444
°5284	*31	1912	Fulton	5	1 2 3 4	16.94 	35.68 42.95 48.98	37.15 44.73 51.02	10.23 12.32	2.98 3.59 4.09	1.31 1.57 1.79	10314 12418 14163 14446
°5285	*31	1912	Fulton	5	1 2 3 4	18.42	34.98 42.88 48.16	37.66 46.15 51.84	8.94 10.97	2.33 2.85 3.20	.86 1.06 1.19	10270 12587 14138 14372
°5296	*31	1912	Fulton	5	1 2 3 4	16.82	37.28 44.81 52.69	33.45 40.23 47.31	12.45 14.96	2.84 3.42 4.02	1.69 2.02 2.38	10013 12038 14156 14479

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

°Duplicate samples sent to University of Illinois and U.S. Bureau of Mines Experiment Station.

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co₂	B.t.u.
°5298	*31	1912	Fulton	5	1 2 3 4	16.52 	37.17 44.52 50.42	36.54 43.78 49.58	9.77 11.70	3.91 4.69 5.31	.81 , .97 1.10	10394 12451 14101 14409
°5341	*31	1912	Fulton	5	1 2 3 4	17.37	35.71 43.22 48.54	37.86 45.82 51.46	9.06 10.96	2.34 2.83 3.18	1.14 1.38 1.55	10420 12610 14162 14397
°BM14554	*31	1912	Fulton	5	1 2 3 4	14.99	36.33 42.73 50.11	36.16 42.54 49.89	12.52 14.73	3.24 3.81 4.47	· · · · · · · · · · · ·	
°BM14555	*31	1912	Fulton	5	1 2 3 4	16.65 	36.45 43.73 49.66	36.95 44.33 50.34	9.95 11.94 	2.69 3.23 3.67	· · · · · · · · · · ·	· · · · · · · ·
°BM14556	*31	1912	Fulton	5	1 2 3 4	17.66 	34.80 42.26 48.01	37.67 45.76 51.99	9.87 11.98	2.31 2.80 3.18	· · · · · · · · · · ·	· · · · · · · ·
°BM14557	*31	1912	Fulton	5	1 2 3 4	15.47 	35.64 42.16 47.70	39.07 46.22 52.30	9.82 11.62	3.25 3.84 4.34	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·
°BM14558	*31	1912	Fulton	5	1 2 3 4	16.39 	36.56 43.73 49.30	37.60 44.97 50.70	9.45 11.30	2.48 2.97 3.35	· · · · · · · · · · · · · · · · · · ·	
°BM14559	*31	1912	Fulton	5	1 2 3 4	16.24 	35.31 42.16 49.07	36.65 43.75 50.93	11.80 14.09	3.42 4.08 4.75		

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

°Duplicate samples sent to University of Illinois and U.S. Bureau of Mines Experiment Station. *Shipping mine abandoned or long idle.

Contraction of the second s	1 7 101		NOTTIDE TR	JAIN			<u></u>	CD OITHILL				<u> </u>
Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
5342	*32	1912	Fulton	5	1 2 3 4	13.66 	38.46 44.54 50.93	37.06 42.92 49.07	10.82 12.54	3.64 4.22 4.82	1.26 1.46 1.67	10689 12379 14154 14462
5343	*32	1912	Fulton	5	1 2 3 4	14.53 	37.46 43.83 49.41	38.35 44.87 50.59	9.66 11.30	3.18 3.72 4.19	1.60 1.87 2.11	10804 12641 14251 14525
5344	*32	1912	Fulton	5	1 2 3 4	15.80	35.84 42.56 48.75	37.67 44.74 51.25	10.69 12.70	3.00 3.57 4.09	1.79 2.12 2.42	10460 12423 14230 14520
12443	111	1921	Fulton	5	1 2 3 4	14.43 	34.60 40.43 46.95	39.09 45.69 53.05	11.88 13.88	2.82 3.29 3.82	2.45 2.86 3.32	10320 12061 14005 14297
12444	111 *	1921	Fulton	5	1 2 3 4	15.00	33.10 38.94 47.01	37.31 43.89 52.99	14.59 17.17	3.38 3.98 4.80	2.86 3.36 4.06	9834 11569 13967 14344
12 41 5	111	1921	Fulton	5	1 2 3 4	14.70	34.07 39.94 45.89	40.17 47.09 54.11	11.06 12.97	2.83 3.32 3.81	1.75 2.05 2.36	10384 12172 13986 14266
12446	111	1921	Fulton	5	1 2 3 4	14.52	34.46 40.31 47.79	37.64 44.04 52.21	13.38 15.65	2.91 3.40 4.03	2.74 3.21 3.80	10045 11752 13932 14259
12447	111	1921	Fulton	5	1 2 3 4	14.75	33.18 38.92 46.04	38.89 45.62 53.96	13.18 15.46	3.70 4.34 5.13	1.54 1.81 2.14	9869 11577 13694 14039

TARLE 1.--INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
12448	111	1921	Fulton	5	1 2 3 4	1 4.28	34.93 40.75 47.40	38.76 45.22 52.60	12.03 14.03	2.56 2.99 3.48	1.98 2.31 2.68	10340 12063 14031 14318
12472	*112	1921	Fulton	5	1 2 3 4	15.32 	35.12 41.48 48.00	38.04 44.93 52.00	11.52 13.59	2.59 3.06 3.54	1.41 1.66 1.92	10482 12379 14325 14617
12473	*112	1921	Fulton	5	1 2 3 4	15.09	35.37 41.66 47.30	39.41 46.41 52.70	10.13 11.93	2.68 3.16 3.59	1.41 1.66 1.88	10741 12650 14364 14631
12474	*112	1921	Fulton	5	1 2 3 4	15.56 	35.68 42.26 47.83	38.92 46.09 52.17	9.84 11.65	2.43 2.88 3.26	1.33 1.58 1.79	10753 12735 14414 14668
12475	*112	1921	Fulton	5	1 2 3 4	14.56 	35.37 41.40 47.57	38.98 45.62 52.43	11.09 12.98	2.72 3.19 3.67	1.38 1.62 1.86	10581 12384 14231 14512
12476	*112	1921	Fulton	5	1 2 3 4	15.39 	33.82 39.97 46.59	38.77 45.82 53.41	12.02 14.21	3.40 4.02 4.69	1.67 1.97 2.29	10338 12220 14243 14578
12477	*112	1921	Fulton	5	1 2 3 4	15.66	34.65 41.08 47.98	37.56 44.54 52.02	12.13 14.38	2.93 3.47 4.05	1.88 2.23 2.60	10242 12144 14183 14499
12439	*113	1921	Fulton	5	1 2 3 4	13.37 	36.03 41.59 48.00	39.03 45.06 52.00	11.57 13.35	3.06 3.52 4.06	1.46 1.69 1.95	10787 12452 14370 14676
	1			,								

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued													
Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO_2	B.t.u.	
12440	*113	1921	Fulton	5	1 2 3 4	14.44 	34.71 40.57 47.36	38.58 45.09 52.64	12.27 14.34	2.17 2.54 2.96	1.80 2.10 2.45	10577 12362 14431 14722	
12441	*113	1921	Fulton	5	1 2 3 4	14.96 	33.65 39.57 45.71	39.96 46.99 54.29	11.43 13.44 	4.32 5.08 5.87	1.11 1.30 1.50	10502 12350 14267 14627	
12459	114	1921	Fulton	5	1 2 3 4	14.57 	35.24 41.25 47.10	39.58 46.33 52.90	10.61 12.42	2.89 3.38 3.86	$1.00 \\ 1.17 \\ 1.34 \\ \dots \dots$	10562 12363 14116 14391	
12460	114	1921	Fulton	5	1 2 3 4	16.16 	35.65 42.52 48.48	37.89 45.19 51.52	10.30 12.29	2.50 2.98 3.40	1.56 1.86 2.12	10422 12431 14173 14434	
12461	114		Fulton	5	1 2 3 4	13.35	37.84 43.67 48.70	39.86 46.00 51.30	8.95 10.33	2.22 2.56 2.86	1.77 2.04 2.27	10843 12514 13956 14166	
12462	114	1921	Fulton	5	1 2 3 4	15.86	35.20 41.84 48.54	37.32 44.35 51.46	11.62 13:81	3.49 4.15 4.81	1.31 1.56 1.81	10198 12120 14062 14386	
12463	. 114	1921	Fulton	5	1 2 3 4	14.34	35.09 40.96 48.86	36.72 42.87 51.14	13.85 16.17	3.84 4.48 5.34	2.47 2.89 3.45	9944 11609 13848 14218	
12464	114	1921	Fulton	5	1 2 3 4	14.62	36.18 42.38 48.00	39.21 45.92 52.00	9.99 11.70	2.43 2.85 3.23	1.49 1.74 1.97	10719 12555 14218 14467	

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture ,	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
BMA88220	114	1933	Fulton	5	1 2 3 4	16.7 	33.1 39.7 46.1	38.8 46.6 53.9	11.4 13.7	2.2 2.7 3.1	· · · · · · · · · · · · · · · · · · ·	10360 12440 14420 14698
BMA88221	114	1933	Fulton	5	1 2 3 4	17.4 	33.3 40.3 47.1	37.3 45.1 52.9	12.0 14.6	2.5 3.0 3.5		10100 12220 14300 14616
BMA88222	114	1933	Fulton	5	1 2 3 4	16.5 	32.5 38.9 46.5	37.5 44.9 53.5	13.5 16.2	2.7 3.3 3.9		10060 12050 14380 14729
BM84406	*115	1922	Fulton	5	1 2 3 4	15.7	33.2 39.3 46.07	38.7 46.0 53.93	12.4 14.7	3.6 4.3 5.0	1.57 1.86 2.18	10270 12180 14279 14634
BM84407	*115	1922	Fulton	5	1 2 3 4	14.8	33.8 39.7 44.45	42.3 49.6 55.55	9.1 10.7	2.6 3.1 3.4	.75 .88 	10950 12860 14400 14647
12436	*116	1921	Fulton	5	1 2 3 4	15.88	33.96 40.37 46.70	38.75 46.07 53.30	11.41 13.56	4.38 5.21 6.03	.92 1.10 1.27	10330 12280 14206 14569
12437	*116	1921	Fulton	5	1 2 3 4	16.68	35.46 42.56 48.34	37.90 45.49 51.66	9.96 11.95	3.82 4.58 5.20	.61 .74 .84	10464 12559 14263 14579
12438	*116	1921	Fulton	5	1 2 3 4	14.53	35.68 41.74 48.27	38.23 44.73 51.73	11.56 13.53	3.45 4.04 4.67	1.00 1.17 1.35	10608 12412 14353 14681

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM84446	†118	1922	Fulton	5	1 2 3 4	11.6 	36.4 41.1 47.30	40.4 45.7 52.70	11.6 13.2	4.1 4.6 5.3	.92 1.04 1.20	11070 12510 14410 14757
BM84447	†118	1922	Fulton	5	1 2 3 4	13.6 	34.7 40.2 45.70	41.4 47.9 54.30	10.3 11.9	3.3 3.8 4.3	.83 .97 1.10	10950 12670 14390 14672
BM84448	†118	1922	Fulton	5	1 2 3 4	13.1	34.7 39.9 46.80	39.5 45.4 53.20	12.7 14.7	$4.0 \\ 4.7 \\ 5.4 \\ \dots$	1.34 1.54 1.80	10690 12310 14420 14808
C-39	†520	1932	Fulton	5	1 2 3 4	15 .27	34.10 40.25 47.02	38.42 45.35 52.98	12.21 14.40	4.18 4.93 5.76		10528 12306 14643 14754
C-40	†520	1932	Fulton	5	1 2 3 4	14.08	34.05 39.63 47.27	37.98 44.20 52.73	13.89 16.17	3.64 4.24 5.06	.	10420 12128 14468 14857
5263	*33	1912	Logan	5	1 2 3 4	14.64 	37.87 44.36 51.57	35.56 41.66 48.43	11.93 13.98	3.60 4.22 4.91	1.10 1.28 1.49	10400 12183 14163 14497
5264	*33	1912	Logan	5	1 2 3 4	13.98	36.86 42.84 49.24	37.98 44.16 50.76	11.18 13.00	3.14 3.65 4.20	1.43 1.67 1.92	10549 12264 14096 14391
5265	*33	1912	Logan	5	1 2 3 4	13.99	36.85 42.85 49.13	38.17 44.37 50.87	10.99 12.78	3.26 3.79 4.35	1.32 1.53 1.75	10519 12230 14022 14315
	1	1	1	1	1	1	1	1	1	1	1	1

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

†Local or captive mine (those sampled before 1930 largely abandoned).

*Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM81591	*109	1921	Logan	5	1 2 3 4	14.36 	35.36 41.29 46.95	39.95 46.65 53.05	10.33 12.06	2.73 3.19 3.63	1.20 1.40	10790 12599 14327 14597
BM81592	*109	1921	Logan	5	1 2 3 4	13.70	35.46 41.09 46.76	40.38 46.79 53.24	10.46 12.12	3.38 3.92 4.46	1.11 1.29	10813 12530 14258 14552
BM81593	*109	1921	Logan	5	1 2 3 4	12.55 	35.93 41.09 46.03	42.13 48.17 53.97	9.39 10.74	2.76 3.16 3.52	.84 .96	11169 12772 14309 14555
5431	*100	1912	McLean	5	1 2 3 4	12.88 	38.84 44.58 52.04	35.80 41.09 47.96	12.48 14.33	3.60 4.14 4.83	1.17 1.35 1.58	10601 12168 14203 14544
5432	*100	1912	McLean	5	1 2 3 4	13.34	38.39 44.30 51.11	36.72 42.37 48.89	11.55 13.33 	3.59 4.14 4.78	1.31 1.51 1.74	10743 12397 14304 14629
5434	*100	1912	McLean	5	1 2 3 4	13.73 	36.79 42.64 50.44	36.14 41.89 49.56	13.34 15.47	3.99 4.62 5.47	1.19 1.30 1.54	10399 12054 14260 14641
5244	*41	1912	Macon	5	1 2 3 4	14.76 	35.46 41.60 48.22	38.08 44.67 51.78	11.70 13.73	3.24 3.81 4.42	.90 1.06 1.23	10390 12189 14129 14443
5245	*41	1912	Macon	5	1 2 3 4	14.54 	36.33 42.52 48.88	38.01 44.47 51.12	11.12 13.01 	3.47 4.06 4.67	.68 .79 .81	10465 12244 14075 14383

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
5246	*41	1912	Macon	5	1 2 3 4	14.14 	36.21 42.18 48.75	38.07 44.34 51.25	11.58 13.48	3.24 3.77 4.36	1.12 1.31 1.51	10493 12221 14125 14433
5200	42	1912	Macon	5	1 2 3 4	13.52	$36.72 \\ 42.46 \\ 48.08 \\ \dots \dots$	39.66 45.86 51.92	10.10 11.68	4.23 4.95 5.60	.09 .11 .12	10646 12443 14089 14405
5201	42	1912	Macon	5	1 2 3 4	13.62	37.72 43.68 48.33	40.34 46.70 51.67	8.32 9.62	3.39 3.93 4.35	.00 .00 .00	11046 12788 14149 14399
5202	42	1912	Macon	5	1 2 3 4	14.29 	37.61 43.88 49.17	38.89 45.37 50.83	9.21 10.75	3.87 4.46 5.00	. 19 . 22 . 24	10963 12638 14160 14447
BM81595	42	1921	Macon	5	1 2 3 4	13.10	34.64 39.86 44.41	43.36 49.90 55.59	8.90 10.24	2.73 3.14 3.50	.21 .24 	10934 12582 14017 14246
BM81596	42	1921	Macon	5	1 2 3 4	12.67	35.75 40.94 45.35	43.08 49.33 54.65	8.50 9.73	3.32 3.80 4.21	.03 .03	11103 12714 14084 14330
BM81597	42	1921	Macon	5	1 2 3 4	12.71	35.98 41.22 45.68	42.79 49.02 54.32	8.52 9.76	3.66 4.19 4.64	.17 .19 	11093 12708 14082 14341
5190	*34	1912	Menard	5	1 2 3 4	16.29 	36.66 43.80 48.63	38.73 46.26 51.37	8.32 9.94	3.65 4.36 4.84 	. 59 . 71 . 79	10747 12838 14255 14528
	1	1	1	1	1	1	Ł	1	1	1	1	I

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
5191	*34	1912	Menard	5	1 2 3 4	15.44 	36.38 43.03 47.82	39.71 46.96 52.18	8.47 10.01	3.34 3.95 4.39	.26 .31 .34	10841 12820 14246 14505
5192	*34	1912	Menard	5	1 2 3 4	20.27	34.58 43.37 48.02	37.43 46.94 51.98	7.72 9.69	3.31 4.16 4.61	.63 .79 .87	9919 12441 13776 14021
°BMA86593	†531	1933	Menard	5	1 2 3 4	15.0	34.5 40.6 45.8	40.7 47.9 54.2	9.8 11.5	3.0 3.6 4.0	· · · · · · · · · · · ·	10880 12800 14460 14743
°BMA86594	†531	1933	Menard	5	1 2 3 4	14.1 	34.4 40.0 46.1	40.2 46.9 53.9	11.3 13.1	2.8 3.3 3.8	· · · · · · · · · · ·	10780 12540 14440 14726
°C-149	†531	1933	Menard	5N	1 2 3 4	14.7	34.4 40.3 45.4	41.3 48.5 54.6	9.6 11.2 	2.84 3.33 3.75	.85 1.00 1.13	10886 12767 14383 14640
°C-150	†531	1933	Menard	5N	1 2 3 4	14.4 	34.7 40.6 46.6	39.8 46.5 53.4	11.1 12.9	2.51 2.94 3.37	1.56 1.82 2.09	10745 12550 14415 14687
C-151	†531	1933	Menard	5	1 2 3 4	15.0	34.0 40.0 46.9	38.6 45.4 53.1	12.4 14.6	2.44 2.87 3.36	1.70 2.00 2.34	10430 12270 14374 14671
C-621	†612	1934	Menard	5N	1 2 3 4	14.8	35.3 41.4 46.2	40.9 48.1 53.8	9.0 10.5	3.54 4.15 4.64	.38 .44 .49	10790 12664 14150 14421

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

 $^{\circ} \mathrm{Duplicate}$ samples analyzed by U. S. Bureau of Mines Experiment Station and State Geological Survey.

FLocal or captive mine (those sampled before 1930 largely abandoned). *Shipping mine abandoned or long idle.

,	TAPL	E 11	NDIVIDUAL FRO	AIW	AIL	ANALISI	JOP PAC	JE GAMITE	L5 001	<i></i>		
Laboratory No.	Mine Index No.	Date	County	Coal bed	$Condition^x$	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
C-622	†612	1934	Menard	5N	1 2 3 4	14.1 	36.1 42.0 46.6	41.3 48.1 53.4	8.5 9.9	$3.75 \\ 4.36 \\ 4.84 \\ \dots$.54 .63 .70	10980 12779 14179 14453
C-623	†612	1934	Menard	5N	1 2 3 4	13.9 	36.9 42.9 47.3	41.1 47.7 52.7	8.1 9.4	2.93 3.41 3.76	.68 .79 .87	11059 12851 14185 14414
5289	*25	1912	Peoria	5	1 2 3 4	14.23	36.65 42.73 49.74	37.04 43.18 50.26	12.08 14.09	3.39 3.96 4.61	1.55 1.81 2.11	10483 12222 14224 14553
5290	*25	1912	Peoria	5	1 2 3 4	14.54	37.41 43.77 50.06	37.32 43.67 49.94	10.73 12.56	3.27 3.82 4.37	1.18 1.38 1.58	10705 12526 14325 14625
5291	*25	1912	Peoria	5	1 2 3 4	16.00 	36.46 43.41 49.45	37.28 44.38 50.55	10.26 12.21	3.65 4.35 4.96	.90 1.07 1.22	10583 12598 14350 14664
5303	*26	1912	Peoria	5	1 2 3 4	16.00	36.06 42.93 49.00	37.54 44.69 51.00	10.40 12.38	2.90 3.46 3.95	1.27 1.51 1.72	10515 12518 14287 14570
5304	*26	1912	Peoria	5	1 2 3 4	14.23	37.41 43.62 50.03	37.36 43.56 49.97	11.00 12.82	3.14 3.66 4.20	2.17 2.53 2.90	10573 12327 14140 14433
5305	*26	1912	Peoria	5	1 2 3 4	14.76	35.95 42.18 50.43	35.34 41.46 49.57	13.95 16.36	3.19 3.74 4.47	2.00 2.34 2.80	10173 11935 14269 14636
	1	1	1	1	1	1	1	1 .	1	1	1	1

TABLE 1 -INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

[†]Local or captive mine (those sampled before 1930 largely abandoned).

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
BM84560	*106	1922	Peoria	5	1 2 3 4	13.5	30.7 35.5 40.3	45.5 52.6 59.7	10.3 11.9	3.2 3.7 4.2	.86 1.00 1.14	10900 12600 14310 14586
BM84561	*106	1922	Peoria	5	1 2 3 4	15.1	29.7 35.0 39.3	45.8 53.9 60.7	9.4 11.1	3.6 4.3 4.8	.43 .50 .56	10870 12800 14400 14694
BM84562	*106	1922	Peoria	5	1 2 3 4	11.6 	30.6 34.6 41.5	43.1 48.8 58.5	14.7 16.6	4.6 5.2 6.2	1.86 2.11 2.53	10540 11930 14310 14733
BM84230	*107	1922	Peoria	5	1 2 3 4	13.0	35.4 40.6 46.4	40.9 47.1 53.6	10.7 12.3	3.0 3.4 3.9	1.91 2.19 2.50	10830 12450 14200 14473
BM84232	*107	1922	Peoria	5	1 2 3 4	14.4	34.8 40.6 46.6	39.9 46.7 53.4	10.9 12.7	2.9 3.3 3.8	1.23 1.43 1.64	10740 12540 14380 14650
, BM84231	*107	1922	Peoria	5	1 2 3 4	14.9	33.5 39.3 46.1	39.1 46.0 53.9	12.5 14.7	3.0 3.5 4.1	2.17 2.55 2.99	10450 12280 14400 14726
°BMA45617	348	1928	Peoria	5	1 2 3 4	16.5	34.6 41.4 48.2	37.2 44.6 51.8	11.7 14.0	2.8 3.3 3.9	· · · · · · · · · · · · · · · · · · ·	10360 12400 14420 14729
°BMA45618	348	1928	Peoria	5	1 2 3 4	16.8 	32.5 39.1 45.5	39.0 46.8 54.5	11.7 14.1 	2.5 3.0 3.5	· · · · · · · · · · · · · · · · · · ·	10410 12510 14550 14869
	1	1	1	1	1	1	I	1	1	1	1	1

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

°Duplicate samples sent to University of Illinois and U.S. Bureau of Mines Experiment Station. *Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
°16446	348	1928	Peoria	5	1 2 3 4	15.93 	35.58 42.32 48.79	37.34 44.42 51.21	11.15 13.26	2.75 3.27 3.77	· · · · · · · · · · · ·	10412 12385 14278 14570
°16447	348	1928	Peoria	5	1 2 3 4	15.82 	35.09 41.69 47.89	38.19 45.37 52.11	10.90 12.94	2.42 2.87 3.29		10368 12317 14148 14416
BMA88224	348	1933	Peoria	5N	1 2 3 4	14.7 	33.5 39.2 46.0	39.2 46.1 54.0	12.6 14.7 	2.7 3.2 3.7	· · · · · · · · · · · · · · · · · · ·	10550 12370 14500 14824
BMA88225	348	1933	Peoria	5	1 2 3 4	14.2 	34.6 40.3 45.7	41.1 47.9 54.3	10.1 11.8 	2.1 2.4 2.8	 	10940 12760 14460 14709
BMA88226	348	1933	Peoria	5	1 2 3 4	15.6 	32.0 37.9 45.4	38.4 45.5 54.6	14.0 16.6	2.5 2.9 3.5	· · · · · · · · · · · · · · · · · · ·	10090 11950 14330 14669
16444	†349	1928	Peoria	5	1 2 3 4	13.87	37.87 43.97 50.37	37.31 43.32 49.63	10.95 12.71	3.23 3.75 4.30	· · · · · · · · · · · · · · · · · · ·	10759 12492 14311 14612
16445	†349	1928	Peoria	5	1 2 3 4	12.95	37.97 43.62 49.19	39.22 45.06 50.81	9.86 11.32	2.60 2.99 3.37		11098 12749 14376 14628
BMA90424	601	1933	Peoria	5	1 2 3 4	15.1	36.0 42.4 47.4	39.8 46.9 52.6	9.1 10.7	3.0 3.6 4.0	.66 .78	10980 12930 14480 14746

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

°Duplicate samples sent to University of Illinois and U.S. Bureau of Mines Experiment Station.

*Local or captive mine (those sampled before 1930 largely abandoned).
x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory;
2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
BMA90425	601	1933	Peoria	5	1 2 3 4	14.1 	34.9 40.6 47.5	38.6 44.9 52.5	12.4 14.5	2.5 2.9 3.4	1.99 2.31	10670 12420 14520 14835
BMA90519	601	1933	Peoria	5	1 2 3 4	14.3 	37.2 43.5 47.5	41.2 48.0 52.5	7.3 8.5	2.3 2.6 2.9	.42 .49 	11370 13270 14500 14700
BM21032	^a *BM2	1915	Peoria	5	1 2 3 4	15.66	34.74 41.19 46.24	40.38 47.88 53.76	9.22 10.93	2.64 3.13 3.51	· · · · · · · · · · · · · · · · · · ·	10798 12803 14374 14625
BM21033	^a *BM2	1915	Peoria	5	1 2 3 4	15.38	34.51 40.78 46.64	39.48 46.66 53.36	10.63 12.56	2.75 3.25 3.72	· · · · · · · · · ·	10645 12580 14398 14670
BM21034	^a *BM2	1915	Peoria	5	1 2 3 4	15.34	34.25 40.46 45.64	40.80 48.19 54.36	9.61 11.35	3.11 3.67 4.14	· · · · · · · · · · · · · · · · · · ·	10741 12687 14311 14586
BM22982	^a BM3	1915	Peoria	5	1 2 3 4	15.03	34.56 40.67 46.95	39.05 45.96 53.05	11.36 13.37	2.64 3.11 3.59	· · · · · · · · · · · · · · · · · · ·	10490 12346 14251 14538
BM22983	^a BM3	1915	Peoria	5	1 2 3 4	15.41	33.87 40.04 46.57	38.85 45.93 53.43	11.87 14.03	2.88 3.40 3.95	· · · · · · · · · ·	10386 12278 14282 14592
BM22984	^a BM3	1915	Peoria	5	1 2 3 4	15.51	34.77 41.15 47.33	38.69 45.79 52.67	11.03 13.06	2.62 3.10 3.57	· · · · · · · · · · · · · · · · · · ·	10489 12415 14280 14562

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

a Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 123, p. 35, **1918**. *Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM22985	^a BM3	1915	Peoria	5	1 2 3 4	15.57	34.08 40.37 47.17	38.18 45.22 52.83	12.17 14.41	3.42 4.05 4.72	· · · · · · · · · · · · · · · · · · ·	10283 12179 14229 14568
5118	36	1912	Sangamon	5	1 2 3 4	16.05	35.82 42.66 49.09	37.14 44.25 50.91	10.99 13.09	3.55 4.22 4.86	.67 .80 .92	10330 12306 14159 14476
5119	36	1912	Sangamon	5	1 2 3 4	15.53 	36.36 43.04 48.86	38.05 45.05 51.14	10.06 11.91	3.86 4.57 5.19	.55 .66 .75	10522 12457 14141 14450
5120	36	1912	Sangamon	5	1 2 3 4	14.45 	37.46 43.79 49.47	38.27 44.73 50.53	9.82 11.48	3.59 4.19 4.73	.55 .65 .73	10704 12512 14135 14423
5128	*37	1912	Sangamon	5	1 2 3 4	14.08 	37.38 43.51 49.89	37.56 43.71 50.11	10.98 12.78	3.97 5.17 5.93	.38 .49 .56	10600 12337 14145 14492
5129	*37	1912	Sangamon	5	1 2 3 4	13.86	37.11 43.08 48.72	39.05 45.34 51.28	9.98 11.58	$2.57 \\ 4.07 \\ 4.60 \\ \dots \dots$.52 .61 .69	10726 12451 14081 14365
5196	38	1912	Sangamon	5	1 2 3 4	14.25 	37.25 43.44 50.12	37.07 43.24 49.88	11.43 13.32	4.76 5.55 6.40	.98 1.15 1.33	10414 12147 14014 14376
5197	38	1912	Sangamon	5	1 2 3 4	14.10	38.74 45.09 50.70	37.66 43.85 49.30	9.50 11.06	3.86 4.50 5.06	.75 .87 .98	10790 12564 14126 14418

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

a Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines, Bull. 123, p. 35, 1918. *Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
5198	38	1912	Sangamon	5	1 2 3 4	14.44 	38.22 44.67 50.36	37.68 44.04 49.64	9.66 11.29	3.79 4.43 4.98	.63 .73 .82	10746 12549 14146 14440
5166	39	1912	Sangamon	5	1 2 3 4	13.38	37.20 42.95 50.54	36.40 42.03 49.46	13.01 15.02	4.78 5.52 6.50	.96 1.10 1.29	10338 11934 14043 14439
5167	39	1912	Sangamon	5	1 2 3 4	13.35	36.64 42.27 49.66	37.12 42.85 50.34	12.89 14.88	4.80 5.53 6.50	.84 .97 1.14	10348 11942 14030 14423
5168	39	1912	Sangamon	5	1 2 3 4	13.19 	38.44 44.28 51.32	36.47 42.00 48.68	11.90 13.72	4.61 5.31 6.15	1.05 1.20 1.39	10513 12110 14036 14397
5187	*40	1912	Sangamon	5	1 2 3 4	14.82 	37.18 43.65 49.31	38.22 44.87 50.69	9.78 11.48	4.30 4.52 5.11	.72 .84 .95	10683 12541 14167 14469
5188	*40	1912	Sangamon	5	1 2 3 4	16.05 	35.58 42.38 48.32	38.04 45.32 51.68	10.33 12.30	4.18 4.98 5.68	. 17 . 20 . 23	10413 12404 14144 14474
5189	*40	1912	Sangamon	5	1 2 3 4	14.31	37.31 43.54 49.41	38.20 44.58 50.59	10.18 11.88	4.21 4.91 5.57	.90 1.05 1.19	10655 12434 14110 14430
BM81448	119	1921	Sangamon	5	1 2 3 4	13.79	34.86 40.44 46.83	39.58 45.91 53.17	11.77 13.65	3.88 4.50 5.21	.58 .67 .78	10576 12268 14207 14548

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle.

							20 01 11	CD UIIMAN				
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition [∞]	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM81449	119	1921	Sangamon	5	1 2 3 4	14.78	35.20 41.30 46.96	39.74 46.64 53.04	10.28 12.06	3.72 4.37 4.97	.33 .39 .44	10606 12445 14152 14457
BM81450	119	1921	Sangamon	5	1 2 3 4	13.62 	37.50 43.41 48.82	39.30 45.50 51.18	9.58 11.09	3.62 4.06 4.57	.39 .45 .51	10876 12591 14161 14440
BM81452	120	1921	Sangamon	5	1 2 3 4	13.19	36.95 42.56 47.29	41.18 47.44 52.71	8.68 10.00	3.65 4.20 4.67	.44 .51 .57	11120 12810 14233 14501
BM81453	120	1921	Sangamon	5	1 2 3 4	13.75	37.20 43.13 49.73	37.60 43.59 50.27	11.45 13.28	4.38 5.08 5.86	1.09 1.26 1.45	10567 12252 14128 14479
BM81454	120	1921	Sangamon	5	1 2 3 4	13.94	36.29 42.17 48.24	38.94 45.25 51.76	10.83 12.58	3.76 4.37 5.00	.85 .99 1.13	10672 12401 14186 14501
BM81456	*121	1921	Sangamon .	5	1 2 3 4	13.26	34.27 39.51 44.97	41.93 48.34 55.03	10.54 12.15	3.71 4.28 4.87	.16 .18 .20	10824 12479 14205 14511
BM81457	*121	1921	Sangamon	5	1 2 3 4	14.14	$35.08 \\ 40.86 \\ 46.35 $	40.61 47.30 53.65	10.17 11.84	3.87 4.51 5.12	.67 .78 .88	10709 12473 14148 14454
BM81458	*121	1921	Sangamon	5	1 2 3 4	14.79 	34.30 40.25 45.69	40.77 47.85 54.31	10.14 11.90 	3.68 4.32 4.90	.53 .62 .70	10691 12547 14242 14546

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory: 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

			······									
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
BM81440	122	1921	Sangamon	5	1 2 3 4	13.09 	36.51 42.01 47.02	41.14 47.34 52.98	9.26 10.65	3.77 4.34 4.86	.70 .81 .91	10935 12582 14082 14359
BM81441	122	1921	Sangamon	5	1 2 3 4	12.76 	35.36 40.53 45.76	41.92 48.05 54.24	9.96 11.42	3.98 4.56 5.15	.82 .94 1.06	10907 12502 14114 14413
BM81442	122	1921	Sangamon	5	1 2 3 4	13.62	35.00 40.52 46.18	40.80 47.23 53.82	10.58 12.25	3.95 4.57 5.21	.35 .41 .47	10594 12264 13976 14284
BMA90785	122	1933	Sangamon	5	1 2 3 4	15.1 	35.4 41.7 46.7	40.4 47.6 53.3	9.1 10.7	4.0 4.7	.52 .61	10830 12770 14300 14600
BMA90786	122	1933	Sangamon	5	1 2 3 4	15.1 	34.5 40.7 46.1	40.3 47.4 53.9	10.1 11.9	3.7 4.3 4.9	.49 .57	10690 12590 14280 14596
BMA90787	122	1933	Sangamon	5	1 2 3 4	13.2	36.0 41.5 46.7	41.2 47.4 53.3	9.6 11.1 	3.6 4.2 4.7	.67 .77	10910 12570 14180 14423
C-724	616	1934	Sangamon	5	1 2 3 4	13.3 	37.3 43.1 49.6	38.0 43.8 50.4	11.4 13.1 	4.21 4.86 5.59	.74 .85 	10563 12186 14025 14358
C-730	616	1934	Sangamon	5	1 2 3 4	13.9 	36.3 42.2 48.1	39.1 45.4 51.9	10.7 12.4	3.85 4.47 5.11	.59 .68	10735 12463 14222 14545

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co₂	B.t.u.
C-731	616	1934	Sangamon	5	1 2 3 4	14.2 	35.4 41.2 48.0	38.3 44.7 52.0	12.1 14.1	4.65 5.42 6.32	. 85 . 99 	10466 12084 14072 14443
C-725	617	1934	Sangamon	5	1 2 3 4	14.3 	37.0 43.2 49.0	38.6 45.0 51.0	10.1 11.8	3.38 3.94 4.47	.81 .94 	10662 12447 14115 14397
C-726	617	1934	Sangamon	5	1 2 3 4	13.0 	37.6 43.3 49.9	37.8 43.3 50.1	11.6 13.4 	3.44 3.96 4.57	.14 .16 	10683 12282 14176 14498
C-727	617	1934	Sangamon	5	1 2 3 4	14.4 	35.9 42.0 47.7	39.5 46.0 52.3	10.2 12.0	3.31 3.87 4.39	.78 .91 	10616 12408 14094 14385
C-728	617	1934	Sangamon	5	1 2 3 4	15.1	35.9 42.3 49.0	37.4 44.0 51.0	11.6 13.7 	4.40 5.18 6.00	.75 .88 	10311 12144 14075 14431
C-729	617	1934	Sangamon	5	1 2 3 4	15.4 	36.1 42.7 48.2	38.8 45.8 51.8	9.7 11.5	3.48 4.11 4.65	.71 .84 	10586 12509 14132 14420
C-744	618	1934	Sangamon	5	1 2 3 4	14.1 	35.6 41.4 46.9	40.3 46.9 53.1	10.0 11.7 	3.84 4.47 5.06	.82 .95	10765 12537 14194 14502
C-745	618	1934	Sangamon	5	1 2 3 4	14.3	35.1 41.0 47.0	39.6 46.1 53.0	11.0 12.9 	4.39 5.12 5.87	.83 .97	10582 12342 14165 14518

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
C-746	618	1934	Sangamon	5	1 2 3 4	13.9	35.7 41.4 47.3	39.6 46.0 52.7	10.8 12.6	4.98 5.78 6.61	.64 .74	10961 12413 14197 14570
C-934	†624	1934	Sangamon	5N	1 2 3 4	13.6	35.2 40.7 47.6	38.7 44.8 52.4	12.5 14.5	3.353.884.54	2.01 2.32 2.72	10469 12110 14166 14495
C-935	†624	1934	Sangamon	5N	1 2 3 4	15.8 	33.8 40.1 46.0	39.8 47.3 54.0	10.6 12.6	3.02 3.58 4.10	1.30 1.55 1.77	10507 12482 14288 14572
C-936	†624	1934	Sangamon	5N	1 2 3 4	15.1 	34.8 41.0 46.5	40.1 47.2 53.5	10.0 11.8	3.25 3.83 4.34	.99 1.17 1.33	10687 12589 14276 14560
13804	†327	1922	Schuyler	5	1 2 3 4	16.17 	34.88 41.61 47.02	39.31 46.89 52.98	9.64 11.50	2.16 2.58 2.92	.53 .63 .71	10732 12802 14466 14709
13805	†327	1922	Schuyler	5	1 2 3 4	15.07	34.56 40.69 46.12	40.37 47.53 53.88	10.00 11.78	2.34 2.76 3.13	.61 .72 .82	10885 12817 14528 14784
13806	†327	1922	Schuyler	5	1 2 3 4	14.34	34.63 40.43 45.78	41.02 47.88 54.22	10.01 11.69	$3.46 \\ 4.04 \\ 4.57 \\ \dots \dots$.33 .38 .43	10915 12742 14429 14727
BM81311	*217	1921	Shelby	5	1 2 3 4	12.10 	35.78 40.71 46.78	40.71 46.31 53.22	11.41 12.98	3.46 3.94 4.53	.78 .89 1.02	10807 12295 14129 14434
	1	· · ·						I [I	

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

†Local or captive mine (those sampled before 1930 largely abandoned).
*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM81312	*217	1921	Shelby	5	1 2 3 4	10.42	36.85 41.14 46.25	42.83 47.81 53.75	9.90 11.05	3.48 3.88 4.36	.23 .26 .29	11335 12653 14225 14499
BM81313	*217	1921	Shelby	5	1 2 3 4	10.71	37.16 41.62 47.60	40.91 45.81 52.40	11.22 12.57	4.16 4.66 5.33	.57 .64 .73	11009 12330 14103 14425
5277	*27	1912	Tazewell	5	1 2 3 4	13.71	37.46 44.06 50.02	38.57 44.03 49.98	10.26 11.91	3.51 4.07 4.62	1.15 1.33 1.51	10801 12516 14208 14500
5278	*27	1912	Tazewell	5	1 2 3 4	13.88 	37.58 43.64 48.44	40.01 46.45 51.56	8.53 9.91	2.55 2.96 3.29	.95 1.10 1.22	11076 12860 14275 14499
5281	*27	1912	Tazewell	5	1 2 3 4	15.56 	37.60 44.53 50.61	36.70 43.46 49.39	10.14 12.01	3.23 3.83 4.35	1.50 1.78 2.02	10552 12496 14202 14488
BM84483	*108	1922	Tazewell	5	1 2 3 4	15.4 	35.1 41.5 46.5	40.4 47.8 53.5	9.1 10.7	2.6 3.0 3.4	1.26 1.49 1.67	10720 12670 14200 14425
BM84484	*108	1922	Tazewell	5	1 2 3 4	16.5 	32.8 39.3 44.1	41.6 49.8 55.9	9.1 10.9	3.1 3.7 4.1	.57 .68 .76	10590 12690 14240 14510
BM84485	*108	1922	Tazewell	5	1 2 3 4	15.4	35.2 41.6 47.0	39.8 47.1 53.0	9.6 11.3	4.2 5.0 5.7	.42 .50 .56	10670 12610 14220 14530

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

	I AD		INDIVIDUAL PR	UAIN	TAIL	ANALIS	ES OF FA	CE SAMP	LESC07	mmuea		
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
I	IERR	IN (NO	0. 6) COAL	(W	ES	TERN	AND N	ORTH	ERN II	LINO	S)	
	1	1	Fulton-	1]					1	1
C-914	621	1934	Peoria	5	1	16.2	33 0	42.8	8.0	2 61		10761
		1.01	10011011	ľ	3	10.2	39.4	51 0	9.6	3 11		12844
					3		43.6	56.4		3 44		14203
					4							14431
			Fulton-									
C-915	621	1934	Peoria	6	1	15.6	32.3	42.1	10.0	3.42		10616
		•			2		38.3	49.9	11.8	4.05		12582
					3		43.5	56.5		4.60		14269
					4							14558
°BMA86302	†530	1932	Grundy	6	1	14.6	35.4	37.9	12.1	4.6		10510
					2		41.5	44.3	14.2	5.4		12310
					3		48.3	51.7		6.3		14340
					4							14738
	-											
°BMA86303	†530	1932	Grundy	6	1	13.8	36.1	40.4	9.7	3.5		10980
					2		41.9	46.9	11.2	4.0		12740
					3		47.2	52.8		4.5		14350
					4							14632
				•								
°C-146	†530	1932	Grundy	6	1	14.1	37.2	37.1	11.6	4.50	1.46	10635
					2		43.3	43.2	13.5	5.24	1.70	12381
					3		50.1	49.9		6.06	1.97	14319
					4							14683
°C-147	†530	1932	Grundy	6	1	13.9	36.8	39.8	9.5	3.24	. 86	10958
					2		42.7	46.3	11.0	3.77	1.00	12724
					3		48.0	52.0		4.23	1.12	14298
					4							14568
9C 120	1507	1020	TT			10 7	24.4	20.4	10.0	0 70		0004
C-138	1521	1932	Henry	O		19.7	31.1	38.4	10.8	2.70	.92	9834
					2		38.7	47.9	13.4	3.43	1.14	12240
					3		44.7	55.5		3.90	1.32	14139
					4	••••	••••	• • • • • • • •	•••••			14430
°C-139	+527	1032	Henry	6	1	17 4	31 1	37 /	1/1	1 82	01	0622
0-107	1521	1952	1.10111 y	N.	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	11.4	37.6	45 4	17.0	5.92	1 10	9023
					3		45 4	54 6	11.0	7 02	1 22	14049
					4		1 J .T	51.0		1.05	1.00	14/121
				•	1					• • • • • • • •		11101
		I	1	1	с <u>і</u>			•	1	1	1	1

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

°Duplicate samples analyzed by U. S. Bureau of Mines Experiment Station and State Geological Survey. fLocal or captive mine (those sampled before 1930 largely abandoned).

Laboratory No.	Mine Index No.	Date	County	Coal bed	$Condition^x$	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
°BMA86458	†527	1932	Henry	6	1 2 3 4	18.3 	30.4 37.2 44.7	37.6 46.0 55.3	13.7 16.8	5.1 6.3 7.6		9510 11640 13990 14447
°BMA86459	†527	1932	Henry	5	1 2 3 4	21.1 	29.6 37.5 43.1	39.0 49.5 56.9	10.3 13.0	2.7 3.5 4.0		9670 12260 14090 14381
°BMA86455	†526	1932	Knox	6	1 2 3 4	18.0 	31.8 38.7 44.0	40.4 49.3 56.0	9.8 12.0	3.5 4.2 4.8		10240 12490 14190 14493
°BMA86456	†526	1932	Knox	6	1 2 3 4	18.5 	32.5 39.9 46.1	38.1 46.7 53.9	10.9 13.4	2.8 3.4 3.9		10120 12430 14350 14654
°C-135	†526	1932	Knox	6	1 2 3 4	17.4	32.6 39.4 44.9	40.0 48.4 55.1	10.0 12.2 	3.14 3.80 4.33	.88 1.06 1.21	10385 12567 14306 14607
°C-136	†526	1932	K nox	6	1 2 3 4	17.2 	33.6 40.6 47.1	37.7 45.5 52.9	11.5 13.9	2.96 3.58 4.15	1.65 1.99 2.31	10163 12279 14257 14575
5391	†231	1912	La Salle	6 ^a	1 2 3 4	15.52	41.56 49.18 56.06	32.57 38.55 43.94	10.35 12.27	4.08 4.83 5.51	.27 .34 .39	10425 12340 14066 14387
5392	†231	1912	La Salle	6 ^a	1 2 3 4	14.13	39.42 45.90 52.28	35.96 41.89 47.72	10.49 12.21	3.22 3.75 4.27	.96 1.12 1.28	10636 12386 14110 14395

TABLE 1 -- INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

a "Second Vein" formerly called coal No. 5. "Duplicate samples analyzed by U. S. Bureau of Mines Experiment Station and State Geological

Survey. tLocal or captive mine (those sampled before 1930 largely abandoned). x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
5416 *99 1912 La Salle 6^0 1 13.82 41.42 35.90 8.86 3.95 .51 11174 5416 *99 1912 La Salle 6^0 1 12.87 42.40 37.35 7.38 3.86 0.00 11468 5414 *99 1912 La Salle 6^0 1 12.87 42.40 37.35 7.38 3.86 0.00 11468 5417 *99 1912 La Salle 6^0 1 13.99 38.81 40.12 7.08 3.23 .00 11401 5417 *99 1912 La Salle 6^0 1 13.99 38.81 40.12 7.08 3.23 .00 11401 5417 *99 1912 La Salle 6^0 1 13.39 38.81 40.12 7.08 3.23 .00 11401 14635 45.12 46.65 8.23 3.76 .00 13255 C.869 1620 1934 La Salle <td>5393</td> <td>†231</td> <td>1912</td> <td>La Salle</td> <td>6^a</td> <td>1 2 3 4</td> <td>14.64 </td> <td>43.01 50.38 55.67</td> <td>34.25 40.12 44.33</td> <td>8.10 9.50</td> <td>2.83 3.32 3.67</td> <td>.56 .66 .73</td> <td>10961 12841 14189 14417</td>	5393	†231	1912	La Salle	6 ^a	1 2 3 4	14.64 	43.01 50.38 55.67	34.25 40.12 44.33	8.10 9.50	2.83 3.32 3.67	.56 .66 .73	10961 12841 14189 14417
5414 *99 1912 La Salle 6^{b} 1 12.87 42.40 37.35 7.38 3.86 .00 11468 5414 *99 1912 La Salle 6^{b} 1 12.87 42.40 37.35 7.38 3.86 .00 11468 5417 *99 1912 La Salle 6^{b} 1 13.99 38.81 40.12 7.08 3.23 .00 11401 5417 *99 1912 La Salle 6^{b} 1 13.99 38.81 40.12 7.08 3.23 .00 11401 2 45.12 46.65 8.23 3.76 .00 13255 3 49.17 50.83 41.01 .00 14444 113.3 38.0 39.1 9.6 3.65 .67 11065 2 43.8 45.1 11.1 4.21 .77 12763 3 49.2 50.8 4.74 1	5416	*99	1912	La Salle	6 ^b	1 2 3 4	13.82	41.42 48.06 53.56	35.90 41.67 46.44	8.86 10.27	3.95 4.58 5.10	.51 .59 .66	11174 12966 14450 14744
5417 *99 1912 La Salle 6^{b} 1 13.99 38.81 40.12 7.08 3.23 00 11401 2 45.12 46.65 8.23 3.76 .00 11401 3 49.17 50.83 4.10 .00 13255 C-869 1934 La Salle 6^{b} 1 13.3 38.0 39.1 9.6 3.65 .67 11065 2 43.8 45.1 11.1 4.21 14349 C-870 1620 1934 La Salle 6^{b} 1 13.2 38.4 39.1 9.3 3.67 1444 C-870 1620 1934 La Salle 6^{b} 1 13.2 38.4 39.1 9.3 3.67 14647 C-871 1620 1934 La Salle 6^{b} 1 12.3 38.1 40.1 9.5 3.53 .43 11163 2 43.5 <td>5414</td> <td>*99</td> <td>1912</td> <td>La Salle</td> <td>6^b</td> <td>1 2 3 4</td> <td>12.87</td> <td>42.40 48.67 53.17</td> <td>37.35 42.86 46.83</td> <td>7.38 8.47</td> <td>3.86 4.44 4.85</td> <td>.00 .00</td> <td>11468 13161 14379 14635</td>	5414	*99	1912	La Salle	6 ^b	1 2 3 4	12.87	42.40 48.67 53.17	37.35 42.86 46.83	7.38 8.47	3.86 4.44 4.85	.00 .00	11468 13161 14379 14635
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5417	*99	1912	La Salle	6 ^b	1 2 3 4	13.99 	38.81 45.12 49.17	40.12 46.65 50.83	7.08 8.23	3.23 3.76 4.10	.00 .00 .00	11401 13255 14444 14675
C-870†6201934La Salle 6^{b} 113.238.439.19.33.67.5511139C-871†6201934La Salle 6^{b} 112.338.140.19.53.53.4311163C-871†6201934La Salle 6^{b} 112.338.140.19.53.53.4311163C-871†6201934La Salle 6^{b} 112.338.140.19.53.53.4311163243.545.610.94.03.4912733348.851.24.5214289'C-140†5281932Stark6116.833.538.111.63.721.1410187240.345.714.04.471.37122471428914289'*C-140†5281932Stark6116.833.538.111.63.721.1410187240.345.714.04.471.3712247142391423914239**C-140**S1932Stark6116.833.538.111.63.721.1410187**S**S**S**S**S**S**S**S**S**S**S**S**S14239**S	C -869	†620	1934	La Salle	6 ⁸	1 2 3 4	13.3	38.0 43.8 49.2	39.1 45.1 50.8	9.6 11.1	$3.65 \\ 4.21 \\ 4.74 \\ \dots$.67 .77 	11065 12763 14349 14647
C-871†6201934La Salle 6^{b} 112.338.140.19.53.53.4311163243.5 45.6 10.94.03.4912733*C-140†5281932Stark6116.833.538.111.63.721.1410187*C-140†5281932Stark6116.833.538.111.63.721.1410187*C-140†5281932Stark6116.833.538.111.63.721.1410187*C-140†5281932Stark6116.833.538.111.63.721.1410187*C-140**	C-870	†62 0	1934	La Salle	6 ^{<i>b</i>}	1 2 3 4	13.2	38.4 44.2 49.5	39.1 45.0 50.5	9.3 10.8	$3.67 \\ 4.23 \\ 4.74 \\ \dots$.55 .64 	11139 12833 14381 14674
°C-140 †528 1932 Stark 6 1 16.8 33.5 38.1 11.6 3.72 1.14 10187 2 40.3 45.7 14.0 4.47 1.37 12247 3 46.9 53.1 5.19 1.59 14239 14588 14588 14588	C-871	†62 0	1934	La Salle	6 ^{<i>b</i>}	1 2 3 4	12.3	38.1 43.5 48.8	40.1 45.6 51.2	9.5 10.9 	3.53 4.03 4.52	.43 .49 	11163 12733 14289 14570
	°C-140	†528	1932	Stark	6	1 2 3 4	16.8 	33.5 40.3 46.9	38.1 45.7 53.1	11.6 14.0	3.72 4.47 5.19	1.14 1.37 1.59	10187 12247 14239 14588

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

a "Second Vein" formerly called coal No. 5. b Streator coal, formerly called No. 7 coal. †Local or captive mine (those sampled before 1930 largely abandoned). *Shipping mine abandoned or long idle.

.aboratory No.	Aine Index No.	Jate	County	Coal bed	Condition x	Aoisture	⁷ olatile Matter	Tixed Carbon	ısh	ulfur	02	3.t.u.
	4	П	0		10		~	ц	Ā	s	0	щ
°C-141	†528	1932	Stark	6	1 2 3	18.1	33.8 41.3 46.3	$39.4 \\ 48.1 \\ 53.7$	8.7 10.6	$3.37 \\ 4.11 \\ 4.60$. 57 . 70 . 78	10488 12811 14333
					4							14608
°BMA86462 °BMA86463	†528 †528	1932 1932	Stark	6	1 2 3 4 1 2 3 4	17.6 17.6 	32.6 39.6 45.8 32.3 39.2 44.2	38.5 46.7 54.2 40.9 49.6 55.8	11.3 13.7 9.2 11.2	3.9 4.8 5.5 3.8 4.6 5.2	· · · · · · · · · · · · · · · · · · ·	10090 12250 14190 14546 10440 12680 14280 14583
°BMA86461	†529	1932	Stark	6	1 1 2 3 4	17.1	32.1 38.7 44.3	40.3 48.6 55.7	10.5 12.7	4.0 4.8 5.5	.51 .62 .71	10260 12380 14190 14514
°C-144	†529	1932	Stark	6	1 2 3 4	17.1	33.1 40.0 46.0	38.9 46.9 54.0	10.9 13.1	3.48 4.19 4.83	.62 .74 .86	10231 12347 14212 14528

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

HERRIN (NO. 6) COAL (CENTRAL, SOUTHWESTERN, AND SOUTHERN ILLINOIS)

BM80788	*218	1921	Bond		1 2 3 4	11.69 	34.15 38.67 44.14	43.22 48.94 55.86	10.94 12.39	3.55 4.02 4.59	.80 .91 1.04	10784 12212 13939 14229
BM80789	*218	1921	Bond	6	1 2 3 4	12.55 	35.58 40.69 46.10	41.60 47.57 53.90	10.27 11.74	3.51 4.01 4.54	.41 .47 .53	10745 12287 13921 14199

 \pm Local or captive mine (those sampled before 1930 largely abandoned).

*Shipping mine abandoned or long idle.

^oDuplicate samples analyzed by U. S. Bureau of Mines Experiment Station and State Geological Survey.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

								and the second second				
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
BM80790	*218	1921	Bond	6	1 2 3 4	11.64	35.55 40.23 45.77	42.12 47.67 54.23	10.69 12.10	3.09 3.50 3.98	.79 .89 1.01	10890 12325 14022 14292
BM81315	219	1921	Christian	6	1 2 3 4	11.96	36.12 41.03 46.19	42.08 47.79 53.81	9.84 11.18	3.31 3.76 4.23	. 21 . 24 . 27	10989 12482 14053 14319
BM81316	219	1921	Christian	6	1 2 3 4	11.74	37.52 42.51 49.90	37.67 42.68 50.10	13.07 14.81	5.23 5.93 6.96	.39 .44 .52	10482 11876 13941 14341
BM81317	219	1921 -	Christian	6	1 2 3 4	12.30	38.02 43.35 49.01	39.56 45.11 50.99	10.12 11.54	3.03 3.45 3.90	.76 .87 .98	10924 12456 14081 14343
BM81444	220	1921	Christian	6	1 2 3 4	13.34	36.44 42.05 48.28	39.03 45.04 51.72	11.19 12.91	3.63 4.19 4.81	.77 .89 1.02	10679 12323 14150 14463
BM81445	220	1921	Christian	6	1 2 3 4	13.67	35.65 41.30 47.38	39 .60 45.87 52.62	11.08 12.83	$4.17 \\ 4.83 \\ 5.54 $.57 .66 .76	10622 12304 14115 14448
BM81446	220	1921	Christian	6	1 2 3 4	14.74 	37.10 43.51 48.53	39.34 46.15 51.47	8.82 10.34	4.20 4.93 5.50	.30 .35 .39	10745 12603 14057 14348
BM81138	*221	1921	Christian	6	1 2 3 4	11.12	37.81 42.54 47.88	41.16 46.31 52.12	9.91 11.15	4.15 4.67 5.26	.17 .19 .21	11070 12455 14018 14311
		1						1				

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES -Continued

*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM81139	*221	1921	Christian	6	1 2 3 4	12.21	37.30 42.49 47.72	40.87 46.55 52.28	9.62 10.96	4.08 4.65 5.22	.05 .06 .07	10951 12474 14009 14299
BM8114 0	*221	1921	Christian	6	1 2 3 4	12.81	36.18 41.50 47.63	39.79 45.63 52.37	11.22 12.87	4.28 4.91 5.64	.46 .53 .61	10642 12206 14009 14340
BM81142	222	1921	Christian	6	1 2 3 4	12.27	37.17 42.37 47.75	40.67 46.36 52.25	9.89 11.27	3.49 3.98 4.49	.08 .09 .10	10917 12444 14025 14298
BM81143	222	1921	Christian	6	1 2 3 4	11.75 	37.46 42.45 47.54	41.33 46.83 52.46	9.46 10.72	4.38 4.96 5.56	.23 .26 .29	11089 12565 14074 14372
BM81144	222	1921	Christian	6	1 2 3 4	12.31	38.31 43.69 48.18	41.22 47.00 51.82	8.16 9.31	3.27 3.73 4.11	.04 .05 .06	11124 12686 13988 14220
BM25748	^a BM *56	1916	Christian	6	1 2 3 4	13 .62	37.60 43.53 48.69	39.62 45.87 51.31	9.16 10.60	3.78 4.38 4.90	· · · · · · · · · · · · · · · · · · ·	11020 12757 14269 14553
BM25749	^a BM *56	1916	Christian	6	1 2 3 4	13.72	37.42 43.37 48.93	39.05 45.26 51.07	9.81 11.37	4.11 4.76 5.37	· · · · · · · · · · · · · · · · · · ·	10847 12571 14183 14490
BM25750	^a BM *56	1916	Christian	6	1 2 3 4	12.52	34.74 39.71 47.07	39.06 44.65 52.93	13.68 15.64	3.40 3.89 4.61	· · · · · · · · · · · · · · · · · · ·	10386 11873 14074 14423

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

a Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 193, p. 30, 1922. *Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).
£

	TUP	LE 1.	INDIVIDUAL FR	JAIN	IAIC	ANALIS	LS OF FA	ICE SAMP	LES-CO	niinuea		
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM25751	^{<i>a</i>} BM *56	1916	Christian	6	1 2 3 4	12.31	38.59 44.00 49.63	39.15 44.65 50.37	9.95 11.35	3.54 4.04 4.56	· · · · · · · · · · · · · · · · · · ·	11086 12641 14259 14544
BM26336	^a BM *56	1916	Christian	6	1 2 3 4	11.89	37.14 42.15 47.78	40.58 46.06 52.22	10.39 11.79	3.88 4.40 4.99	· · · · · · · · · · · · · · · · · · ·	11056 12548 14225 14529
BM26337	^a BM *56	1916	Christian	6	1 2 3 4	11.98	38.52 43.76 49.56	39.18 44.52 50.44	10.32 11.72	$4.21 \\ 4.78 \\ 5.41$	· · · · · · · · ·	11120 12634 14311 14631
5073	84	1912	Clinton	6	1 2 3 4	13.32	37.43 43.18 48.96	39.02 45.02 51.04	10.23 11.80	4.06 4.68 5.31	.69 .80 .91	10726 12374 14029
5074	84	1912	Clinton	6	1 2 3	12.40	37.94 43.32 49.29	39.04 44.56 50.71	10.62 12.12	4.24 4.84 5.51	.58 .69 .79	10796 12324 14023
5052	85	1912	Clinton	6	4 1 2 3	12.60	36.78 42.07 47.59	40.48 46.32 52.41	10.14 11.61	2.88 3.29 3.72		14341 10827 12388 14015
5053	85	1912	Clinton	6	4 1 2 3	12.15	37.74 42.96 48.22	40.52 46.13 51.78	9.59 10.91	 3.51 3.99 4.48		14271 10949 12464 13990
5054	85	1912	Clinton	6	4 1 2 3 4	12.43	36.14 41.28 46.84	41.02 46.84 53.16	10.41 11.88	4.19 4.79 5.44		14256 10730 12253 13905 14211
		9 · · ·										*1#11

TABLE 1.---INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES---Continued

a Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 193, p. 30, 1922. *Shipping mine abandoned or long idle.

à

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM80744	198	1921	Clinton	6	1 2 3 4	11.78 	36.43 41.29 47.09	40.93 46.40 52.91	10.86 12.31	$4.22 \\ 4.78 \\ 5.45 \\ \dots \dots$.63 .71 .81	10771 12209 13923 14237
BM80745	198	1921	Clinton	6	1 2 3 4	11.40 	36.59 41.30 47.12	41.07 46.35 52.88	10.94 12.35	3.74 4.22 4.81	.62 .70 .80	10817 12209 13929 14225
BM80746	198	1921	Clinton	6	1 2 3 4	10.11 	37.97 42.24 47.99	41.14 45.77 52.01	10.78 11.99	2.58 2.87 3.26	.60 .67 .76	11064 12308 13985 14231
BM80767	199	1921	Clinton	6	1 2 3 4	10.52 	34.59 38.66 44.34	43.42 48.52 55.66	11.47 12.82	3.80 4.25 4.87	.35 .39 .45	10951 12413 14042 14351
BM80768 [*]	199	1921	Clinton	6	1 2 3 4	11.73	35.25 39.93 44.55	43.87 49.70 55.45	9.15 10.37	$ \begin{array}{c c} 3.48 \\ 3.94 \\ 4.40 \\ \dots \\ \dots \\ \end{array} $.22 .25 .28	11034 12500 13946 14201
BM80769	199	1921	Clinton	6	1 2 3 4	11.26 	34.94 39.38 45.13	42.49 47.87 54.87	11.31 12.75	3.46 3.90 4.47	.77 .87 1.00	10774 12141 13915 14207
5222	*50	1912	Franklin	6	1 2 3 4	9.65	34.55 38.24 41.92	47.85 52.97 58.08	7.95 8.79	1.04 1.15 1.26	.31 .34 .37	11916 13190 14461 14613
5223	*50	1912	Franklin	6	1 2 3 4	9.00	35.10 38.58 42.58	47.35 52.03 57.42	8.55 9.39	1.08 1.19 1.31	.40 .44 .49	11973 13159 14522 14684

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

SALANAS SOLATE ANALYSES OF FACE SAMPLES

00711							т					
92671	71:0	(0'T		10:00	CO.CF							
21071	64 5		TOTT	48 95	29 27		ε					
08011	08 7	50		01 87	08 48	10.01	6			71.41	00	
71201	88 7	58	40 61	60 27	48 88	25 01	1	9	uilanerH	6101	55	\$847
14234							₽					
14282	1.43	97.5		54.12	88.2¥		3					
₹947 t	1.28	35.5	10.63	98.84	10.14	• • • • • • • •	7					
86611	1.20	3.16	66.6	9₽.2₽	38.55	00.8	τ	9	Franklin	1915	*2S	4812
100#1							Ŧ					-
19371 C67 1 1	71.1	C6.C		71.00	97 . OF		c					
2007T	CC'T	30 Z	#1'TT	C1.1#	00 9V	 .	27			-		
20461 T//TT	1 2 2 1	13 2	70.01	C7 . ##	11.00	±c.1		0	IIIBIIBIJ	7161	70	
64466	11/1	96 2	10 201	26 11	11 02	VZ 4		9	dillana	0101	62*.	1101
14603						 .	Ŧ					
14342	1.12	3.62		84.52	46.52	••••	ε					
12733	66.	3.21	11.24	2₽.74	41.29		7					
84811	76 [.] .	86.2	9₽.01	91.44	38.42	96.9	I	9	Franklin	1015	*22	4810
												N
14629							1					
57441	20	991		44 69	\$0.23		15					
13303	90	1 23	01 8	24 63	26 98	(0)0T	5					
02611	90	28-1	52.7	\$2.94	51.55	65.01	1	9	unilaner ^A	2101	15	2011
77S#I							Ŧ					
18241	7.7.	0£.1		51.92	S8.0₽		5					
54251	OZ.	57.1	06.7	84.40	20.00		z					
77611	81.	51.1	21.7	₽I.94	16.55	£8 [.] 6	ī	9	Franklin	7161	τs	
								-				
14234							Þ					
14541	4₽.	1.30	• • • • • • •	6₽.98 ,	12.0₽		3		-			-
13202	£₽.	61.1	8.23	6S.₽Z	81.75		7					
20811	85.	70.1	25.7	67.84	52.55	10.63	T	9	nilAns1H	2101	IS	2008
£00 1 /							Ŧ					
69771	75.	12.1		68.85	10.14		5					
ELEET	87	71.1	85.7	96.55	94.85		7.	1				
77177	£₽.	10.1	88.9	06.84	98.4E	95.6	τ	9	Franklin.	7161	05*	
B	R	Su	As	E	V	M	ဂိ	S	C,	D	Z	La
u.		lfuı	¹	Car	lati	oist	ndi	all	un	Ite	No.	No
				-bo	ile	ure	tio	bed	ty ty		Ind	-ato
				²	-		n				dex) yry
	· · · · · · · · · · · · · · · · · · ·	рәпиц	uoŋ—sə	TAMAS EC	ES OF FAC	ANALYSI	ATE	MIX	NDIVIDUAL PRO	I—.I a	Таят	

.slbi gnol 10 benobasds enim gaiqqid8*

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
4786	53	1912	Franklin	6	1 2 3 4	10.00	32.80 36.45 39.18	50.92 56.59 60.82	6.28 6.96	.66 .73 .78	.33 .36 .39	12001 13334 14331 14441
4787	53	1912	Franklin	6	1 2 3 4	10.15	32.88 36.59 39.40	50.56 56.27 60.60	6.41 7.14	.59 .65 .70	.22 .25 .27	12000 13356 14383 14494
4789	53	1912	Franklin	6	1 2 3 4	10.00	32.08 35.65 38.64	50.93 56.60 61.36	6.99 7.75	.47 .52 .56	.17 .20 .22	11935 13261 14375 14489
5208	*56	1912	Franklin	6	1 2 3 4	6.43 	37.62 40.20 45.66	$\begin{array}{r} 44.77 \\ 47.85 \\ 54.34 \\ \dots \dots \end{array}$	11.18 11.95	2.64 2.82 3.20	.64 .68 77	11834 12646 14363 14620
5209	*56	1912	Franklin	6	1 2 3 4	10.15 	35.55 39.56 43.69	45.82 51.01 56.31	8.48 9.43	1.41 1.57 1.73	.80 .89 .98	11691 13011 14365 14539
5211	*56	1912	Franklin	6	1 2 3 4	7.71 	35.75 38.74 44.07	45.38 49.17 55.93	11.16 12.09	3.50 3.79 4.31	.89 .96 1.09	11644 12616 14351 14644
5507	57	1912	Franklin	6	1 2 3 4	9.83 	31.82 35.29 38.99	49.78 55.21 61.01	8.57 9.50	.79 .88 .97	.35 .39 .43	11702 12977 14339 14490
5508	57	1912	Franklin	6	1 2 3 4	9.44 	32.57 35.97 39.41	50.09 55.31 60.59	7.90 8.72	.67 .74 .81	.29 .32 .35	11914 13156 14412 14547

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
5509	57	1912	Franklin	6	1 2 3 4	9.75 	32.33 35.83 39.87	48.77 54.03 60.13	9.15 10.14	1.39 1.54 1.71	.32 .35 .39	11652 12911 14367 14550
4791	*58	1912	Franklin	6	1 2 3 4	8.70 	34.62 37.92 41.44	48.92 53.59 58.56	7.76 8.49	.62 .68 .74	.31 .34 .37	11945 13084 14298 14426
4793	*58	1912	Franklin	6	1 2 3 4	9.04 	34.46 37.88 41.41	48.73 53.59 58.59	7.77 8.53	.68 .74 .81	.23 .25 .27	11946 13133 14358 14490
4794	*58	1912	Franklin	6	1 2 3 4	9.05	34.45 37.88 41.41	48.75 53.59 58.59	7.75 8.53	.91 1.00 1.09	.37 .41 .45	11923 13108 14330 14472
12701	134	1921	Franklin	6	1 2 3 4	8.88	32.17 35.31 38.80	50.84 55.80 61.20	8.11 8.89	.78 .86 .94	.11 .12 .13	11858 13015 14284 14425
12702	134	1921	Franklin	6	1 2 3 4	7.11	34.23 36.85 41.20	48.83 52.57 58.80	9.83 10.58	1.30 1.40 1.57	.35 .37 .41	11883 12792 14305 14489
12703	134	1921	Franklin	6	1 2 3 4	8.31	34.07 37.16 40.80	49.44 53.91 59.20	8.18 8.93	1.02 1.12 1.23	.21 .23 .25	12010 13098 14382 14533
12720	134	1921	Franklin	6	1 2 3 4	9.24	32.39 35.69 39.50	49.49 54.53 60.50	8.88 9.78	1.50 1.65 1.83	.21 .23 .25	11722 12915 14315 14495

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
12721	134	1921	Franklin	6	1 2 3 4	7.61 	34.77 37.63 41.50	48.96 53.00 58.50	8.66 9.37	1.70 1.85 2.04	.05 .05 .06	12038 13029 14376 14558
12722	134	1921	Franklin	6	1 2 3 4	8.56 	31.76 34.73 38.60	50.52 55.26 61.40	.9.16 10.01	1.29 1.41 1.57	.32 .35 .39	11643 12733 14149 14322
C-492	134	1933	Franklin	6	1 2 3 4	9.9	33.2 36.8 39.8	50.1 55.7 60.2	6.8 7.5	1.28 1.42 1.53	.30 .33 .36	12003 13329 14412 14550
C-493	134	1933	Franklin	6	1 2 3 4	9.2	33.0 36.3 40.2	48.9 53.9 59.8	8.9 9.8	2.16 2.38 2.63	. 51 . 56 . 62	11751 12940 14338 14552
C-494	134	1933	Franklin	6	1 2 3 4	8.9	34.4 37.7 40.8	49.9 54.9 59.2	6.8 7.4	.92 1.01 1.09	.17 .19 .21	12153 13341 14415 14533
C-495	134	1933	Franklin	6	1 2 3 4	10.8	31.1 34.9 38.3	50.1 56.1 61.7	8.0 9.0	1.05 1.18 1.29	.36 .40 .44	11655 13060 14348 14505
12729	136	1921	Franklin	6	1 2 3 4	6.72	35.94 38.53 43.69	46.32 49.65 56.31	11.02 11.82	3.11 3.33 3.78	.72 .78 .88	11599 12434 14100 14365
12730	136	1921	Franklin	6	1 2 3 4	6.95	35.53 38.18 43.46	46.19 49.65 56.54	11.33 12.17	3.42 3.68 4.19	.51 .55 .63	11579 12444 14168 14450
		1		1	1	1	1			1		1

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

						1						
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	<i>V</i> olatile Matter	Tixed Carbon	Ash	ðulfur	002	3.t.u.
							-	<u> </u>				<u> </u>
12731	136	1921	Franklin	6	1	8.36	32.98	51.49	7.17	1.28	.26	12070
					3		39.04	60.96	1.82	1.40	.28	13170
					4							14430
10700												
12732	136	1921	Franklin	6		6.63	36.30	46.99	10.08	3.63	.39	11798
					2		38.88	50.32	10.80	3.89		12035
		,			4		43.38	50.42		4.50	.47	14433
							*					
12733	136	1921	Franklin	6	1	8.46	35.77	46.51	9.26	2.50	.15	11712
	ļ				2		39.08	50.80	10.12	2.73	.17	12794
					3	• • • • • • •	43.48	56.52		3.04	. 19	14234
					4						••••	14454
12734	136	1921	Franklin	6	1	7.52	34.46	48.88	9.14	1.20	.22	11895
					2		37.26	52.86	9.88	1.30	.24	12862
					3		41.34	58.66		1.44	. 27	14272
					4			.		· · · · ·		14440
BMA90715	136	1033	Franklin	6	1	10.7	30 5	10 0	8.0	0		11770
D1111)0/10	100	1700	Frankini,		2	10.7	36.3	54 8	8.0	.9	.4	13170
					3		39.9	60.1		1.2		14460
					4							14607
DN4 400716	120	1022	E 11				22.4	50.0			10	
БМА90710	130	1933	Franklin	0		9.1	35.1	50.0	7.8	.8	. 19	12010
					3		30.4	60.2	0.0	1.0	. 21	13220
					4							14604
BMA90717	136	1933	Franklin	6	1	9.0	32.5	48.4	10.1	.9	.35	11710
					2		35.7	53.2	11.1	1.0	. 39	12860
					3	••••	40.2	59.8		1.1	• • • • • • •	14470
					'			• • • • • • • •			••••	14040
12682	*139	1921	Franklin	6	1	7.06	35.69	45.24	12.01	3.50	.33	11487
					2		38.41	48.67	12.92	3.77	.35	12359
					3		44.10	55.90	• • • • • • • • •	4.,33		14193
					4	•••••						14493
	1	1		L	1	1	1	1		1		

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

									<u></u>			
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co₂	B.t.u.
12683	*139	1921	Franklin	6	1 2 3 4	10.07	32.64 36.29 39.42	50.15 55.77 60.58	7.14 7.94	.76 .85 .92	. 22 . 24 . 26	11850 13177 14313 14440
12684	*139	1921	Franklin	6	1 2 3 4	8.28	34.98 38.14 41.46	49.38 53.84 58.54	7.36 8.02	1.13 1.24 1.35	. 25 . 27 . 29	12047 13134 14279 14419
12698	*139	1921	Franklin	6	1 2 3 4	6.79 	37.24 39.96 44.53	46.38 49.76 55.47	9.59 10.28	3.38 3.63 4.05	.31 .33 .37	11858 12722 14180 14431
12699	*139	1921	Franklin	6	1 2 3 4	8.07	33.85 36.82 40.51	49.71 54.08 59.49	8.37 9.10	1.02 1.11 1.22	.05 .05 .05	11908 12954 14250 14402
12700	*139	1921	Franklin	6	1 2 3 4	6.96 	36.53 39.27 44.92	44.79 48.13 55.08	11.72 12.60	3.95 4.24 4.85	.20 .22 .25	11590 12456 14251 14566
12738	*140	1921	Franklin	6	1 2 3 4	5.74 	36.04 38.23 42.78	48.19 51.13 57.22	10.03 10.64	3.37 3.57 4.00	.36 .38 .42	11960 12687 14197 14453
12739	*140	1921	Franklin	6	1 2 3 4	6.64	36.34 38.92 42.89	48.38 51.83 57.11	8.64 9.25	2.75 2.94 3.24	.05 .05 .06	12043 12899 14213 14426
12740	*140	1921	Franklin	6	1 2 3 4	8.15	32.79 35.70 39.09	51.10 55.63 60.91	7.96 8.67	1.51 1.64 1.80	.14 .16 .18	11890 12944 14172 14333

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
12865	145	1921	Franklin	6	1 2 3 4	8.33	31.23 34.07 37.82	51.35 56.02 62.18	9.09 9.91	1.24 1.35 1.50	. 25 . 27 . 30	11846 12921 14342 14514
12866	145	1921	Franklin	6	1 2 3 4	8.17	32.54 35.43 39.13	50.60 55.11 60.87	8.69 9.46	1.20 1.31 1.45	.15 .17 .19	11942 13005 14363 14528
12867	145	1921	Franklin	6	1 2 3 4	8.96	32.71 35.93 39.21	50.71 55.70 60.79	7.62 8.37	.67 .74 .81	.08 .08 .09	11964 13142 14342 14472
BMA39228	256	1928	Franklin	6	1 2 3 4	8.7	33.5 36.7 40.5	49.0 53.7 59.5	8.8 9.6	1.3 1.4 1.6	· · · · · · · · · · · · · · · · · · ·	12010 13150 14540 14720
BMA39229	256	1928	Franklin	6	1 2 3 4	8.5	34.5 37.8 42.0	47.7 52.1 58.0	9.3 10.1	2.8 3.1 3.4	· · · · · · · · · · · · · · · · · · ·	11930 13040 14500 14745
BMA39230	256	1928	Franklin	6	1 2 3 4	9.1	32.4 35.6 41.2	46.2 50.9 58.8	12.3 13.5	2.7 3.0 3.5	· · · · · · · · · · · · · · · · · · ·	11350 12480 14440 14720
BM23473	⁶ BM13	1915	Franklin	6	1 2 3 4	9.28	34.21 37.71 41.74	47.76 52.64 58.26	8.75 9.65	$1.10 \\ 1.21 \\ 1.34$	· · · · · · · · · · · · · · · · · · ·	11950 13172 14578 14745
BM23474	^{<i>b</i>} BM1 3	1915	Franklin	6	1 2 3 4	8.91	35.51 38.98 42.79	47.46 52.11 57.21	8.12 8.91	.80 .88 .97		12083 13265 14562 14707

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

b Fieldner, A C., and others, Analyses of coal: U. S. Bureau of Mines, Bull. 123, p. 33, 1918.

	1 1100		NBITIBOILE TRO			111111010		01 011111				
Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM23475	^b BM13	1915	Franklin	6	1 2 3 4	8.82	33.91 37.19 40.96	48.87 53.60 59.04	8.40 9.21	.81 .89 .98		12038 13203 14542 14691
BM23476	^b BM13	1915	Franklin	6	1 2 3 4	9.25	33.76 37.20 41.25	48.08 52.98 58.75	8.91 9.82	1.07 1.18 1.31		11898 13111 14539 14707
BM23477	^b BM13	1915	Franklin	6	1 2 3 4	8.75 	33.71 36.94 41.02	48.44 53.09 58.98	9.10 9.97	1.55 1.70 1.89		11943 13088 14537 14726
BM22686	^b BM *14	1915	Franklin	6	1 2 3 4	9.33 	33.60 37.06 40.94	48.48 53.47 59.06	8.59 9.47	.82 .90 .99		· 11824 13041 14405 14556
BM22687	^b BM *14	1915	Franklin	6	1 2 3 4	9.05	33.74 37.10 40.95	48.65 53.49 59.05	8.56 9.41	.96 1.06 1.17		11858 13038 14392 14548
BM22688	^b BM *14	1915	Franklin	6	1 2 3 4	8.59 	34.66 37.92 41.48	48.89 53.48 58.52	7.86 8.60	.92 1.01 1.10	· · · · · · · · · · · · · · · · · · ·	12089 13225 14469 14612
BM22689	^b BM *14	1915	Franklin	6	1 2 3 4	8.91	33.87 37.18 40.76	49.21 54.03 59.24	8.01 8.79	.99 1.09 1.20	· · · · · · · · · · · ·	12017 13192 14463 14612
BM22690	^b BM *14	1915	Franklin	6	1 2 3 4	10.06	33.92 37.71 41.78	47.26 52.55 58.22	8.76 9.74		· · · · · · · · · · · · · · · · · · ·	11756 13071 14481 14642

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle.

b Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines, Bull. 123, p. 33, 1918. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory: 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
BM23442	^b BM15	1915	Franklin	6	1 2 3 4	9.72	32.91 36.45 40.22	48.92 54.19 59.78	8.45 9.36	.87 .96 1.06	· · · · · · · · · · · · · · · · · · ·	11866 13144 14501 14654
BM23443	^b BM15	1915	Franklin	6	1 2 3 4	10.24	32.54 36.25 39.66	49.49 55.14 60.34	7.73 8.61	.80 .89 .97	· · · · · · · · · · · · · · · · · · ·	11941 13304 14557 14698
BMA66441	^c BM15	1930	Franklin	6	1 2 3 4	9.5	32.7 36.1 39.7	49.7 54.9 60.3	8.1 9.0	.5 .6 .7		11920 13170 14470 14610
BMA66442	[¢] BM15	1930	Franklin	6	1 2 3 4	8.8	33.6 36.9 41.1	48.1 52.7 58.9	9.5 10.4	.8 .9 1.0	· · · · · · · · · · · · · · · · · · ·	11800 12940 14440 14610
BMA66443	[¢] BM15	1930	Franklin	6	1 2 3 4	10.7	33.0 36.9 40.9	47.7 53.4 59.1	8.6 9.7	1.1 1.2 1.3	· · · · · · · · · · · · · · · · · · ·	11720 13120 14530 14700
BMA66444	⁰BM15	1930	Franklin	6	1 2 3 4	6.1 	33.1 35.2 38.6	52.5 56.0 61.4	8.3 8.8	.7 .8 .9	· · · · · · · · · · · ·	12410 13210 14490 14620
BMA66445	[¢] BM15	1930	Franklin	6	1 2 3 4	8.8	33.6 36.8 40.0	50.4 55.4 60.0	7.2 7.8	.8 .9 .9		12220 13410 14350 14670
BM20080	^b BM16	1914	Franklin	6	1 2 3 4	9.33	31.15 34.36 38.22	50.36 55.54 61.78	9.16 10.10	.56 .62 .69		11806 13021 14483 14636
		1		1			1	1	1	1.1.1		

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

b Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines, Bull. 123, p. 33, 1918. c Fieldner, A. C., and others, Carbonizing properties and constitution of No. 6 bed coal from West Frankfort, Franklin Co., Ill.; U. S. Bureau of Mines, Tech. Paper 524, p. 3, 1932.

	×	<u> </u>	norroond rac					00 011000				
Laboratory No.	Mine Index No.	Date	County	Coal bed	$Condition^x$	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
BM20081	^b BM16	1914	Franklin	6	1 2 3 4	10.01 	29.93 33.26 37.41	50.08 55.65 62.59	9.98 11.09	.52 .58 .65		11522 12803 14400 14564
BM20082	^b BM16	1914	Franklin	6	1 2 3 4	9.25	31.03 34.19 37.82	51.02 56.22 62.18	8.70 9.59	.48 .53 .59		11857 13064 14450 14591
BM20723	^b BM16	1915	Franklin	6	1 2 3 4	8.21	32.46 35.36 39.84	49.00 53.39 60.16	10.33 11.25	.96 1.05 1.18	· · · · · · · · · · · · · · · · · · ·	11770 12823 14449 14632
BM20724	^b BM16	1915	Franklin	6	1 2 3 4	9.07	32.24 35.45 39.96	48.42 53.26 60.04	10.27 11.29	1.14 1.25 1.41	· · · · · · · · · · · · · · · · · · ·	11606 12764 14389 14578
BM20725	[₽] BM16	1915	Franklin	6	1 2 3 4	9.83	31.44 34.87 37.89	51.53 57.15 62.11	7.20 7.98	.50 .55 .60	· · · · · · · · · · · · · · · · · · ·	11990 13297 14449 14569
BM22915	⁶ BM19	1915	Franklin	6	1 2 3 4	9.78	32.29 35.79 39.36	49.73 55.12 60.64	8.20 9.09	1.02 1.13 1.24		11860 13145 14459 14613
BM22916	^b BM19	1915	Franklin	6	1 2 3 4	10.23	31.97 35.61 39.05	49.87 55.56 60.95	7.93 8.83	.91 1.01 1.11	· · · · · · · · · ·	11839 13188 14465 14612
BM22917	⁶ BM19	1915	Franklin	6	1 2 3 4	10.48	33.53 37.46 40.62	49.02 54.76 59.38	6.97 7.78	1.22 1.36 1.47	· · · · · · · · · · · · · · · · · · ·	11932 13329 14453 14598
								1	1		1	

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

b Fieldner, A C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 123, p. 33. 1918. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
BM22918	^b BM19	1915	Franklin	6	1 2 3 4	8.86 	33.27 36.50 40.20	49.48 54.29 59.80	8.39 9.21	.89 .94 1.04	· · · · · · · · · · · · · · · · · · ·	11970 13133 14465 14614
BM22919	⁶ BM19	1915	Franklin	6	1 2 3 4	10.48 	31.87 35.60 39.35	49.10 54.85 60.65	8.55 9.55	1.16 1.29 1.43		11678 13045 14422 14588
BM22920	^b BM19	1915	Franklin	6	1 2 3 4	10.16 	32.66 36.35 39.68	49.63 55.24 60.32	7.56 8.41	.99 1.10 1.20		11921 13269 14487 14631
BM29741	^e BM21	1918	Franklin	6	1 2 3 4	9.73 	34.19 37.88 41.11	48.99 54.27 58.89	7.09 7.85	1.08 1.20 1.30	· · · · · · · · · · · · · · · · · · ·	11997 13289 14422 14559
BM29742	^e BM21	19 18	Franklin	6	1 2 3 4	10.34 	33.70 37.59 41.81	46.90 52.31 58.19	9.06 10.10	.54 .60 .67	· · · · · · · · · · · ·	11529 12857 14301 14450
BM29743	^e BM21	1918	Franklin	6	1 2 3 4	9.28	34.17 37.67 41.21	48.77 53.75 58.79	7.78 8.58	.74 .82 .90		11885 13100 14330 14464
BM29744	^e BM21	1918	Franklin	6	1 2 3 4	9.17 	34.29 37.75 41.09	49.15 54.11 58.91	7.39 8.14	1.17 1.29 1.40		12163 13390 14576 14724
BM29745	^e BM21	1918	Franklin	6	1 2 3 4	10.56 	34.81 38.92 43.77	44.73 50.01 56.23	9.90 11.07	.45 .50 .56	· · · · · · · · · · · · · · · · · · ·	11354 12695 14276 14435

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

b Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines, Bull. 123, p. 33, 1918.
 e Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 193, p. 31, 1922.

	TUDD		NDIVIDONE TRO	/21.1.143		IIIIIII.	50 01 11	CD DIIMIN	100 0.01			
Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
BM29746	^e BM21	1918	Franklin	6	1 2 3 4	10.36	32.12 35.83 40.48	47.21 52.67 59.52	10.31 11.50	.56 .62 .70	· · · · · · · · · · · ·	11326 12634 14276 14446
BM26492	^f BM *22	1916	Franklin	6	1 2 3 4	9.54	32.91 36.38 40.47	48.41 53.52 59.53	9.14 10.10	.98 1.08 1.20		11772 13014 14476 14644
BM26493	^f BM *22	1916	Franklin	6	1 2 3 4	9.58	33.25 36.77 39.85	50.16 55.48 60.15	7.01 7.75	1.08 1.19 1.29		12051 13329 14448 14621
BM26494	^f BM *22	1916	Franklin	6	1 2 3 4	10.97	33.70 37.85 41.82	46.86 52.64 58.18	8.47 9.51	.99 1.11 1.23		11671 13109 14486 14647
BM26495	^f BM *22	1916	Franklin	6	1 2 3 4	10.26	33.17 36.96 40.66	48.39 53.93 59.34	8.18 9.11	1.31 1.46 1.61	· · · · · · · · · · · · · · · · · · ·	11858 13214 14538 14705
BM26496	^{<i>f</i>} BM *22	1916	Franklin	6	1 2 3 4	9.68	32.90 36.43 40.49	48.35 53.53 59.51	9.07 10.04	1.09 1.21 1.35	· · · · · · · · · · · · · · · · · · ·	11693 12946 14391 14561
BM30892	^f BM 64	1918	Franklin	6	1 2 3 4	10.04	35.48 39.44 42.86	47.29 52.57 57.14	7.19 7.99	.77 .86 .93		11945 13279 14431 14561
BM30893	^f BM 64	1918	Franklin	6	1 2 3 4	11.33	32.38 36.52 40.70	47.18 53.21 59.30	9.11 10.27	. 59 . 67 . 75	· · · · · · · · · · · · · · · · · · ·	11430 12892 14368 14522
	1.1.1				1	1						l I

TABLE 1 - INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

e Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 193, p. 31, 1922.
f Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 193, p. 32, 1922.
*Shipping mine abandoned or long idle.
x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory;
2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

								and the second s				
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
BM30894	⁷ BM 64	1918	Franklin	6	1 2 3 4	9.04	36.20 39.80 43.07	47.86 52.61 56.93	6.90 7.59	1.28 1.41 1.53	· · · · · · · · · · · · · · · · · · ·	12164 13374 14472 14615
BM30895	^f BM 64	1918	Franklin	6	1 2 3 4	10.43	33.10 36.95 40.56	48.50 54.15 59.44	7.97 8.90	.52 .58 .64	· · · · · · · · · · · ·	11713 13075 14353 14484
BM30882	^{<i>g</i>} BM 65	1918	Franklin	6	1 2 3 4	9.94 	33.39 37.08 40.54	48.99 54.39 59.46	7.68 8.53	1.14 1.27 1.39	· · · · · · · · · · ·	11880 13192 14423 14572
BM30883	^{<i>ø</i>} BM 65	1918	Franklin	6	1 2 3 4	10.07 	33.07 36.77 40.09	49.40 54.94 59.91	7.46 8.29	1.24 1.38 1.50		11894 13226 14422 14572
BM30884	^{<i>g</i>} BM 65	1918	Franklin	6	1 2 3 4	10.73	33.02 36.99 40.93	47.65 53.38 59.07	8.60 9.63	1.61 1.80 1.99	· · · · · · · · · · · · · · · · · · ·	11637 13036 14425 14609
BM30885	^{<i>g</i>} BM 65	1918	Franklin	6	1 2 3 4	10.05	33.93 37.72 41.12	48.58 54.01 58.88	7.44 8.27	1.40 1.56 1.70	· · · · · · · · · · · · · · · · · · ·	11884 13210 14402 14557
BM30887	^{<i>g</i>} BM 66	1918	Franklin	6	1 2 3 4	11.15	33.95 38.21 41.68	47.50 53.46 58.32	7.40 8.33	1.36 1.53 1.67	· · · · · · · · · · · · · · · · · · ·	11734 13207 14407 14563
BM30888	^{<i>g</i>} BM 66	1918	Franklin	6	1 2 3 4	9.08	34.99 38.49 42.06	48.21 53.02 57.94	7.72 8.49	1.43 1.57 1.72	· · · · · · · · ·	12019 13219 14447 14605
		1						. 1				

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

f Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 193, p. 31, 1922. g Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 193, p. 33, 1922.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM30889	^ø BM 66	1918	Franklin	5	1 2 3 4	10.31 	33.54 37.40 40.20	49.91 55.64 59.80	6.24 6.96	1.11 1.24 1.33		12055 13441 14447 14574
BM30867	^ø BM 67	1918	Franklin	6	1 2 3 4	10.74 	32.20 36.07 38.74	50.91 57.04 61.26	6.15 6.89	.83 .93 1.00	· · · · · · · · · · · · · · · · · · ·	12001 13444 14440 14555
BM30868	⁹ BM 67	1918	Franklin	6	1 2 3 4	10.36 	32.52 36.28 40.81	47.17 52.62 59.19	9.95 11.10	.63 .70 .79	· · · · · · · · · · · · · · · · · · ·	11356 12668 14251 14416
BM30869	^{<i>g</i>} BM 67	1918	Franklin	6	1 2 3 4	9.86	32.38 35.92 39.45	49.68 55.12 60.55	8.08 8.96	.93 1.03 1.13	· · · · · · · · · · · · · · · · · · ·	11925 13230 14531 14682
BM30870	⁹ BM 67	1918	Franklin	6	1 2 3 4	10.91 	32.32 36.28 38.84	50.89 57.12 61.16	5.88 6.60	.56 .63 .67		12049 13525 14481 14583
BM30877	^{<i>h</i>} BM 68	1918	Franklin	6	1 2 3 4	8.72	34.31 37.59 42.64	46.15 50.56 57.36	10.82 11.85	3.81 4.17 4.73		11543 12645 14344 14646
BM30878	^{<i>h</i>} BM 68	1918	Franklin	6	1 2 3 4	10.04	33.73 37.54 41.54	47.53 52.83 58.46	8.66 9.63	2.43 2.70 2.99		11725 13034 14423 14638
BM30879	^{<i>h</i>} BM 68	1918	Franklin	6	1 2 3 4	9.67	33.32 36.89 41.66	46.67 51.66 58.34	10.34 11.45	3.07 3.40 3.84	· · · · · · · · · · · · · · · · · · ·	11547 12784 14436 14707
	1	1	1	1	1	1	1	1	1	1	1	1

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

g Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 193, p. 33, 1922. h Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 193, p. 30, 1922. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory: 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM30880	^{<i>h</i>} BM 68	1918	Franklin	6	1 2 3 4	9.27	34.27 37.77 42.97	45.48 50.13 57.03	10.98 12.10	3.79 4.18 4.76	· · · · · · · · · · · · · · · · · · ·	11461 12632 14371 14678
5510	†223	1912	Gallatin	6	1 2 3 4	4.47	35.33 36.98 42.54	47.73 49.96 57.46	12.47 13.06	3.59 3.76 4.32	.05 .05 .06	12320 12895 14832 15159
5511	†223	1912	Gallatin	6	1 2 3 4	4.10	36.79 38.36 42.20	50.38 52.54 57.80	8.73 9.10	3.83 3.99 4.39	.04 .04 .04	12849 13398 14739 15002
4773	*55	1912	Jackson	6	1 2 3 4	10.88	31.71 35.57 39.33	48.90 54.88 60.67	8.51 9.55	.65 .73 .81	.30 .34 .38	11594 13009 14383 14529
4780	*55	1912	Jackson	6	1 2 3 4	7.17	36.36 39.18 44.56	45.25 48.74 55.44	11.22 12.08	3.92 4.22 4.80	.43 .47 .53	11678 12581 14310 14617
4784	*55	1912	Jackson	6	1 2 3 4	8.82	35.30 38.72 43.99	44.96 49.30 56.01	10.92 11.98	3.46 3.79 4.31	.50 .54 .61	11547 12663 14386 14679
14303	183	1924	Jackson	6	1 2 3 4	9.61 	35.47 39.24 43.46	46.14 51.04 56.54	8.78 9.72	1.36 1.51 1.67		11789 13042 14446 14623
14304	183	1924	Jackson	6	1 2 3 4	9.67	34.91 38.65 44.09	44.27 49.01 55.91	11.15 12.34	1.89 2.09 2.38	· · · · · · · · · · · · · · · · · · ·	11344 12558 14326 14561

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

h Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull, 193, p. 30, 1922. *Shipping mine abandoned or long idle. †Local or captive mine (those sampled before 1930 largely abandoned).

		And a lot of the lot o										
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
14307	183	1924	Jackson	6	1 2 3 4	9.76 	35.51 39.35 44.29	44.67 49.50 55.71	10.06 11.15	1.68 1.86 2.09	· · · · · · · · · · · ·	11581 12834 14445 14655
14309	183	1924	Jackson	6	1 2 3 4	9.90	35.96 39.91 43.92	45.91 50.95 56.08	8.23 9.14	1.46 1.62 1.78	· · · · · · · · · · · · · · · · · · ·	11859 13162 14486 14658
14310	183	1924	Jackson	6	1 2 3 4	9.85	35.16 39.00 43.99	44.77 49.66 56.01	10.22 11.34	1.71 1.90 2.14	· · · · · · · · · · · · · · · · · · ·	11493 12749 14380 14594
14311	183	1924	Jackson	6	1 2 3 4	9.52	35.99 39.78 44.54	44.82 49.53 55.46	9.67 10.69	2.05 2.27 2.54	· · · · · · · · · · · · · · · · · · ·	11623 12846 14383 14600
14312	183	1924	Jackson	6	1 2 3 4	9.68	35.98 39.84 44.16	45.51 50.38 55.84	8.83 9.78	1.88 2.08 2.31	· · · · · · · · · · · · · · · · · · ·	11768 13029 14441 14638
14313	183	1924	Jackson	6	1 2 3 4	10.34	34.22 38.16 42.78	45.75 51.03 57.21	9.69 10.81	1.03 1.15 1.29		11604 12942 14511 14692
14314	183	1924	Jackson	6	1 2 3 4	9.73	35.06 38.83 43.80	44.98 49.83 56.20	10.23 11.34	1.94 2.15 2.42	· · · · · · · · · · · · · · · · · · ·	11518 12759 14391 14600
14315	183	1924	Jackson	6	$\begin{vmatrix} 1\\ 2\\ 3\\ 4 \end{vmatrix}$	9.38	35.41 39.06 43.08	46.75 51.60 56.91	8.46 9.34	1.66 1.83 2.02	· · · · · · · · · · ·	11788 13009 14349 14529

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

x The form of analysis is denoted by number, as follows: $1 = \text{sample as received at laboratory}; 2 = \text{moisture-free}; 3 = \text{moisture- and ash-free}; 4 = dry mineral-matter-free (unit coal)}.$

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											_	No based of	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO_2	B _. t.u.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14316	183	1924	Jackson	6	1 2 3 4	9.63 	35.68 39.48 43.58	46.19 51.11 56.42	8.50 9.41	1.45 1.60 1.77		11774 13029 14382 14556
14318 183 1924 Jackson 6 1 9.51 34.41 45.74 10.34 2.28 11567 14318 183 1924 Jackson 6 1 9.51 34.41 45.74 10.34 2.28 11567 14319 183 1924 Jackson 6 1 9.63 35.40 46.64 8.33 1.43 14437 14319 183 1924 Jackson 6 1 9.63 35.40 46.64 8.33 1.43 11885 14320 183 1924 Jackson 6 1 8.56 35.88 46.72 8.84 2.55 11827 14320 183 1924 Jackson 6 1 9.75 35.06 45.79 9.40 1.63 114602 14321 183 1924 Jackson 6 1 9.75 35.06 45.79 9.40 1.63 <td>14317</td> <td>183</td> <td>1924</td> <td>Jackson</td> <td>6</td> <td>1 2 3 4</td> <td>9.69 </td> <td>35.74 39.57 44.03</td> <td>45.43 50.31 55.97</td> <td>9.14 10.12</td> <td>2.06 2.28 2.54</td> <td>· · · · · · · · · · ·</td> <td>11750 13011 14476 14686</td>	14317	183	1924	Jackson	6	1 2 3 4	9.69 	35.74 39.57 44.03	45.43 50.31 55.97	9.14 10.12	2.06 2.28 2.54	· · · · · · · · · · ·	11750 13011 14476 14686
143191831924Jackson61 29.6335.4046.648.331.4311888143191831924Jackson61 28.5635.8846.728.842.551.581.443143201831924Jackson61 28.5635.8846.728.842.5511827143211831924Jackson61 29.7535.0645.799.401.6311837143211831924Jackson61 29.7535.0645.799.401.6311587143221831924Jackson61 29.7535.0645.799.401.6314386143231831924Jackson61 29.4135.4645.969.171.6814387143231831924Jackson61 29.4135.4645.969.171.6814387143231831924Jackson61 29.2834.8147.308.611.6411857143231831924Jackson61 29.2834.8147.308.611.6411859143231831924Jackson61 29.2834.8147.308.611.641185914323183<	14318	183	1924	Jackson	6	1 2 3 4	9.51	34.41 38.02 42.93	45.74 50.55 57.07	10.34 11.43	2.28 2.52 2.85	· · · · · · · · · · · · ·	11567 12783 14433 14671
14320 183 1924 Jackson 6 1 8.56 35.88 46.72 8.84 2.55 11827 14321 183 1924 Jackson 6 1 9.75 35.06 45.79 9.40 1.63 14326 14321 183 1924 Jackson 6 1 9.75 35.06 45.79 9.40 1.63 11887 14322 183 1924 Jackson 6 1 9.75 35.06 45.79 9.40 1.63 11580 14322 183 1924 Jackson 6 1 9.41 35.46 45.96 9.17 1.68 11757 14322 183 1924 Jackson 6 1 9.41 35.46 45.96 9.17 1.68 12978 14323 183 1924 Jackson 6 1 9.48 34.81 47.30 8.61 </td <td>14319</td> <td>183</td> <td>1924</td> <td>Jackson</td> <td>6</td> <td>1 2 3 4</td> <td>9.63</td> <td>35.40 39.17 43.15</td> <td>46.64 51.61 56.85</td> <td>8.33 9.22</td> <td>1.43 1.58 1.74</td> <td></td> <td>11885 13151 14486 14659</td>	14319	183	1924	Jackson	6	1 2 3 4	9.63	35.40 39.17 43.15	46.64 51.61 56.85	8.33 9.22	1.43 1.58 1.74		11885 13151 14486 14659
14321 183 1924 Jackson 6 1 9.75 35.06 45.79 9.40 1.63 1158 14321 183 1924 Jackson 6 1 9.75 35.06 45.79 9.40 1.63 1158 14322 183 1924 Jackson 6 1 9.41 35.46 45.96 9.17 1.68 14382 14322 183 1924 Jackson 6 1 9.41 35.46 45.96 9.17 1.68 11757 14323 183 1924 Jackson 6 1 9.41 35.46 45.96 9.17 1.68 11757 3 43.55 56.45 2.07 14439 14323 183 1924 Jackson 6 1 9.28 34.81 47.30 8.61 1.64 11859 14323 183 1924 Jackson	14320	183	1924	Jackson	6	1 2 3 4	8.56	35.88 39.24 43.45	46.72 51.05 56.54	8.84 9.71	2.55 2.79 3.09	· · · · · · · · · ·	11827 12989 14386 14605
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14321	183	1924	Jackson	6	1 2 3 4	9.75	35.06 38.85 43.38	45.79 50.70 56.62	9.40 10.45	1.63 1.81 2.02	· · · · · · · · · · · · · · · · · · ·	11587 12879 14382 14580
14323 183 1924 Jackson 6 1 9.28 34.81 47.30 8.61 1.64 11859 2 38.37 52.14 9.49 1.81 13072 3 42.39 57.61 2.00 14442 14620	14322	183	1924	Jackson	6	1 2 3 4	9.41	35.46 39.14 43.55	45.96 50.74 56.45	9.17 10.12	1.68 1.86 2.07	· · · · · · · · ·	11757 12978 14439 14634
	14323	183	1924	Jackson	6	1 2 3 4	9.28	34.81 38.37 42.39	47.30 52.14 57.61	8.61 9.49	1.64 1.81 2.00	· · · · · · · · · · · ·	11859 13072 14442 14626

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

		and the second second second										
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
14324	183	1924	Jackson	6	1 2 3 4	9.97	34.41 38.22 43.70	44.32 49.23 56.30	11.30 12.55	2.02 2.25 2.57	· · · · · · · · · · · · · · · · · · ·	11319 12573 14377 14624
14325	183	1924	Jackson	6	1 2 3 4	10.52	34.76 38.85 43.57	45.02 50.31 56.43	9.70 10.84	1.99 2.23 2.50	 . <i>, .</i>	11576 12938 14511 14732
14326	183	1924	Jackson	6	1 2 3 4	9.61	33.70 37.29 41.25	48.01 53.12 58.75	8.68 9.59	1.57 1.74 1.92	· · · · · · · · · · · · · · · · · · ·	11708 12953 14327 14507
14338	183	1924	Jackson	6	1 2 3 4	10.77	35.34 39.60 43.36	46.15 51.72 56.64	7.74 8.68	1.28 1.44 1.58	· · · · · · · · · · · ·	11816 13242 14501 14660
14339	183	1924	Jackson	6	1 2 3 4	10.54 	35.52 39.70 44.17	44.89 50.18 55.83	9.05 10.12	1.79 2.00 2.22	· · · · · · · · · · ·	11662 13036 14504 14700
14340	183	1924	Jackson	6	1 2 3 4	10.99	34.09 38.30 43.80	43.74 49.14 56.20	11.18 12.56	1.61 1.81 2.07	· · · · · · · · · · · · · · · · · · ·	11214 12599 14409 14640
14341	183	1924	Jackson	6	1 2 3 4	9.94	34.72 38.55 42.44	47.08 52.28 57.56	8.26 9.17	1.43 1.59 1.75	· · · · · · · · · · · · · · · · · · ·	11757 13055 14373 14543
14342	183	1924	Jackson	6	1 2 3 4	10 .26	34.45 38.38 42.46	46.67 52.01 57.54	8.62 9.61	1.53 1.71 1.89	· · · · · · · · · · · · · · · · · · ·	11622 12951 14328 14508

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ash-free; 4 = dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
14343	183	1924	Jackson	6	1 2 3 4	11.58 	33.19 37.54 42.24	45.39 51.33 57.76	9.84 11.13	1.14 1.29 1.45	· · · · · · · · · · · · · · · · · · ·	11330 12814 14419 14609
14344	183	1924	Jackson	6	1 2 3 4	10.59 	33.74 37.74 42.37	45.91 51.34 57.63	9.76 10.92	1.12 1.25 1.40		11469 12827 14399 14585
A90723	419	1933	Jackson	6	1 2 3 4	10.8 	32.8 36.7 41.5	46.1 51.8 58.5	10.3 11.5	2.2 2.5	.35 .40 	11370 12750 14410 14645
A90724	419	1933	Jackson	6	1 2 3 4	7.8	36.1 39.2 43.8	46.3 50.2 56.2	9.8 10.6	2.7 2.9 3.2	.54 .58 	11950 12960 14490 14737
BMA17498	¹ BM 63	1925	Jefferson	6	1 2 3 4	8.6	35.1 38.4 42.4	47.7 52.2 57.6	8.6 9.4	1.3 1.5 1.6	· · · · · · · · · · · ·	12030 13160 14520 14698
BMA17499	ⁱ BM 63	1925	Jefferson	6	1 2 3 4	9.0	33.1 36.4 40.3	49.0 53.9 59.7	8.9 9.7 	1.3 1.4 1.6	 	11890 13060 14470 14636
5086	66	1912	Macoupin	6	1 2 3 4	14.29 	39.09 45.60 51.22	37.21 43.42 48.78	9.41 10.98	4.13 4.82 5.41	.32 .37 .42	10635 12408 13938 14232
5087	66	1912	Macoupin	6	1 2 3 4	13.77	38.69 44.86 51.28	36.74 42.62 48.72	10.80 12.52	4.37 5.07 5.80	.62 .71 .81	10493 12169 13911 14236

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

i U. S. Bureau of Mines, Unpublished analyses.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
5088	66	1912	Macoupin	6	1 2 3 4	14.73 	38.33 44.95 50.71	37.24 43.69 49.29	9.70 11.36	4.50 5.28 5.96	.30 .35 .39	10522 12339 13920 14235
5100	*67	1912	Macoupin	6	1 2 3 4	15.12	38.28 45.09 51.15	36.55 43.06 48.85	10.05 11.85	3.85 4.54 5.15	.31 .37 .42	10610 12501 14181 14490
5101	*67	1912	Macoupin	6	1 2 3 4	14.90	37.75 44.35 49.55	38.43 45.16 50.45	8.92 10.49	3.67 4.31 4.82	.45 .53 .59	10735 12614 14092 14367
5102	*67	1912	Macoupin	6	1 2 3 4	14.67 	35.49 41.59 47.76	38.83 45.50 52.24	11.01 12.91	4.15 4.86 5.58	.22 .26 .30	10433 12227 14039 14372
5112	68	1912	Macoupin	6	1 2 3 4	12.11	40.32 45.88 50.75	39.14 44.52 49.25	8.43 9.60	4.39 5.00 5.53	.38 .43 .48	11170 12705 14054 14335
5113	68	1912	Macoupin	6	1 2 3 4	13.27	38.58 44.48 50.28	38.15 43.99 49.72	10.00 11.53	4.89 5.64 6.37	. 27 . 31 . 35	10790 12442 14064 14398
5114	68	1912	Macoupin	6	1 2 3 4	13.23 	38.85 44.77 49.96	38.91 44.84 50.04	9.01 10.39	4.39 5.06 5.65	.28 .32 .36	10935 12601 14062 14359
5097	*69	1912	Macoupin	6	1 2 3 4	14.73 	36.26 42.53 50.11	36.11 42.34 49.89	12.90 15.13	4.62 5.42 6.39	.28 .33 .39	10099 11843 13954 14342

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
5098	*69	1912	Macoupin	6	1 2 3 4	13.68	38.02 44.05 50.20	37.72 [.] 43.70 49.80	10.58 12.25	4.43 5.12 5.83	.21 .25 .28	10618 12300 14017 14346
5099	*69	1912	Macoupin	6	1 2 3 4	14.19 	37.92 44.19 50.60	37.03 43.15 49.40	10.86 12.66	4.21 4.91 5.62	.39 .45 .52	10599 12351 14141 14476
BM81323	*185	1921	Macoupin	6	1 2 3 4	13.32	37.97 43.80 46.79	39.84 45.97 51.21	8.87 10.23	3.40 3.92 4.37	.31 .36 	10893 12567 13999 14253
BM81324	*185	1921	Macoupin	6	1 2 3 4	12.41	37.96 43.34 48.71	39.98 45.64 51.29	9.65 11.02	3.57 4.08 4.59	.29 .33 	10889 12432 13972 14243
BM81325	*185	1921	Macoupin	6	1 2 3 4	9.84 	42.13 46.73 51.61	39.51 43.82 48.39	8.52 9.45	3.51 3.89 4.30	. 24 . 27 	11426 12675 13996 14238
BM81327	186	1921	Macoupin	6	1 2 3 4	11.18 	37.54 42.27 48.30	40.19 45.24 51.70	11.09 12.49	3.65 4.11 4.70	1.00 1.13	10841 12206 13948 14244
BM81328	186	1921	Macoupin	6	1 2 3 4	9.01 	39.20 43.08 48.62	41.42 45.52 51.38	10.37 11.40	4.32 4.75 5.36	.58 .64 	11193 12301 13884 14180
BM81329	186	1921	Macoupin	6	1 2 3 4	13.17 	36.72 42.29 47.81	40.09 46.17 52.19	10.02 11.54	4.04 4.65 5.26	.40 .46	10685 12306 13911 14207

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
BM81332	*187	1921	Macoupin	6	1 2 3 4	13.30	37.46 43.21 49.20	38.68 44.61 50.80	10.56 12.18	$4.23 \\ 4.88 \\ 5.56 \\ \dots \dots$.36 .42 	10621 12250 13949 14265
BM81333	*187	· 1921	Macoupin	6	1 2 3 4	13.52	36.25 41.92 48.37	38.70 44.75 51.63	11.53 13.33	4.38 5.06 5.84	.63 .73	10471 12108 13970 14314
BM81334	*187	1921	Macoupin	6	1 2 3 4	13.86	36.52 42.40 48.29	39.11 45.40 51.71	10.51 12.20	3.97 4.61 5.25	.22 26	10554 12252 13954 14262
BM81085	188	.1921	Macoupin	6	1 2 3 4	12.30	*38.69 44.12 48.51	41.07 46.83 51.49	7.94 9.05	3.62 4.13 4.54	.15 .17 	11080 12634 13891 14129
BM81086	188	1921	Macoupin	6	1 2 3 4	11.39 	39.03 44.05 49.09	40.49 45.69 50.91	9.09 10.26	4.57 5.16 5.75	.17 .19 	11037 12456 13880 14170
BM81087	188	1921	Macoupin	6	1 2 3 4	12.24	38.25 43.58 48.11	41.24 47.00 51.89	8.27 9.42	3.61 4.11 4.54	.11 .13	11066 12609 13920 14165
BM81016	189	1921	Macoupin	6	1 2 3 4	12.74 	36.09 41.36 45.77	42.77 49.01 54.23	8.40 9.63	3.73 4.27 4.73	.15 .17	10948 12546 13883 14134
BM81017	189	1921	Macoupin	6	1 2 3 4	15.67	33.57 39.81 44.71	41.53 49.24 55.29	9.23 10.95	3.56 4.22 4.74	.10 .12 	10379 12308 13822 14090
		i i		1	1	1		1	ł	1	1	

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

oratory o.	e Index o.		nty	bed	dition	sture	utile latter	d arbon		ur		ч.
Lab	Min	Dat	Cou	Coa	Con	Moi	Vola M	Fixe C	Ash	Sulf	CO2	B.t.
BM81018	189	1921	Macoupin	6	1 2 3 4	13.40	35.71 41.24 46.06	41.83 48.30 53.94	9.06 10.46	4.06 4.69 5.24	.10 .12	10711 12368 13813 14088
BM81020	*190	1921	Macoupin	6	1 2 3 4	13.92 	34.44 40.01 44.48	43.00 49.95 55.52	8.64 10.04	3.79 4.40 4.89	. 17 . 20 	10814 12563 13965 14230
BM81021	*190	1921	Macoupin	6	1 2 3 4	13.26 	34.81 40.13 45.15	42.29 48.76 54.85	9.64 11.11	3.90 4.50 5.06	.07 .08	10773 12420 13972 14259
BM81022	*190	1921	Macoupin	6	1 2 3 4	15.16	33.46 39.44 44.36	41.97 49.47 55.64	9.41 11.09 	3.21 3.78 4.25	.22 .26 	10540 12423 13973 14235
A87363	534	1933	Macoupin	6	1 2 3 4	13.0 	35.4 40.7 47.1	39.9 45.8 52.9	11.7 13.5 	4.1 4.7 5.4		10600 12180 14080 14420
A87364	534	1933	Macoupin	6	1 2 3 4	14.9 	34.2 40.2 44.8	42.0 49.4 55.2	8.9 10.4	4.2 5.0 5.5	· · · · · · · · · · · · · · · · · · ·	10690 12550 14010 14300
A87365	534 ,	1933	Macoupin	6	1 2 3 4	14.2 	35.5 41.4 46.9	40.2 46.8 53.1	10.1 11.8	$4.6 \\ 5.4 \\ 6.1 $	· · · · · · · · · · · · · · · · · · ·	10630 12390 14050 14380
BM18545	^{<i>j</i>} BM 31	1914	Macoupin	6	1 2 3 4	12.90 	37.80 43.40 48.73	39.77 45.66 51.27	9.53 10.94	$4.23 \\ 4.86 \\ 5.46 \\ \dots$	· · · · · · · · · · · · · · · · · · ·	10852 12459 13989 14286

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

j Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines, Bull. 123, p. 34, 1918. *Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
BM18546	^{<i>j</i>} BM 31	1914	Macoupin.	6	1 2 3 4	14.16 	35.53 41.39 46.91	40.21 46.84 53.09	10.10 11.77	3.70 4.31 4.88	· · · · · · · · · · · ·	10615 12366 14016 14309
5515	*70	1912	Madison	6	1 2 3 4	13 .88	37.60 43.65 49.90	37.74 43.82 50.10	10.78 12.53	4.21 4.89 5.59	.53 .61 .70	10551 12250 14005 14330
5517	*70	1912	Madison	6	1 2 3 4	12.44 	39.10 44.65 50.57	38.20 43.64 49.43	10.26 11.71	5.23 6.03 6.83	.64 .73 .83	10818 12354 13993 14343
5518	*70	1912	Madison	6	1 2 3 4	12.11	39.32 44.74 52.02	36.27 41.26 47.98	12.30 14.00	4.92 5.60 6.51	.47 .53 .62	10615 12076 14042 14421
5070	71	1912	Madison	6	1 2 3 4	12.99	37.73 43.36 50.56	36.89 42.40 49.44	12.39 14.24	4.43 5.09 5.93	.72 .82 .96	10499 12067 14069 14437
5071	71	1912	Madison	6	1 2 3 4	12.14	41.13 46.82 51.99	38.00 43.24 48.01	8.73 9.94	3.52 4.00 4.44	.41 .47 .53	11206 12759 14167 14426
5072	71	1912	Madison	6	1 2 3 4	12.42	39.82 45.46 51.39	37.65 43.00 48.61	10.11 11.54	4.35 4.96 5.61	. 72 . 80 . 90	10909 12457 14082 14396
5067	72	1912	Madison	6	1 2 3 4	13.08	38.03 43.75 50.64	37.07 42.65 49.36	11.82 13.60	5.22 6.01 6.96	.25 .28 .32	10543 12129 14038 14423

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

j Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines, Bull 123, p. 34, **1918**. *Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

	I AD		INDIVIDUAL I K	JA11.	INIE	ANALIC	ES OF FA	CE SAMP.	LE3-00	iinuea		
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
5068	72	1912	Madison	6	1 2 3 4	13.53	37.26 43.09 47.62	40.98 47.39 52.38	8.23 9.52	3.81 4.40 4.86	.30 .35 .39	10903 12608 13935 14190
5069	72	1912	Madison	6	1 2 3 4	14.86	37.32 43.84 49.05	38.76 45.53 50.95	9.06 10.63	$3.73 \\ 4.37 \\ 4.89 \\ \dots \dots$. 20 . 23 . 26	10717 12587 14084 14363
5075	73	1912	Madison	6	1 2 3 4	14.65	39.08 45.80 50.69	38.03 44.55 49.31	8.24 9.65	3.59 4.20 4.65	.29 .34 .38	10865 12730 14090 14347
5076	73	1912	Madison	6	1 2 3 4	14.31	38.35 44.75 50.02	38.32 44.72 49.98	9.02 10.53	3.77 4.40 4.92	.31 .37 .41	10739 12532 14007 14283
5078	73	1912	Madison	6	1 2 3 4	15.18	38.40 45.27 50.06	38.30 45.16 49.94	8.12 9.57	3.94 4.64 5.13	. 23 . 27 . 30	10751 12675 14014 14284
BM80942	*191	1921	Madison	6	1 2 3 4	13.16	37.50 43.18 49.91	37.63 43.34 50.09	11.71 13.48	4.52 5.20 6.01	.45 .52 	10556 12156 14050 14405
BM80943	*191	1921	Madison	6	1 2 3 4	13.76 	39.10 45.34 51.12	37.39 43.35 48.88	9.75 11.31	2.89 3.35 3.78	.75 .87	10805 12529 14127 14383
BM80944	*191	1921	Madison	6	1 2 3 4	12.01 	38.41 43.65 49.97	38.46 43.71 50.03	11.12 12.64	3.68 4.18 4.78	.33 .38	10763 12232 14002 14305
								1				

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

the second se												
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
BM80862	192	1921	Madison	6	1 2 3 4	11.71 	37.44 42.41 48.00	40.57 45.95 52.00	10.28 11.64	4.32 4.89 5.53	.38 .43 	10936 12386 14018 14328
BM80863	192	1921	Madison	6	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} $	11.19 	38.00 42.79 48.20	40.84 45.98 51.80	9.97 11.23	4.12 4.64 5.23	.47 .53 	11066 12460 14036 14332
BM80864	192	1921	Madison	6	1 2 3 4	12.02	35.62 40.49 46.02	41.79 47.50 53.98	10.57 12.01	$3.69 \\ 4.19 \\ 4.76 \\ \dots \dots$.48 .55 	10888 12376 14065 14360
BM10956	^{<i>k</i>} BM 40	1910	Madison	6	1 2 3 4	12.94 	35.76 41.07 46.02	41.92 48.16 53.98	9.38 10.77	3.65 4.19 4.70	· · · · · · · · · · · · · · · · · · ·	10973 12604 14123 14402
BM10957	^{<i>k</i>} BM 40	1910	Madison	6	1 2 3 4	12.31	37.57 42.84 47.76	41.09 46.86 52.24	9.03 10.30	3.58 4.08 4.55	· · · · · · · · · · · · · · · · · · ·	11115 12676 14130 14397
BM10958	^k BM 40	1910	Madison	6	1 2 3 4	12.81	36.31 41.64 46.75	41.35 47.43 53.25	9.53 10.93	3.28 3.76 4.22	· · · · · · · · · · · · · · · · · · ·	11023 12641 14193 14459
5039	87	1912	Marion	6	1 2 3 4	10.06	37.96 42.21 48.02	41.09 45.69 51.98	10.89 12.10	3.92 4.35 4.94	.59 .66 .75	11289 12552 14280 14589
5041	87	1912	Marion	6	1 2 3 4	10.35 	36.04 40.20 45.71	42.81 47.75 54.29	10.80 12.05	4.10 4.57 5.20	.25 .28 .32	11227 12522 14238 14553

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

k Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines, Bull. 85, p. 36, 1914. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
5044	87	1912	Marion	6	1 2 3 4	10.96	36.54 41.04 47.32	40.68 45.69 52.68	11.82 13.27	4.00 4.52 5.21	.43 .48 .55	11002 12356 14246 14583
BM80737	206	1921	Marion	6	1 2 3 4	9.11	36.82 40.51 46.82	41.83 46.02 53.18	12.24 13.47	4.53 4.98 5.76	.32 .35	11119 12233 14137 14489
BM80738	206	1921	Marion	6	1 2 3 4	9.05	37.00 40.68 46.96	41.78 45.94 53.04	12.17 13.38	4.93 5.42 6.26	.15 .16 	11143 12252 14145 14510
BM80739	206	1921	Marion	6	1 2 3 4	9.19	36.99 40.73 46.86	41.94 46.19 53.14	11.88 13.08	3.39 3.73 4.29	.74 .81 	11243 12381 14244 14548
BM80740	206	1921	Marion	6	1 2 3 4	11.32 	35.62 40.17 45.80	42.16 47.54 54.20	10.90 12.29	3.98 4.49 5.12	.10 .11 	11056 12467 14214 14530
BM80741	206	1921	Marion	6	1 2 3 4	11.36 	35.35 39.88 45.12	42.99 48.50 54.88	10.30 11.62	4.03 4.55 5.15	.15 .17	11137 12564 14216 14522
BM80742	206	1921	Marion	6	1 2 3 4	9.59	36.93 40.85 46.40	42.67 47.19 53.60	10.81 11.96 	3.51 3.88 4.41	.44 .49 	11311 12511 14211 14499
BM80695	207	1921	Marion	6	1 2 3 4	9.87 	35.92 39.85 44.71	44.41 49.28 55.29	9.80 10.87	3.65 4.05 4.54	.16 .18 	11494 12753 14308 14588

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

	TABL	е 1.—I	NDIVIDUAL PRO	XIM	ATE	ANALYSI	S OF FAC	E SAMPL	es—Con	tinued		
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO_2	B.t.u.
BM80696	207	1921	Marion	6	1 2 .3 4	10.63	37.26 41.69 46.99	42.04 47.04 53.01	10.07 11.27	2.87 3.21 3.62	.39 .44	11259 12598 14198 14452
BM80697	207	1921	Marion	6	1 2 3 4	10.74	36.97 41.42 47.74	40.48 45.35 52.26	11.81 13.23	3.31 3.71 4.28	.76 .85	11048 12377 14264 14571
5105	76	1912	Montgomery	6	1 2 3 4	14.15	36.96 43.05 49.18	38.19 44.48 50.82	10.70 12.47	3.43 4.00 4.57	.91 1.06 1.21	10547 12285 14035 14329
5106	76	1912	Montgomery	6	1 2 3 4	13.83	36.95 42.88 48.51	39.22 45.51 51.49	10.00 11.61	3.72 4.32 4.89	.91 1.05 1.19	10728 12453 14089 14382
5107	76	1912	Montgomery	6	1 2 3 4	13.70	37.25 43.17 49.56	37.93 43.94 50.44	11.12 12.89 	4.39 5.08 5.83	1.04 1.20 1.38	10444 12102 13893 14225
BM81101	194	1921	Montgomery	, 6	1 2 3 4	12.84	37.08 42.54 47.75	40.56 46.54 52.25	9.52 10.92	3.58 4.11 4.61	.71 .81 	10894 12499 14031 14304
BM81102	194	1921	Montgomery	6	1 2 3 4	13.28	36.02 41.54 47.04	40.55 46.76 52.96	10.15 11.70	4.15 4.79 5.42	.64 .74	10671 12305 13935 14240
BM81103	194	1921	Montgomery	6	1 2 3 4	13.46	35.80 41.37 46.40	41.36 47.79 53.60	9.38 10.84	4.48 5.18 5.81	.13 .16	10774 12450 13964 14268

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BMA87367	194	1933	Montgomery	. 6	1 2 3 4	11.4 	38.5 43.4 48.9	40.0 45.3 51.1	10.1 11.3	4.0 4.5 5.1	· · · · · · · · · · · · · · · · · · ·	11180 12611 14231 14517
BMA87368	194	1933	Montgomery	6	1 2 3 4	12.8	35.6 40.9 46.7	40.7 46.6 53.3	10.9 12.5	4.0 4.6 5.3	· · · · · · · · · · · ·	10810 12390 14160 14481
BMA87369	194	1933	Montgomery	6	1 2 3 4	13.5	33.9 39.2 45.9	40.2 46.4 54.1	12.4 14.4	4.0 4.6 5.4		10490 12130 14170 14527
BM81093	*195	1921	Montgomery	6	1 2 3 4	12.65	36.14 41.37 46.51	41.55 47.57 53.49	9.66 11.06	3.87 4.43 4.98	. 50 . 57 	10793 12356 13892 14173
BM81094	*195	1921	Montgomery	6	1 2 3 4	11.66 	37.25 42.17 47.42	41.31 46.76 52.58	9.78 11.07	3.69 4.18 4.70	.69 .78 	11053 12512 14069 14348
BM81095	*195	1921	Montgomery	6	1 2 3 4	14.32	34.82 40.64 45.35	41.97 48.98 54.65	8.89 10.38	3.94 4.60 5.13	.16 .19 	10687 12473 13918 14193
BM81089	*196	1921	Montgomery	6	1 2 3 4	11.38	37.05 41.81 47.48	40.98 46.24 52.52	10.59 11.95	4.26 4.81 5.46	.96 1.08	10832 12223 13882 14189
BM81090	*196	1921	Montgomery	6	1 2 3 4	12.53	36.21 41.40 47.30	40.35 46.13 52.70	10.91 12.47	4.61 5.27 6.02	.85 .97 	10705 12258 13982 14342

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
BM81091	*196	1921	Montgomery	6	1 2 3 4	12.47 	37.13 42.42 47.80	40.54 46.32 52.20	9.86 11.26	4.41 5.04 5.68	.40 .46 	10861 12408 13982 14290
BM81097	*197	1921	Montgomery	6	1 2 3 4	14.97	34.87 41.01 45.48	$\begin{array}{c} 41.80 \\ 49.16 \\ 54.52 \\ \dots \dots \end{array}$	8.36 9.83	3.41 4.01 4.45	.44 .52 	10697 12580 13951 14200
BM81098	*197	1921	Montgomery	6	1 2 3 4	14.49 	34.60 40.46 44.90	42.45 49.65 55.10	8.46 9.89	3.83 4.48 4.97	.36 .42 	10643 12446 13812 14072
BM81099	*197		Montgomery	6	$\begin{vmatrix} 1 \\ 2 \\ 3 \\ 4 \end{vmatrix}$	14.69 	34.56 40.51 45.65	41.14 48.23 54.35	9.61 11.26	4.32 5.06 5.70	.47 .55 	10425 12220 13771 14069
BM21901	^{<i>i</i>} BM *45	1915	Montgomery	6	1 2 3 4	14.87 	33.42 39.26 45.09	40.70 47.81 54.91	11.01 12.93	3.26 3.83 4.40	· · · · · · · · · ·	10478 12308 14136 14436
BM21902	¹ BM *45	1915	Montgomery	6	1 2 3 4	12.70 	35.52 40.69 46.93	40.16 46.00 53.07	11.62 13.31	4.15 4.75 5.48	· · · · · · · · · · · · · · · · · · ·	10669 12221 14097 14436
BM21903	¹ BM *45	1915	Montgomery	6	1 2 3 4	13.04	34.06 39.17 46.25	39.58 45.51 53.75	13.32 15.32	4.84 5.57 6.57	· · · · · · · · · · · · · · · · · · ·	10301 11846 13989 14389
BM21904	¹ BM *45	1915	Montgomery	6	$\begin{vmatrix} 1\\2\\3\\4 \end{vmatrix}$	13.43	35.06 40.50 46.12	40.96 47.31 53.88	10.55 12.19	3.82 4.41 5.02	· · · · · · · · · · · · · · · · · · ·	10732 12397 14118 14426
		1	1	1	1	1	1	1	1	I	1	l

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

l Fieldner, A. C., and others, U. S. Bureau of Mines, Bull. 123, p. 35, 1918.

*Shipping mine abandoned or long idle. **x** The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile • Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM21905	^{<i>i</i>} BM *45	1915	Montgomery	6	1 2 3 4	13.31	34.86 40.21 46.31	40.42 46.63 53.69	11.41 13.16 	4.02 4.64 5.34	· · · · · · · · · · · · · · · · · · ·	10620 12251 14107 14440
5254	*336	1912	Moultrie	6	1 2 3 4	7.07	39.02 41.99 47.57	43.01 46.28 52.43	10.90 11.73	3.69 3.97 4.50	.36 .39 .45	11912 12819 14522 14822
5255	*336	1912	Moultrie	6	1 2 3 4	7.18	38.09 41.03 47.92	41.38 44.59 52.08	13.35 14.38	5.18 5.58 6.52	.46 .49 .57	11573 12468 14562 14973
5256	*336	1912	Moultrie	6	1 2 3 4	6.24	40.34 43.03 48.67	42.55 45.38 51.33	10.87 11.59	3.18 3.39 3.83	.89 .95 1.07	12149 12957 14656 14935
5048	*88	1912	Perry ^m (W).	6	1 2 3 4	9.37	36.87 40.68 47.31	41.05 45.30 52.69	12.71 14.02	4.62 4.83 5.62	.43 .47 .55	10936 12067 14035 14386
5049	*88	1912	Perry (W)	6	1 2 3 4	9.34	37.97 41.88 47.88	41.32 45.58 52.12	11.37 12.54	3.16 3.48 3.98	1.42 1.56 1.78	11099 12243 13998 14276
5050	*88	1912	Perry (W)	6	1 2 3 4	10.11 	36.44 40.54 46.78	41.45 46.12 53.22	12.00 13.34	3.59 3.99 4.60	.75 .81 .93	10915 12141 14010 14319
5514	*89	1912	Perry (W)	6	1 2 3 4	12.43	35.55 40.59 45.34	42.86 48.94 54.66	9.16 10.47	4.80 5.48 6.12	.21 .25 .28	11063 12632 14109 14422
	1		1		1							

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

l Fieldner, A. C., and others, U. S. Bureau of Mines, Bull. 123, p. 35, 1918.

m Perry County, west of Duquoin anticline. *Shipping mine abandoned or long idle.

	1 1100	<u> </u>							20 000			
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	C ₀₂	B.t.u.
5519	*89	1912	Perry (W)	6	1 2 3 4	12.76 	36.46 41.79 45.86	43.04 49.34 54.14	7.74 8.87	1.66 1.90 2.08	. 15 . 17 . 19	11357 13018 14285 14458
5520	*89	1912	Perry (W)	6	1 2 3 4	12.17 	36.42 41.46 46.20	42.41 48.28 53.80	9.00 10.26	1.96 2.23 2.48	.46 .52 .58	11200 12753 14211 14414
5034	90	1912	Perry (W)	6	1 2 3 4	10.60 	37.03 41.42 46.66	42.32 47.35 53.34	10.05 11.23	3.73 4.17 4.70	.62 .70 .79	11175 12500 14081 14363
5037	90	1912	Perry (W)	6	1 2 3 4	11.20 	37.29 42.00 47.90	40.57 45.69 52.10	10.94 12.31	3.20 3.60 4.11	.34 .39 .44	10911 12287 14012 14288
5038	90	1912	Perry (W)	6.	1 2 3 4	10.60	35.99 40.25 45.53	43.05 48.16 54.47	10.36 11.59	4.18 4.67 5.28	.47 .53 .60	11012 12317 13932 14230
5040	90	1912	Perry (W)	6	1 2 3 4	11.60	37.03 41.89 46.75	42.17 47.71 53.25	9.20 10.40	3.84 4.34 4.84	.38 .43 .48	11107 12570 14029 14301
5042	90	1912	Perry (W)	6	1 2 3 4	10.82	37.83 42.42 47.67	41.52 46.56 52.33	9.83 11.02	2.98 3.34 3.75	.76 .85 .96	11210 12570 14127 14378
5043	90	1912	Perry (W)	6	1 2 3 4	10.89	36.81 41.29 47.16	41.23 46.27 52.84	11.07 12.44	3.71 4.16 4.75	.55 .62 .71	10826 12277 14021 14319

-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued TADLE 1

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

												- multiourius
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
°BM14175	90	1912	Perry (W).	6	1 2 3 4	10.31	36.51 40.71 45.86	43.12 48.07 54.14	10.06 11.22	3.38 3.77 4.25	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·
°BM14176	90	1912	Perry (W).	6	1 2 3 4	10.47	35.74 39.92 45.48	42.84 47.85 54.52	10.95 12.23	4.04 4.51 5.14	· · · · · · · · ·	
°BM14177	90	1912	Perry (W)	6	1 2 3 4	10.87	36.19 40.61 46.36	41.89 46.99 53.64	11.05 12.40	3.01 3.38 3.86	· · · · · · · · · · ·	· · · · · · · · ·
°BM14179	90	1912	Perry (W)	6	1 2 3 4	11.04	36.48 41.01 45.96	42.91 48.23 54.04	9.57 10.76	3.74 4.20 4.71	· · · · · · · · · ·	· · · · · · · ·
°BM14180	90	1912	Perry (W)	6	1 2 3 4	10 .56	36.15 40.42 45.95	42.52 47.54 54.05	10.77 12.04	3.34 3.73 4.24	· · · · · · · · · · · ·	
°BM14181	90	1912	Perry (W)	6	1 2 3 4	10.32 	37.52 41.84 46.95	42.39 47.27 53.05	9.77 10.89	2.84 3.17 3.56		
12596	175	1921	Perry (W)	6	1 2 3 4	10.11 	35.92 39.96 45.19	43.55 48.45 54.81	10.42 11.59	3.62 4.03 4.56	.56 .62 .70	11161 12422 14050 14332
12597	175	1921	Perry (W)	6	1 2 3 4	10. 16	35.53 39.55 44.21	44.84 49.91 55.79	9.47 10.54	3.46 3.85 4.31	.11 .12 .13	11368 12654 14145 14406

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

°Duplicate samples analyzed by U. S. Bureau of Mines Experiment Station and University of Illinois.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
12598	175	1921	Perry (W)	6	1 2 3 4	10.16 	35.49 39.50 45.28	42.89 47.74 54.72	11.46 12.76	3.92 4.36 5.00	.42 .47 .54	11041 12290 14099 14402
12574	176	1921	Perry (W)	6	1 2 3 4	9.26	39.03 43.01 47.98	42.31 46.63 52.02	9.40 10.36	3.38 3.73 4.16	.30 .33 .37	11449 12617 14075 14328
12575	176	1921	Perry (W)	6	1 2 3 4	9.52	36.11 39.91 45.14	43.88 48.50 54.86	10.49 11.59	3.47 3.84 4.35	.35 .39 .44	11330 12522 14164 14443
12576	176	1921	Perry (W)	6	1 2 3 4	10.01	36.39 40.44 45.27	43.99 48.88 54.73	9.61 10.68	3.87 4.28 4.79	.84 .84 .94	11313 12572 14075 14351
12577	176	1921	Perry (W)	6	1 2 3 4	10.61	$36.25 \\ 40.55 \\ 45.46 \\ \dots$	43.49 48.65 54.54	9.65 10.80	3.40 3.68 4.13	.50 .56 .63	11125 12445 13951 14205
12578	176	1921	Perry (W)	6	1 2 3 4	10.14	35.55 39.56 45.22	43.07 47.93 54.78	11.24 12.51	3.49 3.89 4.45	.40 .45 .51	10979 12218 13965 14254
12579	176	1921	Perry (W)	6	1 2 3 4	11.52	34.89 39.43 44.69	43.18 48.80 55.31	10.41 11.77	2.99 3.38 3.83	.51 .58 .66	10887 12305 13946 14205
12620	178	1921	Perry (W)	6	1 2 3 4	9.29 	35.59 39.24 45.40	42.81 47.19 54.60	12.31 13.57 	3.31 3.65 4.22	.32 .34 .39	11019 12148 14055 14358

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

.

und and and rect, 1-ary milleral matter-free (unit
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
12621	178	1921	Perry (W)	6	1 2 3 4	10.19 	34.23 38.12 45.13	$ \begin{array}{c} 41.62 \\ 46.34 \\ 54.87 \\ \dots \\ \end{array} $	13.96 15.54	5.43 6.05 7.16	.37 .40 .47	10486 11676 13824 14237
12622	178	1921	Perry (W) ^m .	6	1 2 3 4	9.84 	35.15 38.98 44.88	43.16 47.87 55.12	11.85 13.15	3.54 3.93 4.53	.28 .30 .35	10942 12137 13975 14277
12664	*179	1921	Perry (W)	6	1 2 3 4	8.79	36.91 40.47 46.01	43.31 47.48 53.99	10.99 12.05	3.43 3.7,6 4.28	.19 .21 .24	11300 12389 14086 14368
12665	*179	1921	Perry (W)	6	1 2 3 4	8.88	37.82 41.51 46.96	42.73 46.89 53.04	10.57 11.60	3.38 3.71 4.20	.06 .06 .07	11290 12390 14016 14287
12592	182	1921	Perry (W)	6	1 2 3 4	9.06 	36.59 40.24 45.90	43.13 47.43 54.10	11.22 12.33	3.73 4.10 4.68	.37 .41 .47	11126 12235 13956 14249
12593	182	1921	Perry (W)	6	1 2 3 4	9.00	35.80 39.34 44.85	44.03 48.39 55.15	11.17 12.27	3.86 4.24 4.83	.46 .51 .58	11097 12195 13901 14194
12594	182	1921	Perry (W)	6	1 2 3 4	9.21	35.02 38.57 44.00	44.58 49.10 56.00	11.19 12.33	3.55 3.91 4.46	.40 .44 .50	11194 12327 14061 14350
12588	*184	1921	Perry (W)	6	1 2 3 4	8.13	38.22 41.60 47.28	42.61 46.38 52.72	11.04 12.02	3.73 4.06 4.62	.58 .64 .73	11296 12296 13976 14262

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

m Perry County, west of Duquoin anticline. *Shipping mine abandoned or long idle.

	1 ABI	LE I.—I	NDIVIDUAL PRO)XIM	ATE	ANALYS	ES OF FA	CE SAMPI	LES-Con	innuea		
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
12589	*184	1921	Perry (W)	6	1 2 3 4	7.56 	37.65 40.73 46.40	43.56 47.12 53.60	11.23 12.15	3.71 4.01 4.56	.52 .57 .65	11336 12263 13959 14245
12590	*184	1921	Perry (W)	6	1 2 3 4	8.28	39.19 42.73 48.30	41.95 45.74 51.70	10.58 11.53	3.49 3.81 4.31	.43 .47 .53	11406 12436 14057 14329
12591	*184	1921	Perry (W)	6	1 2 3 4	8.00	37.60 40.87 47.07	42.27 45.95 52.93	12.13 13.18	3.38 3.67 4.23	.57 .62 .71	11124 12091 13927 14218
C-923	622	1934	Perry (W)	6	1 2 3 4	9.1	35.2 38.7 44.3	44.3 48.7 55.7	11.4 12.6	3.76 4.13 4.73	.86 .95 1.08	11308 12438 14230 14541
C-924	622	1934	Perry (W)	6	1 2 3 4	9.4	35.8 39.5 44.9	43.9 48.5 55.1	10.9 12.0	3.72 4.10 4.66	.54 .60 .68	11258 12422 14114 14410
C-925	622	1934	Perry (W)	6	1 2 3 4	9.4	35.7 39.4 44.1	45.3 50.0 55.9	9.6 10.6	3.80 4.20 4.69	.51 .57 .64	11415 12595 14092 14361
C-922	622	1934	Perry (W)	6	1 2 3 4	8.9 	35.5 39.0 45.0	43.5 47.7 55.0	12.1 13.3 	3.44 3.78 4.36	1.02 1.11 1.29	11180 12272 14160 14460
C-928	623	1934	Perry (W)	6	1 2 3 4	10.1	35.1 39.0 44.4	43.9 48.9 55.6	10.9 12.1	3.73 4.14 4.72	.42 .47 .53	11106 12348 14056 14343
	1	1	1	1	1	1	1	1	1	I	1	1

*Shipping mine abandoned or long idle.

.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory: 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

aboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
C-929	623	1934	Perry (W)	6		10.3	35.0 39.0 44.1	44.2 49.3 55.9	10.5 11.7	3.32 3.70 4.19	.81 .90 1.02	11145 12420 14063 14338
C-930	623	1934	Perry (W)	6	1 2 3 4	10.2 	35.2 39.2 43.9	44.9 50.0 56.1	9.7 10.8	3.50 3.90 4.37	.47 .53 .59	11244 12519 14038 14299
C-931	623	1934	Perry (W)	6	1 2 3 4	10.0	35.2 39.1 43.9	45.0 50.0 56.1	9.8 10.9	3.39 3.77 4.23	.35 .39 .44	11262 12513 14041
BM31033	ⁿ *BM 69	1918	Perry (W)	6	1 2 3	12.34	33.48 38.19 42.65	45.02 51.36 57.35	9.16 10.45	1.82 2.08 2.32		11171 12744 14231
BM31034	ⁿ *BM 69	1918	Perry (W)	6	4 1 2 3	12.19 	34.16 38.90 43.42	44.50 50.68 56.58	9.15 10.42	1.32 1.50 1.67	· · · · · · · · ·	11245 12805 14294
BM31035	ⁿ *BM 69	1918	Perry (W).	6	4 1 2 3	11.93	33.50 38.04 42.49	45.35 51.49 57.51	9.22 10.47	1.36 1.54 1.72	· · · · · · · · ·	14479 11257 12782 14276
BM31036	ⁿ *BM 69	1918	Perry (W).	6	4 1 2 3	11.86	34.13 38.72 43.33	44.63 50.64 56.67	9.38 10.64	1.46 1.66 1.86	· · · · · · · · · · · · · · · · · · ·	14463 11236 12748 14265
4756	. *54	1912	Perry ^o (E).	6	4 1 2 3	10.32	34.03 37.94 42.41	46.19 51.51 57 59	9.46 10.55	1.07 1.18 1.32	 .24 .26 29	14458 11395 12705 14203
					4		T2.T1					14377

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

n Fieldner, A. C., and others, Analyses of coal, U. S. Bureau of Mines Bull. 193, p. 33, 1922.
o Perry County, east of Duquoin anticline.
*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
4764	*54	1912	Perry (E)	6	1 2 3 4	9.98 	33.71 37.45 42.88	44.91 49.88 57.12	11.40 12.67	.84 .93 1.06	.33 .37 .42	11205 12447 14253 14452
4766	*54	1912	Perry (E)	6	1 2 3 4	9.64	33.49 37.06 42.34	45.60 50.47 57.66	11.27 12.47	.82 .90 1.03	.35 .39 .45	11230 12428 14199 14394
4768	*54	1912	Perry (E)	6	1 2 3 4	10.05	33.24 36.94 42.02	45.85 50.98 57.98	10.86 12.08	.93 1.04 1.18	.63 .70 .80	11257 12513 14232 14424
°BM13585	*54	1912	Perry (E)	6	1 2 3 4	10.74	32.39 36.29 40.35	47.89 53.65 59.65	8.98 10.06	.80 .90 1.00		• • • • • • • • •
°BM13586	*54	1912	Perry (E)	6	1 2 3 4	11.60 	32.50 36.76 40.92	46.92 53.08 59.08	8.98 10.16	.86 .97 1.08	· · · · · · · · · · · · · · · · · · ·	
°BM13587	*54	1912	Perry (E)	6	1 2 3 4	10.88	31.99 35.90 40.85	46.34 51.99 59.15	10.79 12.11	1.00 1.12 1.27	• • • • • • • • • • • • • • • • • • •	• • • • • • •
°BM13588	*54	1912	Perry (E)	6	1 2 3 4	10.60	32.63 36.50 41.99	45.08 50.42 58.01	11.69 13.08	.91 1.02 1.17	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·
°BM13589	*54	1912	Perry (E)	6	$\begin{vmatrix} 1 \\ 2 \\ 3 \\ 4 \end{vmatrix}$	10.27	32.48 36.20 41.67	45.80 50.68 58.33	11.77 13.12	.81 .90 1.04		· · · · · · · · · · · · · · · · · · ·
	1	1	1	1	1	1	1	1	1	I	1	1

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

^oDuplicate samples analyzed by U. S. Bureau of Mines Experiment Station and University of Illinois. ^{*}Shipping mine abandoned or long idle. ^x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

	I HDL		NDI IDONE I KO									
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
°BM13590	*54	1912	Perry (E)	6	1 2 3 4	10.73 	32.16 36.03 41.33	45.66 51.14 58.67	11.45 12.83	1.00 1.12 1.28	· · · · · · · · · ·	· · · · · · ·
12614	180	1921	Perry (E)	6	1 2 [∞] 3 4	10.00	32.79 36.44 40.10	48.99 54.43 59.90	8.22 9.13	.77 .86 .95	. 12 . 14 . 15	11570 12855 14147 14288
12615	180	1921	Perry (E)	6	1 2 3 4	9.89 	33.47 37.14 41.56	47.05 52.22 58.44	9.59 10.64 	1.35 1.50 1.68	.43 .48 .54	11424 12678 14188 14372
12616	180	1921	Perry (E)	6	1 2 3 4	9.49 	34.09 37.67 42.45	46.22 51.06 57.55	10.20 11.27 	1.21 1.33 1.50	.18 .20 .23	11432 12632 14236 14425
12623	180	1921	Perry (E)	6	1 2 3 4	8.29	34.61 37.74 41.80	48.18 52.54 58.20	8.92 9.72	1.07 1.17 1.30	.25 .27 .30	11703 12761 14135 14295
12624	180	1921	Perry (E)	6	1 2 3 4	8.91 	33:28 36.53 41.39	47.11 51.72 58.61	10.70 11.75	.95 1.04 1.18	.05 .06 .07	11355 12466 14125 14311
BM20728	^{<i>p</i>} BM 29	1915	Perry (E)	6	1 2 3 4	10.88 	32.97 37.00 41.13	47.20 52.96 58.87	8.95 10.04	1.15 1.29 1.43	· · · · · · · · · · · · · · · · · · ·	11380 12769 14194 14364
BM20729	^{<i>p</i>} BM 29	1915	Perry (E)	6	1 2 3 4	10.20 	33.08 36.83 39.99	49.63 55.27 60.01	7.09 7.90	.80 .89 .97	· · · · · · · · · · · ·	11749 13084 14206 14332

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

p Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines, Bull. 123, p. 35,1918. °Duplicate samples sent to University of Illinois and U. S. Bureau of Mines Experiment Station. *Shipping mine abandoned or long idle.

.

												-
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
BM20730	^{<i>p</i>} BM 29	1915	Perry (E)	6	1 2 3 4	11.47 	32.05 36.20 39.82	48.44 54.72 60.18	8.04 9.08	.92 1.04 1.14	· · · · · · · · · · · · · · · · · · ·	11446 12929 14220 14368
BM20731	^{<i>p</i>} BM 29	1915	Perry (E)	6	1 2 3 4	10.64. 	32.78 36.68 40.11	48.93 54.76 59.89	7.65 8.56	.68 .76 .83	· · · · · · · · · · · · · · · · · · ·	11621 13005 14222 14354
BM20732	^{<i>p</i>} BM 29	1915	Perry (E)	6	1 2 3 4	11.54 	32.16 36.36 39.46	49.35 55.78 60.54	6.95 7.86	.85 .96 1.04	· · · · · · · · · · · · · · · · · · ·	11578 13088 14204 14332
BM20733	^{<i>p</i>} BM 29	1915	Perry (E)	6	1 2 3 4	10.99	32.24 36.22 40.02	48.32 54.29 59.98	8.45 9.49	.72 .81 .89	· · · · · · · · · · · · · · · · · · ·	11446 12859 14207 14354
BM26462	^{<i>q</i>} *BM 61	1916	Perry (E)	6	1 2 3 4	10.45	33.92 37.88 41.47	47.88 53.47 58.53	7.75 8.65	.83 .93 1.02	· · · · · · · · · · · · · · · · · · ·	11729 13097 14338 14477
BM26463	[¢] *BM 61	1916	Perry (E)	6	1 2 3 4	10.66 	33.04 36.98 40.97	47.60 53.28 59.03	8.70 9.74	.82 .92 1.02	· · · · · · · · · · · · · · · · · · ·	11590 12973 14373 14529
BM26465	^{<i>q</i>} *BM 61	1916	Perry (E)	6	1 2 3 4	11.26	33.84 38.13 42.29	46.18 52.04 57.71	8.72 9.83	.80 .90 1.00		11484 12941 14352 14508
BM26464	^{<i>q</i>} *BM 61	1916	Perry (E)	6	1 2 3 4	10.61 	33.04 36.96 41.42	46.72 52.27 58.58	9.63 10.77	1.02 1.14 1.28		11412 12766 14307 14485

TABLE 1.--INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

p Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines, Bull. 123, p. 35, 1918.
q Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines, Bull. 193, p. 33, 1922.
*Shipping mine abandoned or long idle.
x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory;
2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM26466	^{<i>q</i>} *BM 61	1916	Perry (E)	6	1 2 3 4	11.75	33.49 37.95 42.16	45.94 52.06 57.84	8.82 9.99	.78 .88 .98		11392 12909 14342 14500
BM26467	^{<i>q</i>} *BM 61	1916	Perry (E)	6	1 2 3 4	11.47 	32.81 37.06 41.00	47.22 53.34 59.00	8.50 9.60	1.08 1.22 1.35	· · · · · · · · · · · ·	11484 12972 14350 14513
BM26469	^{<i>q</i>} *BM 61	1916	Perry (E)	6	1 2 3 4	13.73	33.99 39.40 40.67	49.58 57.47 59.33	2.70 3.13 	.77 .89 .92		12064 13984 14436 14500
5045	83	1912	Randolph	6	1 2 3 4	11.38	36.94 41.68 47.86	40.25 45.41 52.14	11.43 12.91	4.16 4.69 5.39	.72 .81 .93	10823 12212 14022 14348
5046	83	1912	Randolph	6	1 2 3 4	10.62	38.10 42.63 49.34	39.12 43.77 50.66	12.16 13.60	4.45 4.98 5.76	.42 .47 .54	10849 12137 14047 14397
5047	83	1912	Randolph	6	1 2 3 4	11.39 	36.80 41.53 47.27	41.04 46.32 52.73	10.77 12.15	$4.11 \\ 4.63 \\ 5.27 \\ \dots$.60 .67 .76	1.)895 12294 13994 14304
12562	*208	1921	Randolph	6	1 2 3 4	9.54	36.55 40.4 1 45.75	43.35 47.92 54.25	10.56 11.67	3.21 3.55 4.02	. 58 . 64 . 72	11251 12438 14081 14349
12563	*208	1921	Randolph	6	1 2 3 4	9.52	37.01 40.90 47.52	40.86 45.16 52.48	12.61 13.94	4.90 5.42 6.30	.46 .51 .59	10971 12125 14089 14463
	ı I		. 1					L			1 1	

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

q Fieldner, A C., and others, Analyses of coal: U. S. Bureau of Mines, Bull. 193, p. 33,1922. *Shipping mine abandened or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
12564	*208	1921	Randolph	6	1 2 3 4	9.69 	37.31 41.31 47.22	41.70 46.17 52.78	11.30 12.52	4.15 4.59 5.25	. 50 . 55 . 63	11135 12330 14095 14412
12565	*208	1921	Randolph	6	1 2 3 4	11.07	36.15 40.65 46.75	41.17 46.30 53.25	11.61 13.05	2.90 3.47 3.99	.69 .78 .90	10902 12259 14099 14388
12566	*208	1921	Randolph	6	1 2 3 4	10.58 	35.65 39.86 47.21	39.85 44.57 52.79	13.92 15.57	3.20 3.58 4.24	.88 .98 1.16	10526 11772 13943 14273
12567	*208	1921	Randolph	6	1 2 3 4	10.65	36.25 40.57 46.99	40.89 45.76 53.01	12.21 13.67 	4.32 4.84 5.61	.52 .58 .67	10885 12182 14111 14458
12580	*209	1921	Randolph	6	1 2 3 4	10.55	37.35 41.75 47.42	41.41 46.30 52.58	10.69 11.95	$3.73 \\ 4.17 \\ 4.74 \\ \cdots \cdots$.51 .57 .65	10991 12287 13955 14244
12581	*209	1921	Randolph	6	1 2 3 4	8.95	36.48 40.06 46.55	41.87 45.99 53.45	12.70 13.95	4.72 5.19 6.03	.66 .73 .85	10874 11943 13879 14233
12582	*209	1921	Randolph	6	1 2 3 4	9.44	36.89 40.73 46.51	42.42 46.84 53.49	11.25 12.43	4.31 4.76 5.44	.75 .83 .95	11016 12165 13892 14205
12570	*210	1921	Randolph	6	1 2 3 4	9.62	36.49 40.37 46.15	42.58 47.11 53.85	11.31 12.52	3.61 3.99 4.56	.21 .23 .26	11215 12409 14185 14486
				1		1	1					

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle. **x** The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

							and a sheat areas and					
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
12571	*210	1921	Randolph	6	1 2 3 4	9.03	37.38 41.09 46.14	43.63 47.96 53.86	9.96 10.95	$ \begin{array}{c} 3.42 \\ 3.76 \\ 4.22 \\ \dots \\ \end{array} $.39 .43 .48	11456 12593 14141 14408
12572	*210	1921	Randolph	6	1 2 3 4	9.27	35.55 39.18 44.81	43.78 48.25 55.19	11.40 12.57 	3.10 3.42 3.91	.29 .32 .37	11230 12378 14158 14439
12573	*210	1921	Randolph	6	1 2 3 4	9.42	35.40 39.08 45.83	41.85 46.20 54.17	13.33 14.72	3.91 4.32 5.07	.41 .45 .53	10858 11987 14056 14400
C-639	613	1934	Randolph	6	1 2 3 4	10.9	35.3 39.6 46.6	40.5 45.5 53.4	13.3 14.9	4.32 4.85 5.70	.99 1.11 1.30	10573 11868 13948 14310
C-640	613	1934	Randolph	6	1 2 3 4	11.5	35.0 39.5 45.7	41.5 46.9 54.3	12.0 13.6 	3.34 3.78 4.37	.43 .49 .57	10657 12042 13935 14241
C-641	613	1934	Randolph	6	1 2 3 4	11.5 	34.8 39.3 45.3	41.9 47.4 54.7	11.8 13.3 	3.63 4.10 4.73	.62 .70 .81	10753 12147 14015 14322
5055	78	1912	St. Clair	6	1 2 3 4	13.06	38.21 43.95 50.57	37.36 42.96 49.43	11.37 13.09	3.21 3.70 4.26	1.17 1.35 1.55	10741 12354 14215 14515
5060	78	1912	St. Clair	6	1 2 3 4	11.44 	38.73 43.73 50.40	38.11 43.04 49.60	11.72 13.23	4.26 4.81 5.54	.56 .64 .74	10841 12242 14109 14447

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

	LABL	E 1	NDIVIDUAL PRO	AIM	AIL	ANALIS	SOF FAC	JE SAWIFL	E3C0n	<i>iinneu</i>		
Laboratory No.	Mine Index No.	Date	County -	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
5061	78	1912	St. Clair	6	1 2 3 4	10.75 	39.19 43.91 50.20	38.88 43.56 49.80	11.18 12.53	3.41 3.82 4.37	.67 .75 .86	11041 12371 14143 14438
12536	78	1921	St. Clair	6	1 2 3 4	11.45	37.39 42.22 49.16	38.66 43.66 50.84	12.50 14.12	5.21 5.88 6.85	.32 .36 .42	10739 12128 14122 14517
12537	78	1921	St. Clair	6	1 2 3 4	10.65	35.54 39.77 46.47	40.93 45.81 53.53	12.88 14.42	4.21 4.71 5.50	.88 .99 1.16	10782 12067 14100 14459
12538	78	1921	St. Clair	6	1 2 3 4	11.17	39.20 44.13 50.00	39.20 44.13 50.00	10.43 11.74	4.44 5.00 5.66	.31 .35 .40	11073 12465 14123 14444
5056	79	1912	St. Clair	6	1 2 3 4	10.69	40.16 44.97 51.48	37.87 42.39 48.52	11.28 12.64	4.55 5.10 5.84	.58 .65 .74	11063 12387 14179 14522
5058	79	1912	St. Clair	6	1 2 3 4	12.12	38.61 43.93 48.73	40.61 46.22 51.27	8.66 9.85	3.10 3.52 3.90	.35 .39 .43	11217 12764 14159 14399
5059	79	1912	St. Clair	6	1 2 3 4	11.12	40.54 45.61 51.44	38.27 43.06 48.56	10.07	4.18 4.70 5.30	.32 .36 .40	11145 12540 14142 14446
5524	*80	1912	St. Clair	6	1 2 3 4	10.11	39.72 44.19 50.54	38.87 43.24 49.46	11.30 12.57	3.69 4.10 4.69	.78 .86 .98	11051 12294 14062 14361
					Î							

Turra 1 ANALYSES OF FACE SAMPLES Continued

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
5525	*80	1912	St. Clair	6	1 2 3 4	9.83	39.84 44.19 51.21	37.97 42.11 48.79	12.36 13.70	4.02 4.45 5.16	.87 .96 1.10	10958 12152 14081 14415
5526	*80	1912	St. Clair	6	1 2 3 4	10.19	38.44 42.79 48.74	40.41 45.00 51.26	10.96 12.21	3.95 4.49 5.11	.68 .78 .89	11127 12388 14111 14421
5077	81	1912	St. Clair	6	1 2 3 4	11.35	39.68 44.75 50.69	38.59 43.54 49.31	10.38 11.71	$4.05 \\ 4.57 \\ 5.18 \\ \dots \dots$.58 .65 .74	11036 12449 14100 14404
5079	81	1912	St. Clair	6	1 2 3 4	10.85	40.75 45.71 51.51	38.36 43.03 48.49	10.04 11.26	4.09 4.58 5.16	.58 .65 .73	11192 12554 14147 14445
5080	81	1912	St. Clair	6	1 2 3 4	11.50	40.68 45.96 51.76	37.91 42.84 48.24	9.91 11.20	3.96 4.47 5.03	.46 .52 .59	10908 12597 14186 14482
5108	*82	1912	St. Clair	6	1 2 3 4	10.99	38.96 43.77 50.10	38.79 43.59 49.90	11.26 12.64 	4.36 4.90 5.61	.36 .40 .46	11047 12411 14207 14544
5109	*82	1912	St. Clair	6	1 2 3 4	13.42 	39.23 45.31 · 51.51	36.92 42.65 48.49	10.43 12.04	4.92 5.69 6.47	. 26 . 31 . 35	10753 12419 14119 14469
5110	*82	1912	St. Clair	6	1 2 3 4	11.40	40.96 46.23 52.62	36.89 41.63 47.38	10.75 12.14	4.10 4.63 5.27	.57 .63 .72	11052 12472 14195 14511
I.		1	1		1	1	1					

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM80827	*200 .	1921	St. Clair	6	1 2 3 4	14.93 	30.71 36.10 41.82	42.72 50.22 58.18	11.64 13.68	2.22 2.61 3.02	.24 .27 .31	10340 12155 14081 14351
BM80828	*200	1921	St. Clair,	6	1 2 3 4	12.71 	31.53 36.12 41.03	45.31 51.91 58.97	10.45 11.97	1.65 1.89 2.15	.58 .66 .75	10809 12383 14067 14283
BM80829	*200	1921	St. Clair	6	1 2 3 4	13.68 	32.10 37.19 42.98	42.59 49.34 57.02	11.63 13.47	1.25 1.45 1.68	1.51 1.75 2.02	10573 12249 14156 14394
BM80823	*201	1921	St. Clair	6	1 2 3 4	11.64 	37.40 42.33 47.23	41.80 47.30 52.77	9.16 10.37	$3.66 \\ 4.14 \\ 4.62 \\ \dots \dots$.35 .40 .45	11177 12649 14112 14380
BM80824	*201	1921	St. Clair	6	1 2 3 4	11.26 	37.92 42.73 49.28	39.03 43.98 50.72	11.79 13.29	3.66 4.12 4.75	.67 .75 .86	10931 12318 14206 14526
BM80825	*201	1921	St. Clair	. 6	1 2 3 4	12.08	37.02 42.10 47.10	41.58 47.30 52.90	9.32 10.60	3.77 4.29 4.80	.17 .19 .21	11153 12685 14189 14468
12541	203	1921	St. Clair	. 6	1 2 3 4	9.72	39.13 43.34 49.44	40.02 44.33 50.56	11.13 12.33	4.87 5.39 6.15	.72 .80 .91	11228 12437 14186 14534
12542	203	1921	St. Clair	. 6	1 2 3 4	9.26	40.97 45.15 51.17	39.09 43.08 48.83	10.68 11.77	4.36 4.80 5.44	.53 .59 .67	11308 12462 14124 14438
	1	1	1	L	1	1	1	1	L	1	L	1

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
12543	203	1921	St. Clair	6	1 2 3 4	11.17	39.71 44.70 51.41	37.52 42.24 48.59	11.60 13.06	4.63 5.21 5.99	. 69 . 78 . 90	10826 12187 14018 14364
12544	203	1921	St. Clair	6	1 2 3 4	10.59 	39.83 44.54 49.89	39.99 44.73 50.11	9.59 10.73	4.09 4.57 5.12	.32 .36 .40	11103 12419 13912 14192
12545	203	1921	St. Clair	6	1 2 3 4	11.33 	39.64 44.70 50.38	39.04 44.03 49.62	9.99 11.27	3.59 4.05 4.56	.18 .20 .22	11153 12578 14175 14458
12546	203	1921	St. Clair	6	1 2 3 4	10.00	40.32 44.80 50.02	40.28 44.76 49.98	9.40 10.44	4.43 4.92 5.49	.55 .61 .68	11386 12651 14126 14422
12556	205	1921	St. Clair	6	1 2 3 4	10.39 	36.91 41.19 46.93	41.73 46.57 53.07	10.97 12.24	2.89 3.23 3.68	.74 .83 .95	11004 12280 13993 14255
12557	205	1921	St. Clair	6	1 2 3 4	9.26 	37.77 41.62 47.90	41.08 45.27 52.10	11.89 13.11	3.01 3.32 3.82	.37 .41 .47	11170 12310 14167 14455
12558	205	1921	St. Clair	6	1 2 3 4	9.36	37.18 41.02 47.64	40.86 45.08 52.36	12.60 13.90	4.02 4.44 5.16	.55 .61 .71	10959 12091 14042 14378
C-947	626	1934	St. Clair	6	1 2 3 4	11.6 	38.8 43.9 48.8	40.7 46.0 51.2	8.9 10.1	3.78 4.28 4.75	.34 .38 	11249 12718 14143 14415

TABLE 1.---INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES--Continued

									20 000			
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
C-948	626	1934	St. Clair	6	1 2 3 4	11.5 	36.5 41.3 47.3	40.8 46.0 52.7	11.2 12.7	3.77 4.26 4.88	.72 .81	10885 12305 14090 14406
C-949	626	1934	St. Clair	6	1 2 3 4	11.3 	36.5 41.1 47.6	40.1 45.3 52.4	12.1 13.6	3.66 4.12 4.77	.71 .80	10790 12170 14087 14406
C-950	626	1934	St. Clair	6	1 2 3 4	11.1	37.8 42.6 49.2	39.1 43.9 50.8	12.0 13.5	$\begin{array}{r} 4.15 \\ 4.67 \\ 5.40 \\ \dots \dots \end{array}$.61 .69 	10831 12181 14088 14421
14414	*74	1924	Sangamon	6	1 2 3 4	14.59 	36.91 43.21 48.60	39.03 45.70 51.40	9.47 11.09	3.82 4.47 5.03	· · · · · · · · · · · · · · · · · · ·	10686 12511 14071 14361
14415	*74	1924	Sangamon	6	1 2 3 4	14.55	34.39 40.24 46.45	39.65 46.40 53.55	11.41 13.36	5.11 5.98 6.90		10397 12167 14043 14423
14416	.*74	1924	Sangamon	6	1 2 3 4	15.45	34.87 41.23 47.59	38.39 45.41 52.41	11.29 13.36	4.70 5.56 6.42	· · · · · · · · · · · · · · · · · · ·	10226 12096 13961 14322
14417	*74	1924	Sangamon	6	$\begin{vmatrix} 1\\2\\3\\4 \end{vmatrix}$	13.41	36.50 42.15 47.87	39.74 45.90 52.13	10.35 11.95	4.44 5.13 5.83	· · · · · · · · · · · ·	10688 12343 14018 14342
5130	*74	1912	Sangamon	6	1 2 3 4	15.22	38.23 45.09 50.57	37.36 44.07 49.43	9.19 10.84	4.38 5.17 5.81	.38 .45 .50	10579 12478 13995 14301

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle. **x** The form of analysis is denoted by number, as follows: 1=sample as received at laboratory: 2 = moisture-free; 3 = moisture- and ash-free; 4 = dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
5131	*74	1912	Sangamon	6	1 2 3 4	13.10	38.86 44.72 51.06	37.25 42.86 48.94	10.79 12.42	5.08 5.86 6.69	.41 .47 .54	10592 12187 13915 14268
5132	*74	1912	Sangamon	6	1 2 3 4	14.43	38.14 44.58 50.72	37.07 43.32 49.28	10.36 12.10	4.77 5.58 6.35	.40 .47 .53	10495 12265 13953 14292
5115	*75	1912	Sangamon	6	1 2 3 4	14.97	36.90 43.39 49.02	38.36 45.12 50.98	9.77 11.49	3.53 4.16 4.70	.59 .67 .76	10598 12466 14084 14370
5116	*75	1912	Sangamon	6	1 2 3 4	14.51	37.60 43.98 48.65	39.69 46.43 51.35	8.20 9.59	3.44 4.02 4.45	.22 .25 .28	10911 12763 14117 14368
5117	*75	1912	Sangamon	6	1 2 3 4	12.98	38.23 43.94 49.56	38.92 44.72 50.44	9.87 11.34	4.32 4.96 5.59	.56 .65 .73	10845 12463 14057 14366
BM81319	193	1921	Sangamon	6	1 2 3 4	13.16	36.32 41.82 47.99	39.36 45.33 52.01	11.16 12.85	4.98 5.73 6.57	.51 .59 .68	10553 12152 13944 14301
BM81320	193	1921	Sangamon	6	1 2 3 4	13.25 	36.73 42.34 #47.41	40.75 46.97 52.59	9.27 10.69	3.53 4.07 4.56	.63 .73 .82	10884 12546 14048 14316
BM81321	193	1921	Sangamon	6	1 2 3 4	12.95	36.40 41.82 47.33	40.52 46.54 52.67	10.13 11.64	3.52 4.04 4.57	.56 .64 .72	10818 12427 14064 14347

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle.

									- Concerne			
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
5030	86	1912	Washington.	6	1 2 3 4	11.45 	37.22 42.03 48.32	39.81 44.96 51.68	11.52 13.01	3.62 4.09 4.70	.67 .76 .87	10874 12281 14118 14428
5033	86	1912	Washington.	6	1 2 3 4	10.24 	39.06 43.51 49.53	39.79 44.33 50.47	10.91 12.16	4.18 4.65 5.29	.30 .34 .39	11180 12456 14180 14499
5035	86	1912	Washington.	6	1 2 3 4	10.69 	38.76 43.41 49.86	39.01 43.66 50.14	11.54 12.93	3.98 4.47 5.13	.51 .57 .65	10963 12275 14098 14418
BM80680	226	1921	Washington.	6	1 2 3 4	9.58	38.50 42.58 49.13	39.87 44.09 50.87	12.05 13.33	4.63 5.12 5.91	.49 .54 .62	10906 12061 13916 14259
BM80681	226	1921	Washington.	6	$\begin{vmatrix} 1\\ 2\\ 3\\ 4 \end{vmatrix}$	9.41 	39.02 43.07 49.17	40.33 44.52 50.83	11.24 12.41 	3.59 3.96 4.52	.41 .45 .51	11172 12333 14080 14375
BM80682	226	1921	Washington.	6	1 2 3 4	9.29	38.45 42.39 49.68	38.94 42.93 50.32	13.32 14.68	4.70 5.18 6.07	.66 .73 .86	10796 11902 13950 14322
C-367	226	1933	Washington.	6	1 2 3 4	10.0	39.0 43.3 50.7	37.8 42.1 49.3	13.2 14.6	4.59 5.10 5.98	.95 1.05 1.23	10854 12064 14135 14502
C-368	226	1933	Washington.	6	1 2 3 4	9.9	37.7 41.9 48.5	40.1 44.4 51.5	12.3 13.7 	4.24 4.71 5.46	.56 .63 .73	10887 12089 14010 14348

TABLE 1.---INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES--Continued

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

							· · · · ·					
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
C-369	226	1933	Washington.	6	1 2 3 4	10.2 	36.7 40.9 48.1	39.8 44.3 51.9	13.3 14.8	4.04 4.50 5.28	. 56 . 63 . 73	10719 11940 14021 14367
BM80594	227	1921	White	6	1 2 3 4	8.20	34.68 37.78 41.55	48.79 53.15 58.45	8.33 9.07	2.93 3.19 3.51	.73 .80 .88	12079 13158 14471 14696
BM80595	227	1921	White	6	1 2 3 4	7.86	36.01 39.08 44.11	45.62 49.51 55.89	10.51 11.41	2.75 2.98 3.36	.96 1.04 1.17	11701 12699 14335 14587
BM80596	227	1921	White	6	1 2 3 4	9.22	35.05 38.61 42.27	47.88 52.74 57.73	7.85 8.65	2.89 3.18 3.48	. 23 . 25 . 27	11991 13209 14460 14678
5122	*59	1912	Williamson.	6	1 2 3 4	9.79	33.28 36.89 40.61	48.66 53.94 59.39	8.27 9.17	1.32 1.46 1.61	.44 .49 .54	11891 13181 14512 14681
5123	*59	1912	Williamson.	6	1 2 3 4	10.67	32.54 36.42 40.74	47.32 52.97 59.26	9.47 10.61	1.53 1.71 1.91	.15 .17 .20	11619 13007 14551 14748
5124	*59	1912	Williamson .	6	1 2 3 4	10.96 	33.14 37.24 41.97	45.86 51.49 58.03	10.04 11.27 	1.72 1.93 2.18	.55 .62 .70	11383 12784 14403 14623
4996	*60	1912	Williamson .	6	1 2 3 4	8.32	34.61 37.75 42.12	47.56 51.88 57.88	9.51 10.37	2.25 2.46 2.74	. 24 . 26 . 29	11978 [°] 13066 14578 14801

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
5000	*60	1912	Williamson .	6	1 2 3 4	7.53	34.90 37.74 42.42	47.37 51.23 57.58	10.20 11.03	3.23 3.49 3.92	.60 .65 .73	11799 12760 14342 14607
5006	*60	1912	Williamson.	6	1 2 3 4	8.81	32.13 35.62 38.72	51.85 56.38 61.28	7.21 8.00	1.00 1.11 1.21	.13 .16 .17	11962 13264 14417 14555
5121	61	1912	Williamson .	6	1 2 3 4	9.44	33.63 37.13 40.41	49.58 54.75 59.59	7.35 8.12	1.28 1.42 1.55	.19 .21 .23	12092 13354 14534 14685
5133	61	1912	Williamson .	6	1 2 3 4	8.99	34.22 37.62 40.89	49.51 54.39 59.11	7.28 7.99 	1.70 1.87 2.03	.04 .04 .04	12149 13349 14508 14674
5134	61	1912	Williamson .	6	1 2 3 4	9.38	33.62 37.10 40.20	50.01 55.18 59.80	6.99 7.72	1.12 1.24 1.34	.14 .16 .17	12138 13394 14515 14654
5125	62	1912	Williamson .	6	1 2 3 4	9.97	32.20 35.76 39.35	49.62 55.12 60.65	8.21 9.12	1.47 1.63 1.79	.22 .25 .28	11814 13123 14440 14610
5126	62	1912	Williamson.	6	1 2 3 4	8.37	34.19 37.31 40.52	50.18 54.77 59.48	7.26 7.92	1.03 1.12 1.22	.18 .20 .22	12254 13374 14524 14663
5127.	62	1912	Williamson .	6	1 2 3 4	9.06	32.93 36.20 39.71	49.98 54.97 60.29	8.03 8.83	1.03 1.13 1.24	.24 .27 .30	12010 13207 14486 14637

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
5180	*63	1912	Williamson .	6	1 2 3 4	10.38	32.76 36.56 40.52	48.10 53.67 59.48	8.76 9.77	1.50 1.67 1.85	. 16 . 18 . 20	11735 13072 14487 14672
5181	*63	1912	Williamson .	6	1 2 3 4	8.78	34.25 37.54 41.86	47.56 52.14 58.14	9.41 10.32 	2.49 2.73 3.04	. 53 . 58 . 65	11885 13029 14528 14758
5182	*63	1912	Williamson.	6	1 2 3 4	9.26	33.36 36.76 40.65	48.70 53.68 59.35	8.68 9.56	1.83 2.01 2.22	.39 .43 .48	11955 13176 14569 14761
5169	*64	1912	Williamson .	6	1 2 3 4	9.13	32.03 35.25 38.55	51.07 56.20 61.45	7.77 8.55	1.10 1.21 1.32	.33 .36 .39	12044 13254 14493 14643
5170	*64	1912	Williamson.	6	1 2 3 4	11.51 	30.75 34.76 38.21	49.74 56.20 61.79	8.00 9.04	.84 .90 .99	.32 .36 .40	11554 13057 14355 14499
5172	*64	1912	Williamson .	6	1 2 3 4	7.38	35.59 38.42 42.80	47.56 51.35 57.20	9.47 10.23	.86 .93 1.04	.51 .55 .61	12017 12974 14452 14617
4998	*65	1912	Williamson .	6	1 2 3 4	9.35	32.83 36.21 39.60	50.07 55.24 60.40	7.75 8.55	1.05 1.16 1.27	. 26 . 29 . 32	12017 13256 14495 14644
5004	*65	1912	Williamson .	6	1 2 3 4	9.99 	33.79 37.53 41.02	48.56 53.96 58.98	7.66 8.51	.99 1.10 1.20	.06 .06 .07	11899 13218 14447 14593
	1	1	1		•	•	1	1	1	1	1	

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index . No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co₂	B.t.u.
5005	*65	1912	Williamson .	6	1 2 3 4	8.58	33.95 37.14 41.28	48.31 52.84 58.72	9.16 10.02	3.10 3.39 3.77	.14 .16 .18	11845 12956 14399 14644
BM80603	*148	1921	Williamson.	6	1 2 3 4	8.00	33.66 36.59 39.83	50.86 55.28 60.17	7.48 8.13	1.08 1.17 1.27	.13 .14 .15	12266 13333 14513 14656
BM80602	*148	1921	Williamson .	6	1 2 3 4	8.14	32.87 35.78 39.67	49.99 54.42 60.33	9.00 9.80	1.43 1.56 1.73	.14 .16 .18	12015 13080 14501 14681
BM80604	*148	1921	Williamson .	6	1 2 3 4	7.85	33.92 36.81 40.61	49.60 53.83 59.39	8.63 9.36	1.14 1.24 1.37	.18 .20 .22	12107 13138 14495 14658
BM80610	*149	1921	Williamson .	6	1 2 3 4	5.65	36.49 38.68 43.35	47.69 50.54 56.65	10.17 10.78	3.54 3.75 4.20	.55 .62 .69	12100 12825 14375 14645
BM80611	*149	1921	Williamson .	6	1 2 3 4	5.62	36.04 38.19 44.60	44.78 47.44 55.40	13.56 14.37	4.21 4.46 5.21	.69 .81 .95	11621 12313 14379 14739
BM80612	*149	1921	Williamson .	6	1 2 3 4	7.66	32.76 35.48 39.06	51.12 55.36 60.94	8.46 9.16	1.51 1.64 1.81	.05 .06 .07	12074 13076 14395 14566
12793	*150	1912	Williamson .	6	1 2 3 4	6.14 	34.47 36.73 41.78	48.04 51.18 58.22	11.35 12.09	3.57 3.80 4.32	.25 .27 .31	11722 12489 14207 14494

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12794	*150	1921	Williamson .	6	1 2 3 4	5.96	35.07 37.29 42.44	47.56 50.57 57.56	11.41 12.14	4.37 4.65 5.29	.07 .07 .08	11791 12538 14270 14591
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12795	*150	1921	Williamson .	6	1 2 3 4	5.85	35.46 37.66 42.70	47.58 50.53 57.30	11.11 11.81	4.06 4.31 4.89	.46 .48 .54	11845 12581 14266 14568
$\begin{array}{c} {\rm BM80615\dots} & {}^{*151} & {\rm 1921} & {\rm Williamson.} & 6 & 1 & 7.15 & 37.17 & 46.55 & 9.13 & 3.03 & .11 & 12026 \\ {\rm 12054} & {\rm 3.03} & {\rm 122} & 12954 \\ {\rm 14366} & {\rm 3.03} & {\rm 122} & 12954 \\ {\rm 14366} & {\rm 3.03} & {\rm 122} & 12954 \\ {\rm 14366} & {\rm 1121} & {\rm 11218} \\ {\rm 1921} & {\rm Williamson.} & 6 & 1 & 7.25 & 35.84 & 47.88 & 9.03 & 2.04 & .16 & 12118 \\ {\rm 12169} & {\rm 3.03} & {\rm .11} & 12026 & {\rm 1121} & 12054 \\ {\rm 14403} & {\rm 1121} & {\rm 1121} & {\rm 1121} \\ {\rm 12169} & {\rm 1121} & {\rm 1121} & {\rm 1121} \\ {\rm 11216} & {\rm 1121} & {\rm 11216} & {\rm 1121} & {\rm 11216} \\ {\rm 11216} & {\rm 1121} & {\rm 11216} & {\rm 1121} & {\rm 11216} \\ {\rm 11216} & {\rm 1121} & {\rm 11216} & {\rm 1121} & {\rm 11216} \\ {\rm 112769\dots} & {\rm 1152} & 1921 & {\rm Williamson.} & 6 & 1 & 6.76 & 31.08 & 52.76 & 9.40 & 1.16 & .13 & 12128 \\ {\rm 12769\dots} & {\rm 152} & 1921 & {\rm Williamson.} & 6 & 1 & 6.76 & 31.08 & 52.76 & 9.40 & 1.16 & .13 & 12128 \\ {\rm 12770\dots} & {\rm 152} & 1921 & {\rm Williamson.} & 6 & 1 & 7.19 & 32.65 & 50.12 & 10.04 & 1.36 & .75 & 11928 \\ {\rm 12771\dots} & {\rm 152} & 1921 & {\rm Williamson.} & 6 & 1 & 7.19 & 32.65 & 50.12 & 10.04 & 1.36 & .75 & 11928 \\ {\rm 12771\dots} & {\rm 152} & 1921 & {\rm Williamson.} & 6 & 1 & 7.19 & 32.65 & 50.12 & 10.04 & 1.36 & .75 & 11928 \\ {\rm 12771\dots} & {\rm 152} & 1921 & {\rm Williamson.} & 6 & 1 & 7.19 & 32.65 & 50.12 & 10.04 & 1.36 & .75 & 11928 \\ {\rm 12771\dots} & {\rm 152} & 1921 & {\rm Williamson.} & 6 & 1 & 7.14 & 33.07 & 52.02 & 7.77 & 1.44 & .05 & 12297 \\ {\rm 12771\dots} & {\rm 152} & 1921 & {\rm Williamson.} & 6 & 1 & 7.14 & 33.07 & 52.02 & 7.77 & 1.44 & .05 & 12297 \\ {\rm 12771\dots} & {\rm 152} & 1921 & {\rm Williamson.} & 6 & 1 & 7.14 & 33.07 & 52.02 & 7.77 & 1.44 & .05 & 12297 \\ {\rm 12771\dots} & {\rm 152} & 1921 & {\rm Williamson.} & 6 & 1 & 7.14 & 33.07 & 52.02 & 7.77 & 1.44 & .05 & 12297 \\ {\rm 12771\dots} & {\rm 152} & 1921 & {\rm Williamson.} & 6 & 1 & 7.14 & 33.07 & 52.02 & 7.77 & 1.44 & .05 & 12297 \\ {\rm 12771\dots} & {\rm 152} & {\rm 1921} & {\rm Williamson.} & 6 & 1 & 7.14 & 33.07 & 52.02 & 7.77 & 1.44 & .05 & 1.65 & .91 & 1.4452 \\ {\rm 14460} & {\rm 1460} & {\rm 1460} & {\rm 1460} & {$	BM80614	*151	1921	Williamson .	6	1 2 3 4	6.33	36.22 38.67 43.61	46.84 50.00 56.39	10.61 11.33	3.29 3.51 3.96	.04 .05 .06	11900 12704 14327 14596
$\begin{array}{c} \text{BM80616} & {}^*151 & 1921 & \text{Williamson.} & 6 & 1 & 7.25 & 35.84 & 47.88 & 9.03 & 2.04 & .16 & 12118 \\ 38.64 & 51.62 & 9.74 & 2.20 & .17 & 13065 \\ 9.74 & 2.20 & .17 & 13065 \\ 2.20 & & 2.44 & .19 & 1475 \\ 14475 & & 42.81 & 57.19 & & 2.44 & .19 & 1475 \\ 12769 & & 152 & 1921 & \text{Williamson.} & 6 & 1 & 6.76 & 31.08 & 52.76 & 9.40 & 1.16 & .13 & 12128 \\ 12770 & & 152 & 1921 & \text{Williamson.} & 6 & 1 & 6.76 & 31.08 & 52.76 & 9.40 & 1.16 & .13 & 12128 \\ 12770 & & 152 & 1921 & \text{Williamson.} & 6 & 1 & 7.19 & 32.65 & 50.12 & 10.04 & 1.36 & .75 & 11928 \\ 12771 & & 152 & 1921 & \text{Williamson.} & 6 & 1 & 7.19 & 32.65 & 50.12 & 10.04 & 1.36 & .75 & 11928 \\ 12771 & & 152 & 1921 & \text{Williamson.} & 6 & 1 & 7.14 & 33.07 & 52.02 & 7.77 & 1.44 & .05 & 12297 \\ 3 & & 39.45 & 60.55 & & 1.65 & .91 & 14463 \\ 12771 & & 152 & 1921 & \text{Williamson.} & 6 & 1 & 7.14 & 33.07 & 52.02 & 7.77 & 1.44 & .05 & 12297 \\ 3 & & 38.86 & 61.14 & & 1.69 & .05 & 12297 \\ 3 & & 38.86 & 61.14 & & 1.69 & .05 & 14452 \\ 14610 & & & & & & & & & & & & & & \\ 14610 & & & & & & & & & & & & & & \\ 14639 & & & & & & & & & & & & & & \\ 14639 & & & & & & & & & & & & & \\ 14639 & & & & & & & & & & & & \\ 14639 & & & & & & & & & & & & & & & \\ 14639 & & & & & & & & & & & & & & & \\ 14639 &$	BM80615	*151	1921	Williamson.	6	1 2 3 4	7.15	37.17 40.03 44.39	46.55 50.14 55.61	9.13 9.83	3.03 3.26 3.62	.11 .12 .13	12028 12954 14366 14603
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BM80616	*151	1921	Williamson .	6	1 2 3 4	[°] 7.25	35.84 38.64 42.81	47.88 51.62 57.19	9.03 9.74	2.04 2.20 2.44	. 16 . 17 . 19	12118 13065 14475 14676
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12769	152	1921	Williamson.	6	1 2 3 4	6.76 	31.08 33.33 37.07	52.76 56.59 62.93	9.40 10.08	1.16 1.24 1.38	.13 .14 .16	12128 13007 14465 14639
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12770	152	1921	Williamson .	6	1 2 3 4	7.19 	32.65 35.18 39.45	50.12 54.00 60.55	10.04 10.82	1.36 1.47 1.65	.75 .81 .91	11928 12852 14411 14603
	12771	152	1921	Williamson .	6	1 2 3 4	7.14 	33.07 35.61 38.86	52.02 56.02 61.14	7.77 8.37 	1.44 1.55 1.69	.05 .05 .05	12297 13242 14452 14610

TABLE 1.--INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
12799 154 1921 Williamson. 6 1 7.75 31.88 51.20 9.17 1.45 12800 154 1921 Williamson. 6 1 8.53 32.12 52.30 7.05 1.13 12800 154 1921 Williamson. 6 1 8.53 32.12 52.30 7.05 1.13 12801 154 1921 Williamson. 6 1 7.42 32.85 50.39 9.34 1.01 12801 154 1921 Williamson. 6 1 7.42 32.85 50.39 9.34 1.01 12801 154 1921 Williamson. 6 1 7.42 32.85 50.39 9.34 1.01 12801 154 1927 Williamson. 6 1 10.5 29.6 53.8 6.1 $8.$ $$ BMA38990 154 1927 Williamson. 6 1 10.2 30.3 50.2 9.3	B.t.u.
128001541921Williamson61 8.53 32.12 52.30 7.05 1.13 128011541921Williamson61 7.42 32.85 50.39 9.34 1.01 128011541921Williamson61 7.42 32.85 50.39 9.34 1.01 128011541921Williamson61 7.42 32.85 50.39 9.34 1.01 128011541927Williamson61 10.5 29.6 53.8 6.1 $.8$ 128011541927Williamson61 10.2 30.3 50.2 9.3 $.9$ $$ 128011541927Williamson61 10.1 29.2 51.7 9.0 2.0 $$ 128011541927Williamson61 10.1 29.2 51.7 9.0 2.0 $$ 128011541927Williamson <td< td=""><td>18 11987 20 12994 22 14428 14610</td></td<>	18 11987 20 12994 22 14428 14610
128011541921Williamson61 7.42 32.85 50.39 9.34 1.01 BMA389891541927Williamson61 10.5 29.6 53.8 6.1 $$ BMA389901541927Williamson61 10.5 29.6 53.8 6.1 $$ BMA389901541927Williamson61 10.2 30.3 50.2 9.3 $$ BMA389901541927Williamson61 10.2 30.3 50.2 9.3 $$ BMA389911541927Williamson61 10.2 30.3 50.2 9.3 $$ BMA389911541927Williamson61 10.2 30.3 50.2 9.3 $$ BMA389911541927Williamson61 10.2 30.3 51.7 9.0 2.0 $$ BMA389911541927Williamson61 10.1 29.2 51.7 9.0 2.0 $$ </td <td>17 12253 19 13396 21 14515 14654</td>	17 12253 19 13396 21 14515 14654
BMA38989 154 1927 Williamson. 6 1 10.5 29.6 53.8 6.1 .8 BMA38990 154 1927 Williamson. 6 1 10.2 33.0 60.2 6.8 .9 BMA38990 154 1927 Williamson. 6 1 10.2 30.3 50.2 9.3 .9 BMA38990 154 1927 Williamson. 6 1 10.2 30.3 50.2 9.3 .9 BMA38991 154 1927 Williamson. 6 1 10.1 29.2 51.7 9.0 2.0 BMA38991 154 1927 Williamson. 6 1 10.1 29.2 51.7 9.0 2.0 BMA38991 154 1927 Williamson. 6 1 10.1 29.2 51.7 9.0 2.0 4 36.0 64.0 2.4	18 12084 20 13052 22 14517 14686
BMA38990 154 1927 Williamson. 6 1 10.2 30.3 50.2 9.3 .9 BMA38991 154 1927 Williamson. 6 1 10.2 30.3 50.2 9.3 .9 BMA38991 154 1927 Williamson. 6 1 10.1 29.2 51.7 9.0 2.0 3	12170 13590 14590 14700
BMA38991 154 1927 Williamson. 6 1 10.1 29.2 51.7 9.0 2.0 2 32.4 57.6 10.0 2.2 3 36.0 64.0 2.4	11660 12990 14490 14670
	11800 13130 14580 14910
C-691 155 1934 Williamson. 6 1 7.5 35.5 47.7 9.3 1.46 2 38.4 51.5 10.1 1.58 3 42.7 57.3 1.75	53 12032 58 13003 55 14462 14648
C-692 155 1934 Williamson. 6 1 8.1 33.7 50.9 7.3 .93 2 36.7 55.3 8.0 1.02 3 39.8 60.2 1.11	16 12278 18 13364 20 14526 14662

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
C-693	155	1934	Williamson.	6	1 2 3 4	8.4	34.0 37.1 40.3	50.4 55.0 59.7	7.2 7.9	1.38 1.50 1.63	.17 .19 .21	12221 13345 14486 14640
C-694	155	1934	Williamson .	6	1 2 3 4	8.3	34.6 37.8 41.4	49.1 53.5 58.6	8.0 8.7	1.57 1.72 1.88	.13 .14	12100 13201 14466 14628
12822	*156	1921	Williamson.	6	1 2 3 4	8.38	31.25 34.11 37.06	53.08 57.93 62.94	7.29 7.96	1.12 1.22 1.33	.05 .05 .05	12067 13171 14310 14449
12823	*156	1921	Williamson .	6	1 2 3 4	9.18 	31.10 34.25 37.28	52.33 57.61 62.72	7.39 8.14	1.32 1.45 1.58	.16 .18 .20	11956 13164 14330 14480
12824	*156	1921	Williamson.	6	1 2 3 4	8.71 	31.98 35.03 38.05	52.07 57.04 61.95	7.24 7.93	.94 1.03 1.12	.12 .14 .15	12062 13213 14351 14483
12841	*156	1921	Williamson.	6	1 2 3 4	7.42	31.81 34.36 37.28	53.51 57.80 62.72	7.26 7.84	1.22 1.32 1.43	.07 .07 .08	12250 13231 14357 14498
12842	*156	1921	Williamson.	6	1 2 3 4	7.53	32.41 35.05 37.53	53.95 58.34 62.47	6.11 6.61	2.41 2.61 2.79	.22 .24 .26	12416 13426 14376 14542
BM80598	*157	1921	Williamson .	6	1 2 3 4	7.19	35.82 38.59 42.96	47.55 51.24 57.04	9.44 10.17	2.90 3.12 3.47	.26 .28 .31	12074 13009 14482 14723
			1		1		1			1		

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	co2	B.t.u.
BM80599	*157	1921	Williamson .	6	1 2 3 4	8.17 	35.03 38.15 42.77	46.87 51.04 57.23	9.93 10.81	3.08 3.35 3.76	.29 .30 .34	11893 12951 14521 14782
BM80600	*157	1921	Williamson .	6	1 2 3 4	9.25	32.70 36.03 39.27	50.57 55.73 60.73	7.48 8.24	1.52 1.67 1.82	.17 .19 .21	12056 13285 14478 14639
12819	*158	1921	Williamson .	6	1 2 3 4	7.47	32.15 34.75 38.50	51.38 55.52 61.50	9.00 9.73	2.37 2.56 2.84	.32 .35 .39	11885 12845 14230 14437
12820	*158	1921	Williamson .	6	1 2 3 4	8.24	30.97 33.75 37.60	51.39 56.00 62.40	9.40 10.25	2.75 3.00 3.34	.00 .00 .00	11776 12833 14299 14531
12821	*158	1921	Williamson .	6	1 2 3 4	9.91	30.11 33.42 36.28	52.87 58.69 63.72	7.11 7.89	1.55 1.72 1.87	.02 .02 .02	11923 13234 14368 14523
12796	*159	1921	Williamson.	6	1 2 3 4	7.79	32.17 34.89 38.18	52.09 56.49 61.82	7.95 8.62	1.72 1.87 2.05	.06 .06 .07	12157 13184 14428 14599
12797	*159	1921	Williamson .	6	1 2 3 4	6.89 	33.72 36.22 41.07	48.39 51.97 58.93	11.00 11.81 	3.99 4.29 4.86	.25 .27 .31	11768 12639 14332 14637
12798	*159	1921	Williamson .	6	1 2 3 4	8.10	30.89 33.61 37.85	50.72 55.19 62.15	10.29 11.20	3.62 3.94 4.44	.09 .09 .10	11717 12750 14358 14642

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Mosture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
12868	*160	1921	Williamson .	6	1 2 3 4	8.81	31.54 34.59 38.40	50.60 55.49 61.60	9.05 9.92	1.46 1.60 1.78	.06 .06 .07	11783 12921 14344 14524
12869	*160	1921	Williamson .	6	1 2 3 4	8.52	31.66 34.61 37.80	52.11 56.96 62.20	7.71 8.43	1.17 1.29 1.41	.09 .09 .10	12094 13220 14437 14586
12870	*160	1921	Williamson .	6	1 2 3 4	6.88	34.57 37.12 41.17	49.39 53.04 58.83	9.16 9.84	3.79 4.07 4.51	.02 .02 .02	12022 12909 14318 14582
13539	*163	1922	Williamson.	6	1 2 3 4	6.49 	35.49 37.95 43.05	46.95 50.21 56.95	11.07 11.84	3.49 3.73 4.23	· · · · · · · · · · · · · · · · · · ·	11821 12640 14339 14625
13540	*163	1922	Williamson.	6	1 2 3 4	6.63 	36.47 39.06 43.48	47.50 50.77 56.52	9.50 10.17	3.06 3.30 3.67	· · · · · · · · · · · · · · · · · · ·	12133 12995 14466 14713
13541	*163	1922	Williamson.	6	1 2 3 4	5.93 	34.60 36.78 42.10	47.58 50.58 57.90	11.89 12.64	3.27 3.48 3.98	· · · · · · · · · · · · · · · · · · ·	11788 12532 14345 14636
13542	*163	1922	Williamson .	6	1 2 3 4	7.11	34.56 37.20 42.45	46.85 50.44 57.55	11.48 12.36	2.89 3.11 3.55		11668 12561 14332 14605
13543	*163	1922	Williamson .	6	1 2 3 4	7.59	33.61 36.37 40.56	49.25 53.29 59.44	9.55 10.34	2.72 2.94 3.28		11974 12958 14452 14689

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

	·····											
Laboratory No.	Mine Index No.	Date	County	Coal bed	$Condition^x$	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
13544	*163	1922	Williamson .	6	1 2 3 4	6.01 	35.21 37.46 42.48	47.68 50.73 57.52	11.10 11.81	3.54 3.77 4.27	· · · · · · · · · · · · · · · · · · ·	11867 12526 14203 14485
13829	*163	1923	Williamson .	6	1 2 3 4	6.96 	35.80 38.48 43.22	47.04 50.56 56.78	10.20 10.96	3.03 3.26 3.66	· · · · · · · · · · · · · · · · · · ·	11894 12784 14358 14613
13830	*163	1923	Williamson .	6	1 2 3 4	6.55 	36.14 38.67 43.32	47.27 50.59 56.68	10.04 10.74	2.85 3.05 3.41		12023 12866 14414 14660
13831	*163	1923	Williamson .	6	1 2 3 4	6.49 	34.61 37.01 42.39	47.03 50.29 57.61	11.87 12.70	3.00 3.20 3.66	· · · · · · · · · · · · · · · · · · ·	11771 12588 14419 14703
13833	*163	1923	Williamson.	6	1 2 3 4	6.71	34.52 37.00 42.38	46.92 50.30 57.62	11.85 12.70	3.08 3.30 3.78	· · · · · · · · ·	11698 12539 14363 14649
BM80651	*165	1921	Williamson .	6	1 2 3 4	8.82	31.24 34.26 37.32	52.45 57.53 62.68	7.49 8.21	.92 1.01 1.10	.49 .54 .59	12047 13212 14394 14531
BM80652	*165	1921	Williamson .	6	1 2 3 4	8.79	32.97 36.15 40.36	48.73 53.42 59.64	9.51 10.43	1.61 1.77 1.98	.60 .66 .74	11819 12958 14467 14664
BM80653	*165	1921	Williamson .	6	1 2 3 4	6.51	34.93 37.36 43.10	46.12 49.33 56.90	12.44 13.31	4.21 4.50 5.19	1.01 1.08 1.24	11697 12511 14432 14776
								1				

TABLE 1.-INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

*Shipping mine abandoned or long idle. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
12838	*166	1921	Williamson .	6	1 2 3 4	7.85	32.46 35.23 39.77	49.17 53.36 60.23	10.52 11.41	3.03 3.28 3.70	.82 .88 .99	11675 12670 14302 14564
12839	*166	1921	Williamson .	6	1 2 3 4	8.08	32.30 35.14 38.88	50.78 55.24 61.12	8.84 9.62	2.00 2.18 2.41	.21 .23 .25	11867 12910 14284 14479
12840	*166	1921	Williamson .	6	1 2 3 4	6.47 	33.63 35.96 41.19	48.02 51.34 58.81	11.88 12.70	3.57 3.71 4.25	.64 .69 .79	11659 12464 14277 14575
12875	*167	1921	Williamson .	6	1 2 3 4	8.10 	31.22 33.97 37.06	53.02 57.69 62.94	7.66 8.34	1.15 1.25 1.36	.13 .14 .15	12156 13227 14432 14578
12876	*167	1921	Williamson .	6	1 2 3 4	8.79 	32.42 35.54 40.10	48.41 53.08 59.90	10.38 11.38	1.59 1.74 1.96	.48 .53 .60	11573 12688 14317 14525
12877	*167	1921	Williamson.	6	1 2 3 4	6.47 	34.62 37.01 41.09	49.61 53.05 58.91	9.30 9.94 	2.92 3.12 3.46	. 20 . 22 . 24	12046 12878 14299 14531
13537	*167	1922	Williamson.	6	1 2 3 4	9.09	31.04 34.15 37.59	51.54 56.69 62.41	8.33 9.16	1.09 1.20 1.32	· · · · · · · · · · · · · · · · · · ·	11999 13199 14530 14689
13538	*167	1922	Williamson .	6	1 2 3 4	7.31	34.19 36.88 42.38	46.48 50.15 57.62	12.02 12.97	3.07 3.31 3.80	· · · · · · · · · · · ·	11635 12553 14424 14717

TABLE 1.—JNDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

*Shipping mine abandoned or long idle.

	I ABL	.Е 11	NDIVIDUAL PRO)XIM	LATE	ANALYSI	ES OF FAC	CE SAMPI	LES-Con	tinuea		
Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
12881	168	1921	Williamson .	6	1 2 3 4	5.00	37.42 39.39 44.53	46.61 49.06 55.47	10.97 11.55	3.13 3.29 3.72	.28 .30 .34	12108 12745 14409 14676
12882	168	1921	Williamson .	6	1 2 3 4	4.94 	36.99 38.91 44.19	46.71 49.14 55.81	11.36 11.95	3.39 3.57 4.05	.44 .46 .52	12106 12735 14463 14750
12883	168	1921	Williamson .	6	1 2 3 4	5.73	35.37 37.52 44.02	44.97 47.71 55.98	13.93 14.77	4.17 4.42 5.19	.36 .38 .45	11514 12215 14332 14695
12772	*169	1921	Williamson .	6	1 2 3 4	5.48	36.28 38.38 43.48	47.15 49.89 56.52	11.09 11.73	3.78 4.00 4.53	.61 .65 .74	11879 12568 14238 14528
12773	*169	1921	Williamson .	6	1 2 3 4	5.88	35.63 37.86 43.55	46.19 49.07 56.45	12.30 13.07	3.77 4.01 4.61	.45 .47 .54	11631 12358 14216 14529
12774	*169	1921	Williamson .	6	1 2 3 4	6.95 	34.41 36.98 41.52	48.47 52.09 58.48	10.17 10.93	4.02 4.32 4.85	.03 .03 .03	11848 12733 14295 14585
BM80625	† [*] 170	1921	Williamson .	6	1 2 3 4	6.40	36.71 39.22 43.49	47.70 50.96 56.51	9.19 9.82	3.41 3.64 4.04	.04 .04 .04	12150 12981 14395 14644
BM80626	† ⁷ 171	1921	Williamson .	6	1 2 3 4	7.29	34.93 37.68 42.30	47.65 51.39 57.70	10.13 10.93	3.78 4.08 4.58	.04 .04 .04	11745 12669 14224 14502
	1	1	1	1	1	1		1	1	1	1	1

т

r Two small stripping mines and one local drift mine operating in the same section.
 *Shipping mine abandoned or long idle.
 †Local or captive mine (those sampled before 1930 largely abandoned).
 x The form of analyses is denoted by number, as follows: 1=sample as received at laboratory;
 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM80670	† ⁷ 172	1921	Williamson .	6	1 2 3 4	6.40	36.38 38.87 43.02	48.20 51.49 56.98	9.02 9.64	3.45 3.69 4.08	.04 .04 .04	12179 13012 14400 14650
BM80671	*173	1921	Williamson .	6	1 2 3 4	6.24 	36.41 38.83 45.03	44.45 47.41 54.97	12.90 13.76	3.56 3.80 4.41 	.90 .96 1.11	11672 12449 14435 14761
BM80672	*173	1921	Williamson .	6	1 2 3 4	7.49	36.37 39.31 43.64	46.95 50.76 56.36	9.19 9.93	2.73 2.95 3.28	.04 .04 .04	12080 13058 14498 14729
BM80673	*173	1921	Williamson .	6	1 2 3 4	7.14 	35.39 38.11 44.24	44.61 48.04 55.76	12.86 13.85	4.35 4.68 5.43	. 63 . 68 . 79	11481 12364 14352 14709
BM17719	⁸ BM *27	1913	Williamson.	6	1 2 3 4	8.77	32.64 35.78 38.84	51.41 56.35 61.16	7.18 7.87	1.10 1.21 1.31	· · · · · · · · · ·	12177 13347 14486 14627
BM17720	^s BM *27	1913	Williamson.	6	1 2 3 4	9.37	32.83 36.22 39.81	49.63 54.77 60.19	8.17 9.01	1.70 1.88 2.07	· · · · · · · · · · · · · · · · · · ·	11988 13228 14539 14718
BM17721	^{\$} BM *27	1913	Williamson .	6	1 2 3 4	8.70	31.78 34.81 37.98	51.89 56.83 62.02	7.63 8.36	1.00 1.10 1.20	· · · · · · · · · · · · ·	12173 13334 14551 14695
BM28810	^{<i>i</i>} BM *28	1917	Williamson.	6	1 2 3 4	8.31 	32.40 35.34 38.97	50.75 55.35 61.03	8.54 9.31	1.33 1.45 1.60		11965 13048 14387 14555
	1	I	1	1	1	i	1	1	1	l i	1	

TABLE 1.---INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES--Continued

r Two small stripping mines and one local drift mine operating in the same section.
s Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 123, p. 36, 1918.
t Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 193, p. 34, 1922.
*Shipping mine abandoned or long idle.
†Local or captive mine (those sampled before 1930 largely abandoned).

			TERTIDETIL TRO	221111		1111111111	LO OF FR	CE BANII	163 00	mmucu		
Laboratory No.	Mine Index No.	Date	County	Coal bed	$Condition^x$	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM28811	^{<i>t</i>} BM *28	1917	Williamson .	6	1 2 3 4	9.13 	31.48 34.64 38.16	51.00 56.13 61.84	8.39 9.23	.97 1.07 1.18	· · · · · · · · · · · ·	11822 13010 14333 14486
BM28812	^{<i>i</i>} BM *28	1917	Williamson .	6	1 2 3 4	8.82	35.15 38.55 42.32	47.90 52.53 57.68	8.13 8.92	1.07 1.17 1.28	· · · · · · · · · · · · · · · · · · ·	11965 13122 14407 14560
BM28813	^{<i>t</i>} BM *28	1917	Williamson .	6	1 2 3 4	9.31	32.93 36.31 39.88	49.63 54.73 60.12	8.13 8.96	.82 .90 .99	· · · · · · · · ·	11902 13124 14414 14560
BM28814	^t BM *28	1917	Williamson .	6	1 2 3 4	9.78 	33.08 36.67 39.85	49.93 55.34 60.15	7.21 7.99	. 75 . 83 . 90	· · · · · · · · · · · · · · · · · · ·	11965 13262 14414 14542
BM30863	BM *28	1918	Williamson .	6	1 2 3 4	9.72	32.84 36.38 39.34	50.65 56.10 60.66	6.79 7.52	.96 1.06 1.15	· · · · · · · · · · · ·	12026 13322 14405 14534
BM30864	^{<i>t</i>} BM *28	1918	Williamson .	6	1 2 3 4	9.40	34.38 37.95 42.07	47.35 52.26 57.95	8.87 9.79	1.28 1.41 1.56	· · · · · · · · · · · · · · · · · · ·	11801 13027 14440 14615
BM30865	^t BM *28	1918	Williamson .	6	1 2 3 4	10 .58	32.47 36.31 41.22	46.30 51.78 58.78	10.65 11.91	1.57 1.76 2.00		11322 12661 14373 14591
BM30872	^{<i>i</i>} BM 69	1918	Williamson .	6	1 2 3 4	9.13	32.21 35.45 40.18	47.97 52.79 59.82	10.69 11.76	· .80 .88 1.00	· · · · · · · · · · · · · · · · · · ·	11500 12656 14342 14527

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

t Fieldner, A C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 193, p. 34, 1922. *Shipping mine abandoned or long idle.

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= dry mineral-matter-free (unit coal).

			······	-	_							
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
BM30873	^{<i>i</i>} BM 69	1918	Williamson .	6	1 2 3 4	8.84 	32.52 35.67 39.50	49.81 54.64 60.50	8.83 9.69	1.09 1.20 1.33	· · · · · · · · · · · · · · · · · · ·	11873 13023 14420 14586
BM30874	^{<i>t</i>} BM 69	1918	Williamson .	6	$\begin{vmatrix} 1 \\ 2 \\ 3 \\ 4 \end{vmatrix}$	9.75	33.36 36.96 39.37	51.37 56.92 60.63	5.52 6.12	.88 .98 1.04	· · · · · · · · · ·	12280 13606 14492 14601
BM30875	^{<i>t</i>} BM 69	1918	Williamson.	6	1 2 3 4	10.82	31.11 34.88 38.82	49.02 54.97 61.18	9.05 10.15	. 88 . 99 1. 10		11646 13059 14535 14701
	SPAR	LAND	OR DANY	IL	LE	(NO. 7) COA	L (NO	RTHER	IN AN	D	
A86569	†532	1933	E. Bureau	AS'.	FEF 1 2 3 4	EN ILL	INOIS) 32.4 39.6 46.8	36.7 45.0 53.2	12.6 15.4	2.8 3.4 4.1	· · · · · · · · · · ·	9840 12040 14230 14565
A86597	†532	1933	Bureau	7	1 2 3 4	16.9 	32.6 39.2 47.9	35.4 42.6 52.1	15.1 18.2	3.9 4.7 5.8	· · · · · · · · ·	9580 11540 14100 14538
C-153	†532	1933	Bureau	7	1 2 3 4	17.3 	32.4 39.2 47.3	36.2 43.7 52.7	14.1 17.1	3.24 3.92 4.73	.71 .86 1.03	9676 11697 14102 14489
C-154	†532	1933	Bureau	7	1 2 3 4	18.0 	33.0 40.3 47.5	36.6 44.6 52.5	12.4 15.1	2.60 3.17 3.73	.94 1.15 1.35	9847 12015 14158 14468
°BMA45318	†360	1928	Marshall	7	1 2 3 4	15.9	32.8 39.0 47.8	35.8 42.6 52.2	15.5 18.4	4.0 4.7 5.8		9890 11750 14410 14850

TABLE 1.--INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES-Continued

t Fieldner, A. C., and others, Analyses of coal: U. S. Bureau of Mines Bull. 193, p. 34, 1922. ^oDuplicate samples analyzed by U. S. Bureau of Mines Experiment Station and University of Illinois. †Local or captive mine (those sampled before 1930 largely abandoned).

	I ABL	E I.—I	NDIVIDUAL PRO		ATE	ANALYS	ES OF FA	ACE SAME	LES-CO	niinuea		
Laboratory No.	Mine Index No.	Date	County	Coal bed	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
°BMA45319	†360	1928	Marshall	7	1 2 3 4	14.3	33.3 38.9 48.3	35.7 41.6 51.7	16.7 19.5	4.2 4.9 6.1		9830 11470 14250 14722
°16417	†360	1928	Marshall	7	1 2 3 4	16.34	34.62 41.38 49.60	35.18 42.05 50.40	13.86 16.57	3.97 4.75 5.69	· · · · · · · · · ·	9817 11734 14064 14462
°16418	†360	1928	Marshall	7	1 2 3 4	15.12	33.95 40.00 49.64	34.45 40.58 50.36	16.48 19.42	4.01 4.72 5.86	· · · · · · · · · · · ·	9627 11342 14075 14530
16420	†361	1928	Marshall	7	1 2 3 4	15.63	34.44 40.82 49.56	35.06 41.55 50.44	14.87 17.63	3.94 4.67 5.67	 	9910 11746 14260 14686
16421	†361	1928	Marshall	7	1 2 3 4	16.08	34.57 41.19 49.58	35.15 41.89 50.42	14.20 16.92	3.08 3.67 4.42	· · · · · · · · · · · · · · · · · · ·	9955 11862 14278 14652
16422	†362	1928	Marshall	7	1 2 3 4	14.67	35.13 41.17 50.59	34.31 40.21 49.41	15.89 18.62	3.73 4.37 5.37	· · · · · · · · · · ·	9742 11417 14029 14452
16423	†362	1928	Marshall	7	1 2 3 4	15.21	35.83 42.26 50.66	34.90 41.16 49.34	14.06 16.58	3.68 4.34 5.20		10087 11896 14260 14652
°16432	†363	1928	Marshall	7	1 2 3 4	13.97	37.82 43.96 51.96	34.96 40.64 48.04	13.25 15.40	3.13 3.64 4.30	· · · · · · · · · · · · · · · · · · ·	10317 11992 14175 14514

m - \sim . •

°Duplicate samples analyzed by U. S. Bureau of Mines Experiment Station and University of Illinois. †Local or captive mine (those sampled before 1930 largely abandoned). x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO ₂	B.t.u.
°16433	†363 1 ⁴	1928	Marshall	7	1 2 3 4	13.62	37.31 43.19 51.43	35.22 40.78 48.57	13.85 16.03	3.15 3.65 4.35		10325 11953 14235 14589
°BMA45463	†363 11	1928	Marshall	7	1 2 3 4	14.2	33.0 38.4 45.9	38.8 45.3 54.1	14.0 16.3	3.1 3.6 4.3	· · · · · · · · · · · · · · · · · · ·	10380 12100 14460 14823
°BMA45464	†363 11	1928	Marshall	7	1 2 3 4	14.3	34.9 40.7 47.6	38.4 44.8 52.4	12.4 14.5	2.7 3.1 3.6	· · · · · · · · · · · · · · · · · · ·	10560 12330 14410 14739
16434	†364 19	1928	Marshall	7	1 2 3 4	15.19	36.83 43.43 50.32	36.37 42.88 49.68	11.61 13.69	3.21 3.79 4.39		10496 12376 14339 14660
16435	†364 19	1928	Marshall	7	1 2 3 4	15.02 	35.80 42.13 50.44	35.17 41.39 49.56	14.01 16.48	3.35 3.94 4.72		10168 11988 14353 14732
16443	†3 65 19	1928	Marshall	7	1 2 3 4	15.19	36.94 43.56 50.49	36.22 42.71 49.51	11.65 13.73	3.11 3.67 4.25	· · · · · · · · · · · · · · · · · · ·	10414 12279 14233 14546
16442	†365 19	928	Marshall	7	1 2 3 4	17.87	34.57 42.09 51.72	32.27 39.29 48.28	15.29 18.62	$3.75 \\ 4.57 \\ 5.62$	· · · · · · · · · · · · · · · · · · ·	9424 11475 14100 14535
°4711	*94 19	912	Vermilion	7	1 2 3 4	12.20 	39.53 45.03 50.75	38.38 43.70 49.25	9.89 11.27	3.76 4.29 4.83	.46 .52 .59	11243 12804 14430 14730
°4711	*94 1	912	Vermilion	7	3 4 1 2 3 4	12.20	51.72 39.53 .45.03 50.75	48.28 38.38 43.70 49.25 	9.89 11.27	5.62 3.76 4.29 4.83		

TABLE 1.-INDIVIDUAL PROXIMATE AN ALYSES OF FACE SAMPLES-Continued

°Duplicate samples analyzed by University of Illinois and U. S. Bureau of Mines Experiment Station.

*Shipping mine abandoned or long idle. †Local or captive mine (those sampled before 1930 largely abandoned).

	TABL	E 11	NDIVIDUAL PRO	MIX	ATE	ANALYS	ES OF FF	ACE SAMI	LES-CO	nimuea		
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
°4713	*94	1912	Vermilion	7	1 2 3 4	12.70	39.20 44.90 49.97	39.24 44.95 50.03	8.86 10.15	2.79 3.19 3.55	.52 .59 .66	11399 13057 14532 14776
°4714	*94	1912	Vermilion	7	1 2 3 4	12.76	38.84 44.53 50.35	38.31 43.91 49.65	10.09 11.56	3.91 4.48 5.06	.61 .70 .79	11106 12788 14459 14773
°4716	*94	1912	Vermilion	7	1 2 3 4	12.67	39.01 44.67 51.03	37.43 42.86 48.97	10.89 12.47	3.54 4.06 4.64	.84 .96 1.09	11041 12644 14445 14758
°4722	*94	1912	Vermilion	7	1 2 3 4	13.53	37.39 43.24 48.58	39.57 45.76 51.42	9.51 11.00	3.20 3.70 4.16	.46 .54 .61	11045 12773 14352 14622
°4724	*94	1912	Vermilion	7	1 2 3 4	13.27	37.25 42.95 47.82	40.65 46.87 52.18	8.83 10.18	3.27 3.77 4.20	.38 .44 .49	11209 12925 14390 14650
°BM13491	*94	1912	Vermilion	7	1 2 3 4	13.04	38.78 44.60 50.23	38.43 44.19 49.77	9.75 11.21	3.06 3.52 3.96	•••••	
°BM13492	*94	1912	Vermilion	7	1 2 3	12.76	38.98 44.68 49.98	39.01 44.72 50.02	9.25 10.60	3.50 4.01 4.49	· · · · · · · · · · · · · · · · · · ·	
°BM13493	*94	1912	Vermilion	7	4 1 2 3	12.67	39.61 45.36 50.93	38.17 43.70 49.07	9.55 10.94	3.36 3.85 4.32	· · · · · · · · · · · ·	· · · · · · · ·
					$ ^4$							

TABLE 1 TYPETRE DAOD ANNOTO Continued

°Duplicate samples analyzed by University of Illinois and U. S. Bureau of Mines Experiment Station. *Shipping mine abandoned or long idle. x The form of analyses is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

							20 01 11		810 G V			
Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
°BM13494	*94	1912	Vermilion	7	1 2 3 4	12.45	39.09 44.65 49.64	39.66 45.30 50.36	8.80 10.05	2.86 3.27 3.64	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·
°BM13495	*94	1912	Vermilion	7	1 2 3 4	13.84	37.84 43.92 49.46	38.67 44.88 50.54	9.65 11.20	2.78 3.23 3.64	· · · · · · · · · · ·	· · · · · · · ·
°BM13496	*94	1912	Vermilion	7	1 2 3 4	13.77 	37.85 43.89 48.70	39.87 46.24 51.30	8.51 9.87	3.01 3.49 3.87	· · · · · · · · · · · · · · · · · · ·	
BM84226	*94	1922	Vermilion	7	1 2 3 4	13.1	37.7 43.4 48.75	39.8 45.8 51.3	9.4 10.8	2.8 3.2 3.6	. 59 . 69 . 77	11110 12770 14330 14570
BM84227	*94	1922	Vermilion	7	1 2 3 4	14.1 	37.0 43.1 48.5	39.3 45.7 51.5	9.6 11.2 	2.9 3.4 3.8	.86 1.0 1.13	11030 12840 14450 14730
BM84228	*94	1922	Vermilion	7	1 2 3 4	13.7	37.0 42.9 48.4	39.5 45.7 51.6	9.8 11.4 	3.2 3.7 4.2	.70 .81 .91	11050 12800 14440 14730
4727	*97	1912	Vermilion	7	1 2 3 4	12.92	36.98 42.46 48.70	38.94 44.73 51.30	11.16 12.81 	2.90 3.33 3.82	.70 .80 .92	10924 12544 14387 14677
4734	*97	1912	Vermilion	7	1 2 3 4	13.10	38.42 44.22 49.55	39.14 45.03 50.45	9.34 10.75	2.26 2.59 2.90	.56 .64 .72	11281 12981 14544 14778

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Continued

°Duplicate samples analyzed by U. S. Bureau of Mines Experiment Station and University of Illinois. *Shipping mine abandoned or long idle.

Laboratory No.	Mine Index No.	Date	County	Coal bed	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	CO2	B.t.u.
4736	*97	1912	Vermilion	7	1 2 3 4	13.41	37.33 43.11 48.99	38.87 44.89 51.01	10.39 12.00	2.54 2.93 3.33	.46 .53 .60	11065 12778 14520 14787
A90627	†603	1933	Vermilion	7	1 2 3 4	12.9 	38.7 44.5 49.7	39.2 45.0 50.3	9.2 10.5	3.00 3.50 3.9	.69 .79 	11320 13000 14530 14786
A90628	†603	1933	Vermilion	7	1 2 3 4	13.5	37.2 43.0 48.9	38.8 44.9 51.1	10.5 12.1	2.9 3.3	.90 1.04	11110 12840 14600 14891
A90629	†603	1933	Vermilion	7	1 2 3 4	13.7	39.1 45.3 50.6	38.2 44.2 49.4	9.0 10.5 	2.6 3.0 3.4	1.06 1.23 	11250 13030 14560 14803

TABLE 1.—INDIVIDUAL PROXIMATE ANALYSES OF FACE SAMPLES—Concluded

*Shipping mine abandoned or long idle.

those function of rought and the sample of the sample before 1930 largely abandoned).
x The form of analyses is denoted by number, as follows: 1=sample as received at laboratory;
2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

TABLE 2 .- MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES OF ILLINOIS COALS, ARRANGED BY COAL BED, COUNTY, AND MINE

FULTON COUNTY

ROCK ISLAND (NO. 1) COAL (WESTERN ILLINOIS)

	Samples			Prox	IMATE			τ	Jetimat	ΓE]	Heat VA	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	United coal indev
105	(3) 12469-70-71 (1921) (County average)	1 2 3 4 5	11.2 13.0 	38.4 43.3 48.9 41.3 47.5	40.2 45.2 51.1 45.7 52.5	10.2 11.5 	5.0 5.6 6.3		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6372 7177 8109 7229 8309	11470 12920 14600 13010 14960	130	· · · · · · · · · 150

County Average Rank Index130County Average Unit Coal Index150

HENRY COUNTY

ROCK ISLAND (NO. 1) COAL (WESTERN ILLINOIS)

232	(2) 14387-88; A90508 (composite 3)	1	14.7	38.5	37.8	9.0	5.5	5.9	58.6	.9	20.1	6027	10850	
	(1924, 1933)	2		45.2	44.2	10.6	6.5	5.1	68.6	1.0	8.2	7062	12710	
		3		50.5	49.5		7.3	5.7	76.7	1.1	9.2	7898	14220	
		4	16.8	40.8	42.4							6737	12130	121
	· · · · · · · · · · · · · · · · · · ·	5		49.1	50.9							8098	14580	146
												1		
237	(2) 14385-86	1	17.4	36.0	39.7	6.9	3.4					6023	10840	
	(1924)	2		43.6	48.1	8.3	4.1					7290	13120	
		3		47.5	52.5		4.5					7953	14320	
		4	19.2	37.6	43.2							6537	11770	118
		5		46.5	53.5							8087	14560	146

252	(2) 14383-84	1	14.6	35.8	37.9	11.7	6.7					5717	10290	
	(1924)	2		41.9	44.4	13.7	7.8					6692	12060	
		3		48.6	51.4		9.0					7752	13950	
		4	17.4	38.5	44.1							6608	11890 119 .	
		5		46.6	53.4							8999	14400	144
354	(2) 15691-92	1	17.1	36.4	37.9	8.6	3.6					5868	10560	
	(1927)	2		43.9	45.7	10.4	4.4					7082	12750	
		3		49.0	51.0		4.9					7904	14230	
		4	19.3	38.6	42.1							6503	11710 117 .	
		5		47.9	52.1		•••••					8062	14510	145
	A	1	15.0	26 7	20 2	0.1	4 0	6.0	50.0	0.0	01.1	5000	10(10	
	Average 4 mine averages (1 unimate)	1	15.9	30.7	30.3	9.1	4.0	0.2	58.0	0.8	21.1	5908	10040	•••
	(County average)	2		43.6	45.6	10.8	5.7	5.2	69.0	1.0	8.3	7025	12650	
		3		48.9	51.1		6.4	5.8	77.4	1.1	9.3	7875	14180	
	1	4	18.2	38.9	42.9							6597	11880 119 .	
:		5		47.5	52.5							8059	14510	145

County Average Rank Index119 (117-121)County Average Unit Coal Index145 (144-146)

KNOX COUNTY

ROCK ISLAND (NO. 1) COAL (WESTERN ILLINOIS)

355	(2) 15493-94 (1926) (County average)	1 2 3 4	14.3 16.1	36.7 42.8 47.2 38.5	41.1 47.9 52.8 45.4	7.9 9.3	$4.5 \\ 5.3 \\ 5.8$		· · · · · · · · · · · · · · · · · · ·	 6204 7237 7975 6834	11170 13030 14360 12300		· · · · · · · ·
		5		45.9	54.1			 		 8141	14650	125	147

County Average Rank Index 123 County Average Unit Coal Index 147

x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ashfree; 4=moist mineral-matter-free; 5=dry mineral-matter-free (unit coal).

MERCER COUNTY

ROCK ISLAND (NO. 1) COAL (WESTERN ILLINOIS)

	- Samples			Prox	IMATE			Ŭ	Itimat	Е		I	Heat Va	LUES
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index Unit coal index
17	(2) 5371-72(1912)	1 2 3 4 5	17.6 20.2 	39.2 47.5 53.4 41.6 52.2	34.1 41.4 46.6 38.2 47.8	9.1 11.1 	5.0 6.1 6.8	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	4742 6971 7836 6409 8029	10340 12550 14110 11540 14450	115 145
18	(3) 5359-60-61 (1912)	1 2 3 4 5	14.6 16.7	39.1 45.7 51.4 41.7 50.1	37.0 43.3 48.6 41.6 49.9	9.3 11.0	4.8 5.6 6.3	· · · · · · · · ·	 	 	· · · · · · · · · · · · · · · · · · ·	6044 7076 7975 6774 8133	10880 12740 14360 12190 14640	122 146
19	(6) 5338-39-40, 5363-64-65 (1912)	1 2 3 4 5	14.5 16.7	39.3 45.9 51.9 42.3 50.8	36.3 42.5 48.1 41.0 49.2	9.9 11.6 	4.2 4.9 5.52	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6005 7025 7945 6768 8123	10810 12650 14300 12180 14620	 122 146
233	(3) 13812-13-14 (1923)	1 2 3 4 5	16.0 18.1	37.2 44.3 49.4 39.5 48.3	38.1 45.4 50.6 42.4 51.7	8.7 10.3	3.6 4.2 4.8	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5947 7080 7895 6593 8046	10700 12740 14210 12190 14480	122 145

210

356	(2) 15414-15	1	15.4	37.9	38.8	7.9	4.7	1		 	6117	11010	[.	
	(1926)	2		44.8	45.9	9.3	5.6			 	7235	13020		
		3		49.4	50.6		6.1			 	7974	14350		
		4	17.4	39.7	42.9					 	6732	12120	. 121	
		5		48.1	51.9					 	8145	14660		147
									1					
	Average 5 mine averages	1	15.6	38.5	36.9	9.0	4.4			 	5971	10750		
	(County average)	2		45.7	43.7	10.6	5.3			 	7078	12740		
		3		51.1	48.9		5.9		· · · · · ·	 	7920	14250		
		4	17.8	41.0	41.2					 	6654	11980	120	
		5		49.9	50.1					 	8094	14570		146

County Average Rank Index 120 (115-122) County Average Unit Coal Index 146 (145-147)

ROCK ISLAND COUNTY

ROCK ISLAND (NO. 1) COAL (WESTERN ILLINOIS)

234	(3) 13815-16-17 (1923)	1 2 3 4 5	16.6 18.8 	35.7 42.7 47.6 37.5 46.2	39.2 47.1 52.4 43.7 53.8	8.5 10.2	4.8 5.8 6.4	· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5897 7072 7872 6535 8052	10620 12730 14170 11760 14490	 118 	 145
		Count	v Aver	age Ra	ink Ind	lex	118		• • • • • • • • • • • • • • • • • • • •						

County Average Unit Coal Index 145

x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ashfree; 4=moist mineral-matter-free; 5=dry mineral-matter-free (unit coal).

WARREN COUNTY

ROCK ISLAND (NO. 1) COAL (WESTERN ILLINOIS)

	Samples			Prox	IMATE			τ	Jltimat	E]	Неат Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
346	(2) 13708-13808 (1923)	1 2 3 4	14.7 17.2	37.3 43.7 49.8 39.8	37.6 44.1 50.2 43.0	10.4 12.2	6.2 7.3 8.3	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·	5942 6965 7934 6762	10700 12540 14280 12170		
357	(2) 15416-17 (1926)	5 1 2 3	 11.6	48.1 41.6 47.1 50.9	51.9 40.1 45.4 49.1	6.7 7.5	4.7 5.4 5.8		· · · · · · ·		· · · · · · · ·	8169 6535 7395 7996	14700 11760 13310 14390	· · · · · · · ·	147
	Average 2 mine averages	4 5	12.9	43.4 49.9 39.4	43.7 50.1 38.8	8.6	5.5					7099 8148 6236	12780 14670 11220	128 	 147
	(County average)	2 3 4 5	15.0	45.4 50.4 41.6 49.0	44.7 49.6 43.4 51.0	9.9	6.3 7.0		 		 	7180 7966 6934 8157	12920 14340 12480 14680	125	147

County Average Rank Index 125 (122-128) County Average Unit Coal Index 147 212

JACKSON COUNTY

MURPHYSBORO (No. 1?) COAL (SOUTHERN ILLINOIS)

12	(3) 5251-2-3 (1912)	1 2 3 4 5	9.6 10.4	33.0 36.5 39.1 34.6 38.6	51.1 56.5 60.9 55.0 61.4	6.3 7.0	1.1 1.3 1.4	· · · · · · · ·	· · · · · · · ·	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	6811 7536 8097 7321 8170	12260 13570 14580 13180 14710	132 147
13	(3) 5248-49-50 (1912)	1 2 3 4 5	10.2 10.8	33.4 37.2 39.2 34.5 38.7	51.9 57.8 60.8 54.7 61.3	4.5 5.0	1.0 1.1 1.1	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	7008 7802 8216 7381 8271	12610 14040 14790 13290 14890	133 149
14	(3) 5225-6-8 (1912)	1 2 3 4 5	8.6 9.4 	34.2 37.4 40.5 36.0 39.8	50.2 54.9 59.5 54.6 60.2	7.0 7.7 	1.5 1.7 1.8	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · ·	6899 7545 8171 7486 8258	12420 13580 14710 13480 14860	135 149
15	(3) 5286-7-8 (1912)	1 2 3 4 5	8.7 9.3	34.8 38.1 40.4 36.1 39.8	51.3 56.2 59.6 54.6 60.2	5.2 5.7	1.4 1.6 1.6	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	7028 7698 8161 7465 8230	12650 13860 14690 13440 14820	134 148
16	(3) 5496-7.8 (1912)	1 2 3 4 5	9.3 10.0 	$\begin{array}{r} 34.6\\ 38.1\\ 40.6\\ 36.0\\ 40.0 \end{array}$	50.5 55.7 59.4 54.0 60.0	5.6 6.2	1.4 1.5 1.6		· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		6943 7658 8161 7408 8233	12500 13780 14690 13340 14820	133 148

x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ashfree; 4=moist mineral-matter-free; 5=dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

JACKSON COUNTY (Continued)

	Samples			Prox	IMATE		<i>m</i> .	τ	JLTIMAT	E		I	Heat Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	$Condition^x$	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
	Average 5 mine averages	1 2 3 4 5	9.3 10.0	34.0 37.5 40.0 35.4 39.4	51.0 56.2 60.0 54.6 60.6	5.7 6.3 	1.3 1.4 1.5	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6938 7648 8163 7413 8234	12490 13770 14690 13340 14820		 148

County Average Rank Index 133 (132-135) County Average Unit Coal Index 148 (147-149)

CHRISTIAN COUNTY

LOWER ASSUMPTION (NO. ?) COAL (CENTRAL ILLINOIS)

21	(3) 5229-30-31 (1912)	1 2 3 4 5	11.3 12.7	38.9 43.8 48.7 41.8 47.9	40.9 46.2 51.3 45.5 52.1	8.9 10.0 	2.3 2.6 2.9	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · · ·	6445 7267 8074 7158 8197	11600 13080 14530 12880 14760	

County Average Rank Index129County Average Unit Coal Index148

CHRISTIAN COUNTY

6

UPPER ASSUMPTION (NO. ?) COAL (CENTRAL ILLINOIS)

21	(3) 5205-6-7 (1912)	1 2 3 4 5	13.0 14.3 	39.2 45.0 48.9 41.1 48.0	40.9 47.0 51.1 44.6 52.0	6.9 8.0	3.1 3.6 3.9	· · · · · · · ·	· · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6439 7399 8038 6996 8161	11590 13320 14470 12590 14690	 126 	· · · · · · · · · · · · · · · 147
BURE	AU COUNTY	Count Count	y Aver y Aver	age Ra age Ui	nk Inc nit Coa	lex 11 Index	126 147 LA SA	LLE	(NO. 2	2) CO4	AL (N	ORTH	ERN II	LLING	DIS)
1	(3) 5324-25-26	1	16.2	37.8	38.0 45.4	8.0	3.2	•••••				5993 7140	10790		
	(1912)	2 3 4 5	18.1	49.8 40.0 48.8	50.2 41.9 51.2	9.5	4.3	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·		7912 6589 8042	14240 11860 14480	119	· · · · · · · · · 145
8	(3) 5348-49-50	1 2	16.0	38.8 46.1	37.7 44.9	7.5	2.4	6.0 5.0	60.4 72.0	1.1	22.6 10.0	6062 7216	10910 12990		
	BM 14587 F (composite 3) (1912)	3 4 5	17.7	50.7 41.1 49.9	49.3 41.2 50.1		3.1	5.5	79.1 	1.4	10.9	7927 6621 8041	14270 11920 14480	119	 145
10	(3) 5312-13-14 (1912)	1 2	16.1	38.8 46.3	38.4 45.7	6.7 8.0	3.2 3.8	<i></i> .	 			6108 7282	10990 13110		
		3 4 5	 17.7	50.3 40.7 49.4	49.7 41.6 50.6	 	4.1 	• • • • • • • •	· · · · · · · ·	· · · · · · ·	 ,	7912 6612 8037	14240 11900 14470	 119 	 145

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

BUREAU COUNTY (Continued)

	Samples			Prox	ІМАТЕ			τ	Jltimat	Έ		I	Неат Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
	Average of 3 mine averages (1 ulti- mate)	1 2 3 4 5	16.1 17.8	38.5 45.8 50.3 40.6 49.4	38.0 45.4 49.7 41.6 50.6	7.4 8.8 	2.9 3.5 3.8	5.9 4.9 5.4	60.1 71.6 78.5	1.1 1.3 1.4	22.6 9.9 10.9	6054 7216 7914 6607 8040	10900 12990 14250 11890 14470	119	· · · · · · · · · 145

County Average Rank Index119County Average Unit Coal Index145

GRUNDY COUNTY

LA SALLE (NO. 2) COAL (NORTHERN ILLINOIS)

5	(3) 5373-4-5	1	16.0	39.3	38.5	6.2	2.8		 	 6169	11100	
	(1912)	2		46.8	45.9	7.3	3.3		 	 7345	13220	
		3		50.5	49.5		3.5		 	 7926	14270	
		4	17.4	41.1	41.5			:	 	 6634	11940	119
		5		49.8	50.2				 	 8035	14460	145
6	(3) 5367-8-9	1	19.5	37.6	38.0	4.9	2.0		 	 6009	10820	
	(1912)	2		46.7	47.2	6.1	2.6		 	 7469	13440	
		3		49.8	50.2		2.8		 	 7957	14320	
		4	20.9	38.9	40.2				 	 6364	11460	115
	٥	5		49.1	50.9				 	 8045	14480	145

7	(3) 5375-76-78	1	16.3	38.5	40.5	4.7	2.2					6329	11390	
	(1912)	2		46.0	48.4	5.6	2.6					7563	13610	
		3		48.7	51.3		2.7					8014	14430	
		4	17.4	39.7	42.9							6691	12050	121
		5		48.1	51.9							8099	14580	146
														-
625	C-946 (composite 3)	1	16.6	34.2	41.7	7.5	3.8	6.0	59.5	1.0	22.2	6033	10860	
	(1934)	2		41.0	50.0	9.0	4.5	5.0`	71.4	1.2	8.9	7230	13020	
		3		45.1	54.9		5.0	5.5	78.4	1.2	9.9	7944	14300	
		4	18.5	35.7	45.8							6600	11880	119
		5		43.8	56.2							8094	14570	146
	Average of 4 mine averages (1 ulti-	1	17.1	37.4	39.7	5.8	2.8	6.2	61.3	1.0	22.9	6139	11050	
	mate)	2		45.1	47.9	7.0	3.3	5.2	74.0	1.2	9.3	7402	13320	
	(County average)	3		48.5	51.5		3.5	5.6	79.6	1.3	10.0	7959	14330	
		4	18.6	38.8	42.6							6574	11830	118
		5		47.7	52.3							8009	14520	145

County Average Rank Index 118 (115-121) County Average Unit Coal Index 145 (145-146)

HENRY COUNTY

COLCHESTER (NO. 2) COAL (WESTERN ILLINOIS)

619	C-839 (composite 3)	1 2 3	14.5	37.0 43.3 49.0	38.6 45.1 51.0	9.9 11.6	3.5 4.0 4.6	5.9 5.0 5.7	58.8 68.8 77.8	1.1 1.3 1.5	20.8 9.3 10.4	5896 6897 7805	10610 12420 14050	
		4 5	16.6 	39.8 47.8	43.6 52.2				· · · · · · ·			6636 7960	11940 14330	119 143

County Average Rank Index119County Average Unit Coal Index143

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

LA SALLE COUNTY

LA SALLE (NO. 2) COAL (NORTHERN ILLINOIS)

	Samples			Proxi	MATE			U	Itimat	E		Ī	Heat Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
2	(3) 5388-89-90 (1912)	1 2 3 4 5	14.6 16.5 	39.9 46.7 51.9 42.5 50.8	37.0 43.3 48.1 41.0 49.2	8.5 10.0	4.0 4.7 5.2		· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	6058 7093 7882 6714 8039	10900 12770 14190 12090 14470	 121	· · · · · · · · · 145
3	(3) 5306-7-11 (1912)	1 2 3 4 5	15.1 16.8 	39.7 46.8 51.8 42.3 50.8	37.0 43.6 48.2 40.9 49.2	8.2 9.6	3.3 3.9 4.3		· · · · · · · ·	· · · · · · ·	· · · · · · · ·	6055 7128 7888 6676 8027	10900 12830 14200 12020 14450	 120	· · · · · · · · · · · · · 145
9	(3) 5351-2-3 (1912)	1 2 3 4 5	17.5 19.7	39.0 47.2 53.0 41.8 52.1	34.5 41.8 47.0 38.5 47.9	9.0 11.0	3.2 3.8 4.3	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	5773 6993 7852 6424 8002	10390 12590 14130 11560 14400	 116	· · · · · · · · · · · · · 144
102	84453 (composite 3) (1912)	1 2 3 4 5	14.7 16.4	$34.8 \\ 40.8 \\ 45.1 \\ 36.7 \\ 44.0$	42.4 49.6 54.9 46.9 56.0	8.1 9.6	$3.4 \\ 4.0 \\ 4.4$	5.8 4.9 5.4	61.5 72.1 79.7	1.0 1.2 1.3	20.2 8.2 9.2	6133 7189 7950 6756 8095	11040 12940 14310 12160 14570	 122	····· ····· 146

103	(2) 10263-64	1	12.4	39.4	41.3	6.9	2.6					6544	11780	
	(1917)	2		45.0	47.1	7.9	3.0					7470	13450	
		3		48.8	51.2		3.2					8111	14600	
		4	13.6	41.5	44.9							7104	12790	128
	• · · · · ·	5		48.0	52.0							8224	14800	148
358	(3) BM A51404-5-6	1	12.7	37.8	40.6	8.9	3.5					6254	11260	
	(1929)	2		43.3	46.5	10.2	4.0					7164	12900	
		3		48.2	51.8		4.5					79 78	14360	
:		4	14.4	40.3	45.3							6959	12530	125
		5		47.1	52.9							8127	14630	146
	Average 6 mine averages (1 ultimate)	1	14.5	38.4	38.8	8.3	3.3	5.8	61.6	1.0	20.0	6136	11050	
	(County average)	2		44.9	45.4	9.7	3.9	4.9	72.0	1.2	8.3	7177	12920	
		3		49.7	50.3		4.3	5.4	79.8	1.3	9.2	7947	14310	
		4	16.3	40.8	42.9							6774	12190	122
		5		48.7	51.3							8089	14560	146

County Average Rank Index122 (116-128)County Average Unit Coal Index146 (144-148)

MCDONOUGH COUNTY

COLCHESTER (NO. 2) COAL (WESTERN ILLINOIS)

22	(3) 5232-33-34	1	17.4	33.3	41.5	7.8	2.0					6006 7271	10810		
		2 3 4 5	 19.3	44.5 35.2 43.6	55.5 45.5 56.4	· · · · · · · ·	2.7	· · · · · · ·	· · · · · · ·	· · · · · · · ·	· · · · · · · · ·	8032 6579 8146	14460 11840 14660	118 	147

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ashfree; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

TABLE 2N	MINE AND	COUNTY	AVERAGES	OF	PROXIMATE	AND	ULTIMATE	ANALYSES	Cont	inued	
----------	----------	--------	----------	----	-----------	-----	----------	----------	------	-------	--

UNTY ((Continued)	
	Contenand and	

McDON	NOUGH COUNTY (Continued)									4-1					
	Samples			Prox	IMATE			U	ILTIMAT	Е		1	НЕАТ VA	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
213	(2) 9728-29 (1916)	1 2 3 4 5	15.8 17.9 	35.1 41.7 46.6 37.2 45.3	40.3 47.9 53.4 44.9 54.7	8.8 10.4 	3.9 4.6 5.1	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	5999 7129 7962 6666 8124	10800 12830 14330 12000 14620	120	· · · · · · · · · 146
	Average of 2 mine averages (County average)	1 2 3 4 5	16.6 18.6 	34.2 41.0 45.6 36.2 44.4	40.9 49.0 54.4 45.2 55.6	8.3 10.0	2.9 3.5 3.9	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6002 7199 7995 6621 8134	10800 12960 14390 11920 14640	 119	· · · · · · · · · · · · · 146

County Average Rank Index 119 (118-120) County Average Unit Coal Index 146 (146-147)

MC LEAN COUNTY

.

LA SALLE (NO. 2) COAL (CENTRAL ILLINOIS)

100	(6) 5 4 26-7-8- 9-30-33 (1912)	1 2 3 4 5	11.3 12.7	42.2 47.6 52.8 45.4 52.0	37.7 42.5 47.2 41.9 48.0	8.8 9.9	3.0 3.4 3.8	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6426 7242 8039 7139 8176	11570 13040 14470 12850 14720		
		Count Count	y Aver y Aver	age Ra age Ui	ink Ind nit Coa	ex l Index	129 : 147							,	
MARS	IARSHALL COUNTY LA SALLE (NO. 2) COAL (NORTHERN ILLINOIS) 4 (3) 5356-7-8														
4	(3) 5356-7-8 (1912)	1 2 3 4 5	16.9 18.4 	37.6 45.2 48.7 39.1 47.9	39.6 47.7 51.3 42.5 52.1	5.9 7.1	2.6 3.1 3.3	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	6216 7482 8057 6665 8164	11190 13470 14500 12000 14700	 120 	
11	(3) 5412-13-14 (1912)	1 2 3 4 5	13.3 14.9	40.6 46.8 51.8 43.4 51.0	37.7 43.5 48.2 41.7 49.0	8.4 9.7	3.0 3.5 3.9	· · · · · · · ·	 	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6353 7326 8114 7026 8254	11440 13190 14610 12650 14860		 149
-	Average 2 mine averages (County average)	1 2 3 4 5	15.1 16.7	39.1 46.0 50.3 41.2 49.4	38.6 45.5 49.7 42.1 50.6	7.2 8.5	2.8 3.3 3.6	· · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	6284 7402 8086 6843 8209	11310 13320 14560 12320 14780		

County Average Rank Index123 (120-126)County Average Unit Coal Index148 (147-149)

x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ashfree; 4=moist mineral-matter-free; 5=dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

TABLE 2.-MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES-Continued

WILL COUNTY

LA SALLE (NO. 2) COAL (NORTHERN ILLINOIS)

	Samples			Prox	IMATE			τ	Jltimat	E]]	Неат Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
359	16890 (composite 2); BM 52982 (composite 3); Average 5 A52153, 52154, 16959, 16961, 16962; A90368 (composite2); A90371 (composite2) (1929, 1933) (County average)	1 2 3 4 5	15.4 16.5 	34.2 40.5 43.1 35.4 42.4	45.3 53.5 56.9 48.1 57.6	5.1 6.0 	1.6 1.9 2.1	6.4 5.6 5.9	63.1 74.6 79.3	1.1 1.3 1.4	22.7 10.6 11.3	6299 7449 7928 6682 7998	11340 13410 14270 12030 14400	 120	· · · · · · · · · · · · · · · · · 144

County Average Rank Index120County Average Unit Coal Index144

WOODFORD COUNTY

LA SALLE (NO. 2) COAL (NORTHERN ILLINOIS)

			ł											
410	(2) 17002-03; A 90285 (composite 3).	1	14.9	32.3	47.3	5.5	1.0	5.9	65.3	1.1	21.2	6461	11630	
	(1929, 1933)	2		37.9	55.6	6.5	1.2	5.0	76.7	1.3	9.3	7592	13670	
		3		40.5	59.5		1.3	5.4	82.0	1.4	9.9	8122	14620	
		4	15.9	33.7	50.4							6880	12380	124
		5		40.0	60.0							8190	14740	147
							-							
611	C-599 (composite 4)	1	14.2	37.3	41.8	6.7	2.8	6.0	63.6	1.2	19.7	6356	11440	
		2		43.5	48.7	7.8	3.3	5.2	74.1	1.4	8.2	7411	13340	
	(1934)	3		47.2	52.8		3.5	5.6	80.4	1.6	8.9	8034	14460	
	· · · · · ·	4	15.6	39.1	45.3							6875	12380	124
		5		46.3	53.7							8143	14660	147

Average 2 mine averages	1	14.5	34.8	44.6	6.1	1.9	5.9	64.6	1.2	20.3	6408	11540		İ
(County average)	2		40.7	52.2	7.1	2.2	5.1	75.5	1.4	8.7	7495	13490		
	3		43.8	56.2		2.4	5.5	81.2	1.5	9.4	8068	14520		l
	4	15.7	36.3	48.0							6881	12390	124	1
	5		43.1	56.9							8158	14690		147
									_					

County Average Rank Index124County Average Unit Coal Index147

SCHUYLER COUNTY

COLCHESTER (NO. 2) COAL (WESTERN ILLINOIS)

214	(2) 9708-9 (1916)	1 2	12.5	37.9 43.3	42.1 48.1	7.5 8.6	4.5 5.2	 . <i>.</i>				6517 7451	11730 13410	
	(County average)	3 4		47.3 30.6	52.7 46.4		5.7				•••••	8154	14680	
		5		46.1	40.4 53.9	· · · · · · ·	· · · · · · · ·	· · · · · · · ·	• • • • • • • • • • • • • • •	· · · · · · ·	· · · · · · ·	8319	14970	150
						1								

County Average Rank Index129County Average Unit Coal Index150

GREENE COUNTY

SUMMUM (NO. 4?) COAL (CENTRAL ILLINOIS)

329	(3) 13799-800-801	1	14.7	36.1	39.8	9.4	3.8	 	 	6085	10960		
	(1922)	2		42.3	46.7	11.0	4.4	 	 	7139	12850		
		3		47.5	52.5		5.0	 	 	8024	14440		
		4	16.8	38.5	44.7			 	 	6814	12270	123	
		5		46.3	53.7			 	 	8191	14740		147

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

	Samples			Prox	IMATE			τ	Jltimat	E		נ	Heat Va	LUES
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index Unit coal index
347	BM 45162 (composite 2); 16399 (composite 2) (1928)	1 2 3 4 5	14.1 16.1	36.2 42.2 47.4 38.7 46.1	40.2 46.8 52.6 45.2 53.9	9.5 11.0	4.0 4.7 5.3	5.7 4.7 5.4	60.1 70.0 78.7	1.1 1.3 1.5	19.6 8.3 9.1	6013 7001 7866 6739 8032	10820 12600 14160 12130 14460	121 145
	Average of two mine averages (1 ultimate) (County average)	1 2 3 4 5	14.4 16.5	36.2 42.2 47.4 38.6 46.2	40.0 46.8 52.6 44.9 53.8	9.4 11.0	3.9 4.6 5.1	5.7 4.8 5.4	60.1 70.1 78.8	1.1 1.3 1.5	19.8 8.2 9.2	6050 7071 7946 6777 8112	10890 12730 14300 12200 14600	122 146

GREENE COUNTY (Continued)

County Average Rank Index122 (121-123)County Average Unit Coal Index146 (145-147)

KNOX COUNTY

SUMMUM (NO. 4) COAL (WESTERN ILLINOIS)

236	(3) 13809-10-11 (1923)	1 2 3 4	15.0 16.7	38.0 44.7 49.1 40.0	39.3 46.2 50.9 43.3	7.7 9.1	3.9 4.6 5.0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	6234 7333 8066 6844	11220 13200 14520 12320	 123	
		5		48.0	52.0	• • • • • •						8219	14790		148

County Average Rank Index123County Average Unit Coal Index148

GALL	ATIN COUNTY (North of Eagle	Valley)	HARRISBURG (NO. 5 (4?)) COAL	L (SOUTHERN ILLINOIS)
47	(3) 5025-29-32 (1912)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6696 12050 7102 12780 8118 14610 7733 13920 139 8288 14920
135	(3) 12940-41-42 (1921)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7001 12600 7291 13120 8177 14720 7948 14310 143 8330 14990 150
	Average of 2 mine averages (County average except Eagle Valley)	6848 12330 7197 12960 8148 14670 7841 14110 141 8309 14960 150		
GALL	ATIN COUNTY (Eagle Valley)	R U	ank Index 141 (139-143) nit Coal Index 150 (149-150) HARRISB	URG (NO. 5 (4?)) COAL
230	(2) 5492-93 (Eagle Valley) (1912) (Eagle Valley average)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.8 8.9 3.2 55.1 9.2 3.4 60.7 3.7 59.0 61.9	7214 12990 7526 13550 8294 14930 8036 14470 145 8436 15180
		County Average R U	Eagle Valley only) ank Index 145 nit Coal Index 152	

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ashfree; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

RANDOLPH COUNTY

BLAIR (NO. 5 (4?)) COAL (SOUTHWESTERN ILLINOIS)

	Samples			Prox	IMATE			τ	Jltimat	Έ			Heat VA	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
229	(3) 12583-84-85 (1921)	1 2 3 4 5	8.4 9.7	37.5 40.9 46.2 40.6 44.9	43.6 47.6 53.8 49.7 55.1	10.5 11.5	3.9 4.3 4.9	· · · · · · · · ·	· · · · · · · ·		· · · · · · · ·	6264 6838 7723 7116 7880	11280 12310 13900 12810 14180	 128	· · · · · · · · · · · · · · · · · · ·
337	(2) 8835-36 (1915)	1 2 3 4 5	13.0 15.1	35.340.646.037.744.4	41.5 47.7 54.0 47.2 55.6	10.2 11.7 	4.7 5.4 6.1	 	 			6126 7046 7981 6938 8172	11030 12680 14370 12490 14710	 125	· · · · · · · · · · · · · 147
-	Average of 2 mine averages (County average)	1 2 3 4 5	10.7 12.4	36.4 40.7 46.1 39.1 44.6	42.5 47.7 53.9 48.5 55.4	10.4 11.6 	4.5 5.1 5.7	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	6194 6939 7849 7029 8027	11150 12490 14130 12650 14450		

County Average Rank Index127 (125-128)County Average Unit Coal Index145 (142-147)

226

SALINE COUNTY

HARRISBURG (NO. 5 (4?)) COAL (SOUTHERN ILLINOIS)

								1.1								
43	 (8) 4985, 86, 87, 89, 90, 92, BM 12794,95; BM 14114 (composite 6) (1912) 	1 2 3 4 5	7.0 7.7	35.8 38.5 41.9 37.9	49.7 53.5 58.1 54.4	7.5 8.0	2.0 2.2 2.4	5.5 5.1 5.5	70.4 75.7 82.3	1.6 1.7 1.9	13.0 7.3 7.9	6983 7507 8160 7626	12570 13510 14690 13730	· · · · · · · · · · · · · · · · · · ·		MINE ANI
44	(3) 4991-93-94 (1912)	1 2 3	6.7	41.1 35.3 37.9 41.6	49.6 53.1 58.4	8.4 9.0	2.6 2.7 3.0	· · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	8261 6889 7384 8117	14870 12400 13290 14610	· · · · · · · ·	149 	COUNTY AV
45	(3) 4997, 99, 5001; C-955 (com-	4 5 1	7.5	37.6 40.6 34.1	54.9 59.4			 5 5	 	· · · · · · · · · · · · · · · · · · ·		7620 8236 6845	13720 14830 12320	137 . · · · · ·	148	TERAGES (
	posite 3)	2 3 4	 7.8	36.6 40.2 36.2	54.5 59.8 56.0	8.8	2.6 2.9	5.0 5.5	74.1 81.2	1.2 1.3 1.4	8.2 9.0	7360 8070 7521	13250 14530 13580	136	· · · · · · · ·)F PROXIN
46	(6) 5019-20-21-22-23-24	5 1 2	8.0	39.2 34.7	60.8 48.5	8.8	2.8	· · · · · · · ·	· · · · · · · ·	· · · · · · ·	· · · · · · · ·	8182 6709	14730 12080	· · · · · ·	147 	MATE AN
	(1912)	2 3 4 5	9.0	41.7 36.9 40.6	52.7 58.3 54.1 59.4	9.0	3.4 	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	7289 8062 7457 8188	$ \begin{array}{r} 13120 \\ 14510 \\ 13420 \\ 14740 \\ \end{array} $	 134 .	 147	D ULTIM.
48	(3) 4995, 5002, 5010 (1912)	1 2 2	7.7	33.9 36.7	50.3 54.4	8.1 8.9	2.6	<i>.</i>		 		6797 7361	12230 13250		••••	ATE ANAI
		3 4 5	8.5	35.9 39.2	55.6 60.8	· · · · · · · · · · · · · · · · · · ·	3.0 	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	8076 7492 8192	14540 13490 14750	135 	 148	YSES

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

227

TABLE	2.—Mine	AND	COUNTY	AVERAGES	OF	PROXIMATE A	AND	ULTIMATE	ANALYSES(continued
-------	---------	-----	--------	----------	----	-------------	-----	----------	-----------	-----------

SALINE COUNTY (Continued)

	Samples			Prox	IMATE			τ	Jltimat	E]	НЕАТ VA	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index Unit coal	index
49	(3) 5012, 15, 16 Composite 3BM 2BM (1912, 1917, 1919)	1 2 3 4 5	5.1 5.9	37.7 39.7 44.8 40.8 43.4	46.5 49.0 55.2 53.3 56.6	10.7 11.3	4.2 4.4 5.0	5.2 4.9 5.5	67.4 71.0 80.0	1.4 1.5 1.7	11.1 6.9 7.8	6808 7171 8087 7774 8259	12260 12910 14560 13990 14870	140 1	
124	(3) 12931-2-3 (1921)	1 2 3 4 5	6.8 7.6 	33.3 35.7 39.1 35.2 38.1	51.9 55.7 60.9 57.2 61.9	8.0 8.6 	2.2 2.4 2.6	· · · · · · · ·	 	 	· · · · · · · · · · · · · · · · · · ·	6908 7415 8115 7599 8223	12440 13350 14610 13680 14800		 48
125	(3) 12934-5-6. Composite 3BM (1919, 1921)	1 2 3 4 5	7.3 8.1 	33.3 36.0 39.4 35.3 38.4	51.2 55.2 60.6 56.6 61.6	8.2 8.8 	2.5 2.6 2.9	5.3 4.9 5.3	69.1 74.5 81.7	1.5 1.7 1.9	13.4 7.5 8.2	6866 7403 8117 7566 8231	12360 13330 14610 13620 14820		 48
126	(3) 12937-38-39 (1921)	1 2 3 4 5	6.0 6.7	34.1 36.2 39.4 35.9 38.4	52.3 55.7 60.6 57.4 61.6	7.6 8.1	2.5 2.6 2.9		· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · ·	6990 7438 8090 7652 8197	12580 13390 14560 13770 14760		 .48

228

127	(3) 12901-02-03; (3) C748-9-50; BM	1	6.1	34.1	51.9	7.9	2.1	5.4	70.1	1.6	12.9	7002	12610		
	A90722 (composite 3)	2		36.3	55.3	8.4	2.2	5.1	74.7	1.7	7.9	7462	13430		
	(1921, 1933, 1934)	3		39.7	60.3		2.4	5.5	81.5	1.9	8.7	8143	14660		
		4	6.8	36.1	57.1							7684	13830	138	
		5		38.8	61.2							8245	14840	14	48
128	(3) 12911-12-13	1	6.5	32.3	51.3	9.9	1.9					6764	12180		
	(1921)	2		34.5	54.9	10.6	2.0					7234	13020		
		3		38.6	61.4		2.9					8095	14570		
		4	7.4	34.8	57.8							7606	13690	137	
		5		37.6	62.4							8212	14780	14	48
129	(3) 12917-18-19	1	6.0	34.2	52.8	7.0	2.0					7064	12720		
	(1921)	2		36.3	56.2	7.5	2.2					7513	13520	[
		3		39.3	60.7		2.3					8120	14620		
		4	6.6	35.9	57.5							7676	13820	138	
	-	5		38.4	61.6							8214	14790	14	48
	· ·														
130	(3) 12914-15-16	1	6.2	33.3	51.5	9.0	- 2.7					6855	12340		
	(1921)	2		35.5	54.9	9.6	2.8					7309	13160		
		3		39.3	60.7		3.1					8082	14550		
	· ·	4	7.0	35.5	57.5							7632	13740	137	
		5		38.2	61.8							8207	14770	14	48
608	BM A91429 (composite 3); BM 33084	1	6.3	35.1	49.3	9.3	3.2	5.4	68.8	1.6	11.7	6886	12400		
	(composite 3)	2		37.4	52.6	10.0	3.4	5.1	73.3	1.7	6.5	7345	13220		
	(1919, 1933)	3		41.6	58.4		3.8	5.7	81.4	1.9	7.2	8158	14690		
		4	7.1	37.5	55.4							7712	13880	139	
		5		40.4	59.6							8302	14940	14	49
1						· ·									

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

	Samples			Proxi	MATE			U	ltimat	Έ		I	Heat Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
610	(2) C-360-361	1 2 3 4 5	5.9 6.5	35.2 37.4 40.8 37.2 39.8	51.1 54.3 59.2 56.3 60.2	7.8 8.3	2.6 2.8 3.0		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	7027 7467 8143 7714 8256	12650 13440 14660 13890 14860	 139	 149
BM72	BMA31383 (composite 2) (1927)	1 2 3 4 5	7.8 8.6 	31.6 34.3 37.6 33.4 36.6	52.6 57.1 62.4 58.0 63.4	8.0 8.6 	2.1 2.3 2.5	5.4 4.9 5.3	70.1 76.0 83.2	1.5 1.7 1.8	12.9 6.5 7.2	6928 7511 8222 7618 8326	12470 13520 14800 13710 14990	137	 150
	Average 16 mine averages (7 ulti- mates) (County average)	1 2 3 4 5	6.6 7.4 	34.3 36.7 40.3 36.4 39.3	50.7 54.3 59.7 56.2 60.7	8.4 9.0	2.5 2.7 3.0	5.4 5.0 5.5	69.5 74.4 81.7	1.5 1.6 1.8	12.7 7.3 8.0	6895 7383 8113 7622 8230	12410 13290 14600 13720 14810		 148

SALINE COUNTY (Continued)

County Average Rank Index137 (134-140)County Average Unit Coal Index148 (147-150)

ANALYSES OF ILLINOIS COALS

WILLIAMSON COUNTY

HARRISBURG (NO. 5 (4?)) COAL

353	(3) BM A51411-12-13 (1929) (County average)	1 2 3 4 5	7.0 8.1 	$34.0 \\ 36.5 \\ 41.5 \\ 36.9 \\ 40.1$	47.9 51.5 58.5 55.0 59.9	11.1 12.0 	3.5 3.8 4.3	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·		6605 7099 8067 7567 8232	11890 12780 14520 13620 14820	 136	
		Count <u>.</u> Count	y Aver y Aver	age Ra age Ui	nk Ind nit Coa	lex 1 Indez	136 148								
EDGA	EDGAR COUNTY GRAPE CREEK (SPRINGFIELD) (NO. 5?) COAL (EASTERN ILLINOIS) 614 C 682 (composite 3)														
614	C-682 (composite 3) (1934) (County average)	1 2 3 4 5	12.5 14.3	37.1 42.4 47.8 40.0 46.6	40.6 46.4 52.2 45.7 53.4	9.8 11.2	3.1 3.5 4.0	5.7 5.0 5.6	62.2 71.1 80.1	1.2 1.3 1.5	18.0 7.9 8.8	6242 7133 8037 7021 8189	11240 12840 14470 12640 14740	 126	· · · · · · · · · · · · · · 147
		County	Avera Avera	age Ra age Un	nk Ind it Coa	ex l Index	126 147								
LIVIN	GSTON COUNTY		GRAI	PE CR	EEK	(SPRI	NGFII	ELD)	(NO. 5	?) CC)AL (]	EASTI	ERN IL	LINO	IS)
215	(3) 10519-23-24 (1918)	1 2 3 4 5	9.4 11.4 	35.7 39.4 46.5 39.6 44.7	41.1 45.4 53.5 49.0 55.3	13.8 15.2	4.7 5.2 6.1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6254 6904 8144 7423 8379	11260 12430 14660 13360 15080		····· ····· 151

x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ashfree; 4=moist mineral-matter-free; 5=dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIM ATE YSES

LIVINGSTON COUNTY (Continued)

	Samples			Prox	IMATE			τ	Jltimat	Έ]	Heat Va	LUES		
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index	
216	(3) 10520-21-22 (1918)	1 2 3 4 5	13.8 16.1	35.8 41.5 47.9 39.1 46.6	38.9 45.2 52.1 44.8 53.4	11.5 13.3 	3.2 3.7 4.2	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	6028 6991 8067 6919 8242	10850 12580 14520 12460 14840	125	· · · · · · · · · · · · · · · 148	ANALYSES OF
600	A90315 (composite 3) (1933)	1 2 3 4 5	12.5 15.1	33.9 38.7 46.4 38.1 44.8	39.1 44.7 53.6 46.8 55.2	14.5 16.6 	3.2 3.7 4.4	5.5 4.7 5.7	59.1 67.5 81.0	.9 1.1 1.3 	16.8 6.4 7.6	5906 6756 8094 7044 8312	10630 12160 14570 12680 14960	 127	150	ILLINOIS CUALS
	Average 3 mine averages (1 ultimate) (County average)	1 2 3 4 5	11.9 14.2 	35.1 39.8 46.9 38.9 45.3	39.7 45.1 53.1 46.9 54.7	13.3 15.1 	3.7 4.2 4.9	5.6 4.9 5.8	60.2 68.3 80.5	1.0 1.1 1.3	16.2 6.4 7.5	6063 6882 8106 7129 8313	10910 12390 14590 12830 14960	128		<i>.</i>

County Average Rank Index 128 (125-134) County Average Unit Coal Index 150 (148-151) VERMILION COUNTY

GRAPE CREEK (SPRINGFIELD) (NO. 5)^a COAL (EASTERN ILLINOIS)

91	(6) 4741, 42, 43, 44, 45, 46; BM13570	1	14.7	34.5	41.4	9.4	2.2	5.8	60.6	1.3	20.7	6079	10940	
	(composite 3)	2		40.5	48.4	11.1	2.6	4.8	71.1	1.5	8.9	7125	12830	
	(not weighted)	3		45.5	54.5		3.0	5.4	79.9	1.7	10.0	8012	14420	
	(1912)	4	16.6	37.1	46.3							6792	12230	122
		ŝ	10.0	44 5	55 5							8143	14660	147
		5		TT. J			••••	• • • • • •				0140	14000	17/
92	(3) 4702, 03, 04; BM 13471 (com-	1	15.5	32.9	40.7	10.9	2.3	5.5	59.5	1.3	20.5	5856	10540	
	posite 3)	2		38.9	48.2	12.9	. 2.7	4 5	70.5	1.5	7.9	6928	12470	
	(1012)	3		44 6	55 4		3 1	5 2	80.9	1 7	0 1	7952	14310	
	(1)12)	1	17 8	35 7	46 5		0.1	0.2	00.7	1.7	2.1	6658	11080	120
•		-	17.0	12 5	-10.J							0000	14500	120
		3		43.5	30.5			• • • • • •				0099	14560	140
02	(6) 4670 71 74 76 78 70. DM12440	1	15.0	21 7	11 0	0 2	2 1	5 0	61 2	1 2	21 2	6002	10070	
93	(0) 4070, 71, 74, 70, 78, 79; BM13449	1	15.2	34.7	41.0	0.3	2.1	3.9	01.Z	1.2	21.5	7102	10970	
	(composite 0)	2		41.0	49.2	9.8	2.5	4.9	12.2	1.4	9.2	7183	12930	
	(1912)	3		45.4	54.0	• • • • • •	2.7	5.4	80.0	1.0	10.2	1963	14330	
		4	16.9	37.0	46.1			· · · · · ·				6713	12080	121
		5	••••	44.5	55.5							8079	14540	145
95	(2) 4706, 07; BM 13452 (composite 2)	1	12.6	39.6	38.8	9.0	3.6	5.7	61.5	1.2	19.0	6234	11220	
	(1912)	2		45.3	44.4	10.3	4.1	4.8	70.4	1.4	9.0	7136	12840	
		3		50.5	49.5		4.6	5.4	78.5	1.5	10.0	7951	14310	
		4	14.3	42.4	43.3							6943	12500	125
		5		49.4	50.6							8103	14590	146
					0		() () () () () () () () () ()	0						

a Grape Creek coal, formerly called No. 6 coal.

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

	Samples			Prox	IMATE			τ	Jltimat	ΓE]	Heat Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
212	BM 84225 (composite 3) (1922)	1 2 3 4 5	14.1 15.8 	34.1 39.7 44.4 36.5 43.3	42.8 49.8 55.6 47.7 56.7	9.0 10.5	2.3 2.7 3.0	5.8 4.9 5.4	61.7 71.9 80.3	1.2 1.4 1.5	20.0 8.6 9.8	6133 7144 7983 6818 8109	11040 12860 14370 12270 14600		 146
401	BM A90661 (composite 3) (1933)	1 2 3 4 5	16.9 18.8 	31.9 38.4 42.8 34.1 42.0	42.6 51.2 57.2 47.1 58.0	8.6 10.4 	1.5 1 8 2.0	6.1 5.0 5.6	59.3 71.4 79.6	1.3 1.5 1.7	23.2 9.9 11.1	6000 7222 8061 6629 8171	10800 13000 14510 11930 14710	 119	· · · · · · · · · · · · · · 147
	Average of 6 mine averages (6 ulti- mates)	1 2 3 4 5	14.8 16.7	$\begin{array}{r} 34.6 \\ 40.6 \\ 45.5 \\ 37.1 \\ 44.5 \end{array}$	$\begin{array}{r} 41.4 \\ 48.6 \\ 54.5 \\ 46.2 \\ 55.5 \end{array}$	9.2 10.8 	2.3 2.7 3.0	5.8 4.9 5.5	60.6 71.2 79.8	1.3 1.5 1.7	20.8 8.9 10.0	6065 7119 7981 6759 8110	10920 12810 14370 12170 14600	· · · · · · · · · · · · · · · · · · ·	 146

VERMILION COUNTY (Continued)

County Average Rank Index122 (119-125)County Average Unit Coal Index146 (145-147)

234

F	τī	Ŧ.	T	M N	J	CC	T	N	T	v
r.	U	L	J. 1	U 1	•	υı	νυ	114	т.	1

SPRINGFIELD (NO. 5) COAL (WESTERN ILLINOIS)

28	(3) 5292-5-9 (1912)	1 2 3 4 5	16.7 19.0	36.7 44.0 49.9 39.6 48.9	36.7 44.1 50.1 41.4 51.1	9.9 11.9	2.9 3.5 4.0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	5763 6918 7847 6477 7999	10370 12450 14130 11660 14400	 117	· · · · · · · · · · · · · 144	MINE AND
29	(3) 5293, 97, 5300 (1912)	1 2 3 4 5	16.4 18.9 	35.9 43.0 49.4 39.0 48.1	36.9 44.1 50.6 42.1 51.9	10.8 12.9 	3.5 4.2 4.5	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	5683 6796 7867 6462 7972	10230 12230 14160 11630 14350	 116 	· · · · · · · · · · · · · 144	COUNTY AVERAGE
30	(3) 5345-6-7 (1912)	1 2 3 4 5	16.2 18.7 	35.2 41.9 48.2 38.2 47.0	37.8 45.1 51.8 43.1 53.0	10.8 13.0	3.1 3.7 4.2	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			5722 6827 7845 6511 8009	10300 12290 14120 11720 14420	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · 144	S OF PROXIMATE
31	BM 14560 (composite 6); (6) 5283-84, 85, 96, 98, 5341 (1912)	1 2 3 4 5	16.5 19.0	36.2 43.3 49.6 39.3 48.5	$\begin{array}{r} 36.7 \\ 44.0 \\ 50.4 \\ 41.7 \\ 51.5 \end{array}$	10.6 12.7	3.0 3.6 4.1	5.8 4.7 5.4 	56.4 67.6 77.4	1.0 1.2 1.4	23.2 10.2 11.7	5694 6819 7813 6458 7972	10250 12280 14060 11630 14350	 116	· · · · · · · · · · · · · 144	E AND ULTIMATI
32	(3) 5342-3-4 (1912)	1 2 3 4 5	14.7 16.9	37.2 43.6 49.7 40.3 48.5	37.7 44.2 50.3 42.8 51.5	10.4 12.2	3.3 3.8 4.4	· · · · · · · ·	 			5917 6934 7896 6699 8057	10650 12480 14210 12060 14500	 121	· · · · · · · · · · · · · 145	E ANALYSES

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

FULTON COUNTY (Continued)

	Samples	-		Prox	ІМАТЕ			τ	Jltimat	E]	Heat Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
111	(6) 12443-44-45-46-47-48 (1921)	1 2 3 4 5	14.6 17.3 	34.1 39.9 46.8 37.6 45.4	38.6 45.3 53.2 45.1 54.6	12.7 14.8	3.0 3.6 4.2		· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5629 6593 7742 6552 7920	10130 11870 13940 11790 14260	 118	 143
112	(6) 12472-3-4-5-6-7 (1921)	1 2 3 4 5	15.3 17.6 	35.0 41.3 47.5 38.2 46.3	38.6 45.6 52.5 44.2 53.7	11.1 13.1 	2.8 3.3 3.8	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	5846 6898 7939 6672 8101	10520 12420 14290 12010 14580	 120	· · · · · · · · · · · · · 146
113	(3) 12439-40-41 (1921)	1 2 3 4 5	14.3 16.7 	34.8 40.6 47.0 38.1 45.7	39.2 45.7 53.0 45.2 54.3	11.7 13.7 	3.2 3.7 4.3	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · ·	5901 6882 7976 6794 8153	10620 12390 14360 12230 14680	 122	· · · · · · · · · · · · · 147
114	A 88223 (composite 3); Average 6 12459-60-61-62-63-64 (1921, 1933)	1 2 3 4 5	15.5 17.9	35.0 41.4 47.8 38.3 46.6	38.2 45.2 52.2 43.8 53.4	11.3 13.4 	2.7 3.2 3.7	5.8 4.8 5.6	58.4 69.1 79.8	1.0 1.2 1.4	20.8 8.3 9.5	5753 6804 7858 6518 8019	10360 12250 14150 11730 14430	 117	· · · · · · · · · · · · · ·

236

115	BM 84408 (composite 2)	1	15.2	33.5	40.5	10.8	3.2	5.7	59.6	1.1	19.6	5894	10610	
	(1922)	2		39.5	47.7	12.8	3.8	4.7	70.3	1.3	7.1	6950	12510	
		3		45.3	54.7		4.3	5.4	80.6	1.5	8.2	7966	14340	
		4	17.6	36.2	46.2							6705	12070	121
		5		44.0	56.0			• • • • • • •				8140	14650	147
116	(3) 12436-7-8	1	15.7	35.0	38.3	11.0	3.9					5815	10470	
	(1921)	2		41.6	45.4	13.0	4.6					6897	12420	
		3		47.8	52.2		5.3					7929	14270	
		4	18.3	37.9	43.8							6635	11940	119
		5		46.4	53.6							8116	14610	146
118	BM 84449 (composite 3)	1	12.9	35.1	40.7	11.3	3.8	5.4	60.3	1.1	_18.1	6089	10960	
	(1922)	2		40.3	46.7	13.0	4.4	4.6	69.2	1.3	7.5	6983	12570	
		3		46.4	53.6		5.0	5.2	79.5	1.5	8.8	8028	14450	
		4	15.1	38.1	46.8							6981	12570	126
		5		44.9	55.1							8213	14780	148
520	C-46 (composite 2)	1	14.4	34.2	38.5	12.9	3.8	5.6	57.6	1.1	19.0	5806	10450	
	(1932)	2		39.9	45.0	15.1	4.4	4.7	67.3	1.3	7.2	6784	12210	
		3		47.0	53.0		5.2	5.6	79.2	1.6	8.4	7987	14380	
		4	17.2	37.7	45.1							6788	12220	122
		5		45.5	54.5							8194	14750	148
	Average of 13 mine averages (5 ulti-	1	15.3	35.2	38.3	11.2	3.2	5.7	58.4	1.1	20.4	5809	10460	
	mates)	2		41.6	45.2	13.2	3.8	4.7	68.9	1.3	8.1	6854	12340	
	(County average)	3		47.9	52.1		4.4	5.4	79.4	1.5	9.3	7896	14210	
		4	17.7	38.4	43.9							6640	11950	120
		5		46.6	53.4							8067	14520	145
-														
		_												

County Average Rank Index120 (116-126)County Average Unit Coal Index145 (143-148)

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= moist mineral-matter-free; 5= dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

LOGAN COUNTY

SPRINGFIELD (NO. 5) COAL (CENTRAL ILLINOIS)

-	Samples			Prox	IMATE			τ	Jltimat	Έ	÷		Heat VA	LUES
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index Unit coal index
33	(3) 5263-4-5(1912)	1 2 3 4 5	14.2 16.5 	37.2 43.4 50.0 40.7 48.8	37.2 43.4 50.0 42.8 51.2	11.4 13.2 	3.3 3.9 4.5	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5828 6792 7829 6678 8001	10490 12230 14090 12020 14400	120 144
109	BM 81594 (composite 3) (1921)	1 2 3 4 5	12.8 14.6 	36.5 41.8 47.2 39.4 46.1	40.8 46.8 52.8 46.0 53.9	9.9 11.4	3.0 3.4 3.9	5.6 4.8 5.5	61.5 70.5 79.5	1.1 1.3 1.4	18.9 8.6 9.7	6105 7003 7901 6871 8047	10990 12610 14220 12370 14490	124 145
	Average of 2 mine averages (1 ulti- mate)	1 2 3 4 5	13.5 15.6	36.9 42.6 48.6 40.0 47.4	39.0 45.1 51.4 44.4 52.6	10.6	3.2 3.6 4.2	5.6 4.8 5.4	60.1 69.5 79.3	1.1 1.3 1.4 	19.4 8.5 9.7	5967 6898 7865 6775 8023	10740 12420 14160 12200 14440	 122 144

County Average Rank Index 122 (120-124) County Average Unit Coal Index 144 (144-145)

MC LEAN COUNTY

SPRINGFIELD (NO. 5) COAL (CENTRAL ILLINOIS)

100	(3) 5431-2-4 (1912)	1 2 3 4 5	13.3 15.8 	38.0 43.8 51.2 42.0 49.9	36.2 41.8 48.8 42.2 50.1	12.5 14.4 	3.7 4.3 5.0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	5878 6781 7920 6835 8114	10580 12210 14260 12300 14610	123 146
		Count Count	y Aver y Aver	age Ra age Ui	nk Ind nit Coa	lex 1 Index	123 146							
MACO	N COUNTY					SP	RING	FIELL	(NO.	. 5) C	OAL (CENT	RAL II	LLINOIS)
41	(3) 5244-5-6	1 2 3 4 5	14.5 16.9 	36.0 42.1 48.6 39.3 47.3	38.0 44.5 51.4 43.8 52.7 41.4	11.5 13.4 8 9	3.3 3.9 4.5 					5803 6786 7836 6657 8008	10450 12210 14110 11980 14420	120 144
	01, 02(1912, 1921)	2 3 4 5	15.0	41.9 46.8 38.7 45.6	47.8 53.2 46.3 54.4	10.3 	4.1 4.5	4.9 5.5	69.8 77.8	1.1 1.3 1.4	9.6 10.8	7022 7830 6777 7976	12640 14090 12200 14360	122 144
	Average of 2 mine averages (1 ulti- mate)	1 2 3 4 5	13.9 16.0 	36.2 42.0 47.7 39.0 46.4	39.7 46.1 52.3 45.0 53.6	10.2 11.9 	3.4 4.0 4.5	5.7 4.8 5.5	59.1 68.6 77.9	1.1 1.2 1.4	20.5 9.5 10.7	5945 6904 7833 6717 7992	10700 12430 14100 12090 14390	121 144

County Average Rank Index121 (120-122)County Average Unit Coal Index144

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= moist mineral-matter-free; 5= dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

MENARD COUNTY

SPRINGFIELD (NO. 5) COAL (CENTRAL ILLINOIS)

	Samples			Proxi	MATE			U	JLTIMAT	Е]]	Heat Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	$Condition^x$	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
34	(3) 5190, 1-2 (1912)	1 2 3	17.3	35.9 43.4 48.2	38.6 46.7 51.8	8.2 9.9	3.4 4.2 4.6				<i></i> .	5833 7055 7829	10500 12700 14090	 . <i></i>	· · · · ·
		4 5	19.4	37.9 47.0	42.7 53.0							6426 7973	11570 14350	116 	144
612	C 631 (composite 3) (1934)	1 2 3 4 5	14.2 16.0	36.0 42.0 46.7 38.2 45.6	$\begin{array}{r} 41.1 \\ 47.8 \\ 53.3 \\ 45.8 \\ 54.4 \end{array}$	8.7 10.2 	$3.5 \\ 4.1 \\ 4.5 \\ \dots$	5.8 4.9 5.5	61.0 71.1 79.2	1.1 1.3 1.5	19.9 8.4 9.3	6083 7090 7892 6746 8033	10950 12760 14200 12140 14460	 121 	· · · · · · · · · 145
531	BM A86595 (composite 2); C-152 (composite 3) (1933)	1 2 3 4 5	14.5 16.7	34.6 40.5 46.3 37.6 45.1	40.1 46.9 53.7 45.7 54.9	10.8 12.6	2.7 3.2 3.7	5.8 4.9 5.6	59.9 70.1 80.2	1.1 1.3 1.4	19.7 7.9 9.1	5967 6978 7984 6783 8141	10740 12560 14370 12210 14650	 122	· · · · · · · · · · · · · 147

Average 3 mine averages (2 ultimates) 15.3 35.5 40.09.2 3.2 5.9 60.1 1.0 20.6 5961 10730 1 10.9 41.9 47.23.8 5.070.8 1.2 8.2 7038 12670 (County average) 2 3 47.0 53.0 4.35.6 79.5 9.2 7899 14220 1.4. 37.9 44.8 11970 120 4 17.3 6650 . . . 54.28048 14490 5 45.8 145

County Average Rank Index 120 (116-122) County Average Unit Coal Index 145 (144-147)

PEORIA COUNTY

SPRINGFIELD (NO. 5) COAL (WESTERN ILLINOIS)

25	(3) 5289-90-91	1	14.9	36.9	37.2	11.0	3.4					5883	10590	
	(1912)	2		43.3	43.7	13.0	4.0					6916	12450	
		3		49.8	50.2		4.7					7944	14300	
		4	17.3	40.1	42.6							6713	12080	121
	· · · · · · · · · · · · · · · · · · ·	5		48.5	51.5							8119	14610	146
26	(3) 5303-4-5	1	15.0	36.5	36.7	11.8	3.1					5789	10420	
	(1912)	2		42.9	43.2	13.9	3.6	• • • • • • •				6811	12260	
		3		49.8	50.2		4.2					7907	14230	
	<u>.</u>	4	17.5	40.1	42.4							6663	12000	120
		5		48.6	51.4							8081	14550	146
1.1														
106	BM 84563 (composite 3)	1	13.4	30.7	44.4	11.5	3.8	5.6	59.6	1.1	18.4	6025	10840	
	(1922)	2		35.4	51.4	13.2	4.4	4.8	68.8	1.3	7.5	6957	12520	
		3		40.8	59.2		5.1	5.5	79.3	1.5	8.6	8017	14430	
	and the second	4	15.7	33.0	51.3							6921	12460	125
		5		39.1.	60.9							8201	14760	148
									 					

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ashfree; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

-	Samples	Proximate					τ	Jltimat	ΓE	HEAT VALUES					
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index Unit coal	index
107	BM 84233 (composite 3)	1 2 3 4 5	14.1 16.4 	34.4 40.1 46.3 37.6 45.0	40.0 46.5 53.7 46.0 55.0	11.5 13.4 	2.9 3.4 3.9	5.7 4.8 5.5	59.9 69.8 80.6	1.1 1.3 1.5	18.9 7.3 8.5	5950 6926 7997 6826 8168	10710 12470 14400 12290 14700		 147
348	BM 22986 (composite 4); BM A 45619 (composite 2); 16464 (composite 2); BM A88227 (com- posite 3) (1915, 1928, 1933)	1 2 3 4 5	15.5 18.1 	34.1 40.4 46.8 37.3 45.5	38.745.853.244.654.5	11.7 13.8 	2.8 3.3 3.8	5.8 4.9 5.8	57.7 68.4 79.3	1.1 1.3 1.5	20.9 8.3 9.6	5800 6869 7971 6754 8139	10440 12370 14350 12160 14650		· · · · · · · · · · · 147
349	(2) 16444-45 (1928)	1 2 3 4 5	13.4 15.3	37.9 43.8 49.8 41.3 48.7	38.3 44.2 50.2 43.4 51.3	10.4 12.0	2.7 3.4 3.8	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			6071 7011 7968 6870 8122	10930 12620 14340 12370 14620		 146
601	BM A 90520 (composite 3) (1933)	1 2 3 4 5	14.4 16.3	35.741.747.138.546.0	40.2 46.9 52.9 45.2 54.0	9.7 11.4 	2.6 3.1 3.5	6.0 5.1 5.7	60.8 71.1 80.2	1.0 1.2 1.4	19.9 8.1 9.2	6106 7139 8050 6849 8205	10990 12850 14490 12330 14770		 148

PEORIA COUNTY (Continued)
BM2	*BM 21035 (composite 3)	1 ้	15.5	34.7	39.8	10.0	2.9	5.9	59.2	1.1	20.9	5969	10740		
	(1915)	2		41.1	47.1	11.8	3.4	5.0	70.0	1.4	8.4	7059	12710		
		3		46.6	53.4		3.8	5.7	79.4	1.5	9.6	8009	14420		
		4	17.6	37.4	45.0							6723	12100	121	
		5		45.4	54.6							8162	14690		147
	Average 8 mine averages (5 ulti-	1	14.5	35.1	39.4	11.0	3.2	5.8	59.2	1.1	19.7	5949	10710		
	mates)	2		41.1	46.1	12.8	3.8	4.9	69.3	1.3	7.9	6959	12530		
	(County average)	3		47.1	52.9		4.3	5.6	79.5	1.5	9.1	7982	14370		
		4	16.8	38.1	45.1							6781	12210	122	
		5		45.8	54.2							8151	14670		147

County Average Rank Index 122 (120-125) County Average Unit Coal Index 147 (146-148)

SANGAMON COUNTY

SPRINGFIELD (NO. 5) COAL (CENTRAL ILLINOIS)

					1	1						1	
36	(3) 5118-19-20	1	15.3	36.6	37.8	10.3	3.7	 			5843	10520	
	(1912)	2		43.2	44.7	12.1	4.3	 			6903	12430	
		3		49.1	50.9		4.9	 			7858	14150	
		4	17.7	39.4	42.9			 			6610	11900	119
		5		47.9	52.1			 			8027	14450	145
37	(2) 5128-9	1	14.0	37.2	38.3	10.5	3.3	 			5924	10660	
	(1912)	2		43.3	44.5	12.2	4.6	 			6886	12390	
		3		49.3	50.7		5.3	 			7840	14110	
		4	16.1	40.4	43.5			 			6714	12090	121
		5		48.0	52.0			 	 .		8015	14430	144

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

	Samples		Proximate					Ľ	LTIMAT	E		F	Чеат Va	LUES
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index Unit coal index
38	(3) 5196-7-8 (1912)	1 2 3 4 5	14.2 16.4	38.1 44.4 50.4 41.1 49.1	37.5 43.7 49.6 42.5 50.9	10.2 11.9	4.1 4.8 5.5		· · · · · · · · · · · · · · · · · · ·			5917 6901 7832 6691 8007	10650 12420 14100 12040 14410	120 144
39	(3) 5166-7-8 (1912)	1 2 3 4 5	13.3 15.8	37.4 43.2 50.5 41.3 49.0	36.7 42.3 49.5 42.9 51.0	12.6 14.5 	$4.1 \\ 5.5 \\ 6.4 \\ \dots \dots$	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		5777 6664 7797 6732 8011	10400 12000 14040 12120 14420	121 144
40	(3) 5187-88-89 (1912)	1 2 3 4 5	15.1 17.4 	36.7 43.2 49.0 39.4 47.7	38.1 44.9 51.0 43.2 52.3	10.1 11.9 	4.2 4.8 5.4	· · · · · · ·	· • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	5880 6922 7856 6641 8032	10580 12460 14140 11960 14460	120 145
119	BM 81451 (composite 3) (1921)	1 2 3 4 5	14.0 16.2	35.7 41.5 47.2 38.5 45.9	39.9 46.4 52.8 45.3 54.1	10.4 12.1	3.8 4.4 5.0	5.7 4.8 5.4	59.7 69.5 79.1	$ \begin{array}{r} 1.1 \\ 1.3 \\ 1.5 \\ \dots \end{array} $	19.3 7.9 9.0	5948 6918 7869 6739 8040	10710 12450 14170 12130 14470	 121 145

SANGAMON COUNTY (Continued)

. 244

120	BM 81455 (composite 3)	1	13.7	36.8	39.2	10.3	3.9	5.8	59.7	1.2	19.1	5978	10760		
	(1921)	2		42.7	45.4	11.9	4.5	5.0	69.2	1.4	8.0	6928	12470		
		3		48.4	51.6		5.1	5.7	78.6	1.5	9.1	7863	14150		
-		4	15.8	39.7	44.5							6764	12180	122	
		5		47.1	52.9							8034	14460	145	
121	BM 81459 (composite 3)	1	13.9	33.8	42.1	10.2	3.7	5.7	60.3	1.2	18.9	5987	10780		
	(1921)	2		39.3	48.8	11.9	4.3	4.9	70.0	1.3	7.6	6956	12520		
		3		44.6	55.4		4.9	5.5	79.5	1.5	8.6	7896	14210		
		4	. 16.0	36.2	47.8							6771	12190	122	
		5		43.2	56.8							8063	14510	145	
							1								
122	BM 81443 (composite 3); BMA 90788	1	13.9	35.4	40.9	9.8	3.9	5.7	59.7	1.1	19.8	6017	10830		
	(composite 3)	2		41.1	47.5	11.4	4.5	4.9	69.3	1.3	8.6	6988	12580		
	(1921, 1933)	3		46.4	53.6		5.1	5.5	78.2	1.5	9.7	7886	14200		
		4	15.9	37.9	46.2							6770	12190	122	
	-	5		45.0	55.0							8054	14497	145	
616	C-732 (composite 2)	1	14.0	36.1	38.4	11.5	4.3	5.6	58.1	1.1	19.4	5856	10540		
	(1934)	2		42.0	44.7	13.3	5.0	4.7	67.6	1.3	8.1	6809	12260		
		3		48.5	51.5		5.7	5.5	78.0	1.4	9.4	7858	14150		
	·	4	16.4	39.3	44.3							6732	12120	121	
		5		47.0	53.0							8056	14500	145	
617	C-734 (composite 2)	1	14.6	36.1	38.5	10.8	3.7	5.8	58.3	1.1	20.3	5868	10560		
	C-733 (composite 2)	2		42.3	45.1	12.6	4.4	4.9	68.2	1.3	8.6	6867	12360		
	(1934)	3		48.4	51.6		5.0	5.6	78.0	1.5	9.9	7860	14150		
		4	16.9	39.1	44.0					1		6681	12020	120	
		5		47.1	52.9							8036	14460	145	
		÷.													
			1		1	1		1	1	1	1		I	•	

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ashfree; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

SANGAMON COUNTY (Continued)

	Samples			Prox	IMATE			τ	Jltimat	Έ]	Неат Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
618	C-747 (composite 2)	1 2 3 4 5	14.2 16.4 	35.5 41.3 47.0 38.2 45.6	39.9 46.6 53.0 45.4 54.4	10.4 12.1 	4.1 4.8 5.4 	5.7 4.8 5.5 	59.0 68.7 78.1	• 1.1 1.3 1.5 	19.7 8.3 9.5	5945 6925 7876 6741 8058	10700 12470 14180 12130 14510	121	145
624	C-937 (composite 3) (1934)	1 2 3 4 5	14.9 17.3	34.6 40.7 46.9 37.7 45.6	39.2 46.1 53.1 45.0 54.4	11.3 13.2 	3.2 3.8 4.4	5.8 4.9 5.6	58.4 68.6 79.1	1.1 1.2 1.4	20.2 8.3 9.5	5835 6855 7902 6678 8067	10500 12340 14220 12020 14520	 120	145
-	Average 14 mine average (9 ulti- mates)	1 2 3 4 5	14.2 16.4 	36.1 42.1 48.0 39.0 46.7	39.1 45.6 52.0 44.6 53.3	10.6 12.3 	3.9 4.6 5.2	5.7 4.8 5.5	59.0 68.8 78.4 	1.1 1.3 1.5 	19.7 8.2 9.4	5911 6889 7855 6731 8032	10640 12400 14140 12120 14460	 121 	145

County Average Rank Index 121 (119-123) County Average Unit Coal Index 145 (144-145) 246

SCHU	YLER COUNTY					SP	RING	FIELD	(NO.	5) CC	DAL (WEST	ERN II	LINC)IS)
327	(3) 13804-5-6 (1922)	1 2 3 4 5	15.2 17.3 	34.7 40.9 46.3 37.4 45.2	40.2 47.5 53.7 45.3 54.8	9.9 11.6 	2.7 3.1 3.5		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	6024 7103 8040 6772 8187	10840 12790 14470 12190 14740	 122 	
		Count Count	y Aver y Aver	age Ra age Ui	ank Ind nit Coa	lex 1 Index	122 147								
SHELI	BY COUNTY		-	U		SF	RING	FIELI) (NO	. 5) C(DAL (CENT	RAL II	LLINC)IS)
217	BM 81314 (composite 3) (1921)	1 2 3 4 5	11.2 13.0 	35.3 39.7 45.1 38.1 43.8	42.8 48.2 54.9 48.9 56.2	10.7 12.1 	3.6 4.0 4.6	5.7 5.0 5.7	61.2 69.0 78.4	1.2 1.4 1.6	* 17.6 8.5 9.7 	6150 6927 7880 7001 8045	11070 12470 14190 12600 14480	 126 	 145
		Count Count	y Aver y Aver	age Ra age Ui	ink Ind nit Coa	lex 1 Index	126 145								
TAZEV	WELL COUNTY					SP	RING	FIELI) (NO.	5) C(DAL (CENT	RAL II	LINO)IS)
27	(3) 5277-78-81 (1912)	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	14.4 16.4 	37.6 44.1 49.7 40.4 48.6	38.4 44.6 50.3 43.2 51.4	9.6 11.3	3.1 3.6 4.1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6006 7014 7905 6736 8055	10810 12630 14230 12120 14500	 121 	· · · · · · · · · · · · · · · · · · ·

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

	Samples			Proxi	MATE			U	JLTIMAT	E]	НЕАТ VA	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	" Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
108	BM 84486 (composite 3) (1922) Average 2 mine averages (1 ultimate) (County average)	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 1 \\ 5 \\ 5 \\ 1 \\ 1 \\ $	15.9 18.0 15.1 17.2	$\begin{array}{r} 33.9\\ 40.2\\ 45.2\\ 36.1\\ 43.9\\ 35.7\\ 42.1\\ 47.4\\ 38.3\\ 46.2 \end{array}$	40.9 48.8 54.8 45.9 56.1 39.7 46.7 52.6 44.5 53.8	9.3 11.0 9.5 11.2 	3.3 3.9 4.4 3.2 3.8 4.3 	5.9 4.9 5.5 5.8 4.9 5.5	59.4 70.6 79.3 59.9 70.6 79.4	1.2 1.4 1.5 1.1 1.3 1.5 	20.9 8.2 9.3 20.5 8.2 9.3 	5922 7039 7911 6615 8061 5964 7028 7911 6675 8062	10660 12670 14240 11910 14510 10740 12650 14240 12020 14510	 119 120	145 145

TAZEWELL COUNTY (Continued)

County Average Rank Index 120 (119-121) County Average Unit Coal Index 145

FULTON-PEORIA

HERRIN (NO. 6) COAL (WESTERN ILLINOIS)

621	C-916 (composite 2) (1934) (County average)	1 2 3 4 5	15.9 17.9	32.6 38.8 43.4 34.6 42.2	42.5 50.5 56.6 47.5 57.8	9.0 10.7	3.0 3.6 4.1	5.8 4.9 5.4	59.4 70.6 79.1	1.1 1.3 1.4	21.7 8.9 10.0	5931 7054 7903 6598 8044	10680 12700 14230 11880 14480	 119 	
	· · ·	Count	y Aver	age Ra	ink Ind	ex 1 Index	119								
GRUN	DY COUNTY	Count	y Avei	age OI		T THUCK	VEROI	NA (N	0. 6?) COA	L (N	ORTH	ERN II	LINO	IS)
530	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
		Count	y Aver	age Ra	ink Ind	ex 1 Index	123			•					
HENR	Y COUNTY	Count	y Aver				HE	RRIN	(NO.	6) CC	AL (VEST	ERN II	LINO	IS)
527	BM A 86460 (composite 2); C-145 (composite 2) (1932) (County average)	1 2 3 4 5	19.1 22.6	30.4 37.5 44.2 32.9 42.4	38.3 47.4 55.8 44.5 57.6	12.2 15.1	3.9 4.8 5.7	5.8 4.6 5.4	53.9 66.6 78.4	.8 1.0 1.2	23.4 7.9 9.3	5378 6647 7833 6223 8036	9680 11970 14100 11200 14470	· · · · · · · · · · · · · · · · · · ·	 145
		Count	y Aver	age Ra	ınk Ind	ex	112								

County Average Unit Coal Index 145

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ash-free; 4 = moist mineral-matter-free; 5 = dry-mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

KNOX COUNTY

HERRIN (NO. 6) COAL (WESTERN ILLINOIS)

	Samples			Proxi	IMATE			Ŭ	ltimat	E		1	Heat Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
526	BM 86457 (composite 2); C-137 (composite 2) (1932) (County average)	1 2 3 4 5	17.9 20.6	32.5 39.5 45.4 35.0 44.0	$39.0 \\ 47.5 \\ 54.6 \\ 44.4 \\ 56.0$	10.6 13.0	3.1 3.8 4.3	5.9 4.7 5.4	57.1 69.6 80.0	.8 1.0 1.2	22.5 7.9 9.1	5664 6894 7921 6426 8090	10200 12410 14260 11570 14560	 116 	

County Average Rank Index116County Average Unit Coal Index146

LASA	LLE COUNTY (LaSalle District))		(SECO	OND V	EIN)	HERR	IN (N	0. 6?)a CO.	AL (N	ORTH	ERN I	LLINC)IS)
[∞] 231 ·	(3) 5391-2-3 (1912)	1 2 3 4 5	14.8 16.8 	41.3 48.5 54.7 44.7 53.7	34.3 40.2 45.3 38.5 46.3	9.6 11.3 	3.4 4.0 4.5	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·		5930 6956 7844 6653 7999	10670 12520 14120 11980 14400	 120	· · · · · · · · · · · · · · · · · · ·
<u></u>		3 4 5	16.8	54.7 44.7 53.7	45.3 38.5 46.3		4.5	 				7844 6653 7999	14120 11980 14400	1	20

County Average Unit Coal Index 144

a Formerly called No. 5 coal.

250

LA SALLE COUNTY

HERRIN (STREATOR) (NO. 6) ^b COAL (NORTHERN ILLINOIS)

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

251

								1						
99	(3) 5414-16-17	1	13.6	40.9	37.8	7.7	3.7					6304	11350	
	(1912)	2		47.3	43.7	9.0	4.3					7293	13130	
		3		52.0	48.0		4.7					8013	14420	
		4	15.1	43.3	41.6							6923	12460 125	
		5		51.0	49.0							8158	14680 147	
600	$C_{0,0,0,0}$	1	10.0	20.0	20 5	0.5	20			1.0	10.0	° (102	11150	
620	(1024)	1	12.8	38.2	39.5	9.5	3.0	5.8	01.1	1.0	19.0	0193	11150	
	(1934)	2		43.8	45.5	10.9	4.2	5.0	70.1		8.7	7104	12/90	
		3	11 6	49.2	50.8		4.0	5.0	18.1	1.3	9.8	7970 6014	14350	
		-4 -5	14.0	41.0	52 0							09 11 9120	12500 125	
		5		40.0	52.0							0152	14040 140	
	Average of 2 mine averages (1 ulti-	1	13.2	39.5	38.7	8.6	3.7	5.8	61.5	1.0	19.4	6249	11250	
	mate)	2		45.6	44.5	9.9	4.2	5.0	70.9	1.2	8.8	7197	12960	
	(County average)	3		50.6	49.4		4.7	5.6	78.7	1.3	9.7	7992	14390	
		4	14.9	42.2	42.9							6933	12480 125	
		5		49.5	50.5							8143	14660 147	
					ł	1		I		}				
	(County	Aver	age Ra	nk Ind	ex	125							
h Ec	rmerly called No. 7 coal.	County	y Aver	age Un	it Coa	l Index	147	(146-14	+7)					
COLADI								DDD		a) (1)				
STAR							HI	CREAN	(NO.	6) CC	DAL (WEST	ERN ILLINUIS)	
528	BM A86464 (composite 2): C-142	1	17.5	33.1	39.3	10 1	3.7	5.9	57.2	.9	22.2	5736	10330	
	(composite 2)	2		40.1	47.6	12.3	4.5	4.8	69.3	1.1	8.0	6953	12520	
	(1932)	3		45.7	54.3		5.1	5.5	79.0	1.3	9.1	7928	14270	
	(County average)	4	20.1	35.4	44.5							6471	11650 117	
		5		44.3	55.7							8105	14590 146	

County Average Rank Index116County Average Unit Coal Index146

x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=moist mineral-matter-free; 5=dry mineral-matter-free (unit coal).

BOND COUNTY

HERRIN (NO. 6) COAL (SOUTHWESTERN ILLINOIS)

	Samples			Proxi	MATE			U	LTIMAT	E]	Heat Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
218	BM 80791 (composite 3) (1921) (County average)	1 2 3 4 5	11.9 13.8	35.2 39.9 45.4 38.1 44.1	42.2 47.9 54.6 48.1 55.9	10.7 12.2 	3.4 3.8 4.4	5.5 4.7 5.3	60.9 69.2 78.8	1.1 1.2 1.4	18.4 8.9 10.1	5998 6810 7754 6821 7911	10800 12260 13960 12280 14240	123	

County Average Rank Index123County Average Unit Coal Index142

CHRISTIAN COUNTY

HERRIN (NO. 6) COAL (CENTRAL ILLINOIS)

	*													
•••														
219	BM 81318 (composite 3)	1	12.4	36.3	40.3	11.0	3.8	5.8	59.3	1.1	9.0	5982	10770	
	(1921)	2		41.5	46.0	12.5	4.4	5.1	67.7	1.3	9.0	6827	12290	
		3		47.5	52.5		5.0	5.9	77.4	1.4	10.3	7806	14050	
	•	4	14.4	39.5	46.1							6831	12300	123
		5		46.1	53.9							79 78	14360	144
	· · ·			1										
220	BM 81447 (composite 3)	1	13.9	36.5	39.3	10.3	4.3	5.8	58.6	1.1	19.9	5938	10690	
	(1921)	2		42.4	45.6	12.0	4.9	4.9	68.0	1.3	8.9	6892	12410	
		3		48.1	51.9		5.6	5.6	. 77.3	1.5	10.0	7828	14090	
•		4	16.0	39.3	44.7							6725	12110	121
		5		46.8	53.2							8007	14410	144

252

221	BM (average 3 composites): 81141,	1	12.4	37.6	39.6	10.4	3.9	5.6	60.4	1.1	18.6	6078	10940
	26338, 25752	2		42.9	45.2	11.9	4.5	4.9	68.9	1.2	8.6	6936	12480
	(1921)	3		48.7	51.3		5.1	5.5	78.2	1.4	9.8	7872	14170
		4	14.3	40.7	45.0							6894	12410 124
		5		47.5	52.5							8042	14480 145
222	BM 81145 (composite 3)	1	12.2	37.3	41.4	9.1	3.6	5.7	60.8	1.2	19.6	6142	11060
	(1921)	2		42.5	47.2	10.3	4.2	5.0	69.2	1.3	10.0	6996	12590
		3		47.4	52.6		4.6	5.6	77.1	1.5	11.2	7802	14040
		4	13.8	39.8	46.4							6849	12330 123
		5		46.2	53.8							7948	14310 143
	Average 4 mine averages (4 ultimates)	1	12.7	37.0∻	40.1	10.2	3.9	5.7	59.8	1.1	19.3	6035	10860
	(County average)	2		42.3	46.0	11.7	4.5	5.0	68.4	1.3	9.1	6913	12440
		3		47.9	52.1		5.1	5.6	77.5	1.4	10.4	7827	14090
		4	14.6	39.8	45.6							6825	12290 123
		5		46.6	53.4							7994	14390 144

County Average Rank Index 123 (121-124) County Average Unit Coal Index 144 (143-145)

CLINTON COUNTY

HERRIN (NO. 6) COAL (SOUTHWESTERN ILLINOIS)

84	(2) 5073-74	1	12.9	37.7	39.0	10.4	4.2		 	 5978	10760		
	(1912)	2		43.2	44.8	12.0	4.8		 	 6861	12350		
		3		49.1	50.9		5.4		 	 7792	14030		
		4	14.9	40.7	44.4				 	 6781	12210	122	
		5		47.8	52.2			<i></i>	 	 7966	14340		143
at a													

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ashfree; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

	Samples			Prox	IMATE			τ	JLTIMAT	Е]	Неат Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	$Condition^x$	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
												6000	10010	e	
85	(3) 5052-53-54	1	12.4	36.9	40.7	10.0	3.5					6020	10840	· • • • • •	
	(1912)	2		42.1	46.4	11.5	4.0					08/1	12370		
		3	14 0	41.0	52.4		4.5					7701 6701	13970	122	
	'	4	14.2	39.8	40.0				· · · <i>·</i> · · ·			7014	14250	122	1/13
		. 3		40.5	55.7				· · · · · ·			7914	14230		145
198	BM 80747 (composite 3)	1	11.0	36.8	41.3	10.9	3.5	5.5	60.8	1.1	18.2	6059	10910		
	(1921)	2		41.4	46.4	12.2	3.9	4.8	68.3	1.3	9.5	6809	12260		
		3		47.2	52.8		4.5	5.5	77.8	1.4	10.8	7757	13960		
		4	12.8	40.0	47.2							6905	12430	124	
		5		45.9	54.1							7916	14250		143
199	BM 80770 (composite 3)	1	11.1	34.9	43.4	10.6	3.6	5.3	60.9	1.1	18.5	6088	10960		
	(1921)	2		39.3	48.8	11.9	4.0	4.6	68.6	1.2	9.7	6852	12330		••••
		3		44.6	55.4		4.5	5.2	77.9	1.4	11.0	7779	14000		. <i>.</i>
		4	12.9	37.6	49.5							6915	12450	125	
		5		43.2	56.8							7937	14290	1	143

CLINTON COUNTY (Continued)

254

Average 4 mine averages (2 ulti- 1 11.8 36.6 3.7 5.5 60.3 6038 10870 41.1 10.5 1.1 18.9 41.5 1.2 12320 4.24.868.49.5 6845 mates)..... 2 46.611.9 3 47.152.9 4.85.4 77.6 1.410.8 7770 13990 (County average) 4 13.6 39.6 46.86851 12330 123 5 45.8 54.27931 14280 143

County Average Rank Index123 (122-125)County Average Unit Coal Index143

FRANKLIN COUNTY

HERRIN (NO. 6) COAL (SOUTHERN ILLINOIS)

50	BM 26497 (composite 5); (3)	1	9.7	34.1	48.1	8.1	1.1	5.5	67.3	1.2	16.8	6617	11910	
	5222-3-4	2		37.8	53.3	8.9	1.2	4.9	74.6	1.4	9.0	7327	13190	
	(1912, 1916)	3.		41.5	58.5		1.3	5.3	81.9	1.6	9.9	8046	14480	
		4	10.7	36.4	52.9							7263	13070	131
		5		40.8	59.2							8138	14640	146
											ŕ			
51	(3) 5008-9-11	1	10.3	33.4	49.0	7.3	1.2					6606	11890	
	(1912)	2		37.2	54.7	8.1	1.3					7362	13250	
		3		40.5	59.5		1.4					8009	14420	
		4	11.2	35.4	53.4							7182	12930	129
		5		39.8	60.2							8090	14560	146
52	(3) 4810-11-12	1	6.8	38.4	44.6	10.2	3.1					6597	11880	
	(1912)	2		41.1	47.9	11.0	3.4					7074	12730	
		3		46.2	53.8		3.8					7949	14310	
		4	7.8	41.6	50.6							7465	13440	134
		5		45.1	54.9							8092	14570	146

x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ashfree; 4=moist mineral-matter-free; 5=dry mineral-matter-free (unit coal).

FRANKLIN COUNTY (Continued)

	Samples			Prox	IMATE			ť	Jltimat	'E		. I	НЕАТ VA	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	$Condition^x$	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
53	(4) 4785-6-7-9 (1912)	1 2 3 4 5	10.2 11.2 	32.8 36.5 40.2 35.1 39.5	48.9 544 59.8 53.7 60.5	8.1 9.1	.6 .7 .8			· · · · · · · ·	· · · · · · · ·	6478 7213 7933 7112 8011	11660 12980 14280 12800 14420	128	· · · · · · · · · · · · · · 144
56	(3) 5208-9-11 (1912)	1 2 3 4 5	8.1 9.3	36.3 39.5 44.5 39.4 43.4	45.3 49.3 55.5 51.3 56.6	10.3 11.2	2.5 2.7 3.1	· · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	6514 7088 7977 7363 8111	11730 12760 14360 13250 14600	133	· · · · · · · · · · · · · 146
57	BM 20083 and BM 20726 (composite 3); BM (3) 5507-8-9 (1912, 1914, 1915)	1 2 3 4 5	9.4 10.4 	31.9 35.1 39.1 34.4 38.3	49.7 54.9 60.9 55.2 61.7	9.0 10.0	.7 .8 .9	5.2 4.6 5.1	66.9 73.8 82.0	1.5 1.6 1.8	16.7 9.2 10.2	6530 7207 8007 7247 8094	11750 12970 14410 13050 14570	131	· · · · · · · · · 146
58	BM 22691 (composite 5); (3) 4791- 93-94 (1912, 1915)	1 2 3 4 5	9.1 10.0	34.1 37.5 41.2 36.5 40.6	48.7 53.6 58.8 53.5 59.4	8.1 8.9	.8 .9 1.0	5.5 5.0 - 5.4	67.7 74.4 81.7	1.5 1.7 1.9	16.4 9.1 10.0	6628 7288 7999 7272 8079	11930 13120 14400 13090 14540	 131	

256

134	C-508 (composite 2); C-507 (compos-	1	8.9	32.9	49.8	8.4	1.1	5.3	67.8	1.5	15.9	6594	11870	
-	ite 2); (6), 12701,-02-03, 12720-21-	2		36.1	54.7	9.2	1.2	4.7	74.4	1.7	8.8	7237	13030	
	22	3		39.7	60.3		1.3	5.2	81.9	1.9	9.7	7972	14350	
	(1921, 1934)	4	9.8	35.2	55.0							7267	13080	131
		5		39.0	61.0							8057	14500	145
136	BM A90718 (composite 3); (6) 12729-	1	8.1	34.4	48.2	9.3	2.0	5.6	65.9	1.6	15.6	6559	11810	
	30-31-32-33-34	2		37.4	52.4	10.2	2.1	5.1	71.7	1.7	9.2	7139	12850	
	(1921, 1933)	3		41.6	58.4		2.4	5.6	79.8	1.9	10.3	7947	14310	
		4	9.1	37.0	53.9				<i>.</i>			7319	13180	132
		5		40.7	59.3							8063	14510	145
139	(6) 12682-3-4-98-9-12700	1	7.9	35.1	47.6	9.4	2.3					6552	11790	
	(1921)	2		38.2	51.7	10.1	2.5					7111	12800	
		3		42.4	57.6		2.8		••••••			7913	14240	
		4	8.9	37.8	53.3						• • • • • •	7320	13180	132
		5		41.5	58.5							8031	14460	145
140	(3)12738-9-40.	1	6.8	35.1	49.2	8.9	2.5					6647	11960	
	(1921)	2		37.6	52.9	9.5	2.7					7135	12840	
		3		41.6	58.4		3.0	· • • • • •				7886	14190	
		4	7.7	37.4	54.9							7388	13300	133
		5		40.6	59.4							8001	14400	144
4.15	(2) 10265 6 5		0 -	00.4										1
145	(3) 12365-6-7	1	8.5	32.1	50.9	8.5	1.0	· · · · · ·	• • • • • •			6621	11920	
	(1921)	2	••••	35.1	55.6	9.3	1.1					7235	13020	
		3		38.7	61.3	· · · · · <i>·</i>	1.3	• • • • • •				7972	14350	· · · · · · · · ·
		4	9.4	34.4	56.2							7301	13140	131
		5	• • • • • • •	38.0	62.0	••••	• • • • • •		• • • • • •	· · · · · ·		8059	14510	145
			l.							· · · ·				n e l

x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ashfree; 4=moist mineral-matter-free; 5=dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

	Samples			Prox	IMATE			τ	JLTIMAT	Έ]	НЕАТ VA	LUES	.
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
147	^a BM 30881 (composite 4)	1 2 3 4 5	9.4 10.8 	34.1 37.6 42.4 36.6 41.1	46.3 51.1 57.6 52.6 58.9	10.2 11.3	3.3 3.6 4.1	5.3 4.7 5.3	64.4 71.1 80.1	1.3 1.4 1.6	15.5 7.9 8.9	6417 7083 7986 7259 8138	11550 12750 14380 13070 14650	 131 .	 146
256	BM A 39231 (composite 3) (1928)	1 2 3 4 5	88 10.0 	33.6 36.9 41.5 36.3 40.4	47.5 52.0 58.5 53.7 59.6	10.1 11.1 	2.3 2.5 2.8	5.6 5.1 5.7	66.3 72.7 81.8	1.4 1.6 1.8	14.3 7.0 7.9	6561 7200 8100 7398 8231	11810 12960 14580 13320 14820		 148
BM13	^b BM 23478 (composite 5) (1915)	1 2 3 4 5	9.0 10.0	34.5 37.9 41.9 37.1 41.2	47.9 52.6 58.1 52.9 58.8	8.6 9.5 	1.1 1.2 1.3	5.4 4.9 5.4	67.4 74.0 81.8	1.4 1.5 1.7	16.1 8.9 9.8	6650 7308 8071 7346 8161	11970 13150 14530 13220 14690	······ ······ 132 .	 147
BM15	BM A23444 (composite 2); BM A66446 (composite 5) (1916, 1930)	1 2 3 4 5	9.1 10.1	32.8 36.1 39.8 35.1 39.1	49.7 54.7 60.2 54.8 60.9	8.4 9.2	0.8 0.9 1.0	5.4 4.8 5.3	67.6 74.5 82.0	1.4 1.5 1.7	16.4 9.1 10.0	6646 7313 8053 7315 8135	11960 13160 14500 13170 14640		 146

FRANKLIN COUNTY (Continued)

\sim D [M 22921 (composite 0)]	T	10.0	32.8	49.3	7.9	1.0	5.5	66.8	1.6	17.2	6587	11860		
(1915)	2		36.5	54.7	8.8	1.1	4.9	74.2	1.8	9.2	7317	13170		
	3		40.0	60.0		1.2	5.4	81.4	1.9	10.1	8024	14440		
	4	11.0	35.0	54.0							7217	12990	130	
	5		39.3	60.7							8107	14590		146
^c BM 29747 (composite 6)	1	9.8	34.1	47.5	8.6	.8	5.3	66.2	1.5	17.6	6514	11730		
(1918)	2		37.8	52.6	9.6	.8	4.7	73.4	1.7	9.8	7219	12990		
	3		41.9	58.1		.9	5.2	81.1	1.9	10.9	7982	14370	 	
	4	10.8	36.8	52.4							7193	12950	130	
	5		41.2	58.8							8066	14520		145
^e BM 30896 (composite 4)	1	10.2	34.3	47.8	7.7	.8	5.5	66.7	1.5	17.8	6571	11830		
(1918)	2		38.2	53.2	8.6	.9	4.9	74.2	1.7	9.7	7315	13170		
	3		41.8	58.2		.9	5.4	81.2	1.9	10.6	8003	14410		
	4	11.2	36.6	52.2]		7179	12920	129	
	5		41.2	58.8							8079	14540		145
^e BM 30886 (composite 4)	1	10.2	33.8	48.3	7.7	1.3	5.4	66.9	14	17.3	6597	11880		
(1918)	2		37.6	53.8	8.6	1.5	4 7	74 5	1.1	9 1	7349	13230		
	3		41.2	58.8		1.6	5.1	81.5	1.8	10.0	8043	14480		
	4	11.2	35.9	52.9		1.0	0.1	01.0	1.0	10.0	7217	12000	130	
	5		40.4	59.6							8132	14640		146
BM30890 (composite 3)	1	10.4	33.4	49.0	72	13	54	67.8	1 5	16.8	6616	11010		
(1918)	2	10.1	37.3	54 7	8.0	14	4.8	75 6	1.5	8 5	7382	13200		••••
()	3		40.6	59 4	0.0	1.4	5 2	82 2	1.7	0.0	8026	14450		
	4	11 3	35.3	53 4		1.0	0.2	02.2	1.0	7.4	7100	12040	120	••••
	5	11.0	30 0	60 1			; .				8100	14600	129	140
	 (1915) ^eBM 29747 (composite 6)	(1915) 2 °BM 29747 (composite 6) 1 (1918) 2 °BM 30896 (composite 4) 1 (1918) 2 °BM 30886 (composite 4) 1 (1918) 2 S °BM 30886 (composite 4) 1 (1918) 2 S BM30890 (composite 3) 1 (1918) 2 S BM30890 (composite 3) 1 (1918) 2 S S BM30890 (composite 3) 1 (1918) 2 S S S S S S S S S S S S S	(1915) ^c BM 29747 (composite 6) ⁽¹⁹¹⁸⁾ ^c BM 30896 (composite 4) ⁽¹⁹¹⁸⁾ ⁽				$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					$ \begin{array}{c} (1915) \\ (1915) \\ (1915) \\ (1915) \\ (1915) \\ (1915) \\ (1918) \\ (110) \\$	$ \begin{array}{c} (1915) \\ (1915) \\ (1915) \\ (1915) \\ (1915) \\ (1915) \\ (1918) \\ (191$	$ \begin{array}{c} (1915) \\ (1915) \\ (1915) \\ (1915) \\ (1915) \\ (1915) \\ (1915) \\ (1916) \\ (1918) \\ (191$

*

a U. S. Bureau of Mines Bull. 193, p. 30. b U. S. Bureau of Mines Bull. 123, p. 34. c U. S. Bureau of Mines Bull. 193, pp. 31-33.

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

	Samples		•	Prox	MATE			U	ltimat	E !		Ι	Ieat Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
BM67	^c BM 30871 (composite 4) (1918)	1 2 3 4 5	10.6	32.4 36.3 39.7 34.5 39.0	49.3 55.1 60.3 53.9 61.0	7.7 8.6	.7 .8 .9	5.4 4.7 .5.2	66.9 74.8 81.8	1.5 1.7 1.8	17.8 9.4 10.3	6566 7339 8031 7171 8107	11820 13210 14460 12910 14590	 129 	· · · · · · · · · · · · · · 146
	Average 22 mine averages (15 ulti- mates) (County average)	1 2 3 4 5	9.2 10.2	33.9 37.3 41.3 36.3 40.5	48.3 53.2 58.7 53.5 59.5	8.6 9.5	1.5 1.6 1.8	5.4 4.8 5.3	66.8 73.6 81.3	1.5 1.6 1.8	16.2 8.9 9.8	6576 7238 7997 7271 8095	11840 13030 14400 13090 14570	 131	· · · · · · · · · 146

FRANKLIN COUNTY (Continued)

County Average Rank Index131 (128-134)County Average Unit Coal Index146 (144-148)

GALLATIN COUNTY (EAGLE VALLEY)

HERRIN (NO. 6) COAL (SOUTHERN ILLINOIS)

							l	1		1 .				1
223	(2) 5510-11	1	4.3	36.1	49.0	10.6	3.7		 		6990	12580		
	(1912)	2		37.7	.51.2	11.1	3.9		 		7303	13150		
	(Eagle Valley average)	3		42.4	57.6		4.4		 		8213	14780		
		4	5.0	39.0	56.0				 		7961	14330	143	
	•	5		41.0	59.0				 		8377	15080		151

County Average Rank Index143County Average Unit Coal Index151

260

JACKSON COUNTY

HERRIN (NO. 6) COAL (SOUTHERN ILLINOIS)

				1		1									
55	(3) 4773-80-84	1	9.0	34.4	46.4	10.2	2.7					6449	11610		
	(1912)	2		37.8	51.0	11.2	2.9					7084	12750		
		3		42.6	57.4		3.3					7977	14360		
		4	10.2	37.2	52.6							7284	13110	131	
		5	10.2	41 4	58.6							8114	14610	101	146
					00.0							0114	11010		140
183	Average 28 14303-4-7-9 to 26-38 to	1	9.9	35.0	45.7	9.4	1.7					6465	11640		
	44	2		38.8	50.8	10.4	1.9					7177	12920		
	(1924)	3		43.3	56.7		2.1					8008	14420		
		4	11.2	37.7	51.1							7213	12980	130	
		5		42.5	57.5							8119	14610	100 .	146
													11010		110
419	BM A90760 (composite 2)	1	9.2	34.4	46.4	10.0	2.4	5.5	64.6	1.3	16.2	6467	11640		
	(1933)	2		37.9	51.1	11.0	2.7	4.9	71.2	1.4	8.8	7122	12820		
		3		42.6	57.4		3.0	5.6	80.0	1.6	9.8	8006	14410		
,		4	10.5	37.1	52.4							7283	13110	131	
		5		41.5	58.5							8134	14640		146
	Average 3 mine averages (1 ultimate)	1	9.4	34.5	46.2	9.9	2.2	5.5	64.8	1.3	16.3	6461	11630		
	(County average)	2		38.1	51.0	10.9	2.4	5.0	71.6	1.4	8.7	7132	12840		
		3		42.8	57.2		2.7	5.6	80.3	1.6	9.8	8004	14410		
		4	10.6	37.3	52.1							7264	13080	131	
		5		41.7	58.3							8129	14630		146

County Average Rank Index 131 County Average Unit Coal Index 146 131 (130-131)

c U. S. Bureau of Mines Bull, 193, pp. 31-33, x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=moist mineral-matter-free; 5=dry mineral-matter-free (unit coal).

JEFFERSON COUNTY

HERRIN (NO. 6) COAL (SOUTHERN ILLINOIS)

	Samples			Prox	IMATE			Ŭ	LTIMAT	Е	-	ł	HEAT VA	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
BM63	BM 17500 (composite 2) (1925) (County average)	1 2 3 4 5	8.5 9.5 	34.6 37.8 41.8 37.1 41.0	48.2 52.7 58.2 53.4 59.0	8.7 9.5	1.3 1.4 1.6	5.3 4.9 5.4	67.3 73.5 81.2	1.5 1.6 1.8	15.9 9.1 10.0	6653 7272 8033 7361 8128	11980 13090 14460 13250 14630	 133	· · · · · · · · · · · · · 146

County Average Rank Index133County Average Unit Coal Index146

MACO	UPIN COUNTY					HE	RRIN	(NO. 6	6) CO2	4L (SC	DUTH	WEST	ERN II	LINC	(IS)
66	(3) 5086-7-8	1	14.2	38.7	37.1	10.0	4.3					5861	10550		
	(1912)	2		45.2	43.2	11.6	5.1					6836	12310		
		3		51.1	48.9		5.7					7735	13920		
	· · · · · · · · · · · · · · · · · · ·	4	16.4	41.6	42.0							6610	11900	119	
		5		49.8	50.2							7908	14240		142
67	(3) 5100-1-2	1	14.9	37.2	37.9	10.0	3.9					5884	10590		
	(1912)	2		43.7	44.6	11.7	4.6					6915	12450		
		3		49.5	50.5		5.2					7836	14100		
		4	17.1	40.0	42.9							6634	11940	119	
		5		48.3	51.7							8005	14410]	144

ANALYSES OF ILLINOIS COALS

68	(3) 5112-13-14	1	12.9	39.2	38.7	9.2	4.6					6091	10960		
	(1912)	2		45.0	44.5	10.5	5.2					6991	12580		
		3		50.3	49.7		5.9					7811	14060		3
		4	14.7	41.9	43.4							6809	12260	123	🛙
		5		49.1	50.9							7981	14370	14	1 4 변
															AN
69	(3) 5097-8-9	1	14.2	37.4	37.0	11.4	4.4					5798	10440		
	(1912)	2		43.6	43.1	13.3	5.2					6758	12170		00
		3		50.3	49.7		6.0					7799	14040		N
		4	16.7	40:7	42.6	1						6662	11990	120	. TY
		5		48.9	51.1							7994	14390	1 14	14 👌
															/ER
185	BM 81326 (composite 3)	1	11.9	39.3	39.7	9.1	3.6	5.8	60.9	1.1	19.5	6134	11040		AG
200	(1921)	2		44.6	45.1	10.3	4.1	5.1	69.1	1.3	10.1	6964	12540		ES
	()	3		49.7	50.3		4.5	5.7	77.1	1.4	11.3	7768	13980		01
		4	13.5	42.1	44.4							6844	12320	123	d. P
-		5	10.0	48.7	51.3							7913	14240	14	42 RO
		U		10.1	0110										IIX II
186	BM 81330 (composite 3)	1	11 2	37.8	40.4	10.6	3.9	5.9	60.2	1.1	18.3	6058	10900		MА
100	(1921)	2		42.6	45.4	12.0	4.4	5.2	67.8	1.2	9.4	6621	12280		TE
	(1721)	3		48 4	51 6		5.0	5.9	77 0	1.4	10.7	7746	13940		A
		4	12.9	41.0	46.1							6886	12400	124	Ð
		5		47.1	52.9							7911	14240	14	42 E
		v			02.5										TI
187	BM 81335 (composite 3)	1	13.5	36.4	38.9	11.2	4.2	5.8	57.8	1.0	20.0	5876	10580		MA
107	(1921)	2	10.0	42 1	45.0	12.9	4 9	5.0	66.8	1.1	9.3	6790	12220		TE
	(1/21)	3		48.3	51 7	1	5.6	5.8	76.7	1.3	10.6	7797	14040		A
		4	15 7	39.5	44.8		0.0	0.0		1.5	10.0	6727	12110	121	. NA
		5	10.7	46 0	53 1							7982	14370	1.01	44 F
		3		10.9	00.1							,,02	11070		SE
			1 1		1	1	1	1	1	1	1		1	4 1	02

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ashfree; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

AVERAGES OF PROXIM TE g Ż ALYSES

	Samples		- -	Proxi	MATE			U	LTIMAT	E		I	Heat Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
188	BM 81088 (composite 3)	1 2 3 4 5	12.0 13.4 	38.7 44.0 48.6 41.1 47.5	40.9 46.5 51.4 45.5 52.5	8.4 9.5	3.9 4.4 4.9 	5.9 5.2 5.7	61.1 69.5 76.7	$1.1 \\ 1.2 \\ 1.4 \\ \dots \dots$	19.6 10.2 11.3	6158 6994 7730 6813 7872	11090 12590 13910 12260 14170		· · · · · · · · · · · · · 142
189	BM 81019 (composite 3) (1921)	1 2 3 4 5	14.1 16.0 	35.3 41.1 45.8 37.4 44.5	41.7 48.6 54.2 46.6 55.5	8.9 10.3	4.0 4.6 5.2	5.9 5.1 5.6	58.6 68.2 76.0	$ \begin{array}{c} 1.1 \\ 1.3 \\ 1.4 \\ \dots	21.5 10.5 11.8	5883 6846 7633 6542 7782	10590 12320 13740 11780 14010	· · · · · · · · · · · · · · · · · · ·	 140
190	BM 87023 (composite 3)	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	14.1 16.0	34.4 40.0 44.8 36.6 43.6	42.4 49.3 55.2 47.4 56.4	9.1 10.7	3.4 3.9 4.4	6.0 5.2 5.8	58.8 68.4 76.6	1.1 1.3 1.4	21.6 10.5 11.8	5916 6887 7708 6597 7851	10650 12400 13880 11880 14130	 119	· · · · · · · · · · · · · 141
534	BM A87367 (composite 3) BM 18553 (composite 2) (1914, 1933)	1 2 3 4 5	13.8 15.9	36.0 41.7 47.2 38.5 45.8	40.2 46.7 52.8 45.6 54.2	10.0 11.6	4.1 4.8 5.4	5.7 4.9 5.5	59.2 68.6 77.6	1.0 1.2 1.4	20.0 8.9 10.1	5933 6886 7792 6695 7963	10680 12400 14030 12050 14330	 121	· · · · · · · · · · · · · 143

MACOUPIN COUNTY (Continued)

Average 11 mine averages (7 ulti-37.4 13.3 39.5 9.8 58.9 10730 1 4.05.9 1.1 20.35963 mates)..... 2 43.1 45.611.3 4.6 5.1 68.0 1.29.8 6878 12380 (County average) 3 48.6 51.4 5.7 5.2 76.6 11.1 7754 13960 1.4 4 15.3 40.1 44.6 6710 12080 121 . . . 5 47.3 52.7 7916 14250 143

County Average Rank Index121 (118-124)County Average Unit Coal Index143 (140-144)

MADISON COUNTY

HERRIN (NO. 6) COAL (SOUTHWESTERN ILLINOIS)

70	(3) 5515-17-18	1	12.8	38.7	37.4	11.1	4.8	 			5923	10660		
	(1912)	2		44.3	42.9	12.8	5.5	 			6793	12230	.	
		3		50.8	49.2		6.3	 			7786	14010		
	~	4	15.0	42.0	43.0			 	· · · · · · · ·		678 3	12210	122 .	
		5		49.4	50.6			 			7981	14370		144
71	(3) 5070-1-2	1	12.5	39.6	37.5	10.4	4.1	 			6039	10870		
	(1912)	2		45.2	42.9	11.9	4.7	 			6904	12430		
		3		51.3	48.7		5.3	 			7837	14110		
		4	14.5	42.9	42.6			 			6851	12330	123 .	
	· · · · ·	5	. .	50.1	49.9			 			8011	14420		144
72	(3) 5067-8-9	1	13.8	37.6	38.9	9.7	4.3	 			5957	10720		
	(1912)	2		43.6	45.2	11.2	4.9	 			6912	12440		
		3		49.1	50.9		5.6	 			7788	14020		
		4	15.9	40.2	43.9			 			6697	12050	121 .	
		5		47.8	52.2			 			7957	14320		143
	· · · · ·													

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

	Samples			Prox	IMATE			ť	JLTIMAT	E		Ι	Heat Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
73	(3) 5075-6-8 (1912)	1 2 3	14.7	38.6 45.3	38.2 44.8	8.5 9.9	3.8 4.4			 	 	5992 7026 7700	10790 12650 14040	 .	
		4 5	16.6	41.0 49.2	42.4 50.8	· · · · · · · · ·	+. , 		· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • •	6631 7947	11940 14310	119	143
191	BM 80945 (composite 3) (1921)	1 2 3 4 5	13.1 15.1	38.0 43.7 49.9 41.4 48.8	38.1 43.8 50.1 43.5 51.2	10.8 12.5 	3.5 4.0 4.6	5.7 4.9 5.7 	59.4 68.3 78.0	1.0 1.2 1.3	19.6 9.1 10.4	5948 6842 7817 6773 7981	10710 12320 14070 12190 14370	 122	· · · · · · · · · · · · · 144
192	BM 80865 (composite 3) (1921)	$\begin{vmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{vmatrix}$	11.6 13.4	37.0 41.9 47.3 39.8 46.0	41.2 46.6 52.7 46.8 54.0	10.2 11.5	4.1 4.7 5.3	5.7 4.9 5.6	60.8 68.8 77.7	1.1 1.3 1.4	18.1 8.8 10.0	6087 6887 7783 6887 7951	10960 12400 14010 12390 14310		· · · · · · · · · · · · ·

MADISON COUNTY (Continued)

266

Average 6 mine averages (2 ulti-	1	13.1	38.3	38.5	10.1	4.1	5.8	59.6	1.1	19.3	5992	10790		
mates)	2		44.1	44.3	11.6	4.7	5.0	68.6	1.2	8.9	6900	12420		
(County average)	3		49.9	50.1		5.3	5.6	77.6	1.4	10.1	7805	14050		
	4	15.1	413	43.6							6769	12180	122	
-	5		48.6	51.4		4					7974	14350		144

County Average Rank Index 122 (119-124) County Average Unit Coal Index 144 (143-144)

MARION COUNTY

HERRIN (NO. 6) COAL (CENTRALIA DISTRICT)

							-].							
87	(3) 5039-41-44	1	10.5	36.9	41.5	11.1	4.0					6207	11170		
	(1912)	2		41.1	46.4	12.5	4.5					6932	12480		
		3		47.0	53.0		5.2					7918	14250		
		4	12.2	40.1	47.7				1			7109	12800	128	
		5		45.6	54.4							8097	14580		146
	-														
206	BM 80743 (composite 6)	1	9.8	36.5	42.3	11.4	4.1	5.5	61.9	1.2	15.9	6228	11210		
	(1921)	2		40.4	46.9	12.7	4.5	4.9	68.7	1.3	7.9	6908	12440		
		3		46.3	53.7		5.2	5.6	78.7	1.5	9.0	7911	14240		
		4	11.5	39.7	48.8							7159	12890	129	
	ę	5		44.9	55.1							8092	14570		146
207	BM 80698 (composite 3)	1	10.6	36.4	42.4	10.6	3.3	5.6	62.8	1.2	16.5	6277	11300		
	(1921)	2		40.7	47.4	11.9	3.7	4.9	70.3	1.3	7.9	7023	12640		
		3		46.1	53.9		4.2	5.6	79.8	1.4	9.0	7969	14340		
		4	12.3	39.4	48.3							7132	12840	128	
		5		44.9	55.1							8127	14630		146
															- 10
						1			1	1			1	1 1	

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

Γ_A	BLE 2	Mine	AND	COUNTY	AVERAGES	OF	PROXIMATE A	ND	ULTIMATE	ANALYSES(iont	ınued	
------------	-------	------	-----	--------	----------	----	-------------	----	----------	-----------	------	-------	--

MARION COUNTY (Continued)

	Samples			Prox	MATE			U	Jltimat	E]	НЕАТ VA	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	$Condition^x$	Moisture	Volatile Matter	Fixed - Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
	• Average 3 mine averages (2 ultimates) (County average)	1 2 3 4 5	10.3 12.0	36.6 40.8 46.5 39.7 45.1	42.1 46.9 53.5 48.3 54.9	11.0 12.3 	3.8 4.3 4.8	5.5 4.9 5.6	62.2 69.3 79.1	1.2 1.3 1.5	16.3 7.9 9.0	6237 6954 7933 7133 8105	11230 12520 14280 12840 14590	 128	 146

County Average Rank Index 128 (128-129) County Average Unit Coal Index 146

MONTGOMERY COUNTY

HERRIN (NO. 6) COAL (SOUTHWESTERN ILLINOIS)

	-													
76	BM 21906 (composite 5); (3) 5105-6-7	1	13.7	35.9	39.3	11.1	3.9	5.6	58.6	1.2	19.6	5867	10560	
	(1912, 1915)	2		41.7	45.5	12.8	4.6	4.7	67.9	1.4	8.6	6797	12240	
		3		47.8	52.2		5.2	5.4	77.9	1.6	9.9	7798	14040	
		4	15.9	39.0	45.1							6706	12070	121
		5		46.4	53.6							7977	14360	144
								1						
194	BM 81104 (composite 3); BM A87370	1	12.7	36.2	40.7	10.4	4.1	5.8	59.8	1.0	18.9	5989	10780	
	(composite 3)	2		41.4	46.6	12.0	4.7	5.0	68.5	1.1	8.7	6864	12360	
	(1921, 1933)	3		47.1	.52.9		5.3	5.7	77.8	1.3	9.9	7798	14040	
		4	14.7	39.0	46.3							6795	12230	122
	,	5		45.7	54.3						1	7971	14350	144

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	195	BM 81096 (composite 3)	1	12.8	36.2	41.6	9.4	3.7	5.7	60.1	1.1	20.0	6042	10880	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(1921)	2		41.5	47.8	10.7	4.3	4.9	68.9	1.3	9.9	6931	12480	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3		46.5	53.5		4.8	5.5	77.2	1.4	11.1	7765	13980	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(4	14.6	38.6	46.8							6761	12170	122
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			5		45.2	54.8							7917	14250	143
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19 6	BM81092 (composite 3)	1	12.3	36.9	40.4	10.4	4.4	5.6	60.2	1.1	18.3	5986	10770	
$197 BM \ 81100 \ (composite$		(1921)	2		42.1	46.0	11.9	5.0	4.8	68.6	1.3	8.4	6825	12290	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			3		47.8	52.2		5.7	5.5	77.9	1.4	9.5	7742	13940	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			4	14.2	39.8	46.0							6790	12220	122
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			5		46.4	53.6							7918	14250	143
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	197	BM 81100 (composite	1	14.7	35.4	41.0	8.9	4.0	5.7	59.6	1.1	20.7	5878	10580	
Average 5 mine averages (5 ultimates) $ \begin{array}{c} 3 \\ 4 \\ $		(1921)	2		41.5	48.1	10.4	4.6	4.8	69.9	1.3	9.0	6894	12410	
Average 5 mine averages (5 ultimates)			3		46.3	53.7		5.2	5.3	78.1	1.4	10.0	7697	13850	
Average 5 mine averages (5 ultimates) 5 \dots 45.0 55.0 \dots \dots \dots \dots 14130 \dots 141 Material 1 13.2 36.2 40.4 10.2 4.2 5.7 59.6 1.0 19.3 5962 10730 \dots $(County average)$ 2 \dots 41.7 46.5 11.8 4.8 4.8 68.6 1.2 8.8 6869 12360 \dots 4 15.2 38.9 45.9 \dots \dots \dots \dots \dots 0.7788 14420 \dots 4 15.2 38.9 45.9 \dots \dots \dots \dots 0.7788 14220 \dots 4 15.2 38.9 45.9 54.1 \dots \dots \dots 0.7788 14330 \dots 143 1430 \dots 14330 \dots 14130 \dots 14130 \dots 14130 \dots 14130 141 10.0 1788 1.4 10.0 1788 14020 \dots \dots 141 15.2 38.9 45.9 1.1 \dots \dots \dots 14130 \dots 141 115.2 145.9 54.1 \dots \dots \dots 14130 \dots \dots 14330 \dots 14330 \dots 14330 \dots 14330 \dots 14330 14330 11430 11430 11430 11430 11430 11430 11430 14130 11430 </td <td></td> <td></td> <td>4</td> <td>16.7</td> <td>37.5</td> <td>45.8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6538</td> <td>11770</td> <td>118</td>			4	16.7	37.5	45.8							6538	11770	118
Average 5 mine averages (5 ulti- mates)			5		45.0	55.0							7849	14130	141
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Average 5 mine averages (5 ulti-	1	13.2	36.2	40.4	10.2	4.2	5.7	59.6	1.0	19.3	5962	10730	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		mates)	2		41.7	46.5	11.8	4.8	4.8	68.6	1.2	8.8	6869	12360	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(County average)	3		47.3	52.7		5.4	5.4	77.8	1.4	10.0	7788	14020	
5 45.9 54.1 7960 14330 143			4	15.2	38.9	45.9							6744	12140	121
		<i>2</i>	5		45.9	54.1		• • • • • •		•••••			7960	14330	143
	 	·													

County Average Rank Index 121 (118-122) County Average Unit Coal Index 143 (141-144)

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MOULTRIE COUNTY

 \mathbb{S}

HERRIN (NO. 6?) COAL (CENTRAL ILLINOIS)

	Samples			Prox	[MATE			τ	Jltimat	'E]	НЕАТ VA	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
336	(3) \$254-55-56) (1912) (County average)	1 2 3 4 5	6.8 8.0 	39.2 42.0 48.1 43.0 46.7	42.3 45.4 51.9 49.0 53.3	11.7 12.6	4.0 4.3 4.9		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 	6599 7083 8101 7619 8284	11880 12750 14580 13720 14910	137	· · · · · · · · · 149

County Average Rank Index137County Average Unit Coal Index149

PERRY	Y COUNTY (West of DuQuoin A	nticli	ne) .			HEI	RRIN	(NO. 6	5) COA	L (Se	OUTH	WEST	ERN I	LLINOIS)
88	(3) 5048-49-50.	1	9.6	37.1	41.3	12.0	3.8					6101	10980	
×	(1912)	2 3 4	11 3	41.0 47.3 40.8	45.7 52.7 47 9	13.3	$\begin{array}{c} 4.1\\ 4.4\end{array}$		 	 		6750 7786 7061	12150 14010 12710	127
		5		46.0	54.0				 			7959	14330	143
89	(3) 5514-19-20	1 2	12.5	36.1 41.3	42.8 48.8	8.6 9.9	$2.8 \\ 3.2$					6226 7112	11210 12800	
		3 4	14.0	45.8	54.2 47.5		3.6					7891 6898	14200 12420	124
		5		44.8	55.2							8019	14430	121 144

ANALYSES OF ILLINOIS COALS

90	(6) 5034-37-38, 5040-42-43; BM 14178	1	10.7	36.5	42.5	10.3	3.6	5.4	61.8	1.1	17.8	6154	11080		
	(composite 6)	2		40.8	47.6	11.6	4.0	4.7	69.2	1.3	9.2	6895	12410		
	(1912)	3		46.2	53.8		4.5	5.3	78.3	1.4	10.5	7800	14040		
		4	12.4	39.4	48.2							6971	12550	126	
		5		44.9	55.1							7956	14320	143	
175	(3) 12596-7-8	1	10.1	35.7	43.8	10.4	3.7					6217	11190		
	(1921)	2		39.7	48.7	11.6	4.1]			6919	12460		
		3		44.9	55.1		4.6					7830	14090		
		4	11.7	38.5	49.8	1						7054	12700	127	
		5		43.6	56.4					1		7989	14380	144	
176	(6) 12574-5-6-7-8-9	1	10.2	36.4	43.3	10.1	3.4	<i>.</i> .				6211	11180		
	(1921)	2		40.5	48.2	11.3	3.8					6914	12450	1	
		3		45.6	54.4		4.3					7794	14030		
		4	11.7	39.2	49.1							7015	12630	126	
		5		44.4	55.6							7943	14300	143	
178	(3) 12620-1-2	1	9.8	35.0	42.5	12.7	4.1					6009	10820		
	(1921)	2		38.8	47.1	14.1	4.5					6659	11990		
		3		45.1	54.9		5.3				: .	7751	13960		
		4	11.6	38.5	49.9							7016	12630	126	
		5		43.6	56.4							7939	14290	143	
179	(2) 12664-5	1	8.8	37.4	43.0	10.8	3.4					6276	11300		
	(1921)	2		41.0	47.2	11.8	3.7					6883	12390		
1		3		46.5	53.5		4.2					7806	14050		
		4	10.2	40.6	49.2							7147	12860	129	
		5		45.3	54.7							7959	14330	143	

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ashfree; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

PERRY COUNTY (West of DuQuoin Anticline) (Continued)

	Samples		•	Proxi	MATE			U	J _{LTIMAT}	E		I	НЕАТ VA	LUES
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index Unit coal index
182	(3) 12592-3-4 (1921)	1 2 3 4 5	9.1 10.6	35.8 39.4 44.9 38.9 43.5	43.9 48.3 55.1 50.5 56.5	11.2 12.3	3.7 4.1 4.7			· · · · · · · ·	· · · · · · · ·	6188 6807 7762 7086 7925	11140 12250 13970 12750 14270	128 143
184	(4) 12588-89-90-91 (1921)	1 2 3 4 5	8.0 9.3 	38.2 41.5 47.3 41.7 46.0	42.6 46.3 52.7 49.0 54.0	11.2 12.2	3.6 3.9 4.4	· · · · · · · ·	· · · · · · ·	 	· · · · · · · ·	6273 6817 7766 7188 7924	11290 12270 13980 12940 14260	 129 143
BM69	^a BM 31037 (composite 4) (1918)	1 2 3 4 5	12.0 13.5 	33.9 38.5 43.0 36.5 42.2	44.9 51.0 57.0 50.0 57.8	9.2 10.5	1.5 1.7 1.9	5.5 4.7 5.3	63.2 71.8 80.2	1.3 1.5 1.7	19.3 9.8 10.9	6237 7091 7921 6944 8028	11230 12760 14260 12500 14450	125 145
622	C-926 (composite 2) and C-927 (composite 2)	1 2 3 4 5	9.2 10.7	35.7 39.2 44.6 38.7 43.2	44.2 48.7 55.4 50.6 56.8	10.9 12.1	3.7 4.1 4.6	5.2 4.7 5.4	62.3 68.6 78.0	1.0 1.1 1.3	16.8 9.4 10.7	6269 6904 7855 7154 8019	11290 12430 14140 12880 14440	129 144

272

623	C-932 (composite 2); C-933 (com-	1	10.2	35.0	44.4	10.4	3.5	5.4	61.6	1.1	18.0	6198	11160	
	posite 2)	2		39.0	49.4	11.6	3.9	4.8	68.6	1.2	9.9	6902	12420	
	(1934)	3		44.1	55.9		4.4	5.4	77.6	1.4	11.2	7807	14050	
		4	11.8	37.7	50.5							7024	12640	126
		5		42.8	57.2							7962	14330	143
	Average 12 mine averages (4 ulti-	1	10.0	36.1	43.3	10.6	3.4	5.4	62.1	1.1	17.4	6197	11160	
	mates)	2		40.1	48.1	11.8	3.8	4.8	69.0	1.2	9.4	6886	12400	
	(Western Perry County average)	3		45.5	54.5		4.3	5.4	78.2	1.4	10.7	7808	14050	
		4	11.5	39.1	49.4							7041	12670	127
		5		44.2	55.8							7962	14330	143

County Average (West of DuQuoin anticline) Rank Index 127 (124-129) County Average (West of DuQuoin anticline) Unit Coal Index 143 (143-145)

a U. S. Bureau of Mines Bull. 193, p. 33.

PERRY COUNTY (East of DuQuoin Anticline)

HERRIN (NO. 6) COAL (SOUTHERN ILLINOIS)

54	BM 13591 (composite 6); BM 26468 (composite 7); (4) 4764-66-68-56 (1912, 1916)	1 2 3 4 5	10.5 11.8 	33.0 36.9 41.5 36.9 40.7	46.5 51.9 58.5 52.3 59.3	10.0 11.2	.9 1.0 1.1	5.3 4.6 5.2	64.0 71.5 80.5	1.4 1.6 1.8	18.4 10.1 11.4 	6307 7044 7933 7085 8032	11350 12680 14280 12750 14460	 128	····· ···· 145
180	(5) 12614-15-16-23-24; BM (composite 6)	1 2 3 4 5	10.2 11.3 	$\begin{array}{c} 33.0\\ 36.8\\ 40.7\\ 35.5\\ 40.0 \end{array}$	48.1 53.5 59.3 53.2 60.0	8.7 9.7 	1.0 1.1 1.2	5.5 4.9 5.4	65.2 72.6 80.4	1.4 1.6 1.8	18.2 10.1 11.2	6410 7136 7904 7089 7992	11540 12840 14230 12760 14390	 128 	· · · · · · · · · · · · · · · 144

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ashfree; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

	Samples			Proxi	MATE	9		U	Jltimat	E]	НЕАТ VA	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
	Average 2 mine averages (2 ultimates) County average (East of DuQuoin anticline)	1 2 3 4 5	10.3 11.5 	33.0 36.8 41.1 35.7 40.3	47.3 52.7 58.9 52.8 59.7	9.4 10.5 	.9 1.0 1.2	5.4 4.7 5.3	64.6 72.0 80.4	1.4 1.6 1.8	18.3 10.2 11.3	6358 7090 7918 7087 8012	11450 12760 14250 12760 14420		· · · · · · · · · · · · · 144

PERRY COUNTY (East of DuQuoin Anticline) (Continued)

 Rank Index
 128

 Unit Coal Index
 144 (144-145)

RANDOLPH COUNTY

HERRIN (NO. 6) COAL (SOUTHWESTERN ILLINOIS)

			1		1	1	1	1	1	1	l		
83	(3) 5045-6-7	1	11.1	37.3	40.1	11.5	4.2				 6031	10860	
	(1912)	2		41.9	45.2	12.9	4.8				 6786	12210	
		3		48.1	51.9		5.5				 7789	14020	
		4	13.1	40.6	46.3						 6932	12480	125
		5		46.7	53.3						 7971	14350	144
	· · · · · ·												
208	(6) 12562-3-4-5-6-7	1	10.2	36.5	41.3	12.0	3.8				 6081	10950	
	(1921)	2		40.6	46.0	13.4	4.2				 6769	12180	
		3		46.9	53.1		4.9				 7816	14070	
		4	12.0	40.0	48.0					:	 7038	12670	127
		5		45.5	54.5						 7994	14390	144

ANALYSES OF ILLINOIS COALS

209	(3) 12580-1-2	1	9.7	36.9	41.9	11.5	4.3					6089	10960	
	(1921)	2		40.8	46.4	12.8	4.7					6740	12130	
		3		46.8	53.2		5.4					7727	13910	
		4	11.3	40.3	48.4							7009	12620	126
		5		45.4	54.6							7905	14230	142
210	(4) 12570-1-2-3	1	9.3	36.2	43.0	11.5	3.5					6217	11190	
	(1921)	2		39.9	47.4	12.7	3.9					6857	12340	
		3		45.7	54.3		4.4					7853	14140	
		4	10.9	39.6	49.5							7145	12860	129
	•	5		44.4	55.6							8019	14430	144
613	C-647 (composite 3)	1	11.4	35.2	41.1	12.3	3.8	5.4	59.4	1.1	18.0	5914	10650	
	(1934)	2		39.7	46.4	13.9	4.3	4.6	67.0	1.3	8.9	6673	12010	
		3		46.1	53.9		5.0	5.4	77.8	1.5	10.3	7753	13960	
		4	13.5	38.6	47.9			<i>.</i>				6867	12360	124
		5		44.6	55.4							7935	14280	143
	Average 5 mine averages (1 ultimate)	1	10.3	36.4	41.5	11.8	3.9	5.3	60.6	1.1	17.3	6068	10920	
	(County average)	2		40.6	46.3	13.1	4.4	4.7	67.6	1.2	9.0	6768	12180	
		3		46.8	53.2		5.0	5.4	77.8	1.4	10.4	7794	14030	
		4	12.2	39.8	48.0		· · · · · · ·					6999	12600	126
		5		45.3	54.7	· · · · · ·						7967	14340	143

County Average Rank Index126 (124-129)County Average Unit Coal Index143 (142-144)

x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=moist mineral-matter-free; 5=dry mineral-matter-free (unit coal).

ST. CLAIR COUNTY

HERRIN (NO. 6) COAL (SOUTHWESTERN ILLINOIS)

	Samples			Proxi	MATE			τ	LTIMAT	Έ		i	Heat Va	LUES		
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index	
78	(6) 5055-60-61, 12536-37-38 (1912, 1921)	1 2 3 4 5	11.4 13.4 	38.0 42.9 49.5 41.7 48.1	38.9 43.9 50.5 44.9 51.9	11.7 13.2 	4.1 4.7 5.4	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			6039 6817 7853 6960 8040	10870 12270 14140 12530 14470	 125		ANALYSES OF
79	(3) 5056-8-9 (1912)	1 2 3 4 5	11.3 13.0	39.8 44.8 50.6 43.0 49.4	38.9 43.9 49.4 44.0 50.6	10.0 11.3	3.9 4.4 4.7	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6191 6980 7867 6987 8030	11140 12560 14160 12580 14450		· · · · · · · · · · · · · · · · · · ·	ILLINOIS COAL
80	(3) 5524-5-6 (1912)	1 2 3 4 5	10.0 11.8 	39.4 43.7 50.1 43.2 48.9	39.1 43.5 49.9 45.0 51.1	11.5 12.8	3.9 4.4 5.0	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • •	· · · · · · · ·	6136 6820 7825 7058 8000	11050 12280 14090 12710 14400		· · · · · · · · · · · · · · 144	
81	(3) 5077-79-80 (1912)	1 2 3 4 5	11.2 12.9	40.4 45.5 51.3 43.7 50.2	38.3 43.1 48.7 43.4 49.8	10.1 11.4	4.0 4.5 5.1	· · · · · · · ·	• • · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·	6181 6963 7858 6987 8024	11130 12530 14140 12580 14440	126	· · · · · · · · · · 144	

82	(3) 5108-9-10	1	12.0	39.7	37.5	10.8	4.5					6083	10950			
	(1912)	2		45.1	42.6	12.3	5.1					6908	12430			•
		3		51.4	48.6		5.8					7875	14180			
		4	13.9	43.2	42.9							6939	12490	125		M
		5		50.1	49.9							8061	14510		145	Ī
						1										A
200	BM 80830 (composite 3)	1	13.7	31.7	43.4	11.2	1.8	5.5	60.4	1.2	19.9	5864	10560			Ň
	(1921)	2		36.7	50.3	13.0	2.1	4.6	69.9	1.5	8.9	6795	12230			õ
		3		42.2	57.8		2.4	5.3	80.4	1.6	10.3	7814	14070	: .		DO
		4	15.8	34.6	49.6							6693	12050	121		NT
		5		41.1	58.9							7947	14310		143	Y
																ΥI
201	BM 80826 (composite 3)	1	11.6	37.6	39.6	11.2	3.8	5.6	61.3	1.0	17.1	6169	11100			RA
	(1921)	2		42.5	44.9	12.6	4.3	4.9	69.4	1.2	7.6	6978	12560			GE
		3		48.6	51.4		4.9	5.6	79.4	1.4	8.7	7989	14380			S.
		4	13.5	41.0	45.5							7063	12710	127		Ę
		5		47.4	52.6							8167	14700		147	\mathbf{PR}
															ł	X0
203	(6) 12541-2-3-4-5-6	1	10.4	39.9	39.3	10.4	4.3					6204	11170			IM.
	(1921)	2		44.5	43.9	11.6	4.8					6920	12460			AT
		3		50.4	49.6		5.5					7828	14090			A
		4	12.0	43.2	44.8							7042	12680	127		Ň
		5		49.1	50.9							8001	14400		144	ă
																LT
205	(3) 12556-7-8	1	9.7	37.3	41.2	11.8	3.3					6136	11050			IM
	(1921)	2		41.3	45.6	13.1	3.7					6793	12230			AT
		3		47.5	52.5		4.2					7815	14070			E h
		4	11.3	41.0	47.7							7076	12740	127		N
		5		46.2	53.8						·	7979	14360		144	Ē
																ZSE
																ក

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

	Samples			Proxi	MATE			t	Jltimat	Έ]	Неат Va	LUES
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index Unit coal index
626	C-951 (composite 4) (1934) Average 10 mine averages (3 ulti- mates) (County average)	1 2 3 4 5 1 2 3 4 5	11.6 13.5 11.3 13.1	37.2 42.1 48.1 40.5 46.9 38.1 43.0 49.1 41.5 47.8	40.1 45.3 51.9 46.0 53.1 39.6 44.6 50.9 45.4 52.2	11.1 12.6 11.0 12.4	3.8 4.3 4.9 3.7 4.2 4.8	5.5 4.8 5.5 5.5 4.7 5.4	60.4 68.3 78.2 61.1 68.9 78.7	1.3 1.4 1.6 1.2 1.3 1.5 	17.9 8.6 9.8 17.5 8.4 9.6 	6073 6872 7861 6945 8037 6108 6887 7862 6976 8031	10930 12370 14150 12500 14470 11000 12400 14150 12560 14460	125 145 126 126 145

ST. CLAIR COUNTY (Continued)

County Average Rank Index 126 (121-127) County Average Unit Coal Index 145 (143-147)

SANGAMON COUNTY

HERRIN (No. 6) COAL (CENTRAL ILLINOIS)

74	(7) 14414-15-16-17: 5130-31-32	1	14.4	36.8	38.4	10.4	4.4	 	 	5846	10520		
	(1912, 1924)	2		43.0	44.8	12.2	5.4	 	 	6829	12290		
	(1/12, 1/21)	3		49.0	51.0		6.1	 	 	7774	13990		
		4	16 7	39 7	43.6			 	 	6630	11930	119	
		5		47.6	52.4			 	 	7960	14330		143

278
75	(3) 5115-6-7	1	14.1	37.6	39.0	9.3	3.8					5992	10790	
	(1912)	2		43.8	45.4	10.8	4.4					6980	12560	
		3		49.1	50.9		4.9					7826	14090	
		4	16.1	40.2	43.7							6698	12060	121
		5		47.9	52.1							7982	14370	144
					1						-			
193	(3) BM 81322 (composite 3)	1	13.2	36.1	40.5	10.2	4.0	5.7	59.5	1.1	19.5	5986	10770	
	(1921)	2		41.6	46.6	11.8	4.6	4.9	68.6	1.3	8.8	6896	12410	
		3		47.1	. 52.9		5.2	5.5	77.7	1.5	10.1	7818	14070	
		4	15.2	38.8	46.0		. 					6772	12190	122
		5		45.8	54.2							7988	14380	144
	Average 3 mine averages (1 ultimate)	1	13.9	36.9	39.2	10.0	4.1	5.7	59.1	1.1	20.0	5942	10700	
	(County average)	2		42.9	45.5	11.6	4.8	4.8	68.6	1.3	8.9	6902	12420	
		3		48.5	51.5		5.4	5.5	77.6	1.5	10.0	7805	14050	
		4	16.0	39.6	44.4							6700	12060	121
	· · · · · · · · · · · · · · · · · · ·	5		47.2	52.8							7976	14360	144

County Average Rank Index 121 (119-122) County Average Unit Coal Index 144 (143-144)

WASHINGTON COUNTY

HERRIN (NO. 6) COAL (Southwestern Illinois and Centralia District)

86	(3) 5030-3-5 (1921)	1 2 3 4	10.8 12.6	38.4 43.0 49.2 41.9	39.5 44.3 50.8 45.5	11.3 12.7	3.9 4.4 5.0	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 6114 6853 7851 7014	11010 12340 14130 12630	 126	· · · · · · · · · · · · · · · · · · ·
		5		48.0	52.0						 8027	14450		145

x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ashfree; 4=moist mineral-matter-free; 5=dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

	Samples			Prox	IMATE			τ	Jltimai	Έ]	Heat Va	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
226	BM 80683 (composite 3); C-384 (composite 3)	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	9.9	38.0 42.1 48.8 41.8 47.4	39.7 44.1 51.2 46.5 52.6	12.4 13.8 	4.3 4.8 5.6	5.4 4.8 5.6	60.0 66.5 77.1	1.2 1.3 1.5	16.7 8.8 10.2	6050 6711 7786 7051 7988	10890 12080 14020 12680 14360	 127	· · · · · · · · · · · · · 144
	Average of two mine averages (1 ulti- mate)	1 2 3 4 5	10.3 12.2 	38.2 42.6 49.1 41.9 47.7	39.6 44.2 50.9 45.9 52.3	11.9 13.2	4.1 4.6 5.3	5.5 4.9 5.6	60.1 67.1 77.3	1.2 1.3 1.5	17.2 8.9 10.3	6083 6786 7819 7027 8002	10950 12210 14080 12650 14400	 127	· · · · · · · · · · · · · · 144
WHIT	E COUNTY	Count Count	y Aver y Aver	age Ra age Ur	nk Ind nit Coa	ex l Index	127 144 HEI	(126-12 (144-14 RRIN	27) 45) (NO. (5) CO4	AL (S(OUTH	ERN II	LIN	DIS)

TABLE 2MINE AND COUNTY AVERAGES OF PL	PROXIMATE AND ULTIMATE ANALYSES—Continu
---------------------------------------	---

WASHINGTON COUNTY (Continued)

			1					1.1.1	[1	I				
227	BM 80597 (composite 3)	1	8.5	35.4	47.1	9.0	2.8	5.5	66.6	1.4	14.7	6621	11920		
	(1921)	2		38.7	51.5	9.8	3.1	5.0	72.8	1.5	7.8	7239	13030		
		3		42.9	57.1		3.5	5.5	80.7	1.7	8.6	8025	14450		
		4	9.6	37.8	52.6							7371	13270	133	
		5		41.8	58.2							8156	14680		147

County Average Rank Index133County Average Unit Coal Index147

WILLIAMSON COUNTY

HERRIN (NO. 6) COAL (SOUTHERN ILLINOIS)

9	(3) 5122-3-4	1	10.5	33.0	47.3	9.2	1.5				 6462	11630		
	(1912)	2		36.9	52.8	10.3	1.7				 7217	12990		
		3		41.1	58.9		1.9				 8051	14490		
		4	11.7	35.5	52.8					•••••	 7200	12960	130	
		5		40.2	59.8						 8158	14690		147
	(3) 4996-5000-6	1	8.2	34.0	48.8	9.0	2.2				 6644	11960		
	(1912)	2		37.0	53.2	9.8	2.4				 7238	13030		
	· · /	3		41.1	58.9		2.6				 8026	14450		
		4	9.2	36.4	54.4						 7389	13300	133	
		5		40.1	59.9						 8141	14650		147
	(6) 5121, 5133-34 and BM 17719-20-21	1	9.1	33.1	50.4	7.4	1.3				 6733	12120		
	(1912, 1913)	2		36.4	55.4	8.2	1.5				7408	13330		
	. , ,	3		39.7	60.3		1.6				8067	14520		
		4	10.0	35.1	54.9						 7339	13210	132	
		5		39.0	61.0						 8152	14670		147
	(3) 5125-6-7	1	9.1	33.1	50.0	7.8	1.2			-	6682	12030		
	(1912)	2		36.4	55.0	8.6	1.3				 7353	13240		
	()	3		39.9	60.1		14				 8046	14480		
		4	10.1	35.2	54.7		~~~				 7316	13170	1.32	
		5		39.1	60.9						 8132	14640		146
	(3) 5180-1-2	1	9.5	33.4	48.1	9.0	1.9				 6584	11850		
	(1912)	2		37.0	53.1	9.9	2.1				7273	13090		
		3		41.0	59.0		2.4				8071	14530		
		4	10.6	35.8	53.6						7316	13170	132	
		5		40.1	59.9						8183	14730		147

	Samples			Proxi	MATE			t	Jltimat	E]	Heat Va	LUES
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition ^x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index Unit coal index
64	(3) 5169-70-2 (1912)	1 2 3 4 5	9.3	32.8 36.1 39.8 35.1 39.1	49.5 54.6 60.2 54.5 60.9	8.4 9.3 	.9 1.0 1.1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6596 7275 8018 7266 8103	11870 13100 14430 13080 14590	131 146
65 ,	(3) 4998-5004-5 (1912)	1 2 3 4 5	9.3 10.3	33.5 37.0 40.6 35.7 39.8	49.0 54.0 59.4 54.0 60.2	8.2 9.0	1.7 1.9 2.1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6622 7302 8027 7287 8126	11920 13140 14450 13120 14630	131 146
148	BM 80605 (composite 3) (1921)	1 2 3 4 5	8.0 8.8	33.0 35.9 39.5 35.3 38.7	50.6 55.0 60.5 55.9 61.3	8.4 9.1 	1.2 1.3 1.4	5.4 4.9 5.4	68.6 74.6 82.1	1.6 1.7 1.9	14.8 8.4 9.2	6740 7325 8058 7426 8148	12130 13190 14500 13370 14670	134 147
149	BM 80613 (composite 3) (1921)	1 2 3 4 5	6.3 7.3	35.2 37.6 42.5 38.2 41.2	47.8 51.0 57.5 54.5 58.8	10.7 11.4 	3.1 3.3 3.8	5.3 4.9 5.5	66.6 71.1 80.2	1.4 1.5 1.7	12.9 7.8 8.8	6644 7092 8005 7560 8153	11960 12770 14410 13610 14680	136 147

TABLE 2.-MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES-Continued

WILLIAMSON COUNTY (Continued)

282

ANALYSES OF ILLINOIS COALS

150	(3) 12793-4-5	1	6.0	35.0	47.7	11.3	4.0					6548	11790	.	
	(1921)	2		37.2	50.8	12.0	4.3					6964	12540		
		3		42.3	57.7		4.8					7916	14250	.	
		4	7.0	38.0	55.0		-					7518	13530	135 .	
		5		40.8	59.2							8084	14550		146
151	BM 80617 (composite 3)	1	6.9	36.6	47.0	9.5	2.8	5.6	66.8	1.4	13.9	6679	12020	.	
	(1921)	2		39.4	50.4	10.2	3.0	5.2	71.8	1.5	8.3	7171	12910	.	
		3		43.8	56.2		3.4	5.8	79.9	1.7	9.2	7986	14380	l	
		4	7.8	39.4	52.8							7485	13470	135 .	
		5		42.8	57.2							8117	14610		146
152	(3) 12769-70-1	1	7.0	32.3	51.6	9.1	1.3					6732	12120		
	(1921)	2		34.7	55.5	9.8	1.4					7241	13030		
		3		38.4	61.6		1.6					8024	14440		
		4	7.9	34.6	57.5							7483	13470	135	
		5		37.6	62.4							8121	14620		146
															1.00
154	(3) BM A38989-90-91; (3) 12799-	1	9.1	31.0	51.6	8.3	1.2					6663	11990	.	
	800-801	2		34.1	56.8	9.1	1.3					7330	13190		
	(1921)	3		37.5	62.5		1.5					8067	14520		
		4	10.1	33.0	56.9							7336	13210	132	
		5		36.7	63.3							8158	14680		147
									,						
155	C-695 (composite 4)	1	8.1	34.7	49.3	7.9	13	54	68.8	1.6	15.0	6777	12200		
	(1934)	2	0.1	37 7	53 7	8.6	1 4	4.8	75.0	1 7	8.5	7377	13280		
		3		41.3	58.7	0.0	1.6	5.3	82.0	1.9	9.2	8070	14530		
		4	8.9	37.0	54 1		1.0	0.0	02.0	1		7424	13360	134	
	· · · ·	5	0.7	40.6	59 4							8154	14680		147
		5		10.0	07.1				••••			0104	11000		
1			1 1	1		1				1	1 1			1	

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture- and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

	Samples			Proxi	MATE			U	LTIMAT	Е		I	НЕАТ VA	LUES	
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
156	(5) 12822-3-4; 12841-2 (1921)	1 2 3 4 5	8.2 9.0	31.7 34.6 37.4 33.4 36.7	53.0 57.7 62.6 57.6 63.3	7.1 7.7	1.4 1.5 1.7	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6750 7356 7970 7326 8051	12150 13240 14350 13190 14490	132	 145
157	BM 80601 (composite 3)	1 2 3 4 5	8.1 9.1 	34.537.541.636.840.5	48.5 52.8 58.4 54.1 59.5	8.9 9.7 	2.5 2.7 3.0	5.5 5.0 5.5	67.2 73.1 80.9	1.4 1.5 1.7	14.5 8.0 8.9	6669 7254 8034 7416 8156	12000 13060 14460 13350 14680	133	· · · · · · · · · · 147
158	(3) 12819-20-21	1 2 3 4 5	8.5 9.5	31.1 34.0 37.4 33.0 36.4	51.9 56.7 62.6 57.5 63.6	8.5 9.3 	2.2 2.4 2.7	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·	6591 7206 7944 7285 8054	11860 12970 14300 13110 14500	131	 145
159	(3) 12796-7-8 (1921)	1 2 3 4 5	7.6	32.3 34.9 39.0 34.4 37.7	50.4 54.6 61.0 56.9 62.3	9.7 10.5	3.1 3.4 3.8	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·	6601 7143 7984 7423 8125	11880 12860 14370 13360 14630		· · · · · · · · · · · · · ·

TABLE 2.-MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES-Continued

WILLIAMSON COUNTY (Continued)

ANALYSES OF ILLINOIS COALS

160	(3) 12868-69-70	1	8.1	32.6	50.7	8.6	2.1					6648	11970			
	(1921)	2		35.4	55.2	9.4	2.3					7232	13020			
-	ан сайтаан ал айсан а Айсан айсан айс	3		39.1	60.9		2.6		· · · · · ·			7982	14370	.		
		4	9.0	34.7	56.3							7362	13250	133	·	MI
		5		38.1	61.9							8092	14570		146	NE
																A
163	(10) 13539-40-1-2-3-4-13829-30-1-3	1	6.7	35.1	47.4	10.8	3.1					6586	11860			ND
	(1922, 1923)	2		37.6	50.8	11.6	3.3				· · · · · · ·	7055	12700		• • •	co
		3		42.5	57.5		3.8					7983	14370	.	• • •	ġ
		4	7.7	38.1	54.2							7508	13510	135 .		E
		5		41.3	58.7							8133	14640		146	A
					_											VΕ
165	BM 80654 (composite 3)	1	8.1	33.1	49.0	9.8	2.4	5.3	67.1	1.4	14.0	6601	11880			3A(
	(1921)	2		36.0	53.3	10.7	2.6	4.8	73.0	1.5	7.4	7181	12930		• • •	E
		3		40.3	59.7		2.9	5.4	81.8	1.7	8.2	8045	14480	.	• • •	õ
		4	9.2	35.6	55.2	· • • • • • •						7422	13360	134 .	· · ·	F) Fr
	•	5		39.2	60.8			•••••				8173	14710		147	Ro
	(1) (2022 0 (0															XII
166	(3) 12838-9-40	1	7.5	32.8	49.3	10.4	2.9					6519	11730		• • •	MА
	(1921)	2		35.4	53.3	11.3	3.1					7045	12680		• • •	TE
		3		39.9	60.1		3.1					7938	14290		•••	Αħ
		4	8.6	35.3	56.1							7386	13300	133		Ð
		5		38.7	61.3							8077	14540	· • · · ·	145	Π
107	10075 76 77 12527 20	4	0.1	24 5	50 7	0.5			(- - -	1.0			44000			TH
107	(1022, 1022)	1	8.1	31.7	50.7	9.5	2.0	5.2	67.4	1.3	14.6	6604	11890		•••	MA
	(1922, 1923)	2		34.5	55.1	10.4	2.1	4.7	13.3	1.4	8.1	7184	12930	• • • • • •	•••	TΕ
		3		38.5	01.5		2.3	5.2	81.9	1.5	9.1	8017	14430		• • •	AI
		4	9.1	34.1	30.8							7390	13300	133		A
		5		51.5	62.5		· • · · · ·		• • • • • •			8133	14640		146	SX ¹
			I			1		1		1	1	1		<u> </u>		SES

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ashfree; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

	Samples			Proxi	MATE	-		τ	Jltimat	Έ		1	Неат Va	LUES
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index Unit coal
168	(3) 12881-2-3 (1921)	1 2 3 4 5	5.2 6.1	36.6 38.6 44.2 40.3 42.9	46.1 48.6 55.8 53.6 57.1	12.1 12.8	3.6 3.8 4.3	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	6616 6981 8002 7668 8171	11910 12570 14400 13800 14710	 138 14
169	(3) 12772-3-4	1 2 3 4 5	6.1 7.1	35.4 37.7 42.9 38.5 41.4	47.3 50.4 57.1 54.4 58.6	11.2 11.9 	3.9 4.1 4.7	 	· · · · · · · · · · · · · · · · · · ·			6548 6974 7917 7507 8082	11790 12550 14250 13510 14550	 135 .14
170 171 172	(3) BM 80625-26, 80670 (1921)	1 2 3 4 5	6.7 7.6	$36.0 \\ 38.6 \\ 43.0 \\ 38.5 \\ 41.7$	47.9 51.3 57.0 53.9 58.3	9.4 10.1 	3.6 3.8 4.2	5.4 5.0 5.5	66.6 71.4 79.5	1.3 1.4 1.6	13.7 8.3 9.2	6680 7159 7966 7493 8110	12030 12890 14340 13490 14600	135 14^{t}
173	BM 80674 (composite 3) (1921)	1 2 3 4 5	7.0 8.1	36.0 38.7 43.9 39.1	46.0 49.4 56.1 52.8	11.0 11.9 	3.6 3.8 4.3	$5.2 \\ 4.8 \\ 5.4 \\ \cdots$	65.5 70.4 79.9	1.3 1.4 1.6	13.4 7.7 8.8	6572 7067 8020 7517	11830 12720 14440 13530	

TABLE 2.-MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES-Continued

286

ANALYSES OF ILLINOIS COALS

BM28	BM 28815 (composite 5); BM 30866	1	9.6	32.9	49.1	8.4	1.1	5.4	66.6	1.5	17.0	6562	11810		
	(composite 3)	2		36.3	54.4	9.3	1.3	4.8	73.7	1.6	9.3	7262	13070		
	(1917, 1918)	3		40.1	59.9		1.4	5.3	81.3	1.7	10.3	8007	14410		
		4	10.7	35.1	54.2							7232	13020	130	
		5		39.3	60.7							8096	14570	100	146
BM69	^a BM 30876 (composite 4)	1	9.4	33.0	49.0	8.6	.9	5.2	67.1	1.5	16.7	6588	11860		
	(1918)	2		36.4	54.1	9.5	1.0	4.5	74.1	1.7	9.2	7277	13090		
		3	· · · · · ·	40.3	59.7		1.1	5.0	81.8	1.9	10.2	8039	14470		
		4	10.5	35.4	54.1							7276	13100	131	
		5		39.6	60.4							8127	14630		146
	Average 29 mine averages (11 ulti-	1	8.0	33.6	49.1	9.3	2.2	5.3	67.1	1.4	14.7	6629	11930		
	mates)	2		36.6	53.4	10.0	2.4	4.9	72.9	1.5	8.3	7203	12970		
	(County average)	3		40.6	59.4		2.7	5.4	81.0	1.7	9.2	8008	14410		
	14. 	4	9.0	36.0	55.0							7396	13310	133	
		5		39.6	60.4							8125	14630		146
1										1					

County Average Rank Index133 (130-138)County Average Unit Coal Index146 (145-147)

a U. S. Bureau of Mines Bull. 193, p. 34.

BUREAU COUNTY

SPARLAND OR DANVILLE (NO. 7)^a COAL (NORTHERN ILLINOIS)

532 BM A86598 (composite 2 (composite 2) (1933) (County average)); C155	1 2 3 4 5	17.7 21.2	32.3 39.3 47.0 35.8 45.4	36.5 44.3 53.0 43.0 54.6	13.5 16.4	3.2 [.] 3.8 4.6	5.9 4.9 5.8	53.7 65.3 78.1	.8 1.0 1.2	22.9 8.6 10.3	5411 6578 7870 6361 8073	9740 11840 14170 11450 14530	 115	· · · · · · · · · · · · · 145
---	---------	-----------------------	------------------	--------------------------------------	--------------------------------------	--------------	--------------------------------	-------------------	----------------------	------------------	---------------------	--------------------------------------	--	---------	--

County Average Rank Index 115

County Average Unit Coal Index 145

a Also called "First Vein" coal. x The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=moist mineral-matter-free; 5=dry mineral-matter-free (unit coal).

TABLE 2.-MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES-Continued

MARSHALL COUNTY

SPARLAND OR DANVILLE (NO. 7) COAL (NORTHERN ILLINOIS)

	Samples			Proxi	MATE			Ľ	ITIMAT	Έ]	Неат Va	LUES		
Mine Index Number	Number of samples averaged, Laboratory Number and Date	Conditionx	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index	
360	BM 45320 (composite 2); 16419 (composite 2)	1 2 3 4 5	15.4 19.0	33.9 40.0 49.1 38.3 47.3	35.2 41.6 50.9 42.7 52.7	15.5 18.4 	4.1 4.8 5.9	5.6 4.6 5.7 	53.5 63.2 77.5	1.0 1.2 1.4	20.3 7.8 9.5	5446 6438 7888 6584 8134	9800 11590 14200 11850 14640		· · · · · · · · · · · · · · 146	ANALYSES OF
361	(2) 16420-21	1 2 3 4 5	15.9 19.2	34.5 41.0 49.6 38.8 48.0	35.1 41.7 50.4 42.0 52.0	14.5 17.3	3.5 4.2 5.0	· · · · · · · ·	· · · · · · · · ·	· · · · · · · ·		5518 6558 7927 6581 8149	9930 11800 14270 11850 14670	 119 	 147	ILLINOIS COAI
362	(2) 16422-23 (1928)	1 2 3 4 5	14.9 18.3 	35.5 41.7 50.6 40.1 49.1	34.6 40.7 49.4 41.6 50.9	15.0 17.6	3.7 4.4 5.3	· · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5508 6476 7859 6608 8085	9920 11660 14150 11900 14550	 119 	 146	ŝ
363	(2) 16432, 16433; BM A45465 (composite 2) (1928)	1 2 3 4 5	13.9 16.6	35.7 41.5 49.1 39.8 47.7	37.0 43.0 50.9 43.6 52.3	13.4 15.5	3.0 3.5 4.1	5.6 4.7 5.6	58.0 67.3 79.7	1.0 1.2 1.4	19.0 7.8 9.2	5789 6723 7958 6800 8148	10420 12100 14320 12240 14660	 122	 147	

364	(2) 16434-35	1	15.1	36.3	35.8	12.8	3.3					5746	10340		
	(1928)	2		42.8	42.1	15.1	3.9					6768	12180		
		3		50.4	49.6		4.6					7969	14350		
		4	17.9	40.3	41.8							6703	12070	121	
	$\sum_{i=1}^{n} (i - 1) \sum_{i = 1}^{n} (i - 1) $	5		49.1	50.9 [.]		· · · · · ·	• • • • • • •			.	8163	14690	1	147
365	(2) 16442-3	1	16.5	35.8	34.2	13.5	3.4					5508	9910		
	(1928)	2		42.8	41.0	16.2	4.1					6598	11880		
		3		51.1	48.9		4.9					7871	$1\dot{4}170$		
		4	19.8	39.9	40.3							6477	11660	117	
		5		49.7	50.3							8078	14540	1	145
	Average of 6 mine averages (2 ulti-	1	15.3	35.3	35.3	14.1	3.5	5.7	55.5	1.0	20.2	5585	10050		
	mates)	2		41.6	41.7	16.7	4.1	4.7	65.5	1.2	7.8	6591	11870		
	(County average)	3		50.0	50.0		5.0	5.6	78.6	1.4	9.4	7912	14240		
		4	18.5	39.5	42.0							6625	11920	119	
		5		48.5	51.5	·						8126	14630	1	146

County Average Rank Index 119 (117-122) County Average Unit Coal Index 146 (145-147)

VERMILION COUNTY

DANVILLE (NO. 7) COAL (EASTERN ILLINOIS)

94	BM 13497 (composite 6); BM (composite 3); (6) 4711-13-14-16-22-24. (1912, 1922)	1 2 3 4	13.2 15.0	38.0 43.8 49.2 40.9	39.3 45.2 50.8 44.1	9.5 11.0	3.2 3.7 4.1	5.8 5.0 5.6	61.7 71.1 79.9	1.2 1.3 1.5	18.6 7.9 8.9	6213 7156 8039 6964	11180 12880 14470 12540	125
		5		48.1	51.9			· . ·				8191	14740	147

x The form of analysis is denoted by number, as follows: 1 = sample as received at laboratory; 2 = moisture-free; 3 = moisture-and ash-free; 4 = moist mineral-matter-free; 5 = dry mineral-matter-free (unit coal).

MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES

	Samples			Prox	IMATE			U	LTIMAT	Е		Ι	HEAT VA	LUES	_
Mine Index No.	Number of samples averaged, Laboratory Number and Date	Condition x	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British Thermal Units	Rank Index Unit Coal Index	VANITE .
97	(3) 4727-34-36; BM 13551 (com- posite 3) (1912)	1 2 3 4 5	13.4 15.3 	37.2 42.9 48.6 40.3 47.6	39.3 45.4 51.4 44.4 52.4	10.1 11.7 	2.5 2.9 3.3	5.7 4.8 5.4	60.6 70.0 79.3	1.1 1.3 1.5 	20.0 9.3 10.5	6177 7133 8077 6963 8221	11120 12840 14540 12530 14800	125 148	8
603	BM A90630 (composite 2) (1933) Average of 3 mine averages (3 ulti- mates) (County average)	1 2 3 4 5 1 2 3 4	13.3 15.1 13.3 15.1	38.3 44.1 49.7 41.3 48.6 37.8 43.6 49.1 40.9	38.8 44.8 50.3 43.6 51.4 39.1 45.1 50.9 44.0	9.6 11.1 9.8 11.3 	2.8 3.2 3.7 2.8 3.2 3.6	6.0 5.2 5.9 5.8 5.0 5.6	61.4 70.8 79.6 61.2 70.6 79.6	1.0 1.1 1.3 1.1 1.3 1.5	19.2 8.6 9.5 19.3 8.6 9.7	6244 7200 8100 7000 8245 6193 7142 8052 6958	11240 12960 14580 12600 14840 11150 12860 14500 12530	126 128 148 125	
		5		48.2	51.8							8198	14760	148	8

TABLE 2.-MINE AND COUNTY AVERAGES OF PROXIMATE AND ULTIMATE ANALYSES-Concluded

VERMILION COUNTY (Continued)

County Average Rank Index125County Average Unit Coal Index148

x The form of analysis is denoted by number, as follows: 1= sample as received at laboratory; 2= moisture-free; 3= moisture- and ash-free; 4= moist mineral-matter-free; 5= dry mineral-matter-free (unit coal).

ANALYSES OF ILLINOIS COALS

TABLE 3.—AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES USED IN THE CALCULATION OF SOME MINE ANALYSES SHOWN IN TABLE 2, ARRANGED BY COAL BED, COUNTY, AND MINE

	Samples			Prox	IMATE			τ	JLTIMAT	E		Heat Values
Mine Index Number	Laboratory Number	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	B.t.u. per lb.
HENR	Y COUNTY				ROCK	ISLAN	ND (NC). 1) CC	DAL (W	ESTER	RN ILL	INOIS)
232	(2), 14387-88	1	14.26	40.10	36.83	8.81	5.34				• • • • • • •	10939
		2 3 4	· · · · · · · · · ·	46.78 52.12	42.96 47.88	10.26 	6.33 	 	· · · · · · · · · ·	 	· · · · · · · ·	12758 14217 14559
232	BM A90508 (composite 3)	1	14.9	37.5 44.1	38.4 45.1	9.2 10.8	5.7 6.7	6.0 5.1	58.0 68.2	.9	20.2 8.2	10790 12670
		3 4		49.4 	50.6		7.6	5.7	76.4 	1.1 	9.2 	14210 14572
		4					[• • • • • • • •	• • • • • • • •	1 110

Each mine is represented by two or more analyses from one or two laboratories

LA SALLE (NO. 2) COAL (NORTHERN ILLINOIS)

8	(3) 5348-49-50	1 2 3 4	16.50 	38.48 46.08 50.58	37.60 45.03 49.42	7.42 8.89 3.18	2.40 2.90	· · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	10868 13016 14285 14493
8	BM 14587F (composite 3)	1 2 3 4	15.50	39.04 46.20 50.79	37.83 44.77 49.21	7.63 9.03	2.32 2.75 3.02	5.93 4.98 5.47	60.84 72.00 79.15	1.07 1.27 1.40	22.21 9.97 10.96	10955 12964 14251 14454

BUREAU COUNTY

ANALYSES OF ILLINOIS COALS

WILL	COUNTY				LA	SALLE	E (NO.	2) COA	L (NO	RTHER	N ILL	(NOIS)
359	16890 (composite of 2)	1	14.40	37.48	42.24	5.88	2.02	6.43	62.37	.99	22.31	11413
	N	2		43.79	49.34	6.87	2.36	5.64	72.86	1.16	11.11	13333
		3		47.02	52.98		2.53	6.06	78.23	1.25	11.93	14317
		4					• • • • • • •					14477
							·.					
359	BM 52982 (composite 3)	1	15.5	30.9	48.6	5.0	1.6	6.5	63.2	1.2	22.5	11310
		2		36.5	57.6	5.9	1.9	5.6	74.7	1.4	10.5	13370
		3		38.8	61.2		2.1	6.0	79.4	1.5	11.0	14210
		4										14338
350	(5) (452153 54 16959 61 62	1	15 62	33 50	15 16	5 70	1 75					11214
000	(3) (132133-04, 10333-01-02	2	10.02	30 68	53 56	6.76	2.06		••••			13280
		2		42 58	57 41	0.70	2.00					14252
		4		42.30	57.41		2.20					14252
		4					•••••••••	• • • • • • •	• • • • • • •			14901
359	BM A90368 (composite 2)	1	15.0	35.6	44.8	4.6	1.4	6.2	64.2	1.2	22.4	11490
		2		41.9	52.7	5.4	1.7	5.4	75.5	1.4	10.6	13510
		3		44.3	55.7		1.8	5.7	79.8	1.5	11.2	14290
		4										14399
								-				
359	BM A90371 (composite 2)	1	16.4	36.3	43.8	3.5	1.2	6.3	64.1	1.2	23.7	11480
		2		43.4	52.4	4.2	1.4	5.4	76.6	1.4	11.0	13720
		3		45.3	54.7		1.5	5.6	80.0	1.5	11.4	14320
		4										14415
wooi	FORD COUNTY				$\mathbf{L}\mathbf{A}$	SALLE	E (NO.	2) COA	L (NO	RTHEF	N ILL	(NOIS)
410	BM 90285 (composite 3)	1	14.9	32.5	47.3	5.3	.8	5.9	65.6	1.1	21.3	11640
		2		38.1	55.7	6.2	1.0	5.0	77.1	1.3	9.4	13670
		3		40.7	59.3		1.1	5.4	82.2	1.4	9.9	14580
		4										14684
				1 A A		, ,				1	1	

† The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

	 Samples 			Prox	IMATE			1	Ultimat	E		Heat Values
Mine Index Number	Laboratory Number	Condition†	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	B.t.u. per lb.
WOOD	FORD COUNTY (Continued)						~					
410	(2) 17002-03	1 2 3 4	15.02 	31.83 37.46 40.28	47.20 55.54 59.72	5.95 7.00	1.41 1.52 1.63		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	11615 -13667 14696 14838
GREE	NE COUNTY				1	SUMMU	JM (N	0.4) C	DAL (C	ENTR	AL ILL	NOIS)
347	BM A45162 (composite 2)	1 2 3 4	14.0 	36.0 41.9 47.1	40.5 47.1 52.9	9.5 11.0	4.0 4.7 5.3	5.8 4.9 5.6	60.2 70.0 78.7	1.1 1.3 1.5	19.4 8.1 8.9	10870 12640 14200 14503
347	16399 (composite 2)	1 2 3 4	14.24 	36.43 42.48 47.71	39.92 46.55 52.29	9.41 10.97	4.08 4.76 5.36	$5.51 \\ 4.58 \\ 5.14 \\ \dots \dots$	60.05 70.02 78.64	1.11 1.29 1.45	19.85 8.38 9.41	10777 12566 14114 14413
SALIN	E COUNTY			HARI	RISBUI	RG (NO	. 5 (41	?) COA	L (SOI	JTHER	N ILLI	NOIS)
43	(8) 4985-86-87-89-90-92 and 2 BM	1 2 3 4	6.99 	35.65 38.33 41.62	50.01 53.77 58.38	7.35 7.90	2.08 2.24 2.43		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · ·	12554 13497 14655 14833

TABLE 3.--AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES-Continued

ANALYSES OF ILLINOIS COALS

43	BM 14114 (composite 6)	1	6.98	36.03	49.44	7.55	2.01	5.48	70.42	1.58	12.96	12583
		2		38.73	53.15	8.12	2.16	5.05	75.70	1.70	7.27	13527
		3		42.15	57.85		2.35	5.50	82.39	1.85	7.91	14722
		4									• • • • • • • • •	14903
49	(3) 5012-15-16	1	5.20	38.06	45.90	10.84	4.60					12193
		2		40.15	48.42	11.43	4.85					12862
		3		45.33	54.67		5.48					14521
		4										14848
							· ·					
49	BM 33094 (composite 3)	1	5.28	36.49	46.70	11.53	3.99	4.91	66.37	1.34	11.86	12101
		2		38.52	49.31	12.17	4.21	4.56	70.07	1.41	7.58	12775
		3	· · · · · · · ·	43.86	56.14		4.79	5.19	79.78	1.61	8.63	14546
		4	• • • • • • •		· · · · · · · ·				· <i></i> · · · · ·			14862
45	(2) 1007 00 5001		7 02	24 50	50.05	5.00						
45	(3) 4997-99-5001	1	7.03	34.78	50.27	7.92	2.48	• • • • • • •		• • • • • • • •	· • • • • • • •	12304
		2		37.41	54.07	8.52	2.67				• • • • • • • •	13359
		3		40.89	59.11		2.92	•••••		· • • • • • • •		14603
		4	••••					• • • • • • • •	· · · · · · · ·			14806
45	C-955 (composite 3)	1	71	33 3	51 1	85	2 21	5 41	68 77	1 22	13 02	12342
		2		35.9	55 0	9.1	2.38	4 98	74 02	1 31	8 10	12342
		3		39.5	60.5	2.1	2.62	5 48	81 43	1 44	0.19	14614
		4									2.00	14815
												11010
125	(3) 12934-5-6	1	6.59	33.51	52.08	7.82	2.37					12526
		2		35.88	55.75	8.37	2.54	. 				13410
		3		39.14	60.86		2.78					14634
		4						.				14831

 \dagger The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

	TABLE 3.—AVERAGE PE	OXIMA	TE AND	ULTIMAT	E ANALY	SES OF I	FACE SAN	IPLES-C	continued	d		
	Samples			Prox	IMATE			1	Ultimat	Е		Heat Values
Mine Index Number	Laboratory Number	Condition†	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	B.t.u. per lb.

SALINE COUNTY (Continued)

127	(3) 12901-02-03	1	5.69	33.79	52.58	7.94	2.14				.	12614
		2		35.83	33.73	8.42	2.21					13373
		3		39.11	60.89	<i>.</i>	2.48					14605
		4										14792
127	BM A90722 (composite 3)	1	6.7	33.9	51.6	7.8	2.0	5.5	69.7	1.6	13.4	12620
	· · · ·	2		36.4	55.3	8.3	2.2	5.1	74.7	1.7	8.0	13530
		3		39.7	60.3		2.4	5.5	81.5	1.9	8.7	14770
		4										14940
		-										
127	(3) C-748, 749, 750	1	6.1	34.6	51.5	7.8	2.0			. . <i>.</i> . ,		12580
		2		36.8	54.8	8.4	2.1					13400
		3		40.2	59.8		2.3					14630
		4										14810
		-										
608	BM A91429 (composite 3)	1	6.3	35.7	48.7	9.3	2.9	5.5	68.9	1.5	11.9	12470
		2		38.1	52.0	9.9	3.1	5.1	73.5	1.6	6.8	13310
		3		42.3	57.7		3.5	5.7	81.6	1.8	7.4	14770
		4				. <i>.</i>						15021

A

ANALYSES OF ILLINOIS COALS

DMQ	8DM 28450 (composite 2)	1	1 4 74	20 50	1 4 6 00		1 1 00		0.00			
DIVIO	DM 20450 (composite 2)	T	4.71	38.50	40.90	9.89	4.08	5.53	68.87	1.45	10.18	12470
		2		40.40	49.22	10.38	4.28	5.26	72.27	1.52	6.29	13086
		3		45.08	54.92		4.78	5.87	80.64	1.70	7.01	14602
		4										14802
												14072
BM70	BM 33104 (composite 3)	1	7 02	22 17	50 40	0 50	2 52	F 21	60 17	1 50	12 02	10100
Diffio	BIN SOLOT (composite 5)	1	1.95	35.17	50.40	0.50	2.55	5.31	08.17	1.50	13.93	12190
		Z		30.03	54.74	9.23	2.75	4.81	74.04	1.69	7.48	13239
		3		39.69	60.31		3.03	5.30	81.57	1.86	8.24	14585
		4										14801
BM71	BM33084 (composite 3)	1	6.24	34.48	49.85	9.43	3.48	5.23	68.81	1 57	11 48	12321
		2		36 78	53 16	10.06	3 71	4 84	73 30	1 67	6 33	131/12
		3		40 00	50 10	10.00	1 12	5 20	01 60	1.07	7 02	14610
		1		10.90	39.10		4.15	5.50	81.00	1.00	1.03	14012
		4.	1	••••						[· · · · · · · ·	• • • • • • • •	14876
VERM	ILION COUNTY C	DAD	E CDE		DING				A.T. (T)			
V LILUIU		MAF	E URE	En (SI	-KINGI	TELD)	(NU.	57) CO	AL (E	ASTER	N ILLI	NOIS)
91	(6) 4741-42-43-44-45-46	1	14.37	34 95	41 55	9 12	2 17			1		11055
		2		10 83	18 52	10 65	2.17			• • • • • • • •		12010
		2		15 60	TO.02	10.05	2.54				••••	12910
		3		45.08	54.52	••••	2.85				••••	14447
		4			• • • • • • •	· • • • • • • •		••••••	· · · · · · ·		· · · · ·	14677
91	BM 13570 (composite 3)	1	15.01	34.11	41.13	9.75	2.30	5.73	60.06	1.27	20.89	10827
		2		40.13	48.40	11.47	2.71	4.78	70.67	1.49	8.88	12739
		3		45.33	54.67		3.06	5.40	79 83	1 68	10 03	14389
		4					0.00	0.10		1.00	10.00	14624
		1		••••	• • • • • • • •	••••	•••••	• • • • • • •			••••	14034
									. 1			

a U. S. Bureau of Mines Bull. 193, p. 33.

 \dagger The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash free; 4=dry mineral-matter-free (unit coal).

AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES

	Samples			Prox	IMATE			τ	Jltimat	E		Heat Values
Mine Index Number	Laboratory Number	Condition†	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	B.t.u. per lb.
VERM	ILION COUNTY (Continued)											
92	(3) 4702-03-04	1 2 3 4	15.50 	33.43 39.56 45.40	40.19 47.56 54.60	10.88 12.88	2.38 2.82 3.27	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	10504 12431 14269 14538
92	BM 13477 (composite 3)	1 2 3 4	15.46 	32.31 38.22 43.86	41.36 48.92 56.14	10.87 12.86	2.12 2.51 2.88	5.55 4.53 5.20	59.70 70.62 81.04	1.27 1.50 1.72	20.49 7.98 9.16	10577 12512 14359 14619
93	(6) 4670-71-74-76-78-79	1 2 3 4	15.24	34.75 40.99 45.34	41.88 49.42 54.66	8.12 9.58	1.91 2.25 2.49	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	10995 12972 14346 14544
93	BM 13449 (composite 6)	1 2 3 4	15 .14	34.73 40.93 45.49	41.63 49.05 54.51	8.50 10.02	2.26 2.66 2.96	5.81 4.87 5.41	60.95 71.82 79.82	1.24 1.46 1.62	21.24 9.17 10.19	10935 12886 14321 14539
95	BM 13478 (composite 2)	1 2 3 4	12.76	39.56 45.35 50.46	38.85 44.53 49.54	8.83 10.12	$3.52 \\ 4.03 \\ 4.48$	5.66 4.86 5.41	61.61 70.62 78.57	1.20 1.38 1.54	19.18 8.99 10.00	11263 12910 14364 14632

TABLE 3.—AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES—Continued

95	(2) 4706-07	1	12.50	39.59	38.82	9.09	3.62				<i>.</i> ,	11181
		2		45.25	44.36	10.39	4.15					12778
		3		50.48	49.52		4.64		1			14260
		4										14533
FULT	ON COUNTY			•	SPRIN	GFIEL	D (NO.	5) CO	AL (W	ESTER	RN ILL	INOIS)
31	(6) 5283-84-85, 5296-98, 5341	1	16 88	36 33	36 30	10 49	2 98	1	1	1	1	10260
	· · · · · · · · · · · · · · · · · · ·	2		43 70	43 69	12 61	3 58					12355
		3		50.03	49 97	12.01	4 15					14137
		4					1.10					14474
		-										17127
31	BM 14560 (composite 6)	1	16.11	36.00	37.14	10.75	2.95	5.76	56.65	1.03	22.86	10231
		2		42.91	44.28	12.81	3.52	4.73	67.53	1.23	10.18	12195
		3		49.21	50.79		4.04	5.43	77 45	1 41	11 67	13987
		4										14269
												1207
114	(6) 12459-60-61-62-63-64	1	14.82	35.86	38.44	10.88	2.89					10448
		2		42.10	45.12	12.78	3.39					12266
	· 	3		48.26	51.74		3.89					14063
		4		. 	• • • • • •							14344
114	BM 499202 (assumption 2)	1	16 7	22.2	25 5	10.0						
114	BIVI A88223 (composite 3)	1	10.7	33.3	37.7	12.3	2.4	5.8	56.8	1.0	21.7	10170
		2		40.0	45.2	14.8	2.9	4.8	68.2	1.2	8.1	12210
		3	• • • • • • •	47.0	53.0		3.4	5.6	80.0	1.4	9.6	14330
		4										14638
MACO	N COUNTY				SPRIM	NGFIEI	D (NO	. 5) CC	DAL (C	ENTR	AL ILL	INOIS)
42	BM 81598 (composite 3)	1	12.76	35.37	43.18	8.69	3.23	5.76	61.40	1 11	19 81	11035
		2		40.54	49.50	9.96	3.70	4.97	70.38	1 27	9 72	12649
		3		45.02	54.98		4.11	5.52	78.17	1.41	10.79	14048
		4									10	14292
											,	

 \dagger The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

	TABLE 3.—AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES—Continued												
	Samples			Prox	MATE			· . T	JLTIMAT	E		Heat Values	
Mine Index Number	Laboratory Number	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	B.t.u. per lb.	
MACO	ON COUNTY (Continued)												
42	(3) 5200-01-02	1 2 3 4	13.81	37.35 43.34 48.53	39.63 45.98 51.47	9.21 10.68	3.83 4.45 4.98	· · · · · · · · · ·				10880 12623 14132 14416	
MENA	RD COUNTY				SPRI	NGFIEI	LD (NO). 5) CC	AL (C	ENTRA	L ILL	INOIS)	
531	C-152 (composite 3)	1 2 3 4	14.5 	34.5 40.4 46.4	40.0 46.7 53.6	11.0 12.9	2.58 3.01 3.46	5.71 4.79 5.49	59.67 69.80 80.14	1.07 1.25 1.44	19.94 8.25 9.47	10668 12478 14327 14604	
531	BM A86595 (composite 2)	1 2 3 4	14.5 	34.7 40.6 46.3	40.3 47.1 53.7	10.5 12.3	2.9 3.4 3.9	5.9 5.0 5.7	60.2 70.4 80.3	1.0 1.1 1.3	19.5 7.8 8.8	10850 12690 14470 14756	
PEOR	IA COUNTY				SPRIN	GFIEL	D (NO	. 5) CO	AL (W	ESTER	N ILL	INOIS)	
348	^b BM 22986 (composite 4)	1 2 3 4	15.41	34.34 40.60 47.14	38.52 45.53 52.86	11.73 13.87	2.97 3.51 4.08	5.65 4.66 5.41	57.96 68.52 79.55	1.12 1.32 1.53	20.57 8.12 9.43	10422 12321 14305 14617	

300

ANALYSES OF ILLINOIS COALS

	$DM A45019 (composite 2) \dots \dots$	T	16.7	33.2	38.4	11.7	2.6	5.9	57.5	1.1	21.2	10410
		. 2		39.8	46.2	14.0	3.1	4.8	68.9	1.3	7.9	12490
		3		46:3	53.7		3.6	5.6	80.2	1.5	9.1	14530
		· 4										14830
		-										11000
348	16464 (composite 2)	1	15 87	35 35	37 61	11 17	2 77	4 42	56 11	1 13	8 53	10352
		2	10.07	42 02	44 70	13 28	3 20	5 25	66 60	1 34	10 15	12305
		3		48 45	51 55	10.20	3 80	6.05	76.00	1.54	11 70	1/100
		4		10.15	51.55		5.00	0.0.5	10.90	1.55	11.70	14109
		4		• • • • • • • •			• • • • • • • •					14479
348	BM A 88227 (composite 3)	1	1/ 8	33 3	30.0	12.0	25	5 9	50 0	1.0	10.0	10550
010		2	11.0	30.0	46.0	14.0	2.5	1.0	50.0 60.0	1.0	19.9	10330
		2		39.0 45 5	40.9	14.1	2.9	4.0	09.0	1.2	8.0	12380
		3	••••	45.5	54.5	••••	3.4	5.0	80.4	1.4	9.2	14420
	1	4		· · · · · · · · · · · · · · · · · · ·				• • • • • • •		••••	···	14710
bυ	. S. Bureau of Mines Bull. 123, p. 35.		D									
DIAN	MON CONSTRA				and make setting and the i							
SANG	AMON COUNTY				SPRIN	GFIEL	D (NO	. 5) CO	AL (C	ENTRA	L ILLI	NOIS)
SANG 122	AMON COUNTY BM 81443 (composite 3)	1	13.3	35.5	SPRIN	10.1	D (NO) 4.0 ∣	5,6	AL (C)	ENTR A	L ILLI	NOIS)
SANG 122	AMON COUNTY BM 81443 (composite 3)	12	13.3	35.5 40.9	SPRIN 41.1 47.4	10.1 11.7	$\begin{bmatrix} 4.0 \\ 4.6 \end{bmatrix}$	5.6 4.8	AL (C 59.7 68.9	ENTRA 1.2 1.3	L ILLI	NOIS) 10850 12520
SANG 122	AMON COUNTY BM 81443 (composite 3)	1 2 3	13.3	35.5 40.9 46.3	SPRIN 41.1 47.4 53.7	10.1 11.7	4.0 4.6 5.2	5.6 5.6 4.8 5 4	AL (C) 59.7 68.9 78.0	ENTRA 1.2 1.3 1.5	L ILLI 19.4 8.7	NOIS) 10850 12520 14170
SANG 122	AMON COUNTY BM 81443 (composite 3)	-1 2 3 4	13.3	35.5 40.9 46.3	SPRIN 41.1 47.4 53.7	10.1 11.7	4.0 4.6 5.2	5.6 5.6 4.8 5.4	AL (C. 59.7 68.9 78.0	ENTRA 1.2 1.3 1.5	L ILLI 19.4 8.7 9.9	NOIS) 10850 12520 14170
SANG 122	AMON COUNTY BM 81443 (composite 3)	1 2 3 4	13.3	35.5 40.9 46.3	SPRIN 41.1 47.4 53.7	GFIEL 10.1 11.7	D (NO 4.0 4.6 5.2	5.6 5.6 4.8 5.4	AL (C. 59.7 68.9 78.0	ENTRA 1.2 1.3 1.5	L ILLI 19.4 8.7 9.9	NOIS) 10850 12520 14170 14480
SANG 2 122 122	AMON COUNTY BM 81443 (composite 3)	-1 2 3 4	13.3	35.5 40.9 46.3	SPRIN 41.1 47.4 53.7 	10.1 11.7	D (NO 4.0 4.6 5.2 	5) CO 5.6 4.8 5.4	AL (C 59.7 68.9 78.0	ENTRA 1.2 1.3 1.5	L ILLI 19.4 8.7 9.9	NOIS) 10850 12520 14170 14480
SANG 2 122 122	AMON COUNTY BM 81443 (composite 3) BM A 90788 (composite 3)	1 2 3 4 1 2	13.3 14.4	35.5 40.9 46.3 	SPRIN 41.1 47.4 53.7 40.6 47.4	10.1 11.7 9.6	D (NO 4.0 4.6 5.2 3.8 4.4	5) CO 5.6 4.8 5.4 5.8 4.0	AL (C) 59.7 68.9 78.0 59.7	ENTRA 1.2 1.3 1.5 1.0 1.2	L ILLI 19.4 8.7 9.9 20.1	NOIS) 10850 12520 14170 14480 10810
SANG 2 122 122	AMON COUNTY BM 81443 (composite 3) BM A 90788 (composite 3)	1 2 3 4 1 2 2	13.3 14.4	35.5 40.9 46.3 35.4 41.4	SPRIN 41.1 47.4 53.7 40.6 47.4	10.1 11.7 9.6 11.2	$ \begin{array}{c} 4.0 \\ 4.6 \\ 5.2 \\ \dots \\ 3.8 \\ 4.4 \\ 5 \\ \end{array} $	5) CO 5.6 4.8 5.4 5.4 5.8 4.9	AL (C) 59.7 68.9 78.0 59.7 69.8 78.6	ENTRA 1.2 1.3 1.5 1.0 1.2 1.2	L ILLI 19.4 8.7 9.9 20.1 8.5	NOIS) 10850 12520 14170 14480 10810 12630
SANG 2 122 122	AMON COUNTY BM 81443 (composite 3) BM A 90788 (composite 3)	1 2 3 4 1 2 3	13.3 14.4 	35.5 40.9 46.3 35.4 41.4 46.6	SPRIN 41.1 47.4 53.7 40.6 47.4 53.4	10.1 11.7 9.6 11.2	D (NO 4.0 4.6 5.2 3.8 4.4 5.0	5) CO 5.6 4.8 5.4 5.8 4.9 5.6	AL (C 59.7 68.9 78.0 59.7 69.8 78.6	ENTRA 1.2 1.3 1.5 1.0 1.2 1.3	L ILLI 19.4 8.7 9.9 20.1 8.5 9.5	NOIS) 10850 12520 14170 14480 10810 12630 14230
SANG 122 122	AMON COUNTY BM 81443 (composite 3) BM A 90788 (composite 3)	1 2 3 4 1 2 3 4	13.3 14.4 	35.5 40.9 46.3 35.4 41.4 46.6	SPRIN 41.1 47.4 53.7 40.6 47.4 53.4	10.1 11.7 9.6 11.2	D (NO 4.0 4.6 5.2 3.8 4.4 5.0 	5) CO 5.6 4.8 5.4 5.8 4.9 5.6	AL (C 59.7 68.9 78.0 59.7 69.8 78.6	ENTRA 1.2 1.3 1.5 1.0 1.2 1.3 	L ILLI 19.4 8.7 9.9 20.1 8.5 9.5	NOIS) 10850 12520 14170 14480 10810 12630 14230 14520

† The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

TABLE 5. ATEMAL TRANSMIT AND COMMINE AND FOR SHEEP OF THE CAMPIED COMMINE														
	Samples			Prox	MATE			τ	Jltimat	E		Heat Values		
Mine Index Number	Laboratory Number	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	B.t.u. per lb.		
SANG	SANGAMON COUNTY (Continued)													
617	C-733 (composite 2)	1 2 3 4	15.0 	35.8 42.1 47.7	39.1 46.1 52.3	10.1 11.8 	3.46 4.06 4.61	5.77 4.83 5.47	58.70 69.01 78.27	1.15 1.35 1.53	20.89 8.96 10.12	$ 10606 \\ 12470 \\ 14144 \\ 14426 $		
617	C-734 (composite 2)	1 2 3 4	14.1 	36.5 42.5 49.0	37.9 44.2 51.0	11.5 13.3 	3.97 4.63 5.34	5.66 4.77 5.50	58.06 67.59 77.99	1.13 1.31 1.51	19.72 8.36 9.66	10518 12245 14129 14466		
GRUN	DY COUNTY		HER	RIN (N	lo. 6?)	COAL	(NORT)	HERN	AND W	ESTER	RN ILL	INOIS)		
530	(2) A86302, A86303	1 2 3 4	14.2	35.8 41.7 47.8	39.1 45.6 52.2	10.9 12.7	$ \begin{array}{ c c} 4.1 \\ 4.8 \\ 5.5 \\ \dots \dots \end{array} $	· · · · · · · · · · · ·				10750 12530 14352 14693		
530	C-148 (composite 2)	1 2 3 4	13.8	36.9 42.8 48.8	38.8 45.0 51.2	10.5 12.2	3.84 4.46 5.08	5.70 4.83 5.50	58.83 68.26 77.74	.87 1.00 1.14	20.27 9.28 10.54	10782 12511 14249 14559		

TABLE 3.—AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES—Continued

HENR	CY COUNTY		HE	RRIN (NO. 6)	COAL	(NORT	HERN	AND W	ESTE	RN ILL	INOIS)
527	BM A86460 (composite 2)	1	19.8	29.8	38.3	12.1	4.0	5.9	53.6	.7	23.7	9610
		2		37.1	47.9	15.0	5.0	4.6	66.8	.9	7.7	11980
		3		43.7	56.3		5.9	5.4	78.6	1.1	9.0	14100
		4										14473
527	C_{-145} (composite 2)	1	18 /	30.0	20 2	12.4	2 02	5 70	EA 10	0	12.00	0752
027		2	10.4	37 0	16.0	15 2	3.63	3.72	66 41	1.09	22.98	9755
		3		44 7	55 3	13.2	5 53	4.50	78 31	1.08	0.12	11954
		4		TT. (55.5		5.55	5.51	10.51	1.20	9.57	14090
TALON		-	1		1	1	1	1	1			14400
KNOX	COUNTY					HERRI	IN (NO	.6) CO	AL (W	ESTEF	RN ILL	INOIS)
526	C-137 (composite 2)	1	17.5	32.8	38.9	10.8	3.00	5.82	57.27	.94	22.21	10233
		2		39.8	47.1	13.1	3.64	4.69	69.39	1.14	04	12399
		3	••••	45.8	54.2		4.18	5.40	79.83	1.31	9.28	14265
		4										14570
# 0 <												
526	BM A86457 (composite 2)	1	18.2	32.1	39.2	10.5	3.2	5.9	56.8	.8	22.8	10160
		2		39.2	48.0	12.8	3.9	4.8	69.5	1.0	8.0	12430
		3		45.0	55.0	• • • • • • •	4.4	5.5	79.7	1.2	9.2	14250
		4			• • • • • • •							14560
STAR	K COUNTY					HERRI	N (NO.	6) CO	AL (W	ESTER	N ILL	INOIS)
528	C-142 (composite 2)	1	17.3	34.0	38.6	10.1	3.51	5.89	57.39	. 95	22.18	10383
		2		41.1	46.7	12.2	4.25	4.80	69.43	1.15	8.17	12561
		3		46.8	53.2		4.84	5.46	79.06	1.30	9.34	14303
	1	4										14616
528	BM A86464 (composite 2)	1	17.7	32.1	40.0	10.2	3.9	6.0	56.9	.8	22.2	10270
		2		39.0	48.6	12.4	4.7	4.9	69.1	1.0	7.9	12470
		3		44.5	55.5	. . .	5.4	5.5	78.9	1.2	9.0	14240
		4				.						14561
			l 1	1					1	1		

† The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

	Samples			Prox	IMATE			U	LTIMATI	2		HEAT VALUES
Mine Index Number	Laboratory Number	Condition †	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	B.t.u. per lb.
CHRIS	TIAN COUNTY		,			HERRI	IN (NO	. 6) CC)AL (C	ENTRA	L ILL	INOIS)
221	BM 81141 (composite 3)	1 2 3 4	12.12	37.67 42.87 48.47	40.05 45.57 51.53	10.16 11.56	4.08 4.64 5.25	5.62 4.86 5.50	59.84 68.09 76.99	1.13 1.29 1.46	19.17 9.56 10.80	10881 12382 14000 14300
BM56	^e BM 26338 (composite 2)	1 2 3 4	11.93	38.21 43.39 49.17	39.50 44.85 50.83	10.36 11.76	4.00 4.54 5.15	5.73 5.00 5.67	61.37 69.69 78.98	1.02 1.16 1.31	17.52 7.85 8.89	11086 12589 14267 14577
BM56	BM 25752 (composite 4)	1 2 3	13.04	36.98 42.53 48.52	39.25 45.13 51.48	10.73 12.34	3.66 4.21 4.80	5.58 4.75 5.42	59.83 68.80 78.49	1.14 1.31 1.49	19.06 8.59 9.80	10856 12485 14243 14550
c U	S. Bureau of Mines Bull, 193, p. 30.	T	1	1	1	1						

TABLE 3.—AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES-Continued

FRANKLIN COUNTY

(3) 5 50

HERRIN (NO. 6) COAL (SOUTHERN ILLINOIS)

222_3_4	1	9.34	34.84	48.03	7.79	1.04	 	 	12004
	2		38.42	52.99	8.59	1.15	 	 	13241
	3		42.04	57.96		1.26	 	 	14484
	4						 	 	14633

ANALYSES OF ILLINOIS COALS

57	(3) 5507-8-9	1	9.67	32.24	49.55	8.54	.95					11756
		2		35.69	54.86	9.45	1.05					13015
		3		39.42	60.58		1.16					14372
		4									-	14529
		-										11527
58	(3) 4791-3-4	1	8.93	34.51	48.80	7.76	.74				<i>.</i>	11937
		2		37.89	53.59	8.52	. 81					13108
		3		41.42	58.58		.88					14329
		4									4	14463
												11100
134	C-507 (composite 2)	1	10.3	31.6	50.6	7.5	1.10	5.44	66.87	1.59	17.47	11811
		2		35.3	56.3	8.4	1.22	4.75	74.97	1.77	8.89	13174
		3		38.5	61.5		1.34	5.19	81 80	1.94	9 73	14383
		4									1.10	14528
		_										14020
134	C-508 (composite 2)	1	9.2	33.2	49.5	8.1	1.48	5.40	67.26	1.56	16.25	11957
		2		36.5	54.6	8.9	1.63	4.79	74.38	1.72	8.61	13167
	•	3		40.1	59.9		1.79	5.26	81.60	1.89	9.46	14457
		4										14617
134	(6) 12701-02-03-20-21-22	1	8.28	33.23	49.69	8.80	1.01					11859
		2		36.23	54.18	9.59	1.38					12930
		3		40.07	59.93		1.53					14301
		4										14469
										,		1.107
136	BM A90718 (composite 3)	1	9.6	32.7	49.1	8.6	.9	5.6	66.1	1.6	17.2	11860
- -		2		36.2	54.2	9.6	1.0	5.0	73.2	1.7	9.5	13120
		3		40.0	60.0		1.1	5.6	80.9	1.9	10.5	14510
	• •	4									-0.0	14672
		-										11012
			4 · · · ·		1		1			L		

 \dagger The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES

	Samples			Prox	IMATE			τ	Jltimat	E		Heat Values
Mine Index Number	Laboratory Number	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	B.t.u. per lb.
FRAN	KLIN COUNTY (Continued)											
136	(6) 12729-30-31-32-33-34	1 2 3 4	7.44	35.16 37.99 42.40	47.74 51.58 57.60	9.66 10.43	2.52 2.72 3.05	· · · · · · · · · · · ·	 			11776 12723 14204 14428
BM14	^d BM 22691 (composite 5)	1 2 3 4	9.19 	33.80 37.22 41.01	48.61 53.53 58.99	8.40 9.25	.92 1.01 1.11	5.49 4.92 5.42	67.25 74.06 81.61	1.52 1.67 1.84	16.42 9.09 10.02	11925 13131 14468 14623
BM15	BM 23444 (composite 2)	1 2 3 4	9.93	33.13 36.78 40.45	48.77 54.15 59.55	8.17 9.07	75 .83 .91	5.46 4.84 5.32	67.08 74.47 81.89	1.41 1.57 1.73	17.13 9.22 10.15	11896 13207 14522 14669
BM15	^e BM A66446 (composite 5)	1 2 3	8.8	32.7 35.8 39.5	50.1 55.0 60.5	8.4 9.2	.8 .9 .9	5.3 4.8 5.3	67.9 74.5 82.1	1.4 1.5 1.7	16.2 9.1 10.0	11990 13150 14480 14630
BM16	^d BM 20726 (composite 3)	1 2 3 4	8.87	32.72 35.90 40.01	49.05 53.83 59.99	9.36 10.27	.94 1.03 1.15	5.05 4.46 4.97	66.81 73.31 81.70	1.52 1.67 1.86	16.32 9.26 10.32	11785 12931 14413 14579

TABLE 3.—AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES—Continued

BM16	BM 20083 (composite 3)	1	9.62	30.68	50.43	9.27	. 50	5.38	66.67	1.42	16.76	11723	
		2		33.94	55.80	10.26	. 55	4.77	73.76	1.57	9.09	12971	
		3		37.82	62.18		.61	5.32	82.19	1.75	10.13	144.54	
		4										14606	
												11000	
BM22	BM 26497 (composite 5)	1	10.06	33.40	48.19	8.35	1.11	5.47	66.77	1.27	17.03	11817	
		2		37.14	53.58	9.28	1.23	4.84	74.24	1.41	9.00	13140	
		3		40.94	59.06		1.36	5.34	81.83	1.55	9.92	14485	
		4										14645	
			•		•				1			1 10 10	
MACO	UPIN COUNTY			Ŧ	IEBBD	N (NO	6) CO			FETTER	NT TT T	NOTON	
						. (110.	0) 001			COLEN	N ILLI	INUIS)	
BM31	BM 18553 (composite 2)	1	13.59	37.20	39.33	9.88	3.86	5.65	59.41	1.12	20.08	10701	
		2		43.05	45.52	11.43	4.47	4.79	68.76	1.30	9.25	12384	
		3		48.61	51.39		5.05	5.41	77.64	1.47	10.43	13982	
		4										14273	
BM31	BM A87367 (composite 3)	1	14.0	35.1	40.8	10.1	4.3	5.8	59.0	.9	19.9	10670	
		2		40.8	47.4	11.8	5.0	4.9	68.6	1.1	8.6	12420	
		3		46.2	53.8		5.6	5.6	77.8	1.2	9.8	14070	
		4										14401	
			•									11101	
MONT	GOMERY COUNTY			н	ERRIN	I (NO.	6) COA	L (SO	UTHW	ESTER	N ILLI	NOIS	
70							.,		C 111 () 1		., IDDI	1015)	
70	(3) 5105-6-7	1	13.89	37.05	38.45	10.61	3.85					10574	
		2	· · · · · · · ·	43.04	44.64	12.32	4.47					12280	
		3		49.08	50.92	· · · · · · · ·	5.10					14005	
		4										14313	

d U. S. Bureau of Mines Bull. 23, p. 33.

e U. S. Bureau of Mines Tech. Paper 524, p. 3.

 \dagger The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES

	Samples			Proxi	MATE			Heat Values				
Mine Index Number	Laboratory Number	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	B.t.u. per lb.
MONT	GOMERY COUNTY (Continued)											
194	BM 81104 (composite 3)	1 2 3 4	13.00	36.83 42.33 47.67	40.43 46.47 52.33	9.74 11.20	4.24 4.87 5.48	5.65 4.83 5.44	59.61 68.52 77.16	1.14 1.31 1.48	19.62 9.27 10.44	10746 12352 13909 14208
194	BM A87370 (composite 3)	1 2 3 4	12.5 	35.5 40.6 46.5	40.9 46.7 53.5	11.1 12.7	4.0 4.6 5.2	5.8 5.0 5.7	60.0 68.6 78.5	1.0 1.1 1.3	18.1 8.0 9.3	10810 12360 14160 14483
BM45	BM 21906 (composite 5)	1 2 3 4	13.48	34.84 40.27 46.48	40.13 46.38 53.52	11.55 13.35	4.03 4.66 5.38	5.56 4.69 5.41	58.33 67.42 77.81	1.19 1.38 1.59	19.34 8.50 9.81	10548 12191 14069 14404

TABLE 3.—AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES-Continued

PERRY COUNTY

HERRIN (NO. 6) COAL (SOUTHWESTERN AND SOUTHERN ILLINOIS)

54	(4) 4756-64-66-68	1 2 3	10.00	33.62 37.35 42.41	45.63 50.71 57.59	10.75 11.94	.91 1.01 1.15	 	 	11271 12523 14221
		4						 	 	14411

308

ANALYSES OF ILLINOIS COALS

54	BM 13591 (composite 6)	1	10.66	32.24	46.50	10.60	. 89	5.27	63.62	1.50	18.12	11257
		2		36.09	52.05	11.86	1.00	4.58	71.21	1.68	9.67	12600
		3		40.95	59.05		1.13	5.20	80.79	1.91	10.97	14295
		4					· · · · · · · ·					14485
90	BM 14178 (composite 6)	1	10.55	36.10	42.88	10.47	3.52	5.35	61.87	1.14	17.65	11094
		2		40.36	47.94	11.70	3.94	4.67	69.16	1.27	9.26	12402
		3		45.71	54.29		4.46	5.29	78.32	1.44	10.49	14045
		4										14326
90	(6) 5034-37-38-40-42-43	1	10.95	37.00	41.82	10.23	3.60					11060
		2		41.55	46.95	11.50	4.04					12420
		3		46.93	53.07		4.57					14034
		4										14314
180	(5) 12614-15-16-23-24	1	9.31	33.65	47.51	9.53	1.07					11498
		2		37.10	52.39	10.51	1.18					12678
		3		41.46	58.54		1.32					14167
		4										14340
622	C-927 (composite 2)	1	9.2	35.8	43.6	11.4	3.6	5.3	61.9	1.1	16.7	11234
		2		39.4	48.0	12.6	4.0	4.7	68.2	1.2	9.3	12370
		3		45.0	55.0		4.5	5.4	78.0	1.4	10.7	14147
		4										14454
622	C-926 (composite 2)	1	9.2	35.5	44.8	10.5	3.8	5.2	62.6	1.1	16.8	11337
		2		39.1	49.3	11.6	4.1	4.6	69.0	1.2	9.5	12483
		3		44.2	55.8		4.7	5.3	78.0	1.3	10.7	14121
		. 4										14410

 \dagger The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES

	Samples	-		Proxi	MATE			1	Ultimat	E		Heat Values
Mine Index Number	Laboratory Number	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	B.t.u. per lb.
PERRY	Y COUNTY (Continued)				-	· ·						
BM29 BM61	BM 20734 (composite 6) BM 26468 (composite 7)	1 2 3 4 1 2 3 4	11.03 10.76 	32.40 36.41 39.97 33.10 37.09 41.13	48.64 54.68 60.03 47.37 53.08 58.87 	7.93 8.91 8.77 9.83	.86 .97 1.06 	5.60 4.92 5.40 5.38 4.68 5.19	65.26 73.34 80.51 64.49 72.27 80.15	1.42 1.60 1.76 1.36 1.52 1.69	18.93 10.26 11.27 19.16 10.76 11.93	11575 13010 14283 14427 11524 12913 14321 14478
WASH	INGTON COUNTY			н	ERRIN	(NO.	6) COA	AL (SO	UTHW	ESTER	N ILL	INOIS)
226	C-384 (composite 3)	1 2 3 4	10.2	37.5 41.8 48.7	39.5 44.0 51.3	12.8 14.2	4.40 4.90 5.71	5.35 4.70 5.48	59.54 66.32 77.31	1.18 1.31 1.53	16.80 8.59 9.97	10811 12043 14037 14389
226	BM 80683 (composite 3)	1 2 3 4	9.45	38.46 42.47 49.02	39.99 44.17 50.98	12.10 13.36	4.33 4.78 5.52	5.46 4.87 5.62	60.43 66.74 77.03	1.12 1.24 1.43	16.56 9.01 10.40	10969 12114 13982 14317

TABLE 3.—AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES—Continued

WILLIAMSON COUNTY HERRIN (NO. 6) COAL (SOUTHERN ILLINOIS												
154	(3) 12799-800-801	1	7.90	32.28	51.30	8.52	1.19					12108
		3		38.61	61.39	9.20	1.29			· · · · · · · · ·		13147
		4										14487
154	(3) A 38989-90-91	1	10.3	29.7	51.9	8.1	1.2					11877
		2		33.1	57.9	9.0	1.3	· · · · · · ·				13241
		3	• • • • • • •	30.4.	03.0		1.4					14551
		4										14711
BM28	BM 30866 (composite 3)	1	9.94	32.92	48.30	8.84	1.28	5.34	66.18	1.46	16.90	11714
		2		36.55	53.63	9.82	1.42	4.71	73.49	1.62	8.94	13007
		3		40.53	59.47		1.57	5.22	81.49	1.80	9.92	14423
		4					<i>.</i> . .					14598
BM28	BM 28815 (composite 5)	1	9.33	32.76	49.94	7.97	.97	5.48	67.05	1 43	17 10	11012
		2		36.13	55.08	8.79	1.07	4.90	73.95	1.58	9.71	13138
		3		39.61	60.39		1.17	5.37	81.08	1.73	10.65	14404
1		4	· • • • • • • •		• • • • • • • •							14552
BURE	AU COUNTY		SPAR	RLAND	(DAN)	VILLE)	(NO.	7) COA	L (NO	RTHEF	N ILL	INOIS)
532	C-155 (composite 2)	1	17.8	32.7	36.4	13.1	2.90	5.77	53.97	.88	23.34	9777
		2	· • • • • • • •	39.8	44.2	16.0	3.53	4.61	65.61	1.06	9.22	11888
		3	• • • • • •	47.3	52.7		4.20	5.48	78.07	1.27	10.98	14144
		4			•••••	•••••••		· · · · · · · ·			•••	14492
532	BM A86598 (composite 2)	1	17.7	31.9	36.5	13.9	3.4	5.9	53.5	.8	22.5	9700
		2		38.7	44.4	16.9	4.1	4.8	65.0	.9	8.3	11780
		3		46.6	53.4		4.9	5.7	78.2	1.1	10.1	14170
		4						• · · · ·		••••••		14561

 \dagger The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES

	Samples			Prox	IMATE			τ	Jltimat	E		Heat Values
Mine Index Number	Laboratory Number	Condition	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulfur	Hydrogen	Carbon	Nitrogen	Oxygen	B.t.u. per lb.
MARS	HALL COUNTY		SPARLAND (DANVILLE) (NO. 7) COAL (NORTHERN I									
360	16419 (composite 2)	1 2 3 4	15.73	34.36 40.77 49.63	34.87 41.38 50.37	15.04 17.85	4.04 4.79 5.83	5.77 4.77 5.81	52.69 62.53 76.12	1.04 1.24 1.51	21.41 8.82 10.73	9748 11568 14081 14507
360	BM A45320 (composite 2)	1 2 3 4	15.1 	33.4 39.3 48.5	35.5 41.8 51.5	16.0 18.9	4.1 4.8 5.9	5.4 4.4 5.5	54.3 63.9 78.8	1.0 1.1 1.4	19.2 6.9 8.4	9870 11610 14320 14776
363	(2) 16432, 16433	1 2 3 4	13.79 	37.57 43.58 51.71	35.09 40.70 48.29	13.55 15.72	3.14 3.64 4.32	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · ·	10321 11972 13876 14551
363	BM A45465 (composite 2)	1 2 3 4	14.0 	33.8 39.3 46.5	39.0 45.3 53.5	13.2 15.4	2.9 3.3 3.9	5.6 4.7 5.6	58.1 67.6 79.9	1.0 1.2 1.4	19.2 7.8 9.2	10510 12230 14450 14794

TABLE 3.--AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF FACE SAMPLES-Concluded.

ANALYSES OF ILLINOIS COALS

DANVILLE (NO. 7) COAL (EASTERN ILLINOIS)

94	(6) 4711-13-14-16-22-24	1	12.86	38.53	38.93	9.68	3.41					11
		2		44.22	44.68	11.10	3.91					12832
		3		49.74	50.26		4.41					14434
		4										14717
94	BM 13497 (composite 6)	1	13.06	38.35	39.35	9.24	3.17	5.77	62.10	1.22	18.50	11241
	· • • ·	2		44.11	45.26	10.63	3.65	4.97	71.43	1.40	7.92	12929
		3		49.35	50.65		4.08	5.56	79.92	1.57	8.87	14467
		4										14734
94	BM 84229 (composite 3)	1	13.60	37.10	39.60	9.70	3.00	5.80	61.40	1.20	18.90	11100
	, -	2		43.00	45.80	11.20	3.50	5.00	71.00	1.40	7.90	12850
		3		48.40	51.60		3.90	5.60	80.00	1.50	9.00	14460
		4										14742
97	(3) 4727-4734-4736	1	13.14	37.58	38.99	10.29	2.56					11090
		2		43.26	44.89	11.85	2.95					12768
		3		49.07	50.93		3.35					14484
		4										14747
97	BM 13551 (composite 3)	1	13.68	36.76	39.62	9.94	2.34	5.69	60.68	1.11	20.24	11146
		2		42.59	45.89	11.52	2.71	4.83	70.30	1.29	9.35	12911
		3		48.14	51.86		3.06	5.46	79.45	1.46	10.57	14593
		4										14844

VERMILION COUNTY

 \dagger The form of analysis is denoted by number, as follows: 1=sample as received at laboratory: 2=moisture-free; 3=moisture- and ash-free; 4=dry mineral-matter-free (unit coal).

TABLE 4.—COUNTY AVERAGE PROXIMATE AND ULTIMATE ANALYSES OF ILLINOIS COALS, ARRANGED BY COUNTY AND COAL BED, WITH RANK AND UNIT COAL INDICES

Samples .			Prox	IMATE			τ	JLTIMAT	ΓE		HEAT VALUES			
County, Number of Mines, and Coal ^a		Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index Unit coal index	
Bond (1 mine) Herrin No. 6	1 2 3 4	11.9 13.8 	35.2 39.9 38.1 44.1	42.2 47.9 48.1 55.9	10.7 12.2 	3.4 3.8 	5.5 4.7 	60.9 69.2	1.1 1.2 	18.4 8.9 	5998 6810 6821 7911	10800 12260 12280 14240	123 142	- - - 2
Bureau (3 mines) LaSalle No. 2	1 2 3 4	16.1 17.8 	38.5 45.8 40.6 49.4	38.0 45.4 41.6 50.6	7.4 8.8 	2.9 3.5 	5.9 4.9 	60.1 71.6 	1.1 1.3 	22.6 9.9 	6054 7216 6607 8040	10900 12990 11890 14470	 119 145	5
Bureau (1 mine) Sparland No. 7 or "First Vein" coal	1 2 3 4	17.7 21.2	32.3 39.3 35.8 45.4	36.5 44.3 43.0 54.6	13.5 16.4 	3.2 3.8 	5.9 4.9 	53.7 65.3 	.8 1.0 	22.9 8.6	5411 6578 6361 8073	9740 11840 11450 14530	 115 145	
Christian	1 2 3 4	11.3 12.7	38.9 43.8 41.8 47.9	40.9 46.2 45.5 52.1	8.9 10.0	2.3 2.6	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	6445 7267 7158 8197	11600 13080 12880 14760	129 148	

SUMMARY OF TABLE 2;

ANALYSES OF ILLINOIS COALS
Christian	1	13.0	39.2	40.9	6.9	3.1					6439	11590	
(1 mine)	2		45.0	47.0	8.0	3.6					7399	13320	
Upper Assumption coal	3	14.3	41.1	44.6							6996	12590	126
	4		48.0	52.0							8161	14690	147
Christian	1	12.7	37.0	40.1	10.2	3.9	5.7	59.8	1.1	19.3	6035	10860	
(4 mines)	2		42.3	46.0	11.7	4.5	5.0	68.4	1.3	9.1	6913	12440	
Herrin No. 6	3	14.6	39.8	45.6							6825	12290	123
	4		46.6	53.4		1					7994	14390	144
Clinton	1	11.8	36.6	41.1	10.5	3.7	5.5	60.3	1.1	18.9	6038	10870	
(4 mines)	2		41.5	46.6	11.9	4.2	4.8	68.4	1.2	9.5	6845	12320	
Herrin No. 6	3	13.6	39.6	46.8							6851	12330	123
	4		45.8	54.2					1		7931	14280	143
Edgar	1	12.5	37.1	40.6	9.8	3.1	5.7	62.2	1.2	18.0	6242	11240	
(1 mine)	2		42.4	46.4	11.2	3.5	5.0	71.1	1.3	7.9	7133	12840	
Grape Creek	3	14.3	40.0	45.7							7021	12640	126
Springfield No. 5?	4		46.6	53.4							8189	14740	147
opringheid 100 07	-		2010										
Franklin	1	9.2	33.9	48.3	8.6	1.5	5.4	66.8	1.5	16.2	6576	11840	
(22 mines)	2		37.3	53.2	9.5	1.6	4.8	73.6	1.6	8.9	7238	13030	
Herrin No. 6	3	10.2	36.3	53.5							7271	13090	131
	4		40.5	59.5							8095	14570	146
	-												
Fulton	1	11.2	38.4	40.2	10.2	5.0					6372	11470	
(1 mine)	2		43.3	45.2	11.5	5.6					7177	12920	
Rock Island No. 1	3	13.0	41.3	45.7							7229	13010	130
	4		47.5	52.5							8309	14960	150
	-		10.0	52.0								-1700	100

a Number of mines represented by the ultimate analyses is given in Table 2. ‡ The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moist mineral-matter-free; 4=dry mineral-matter-free (unit coal).

COUNTY AVERAGE PROXIMATE AND ULTIMATE ANALYSES

Samples		Proximate					τ	LTIMAT	Έ		I	Ieat Va	LUES	
County, Number of Mines, and Coal ^a	Condition [‡]	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
Fulton	1 2 3 4	15.3 17.7	35.2 41.6 38.4 46.6	38.3 45.2 43.9 53.4	11.2 13.2	3.2 3.8	5.7 4.7 	58.4 68.9	1.1 1.3	20.4 8.1	5809 6854 6640 8067	10460 12340 11950 14520	 120	 145
Fulton-Peoria	1 2 3 4	15.9 17.9 	32.6 38.8 34.6 42.2	42.5 50.5 47.5 57.8	9.0 10.7	3.0 3.6 	5.8 4.9	59.4 70.6	1.1 1.3	21.7 8.9 	5931 7054 6598 8044	10680 12700 11880 14480	 119 	 145
Gallatin	1 2 3 4	4.1 4.7	34.2 35.7 36.3 38.1	52.8 55.1 59.0 61.9	8.9 9.2	3.4 3.6 4.1		· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	7214 7526 8036 8436	12990 13550 14470 15180	 145	 152
Gallatin (north of Eagle Valley) (2 mines) Harrisburg No. 5 (4?)	1 2 3 4	4.9 5.6	35.6 37.4 38.7 41.0	48.4 50.9 55.7 59.0	11.1 11.7 	3.4 3.6 	· · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6848 7197 7841 8309	12330 12960 14110 14960	 141 	 150
Gallatin (Eagle Valley) (1 mine) Herrin No. 6	1 2 3 4	4.3	36.1 37.7 39.0 41.0	49.0 51.2 56.0 59.0	10.6 11.1	3.7 3.9	· · · · · · · · · · · · · · · · · · ·				6990 7303 7961 8377	12580 13150 14330 15080	 143	

TABLE 4.—COUNTY AVERAGE PROXIMATE AND ULTIMATE ANALYSES—Continued

Greene	1	14.4	36.2	40.0	9.4	3.9	5.7	60.1	1.1	19.8	6050	10890	
(2 mines)	2		42.2	46.8	11.0	4.6	4.8	70.1	1.3	8.2	7071	12730	
Summum No. 4?	3	16.5	38.6	44.9							6777	12200	122
	4		46.2	53.8							8112	14600	146
. .			1										
Grundy	1	17.1	37.4	39.7	5.8	2.8	6.2	61.3	1.0	22.9	6139	11050	
(4 mines)	2		45.1	47.9	7.0	3.3	5.2	74.0	1.2	9.3	7402	13320	
LaSalle No. 2	3	18.6	38.8	42.6							6574	11830	118
	4		47.7	52.3							8009	14520	145
Grundy	1	14.0	36 1	28 0	10 7	2.0	50	50 1	0	20.2	5002	10770	
(1 mine)	2	14.0	10.4	150.9	10.7	3.9	3.0	50.4	.9	20.3	3963	10770	
(I mile)	2	16.0	42.5	45.5	12.4	4.0	4.9	07.9	1.0	9.2	0957	12320	102
verona INO. 0?	- 3	10.2	39.3	44.5				• • • • • •			0808	12250	123
	4		40.9	55.1		• • • • • • •		• • • • • •			8123	14630	140
Henry	1	15.9	36.7	38.3	9.1	4.8	6.2	58.0	0.8	21.1	5908	10640	
(4 mines)	2		43.6	45.6	10.8	5.7	5.2	69.0	1.0	8.3	7025	12650	
Rock Island No. 1	3	18.2	38.9	42.9							6597	11880	119
	4		47.5	52.5							8059	14510	145
Henry	1	14.5	37.0	38.6	9.9	3.5	5.9	58.8	1.1	20.8	5896	10610	
(1 mine)	2		43.3	45.1	11.6	4.0	5.0	68.8	1.3	9.3	6897	12420	
Colchester No. 2	3	16.6	39.8	43.6					. .	• • • • • •	6636	11940	119
	4		47.8	52.2							7960	14330	143
Henry	1	10 1	30 4	38 3	12.2	3.0	5.8	53 0	8	23 4	5378	0680	
(1 mine)	2	17.1	37 5	47 4	15 1	1.8	1.0	66 6	1.0	20.4	6647	11070	
Homin No. 6	2	22 6	22 0	44 5	13.1	4.0	4.0	00.0	1.0	1.9	60047	11200	112
	4	44.0	32.9	44.5		• • • • • •			• • • • • •		0223	11200	112
	4	• • • • • •	42.4	57.0			• • • • • •	• • • • • •			8030	14470	145
					s			1	1 1)

a Number of mines represented by the ultimate analyses is given in Table 2.

 \ddagger The form of analysis is denoted by number, as follows: 1 =sample as received at laboratory; 2 =moisture-free; 3 =moist mineral-matter-free (unit coal).

COUNTY AVERAGE PROXIMATE AND ULTIMATE ANALYSES

Samples		Proximate					ť	LTIMAT	Έ		F	IEAT VA	LUES	
County, Number of Mines, and Coal ^a	Condition [‡]	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
Jackson	1 2 3 4	9.3 10.0	34.0 37.5 35.4 39.4	51.0 56.2 54.6 60.6	5.7 6.3 	1.3 1.4 	· · · · · · · · · · · · · · · · · · ·	 	 	· · · · · · · ·	6938 7648 7413 8234	12490 13770 13340 14820	 133	 148
Jackson	1 2 3 4	9.4 10.6	34.5 38.1 37.3 41.7	46.2 51.0 52.1 58.3	9.9 10.9	2.2 2.4 	5.5 5.0	64.8 71.6 	$1.3 \\ 1.4 \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots$	16.3 8.7 	6461 7132 7264 8129	11630 12840 13080 14630	 131	 146
Jefferson (1 mine) Herrin No. 6	1 2 3 4	8.5 9.5 	34.6 37.8 37.1 41.0	48.2 52.7 53.4 59.0	8.7 9.5	1.3 1.4 	5.3 4.9 	67.3 73.5	1.5 1.6	15.9 9.1 	6653 7272 7361 8128	11980 13090 13250 14630	 133 	 146
Knox	1 2 3 4	14.3 16.1 	36.7 42.8 38.5 45.9	41.1 47.9 45.4 54.1	7.9 9.3	4.5 5.3	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6204 7237 6834 8141	11170 13030 12300 14650	 123	 147
Knox (1 mine) Summum No. 4	1 2 3 4	15.0 16.7	38.0 44.7 40.0 48.0	39.3 46.2 43.3 52.0	7.7 9.1	3.9 4.6		· · · · · · · · · · · · · · · · · · ·			6234 7333 6844 8219	11220 13200 12320 14790	 123	····· ···· 148

TABLE 4.-COUNTY AVERAGE PROXIMATE AND ULTIMATE ANALYSES-Continued

Knox	1	17.9	32.5	39.0	10.6	3.1	5.9	57.1	.8	22.5	5664	10200	
(1 mine)	2		39.5	47.5	13.0	3.8	4.7	69.6	1.0	7.9	6894	12410	
Herrin No. 6	3	20.6	35.0	44.4							6426	11570	116
	4		44.0	56.0							8090	14560	146
LaSalle	1	14.5	38.4	38.8	8.3	3.3	5.8	61.6	1.0	20.0	6136	11050	
(6 mines)	2		44.9	45.4	9.7	3.9	4.9	72.0	1.2	8.3	7177	12920	
LaSalle No. 2	3	16.3	40.8	42.9							6774	12190	122
	4		48.7	51.3							8089	14560	146
	-		1011	01.0							0000	11000	140
LaSalle	1	14.8	41.3	34.3	9.6	3.4					5930	10670	
LaSalle District (Second Vein)	2		48.5	40.2	11.3	4 0					6956	12520	
(1 mine)	3	16.8	44 7	38 5							6653	11080	120
Herrin No. 6?	4	10.0	53 7	46.3							7000	14400	144
	т		55.7	10.0		•••••	• • • • • •			••••	1999	14400	144
LaSalle	1	12 2	30 5	28 7	86	27	50	61 5	1.0	10.4	6240	11250	
(2 minor)	2	10.2	15 6	44 5	0.0	1.7	5.0	70.0	1.0	19.4	7107	11230	•••••
(2 miles) Streator No. 6	2	14 0	43.0	44.5	9.9	4.2	5.0	10.9	1.2	8.8	/19/	12900	
Streator No. 0	3	14.9	42.2	42.9		••••			• • • • • •		6933	12480	125
	4		49.5	50.5							8143	14660	147
Tivingston	1	11.0	25 1	20 7	12.2	2 7	- /	(0,0)	1.0	16.0	(0(2	10010	
	1	11.9	35.1	39.7	13.3	3.1	5.0	60.2	1.0	10.2	6063	10910	
(3 mines)	2		39.8	45.1	15.1	4.2	4.9	68.3	1.1	6.4	6882	12390	
Grape Creek	3	14.2	38.9	46.9			• • • • • •				7129	12830	128
	4		45.3	54.7							8313	14960	150
Logan	1.	13.5	36.9	39.0	10.6	3.2	5.6	60.1	1.1	19.4	5967	10740	
(2 mines)	2		42.6	45.1	12.3	3.6	4.8	69.5	1.3	8.5	6898	12420	
Springfield No. 5	3	15.6	40.0	44.4							6775	12200	122
	4		47.4	52.6							8023	14440	144

a Number of mines represented by the ultimate analyses is given in Table 2. [‡] The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moist mineral-matter-free; 4=dry mineral-matter-free (unit coal).

COUNTY AVERAGE PROXIMATE AND ULTIMATE ANALYSES

Samples	Proximate						U	LTIMAT	Έ		I	HEAT VA	LUES
County, Number of Mines, and Coal ^a	Condition [†]	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index Unit coal index
McDonough	1 2 3 4	16.6 18.6 	34.2 41.0 36.2 44.4	40.9 49.0 45.2 55.6	8.3 10.0	2.9 3.5			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6002 7199 6621 8134	10800 12960 11920 14640	119 146
McLean	1 2 3 4	11.3 12.7 	42.2 47.6 45.4 49.9	37.7 42.5 41.9 50.1	8.8 9.9	3.0 3.4 	· · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	6426 7242 7139 8176	11570 13040 12850 14720	129 147
McLean	1 2 3 4	13.3 15.8 	38.0 43.8 42.0 51.2	36.2 41.8 42.2 48.8	12.5 14.4 	3.7 4.3	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5878 6781 6835 8114	10580 12210 12300 14610	123 146
Macon	1 2 3 4	13.9 16.0	36.2 42.0 39.0 46.4	39.7 46.1 45.0 53.6	10.2 11.9	3.4 4.0	5.7 4.8	59.1 68.6	1.1 1.2 	20.5 9.5	5945 6904 6717 7992	10700 12430 12090 14390	 121 144
Macoupin	1 2 3 4	13.3 15.3	37.4 43.1 40.1 47.3	39.5 45.6 44.6 52.7	9.8 11.3	4.0 4.6	5.9 5.1	58.9 68.0	1.1 1.2	20.3 9.8	5963 6878 6710 7916	10730 12380 12080 14250	121 143

TABLE 4.—COUNTY AVERAGE PROXIMATE AND ULTIMATE ANALYSES—Continued

Madison	1	13.1	38.3	38.5	10.1	4.1	5.8	59.6	1.1	19.3	5992	10790	
(6 mines)	2		44.1	44.3	11.6	4.7	5.0	68.6	1.2	8.9	6900	12420	
Herrin No. 6	3	15.1	41.3	43.6							6769	12180	122
	4		48.6	51.4							7974	14350	144
Marion	1	10.3	36.6	42.1	11.0	3.8	5.5	62.2	1.2	16.3	6237	11230	
(3 mines)	2		40.8	46.9	12.3	4.3	4.9	69.3	1.3	7.9	6954	12520	
Herrin No. 6	3	12.0	39.7	48.3							7133	12840	128
	4	· · · · · · ·	45.1	54.9							8105	14590	146
Marshall.	1	15.1	39.1	38.6	7.2	2.8					6284	11310	
(2 mines)	2		46.0	45.5	8.5	3.3					7402	13320	
LaSalle No. 2	3	16.7	41.2	42.1							6843	12320	123
	4		49.4	50.6							8209	14780	148
Marshall	1	15.3	35.3	35.3	14.1	3.5	5.7	55.5	1.0	20.2	5585	10050	
(6 mines)	2		41.6	41.7	16.7	4.1	4.7	65.5	1.2	7.8	6591	11870	
Sparland No. 7	3	18.5	39.5	42.0							6625	11920	119
	4		48.5	51.5							8123	14630	146
Menard	1	15.3	35.5	40.0	9.2	3.2	5.9	60.1	1.0	20.6	5961	10730	
(3 mines)	2		41.9	47.2	10.9	3.8	5.0	70.8	1.2	8.2	7038	12670	
Springfield No. 5	3	17.3	37.9	44.8							6650	11970	120
	4		45.8	54.2						. :	8048	14490	145
Mercer	1	15.6	38.5	36.9	9.0	4.4					5971	10750	
(5 mines)	2		45.7	43.7	10.6	5.3					7078	12740	
Rock Island No. 1	3	17.8	41.0	41.2							6654	11980	120
	4		49.9	50.1							8094	14570	146

a Number of mines represented by the ultimate analyses is given in Table 2.

[‡] The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-iree; 3=moist mineral-matter-free; 4=dry mineral-matter-free (unit coal).

COUNTY AVERAGE PROXIMATE AND ULTIMATE ANALYSES

Samples			Prox	IMATE			U	JLTIMAT	°E		1	Heat V.	ALUES	
County, Number of Mines, and Coal ^a	Condition [‡]	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
Montgomery (5 mines) Herrin No. 6	1 2 3 4	13.2 15.2 	36.2 41.7 38.9 45.9	40.4 46.5 45.9 54.1	10.2 11.8	4.2 4.8 	5.7 4.8	59.6 68.6	1.0 1.2 	19.3 8.8	5962 6869 6744 7960	10730 12360 12140 14330		 143
Moultrie	1 2 3 4	6.8 8.0 	39.2 42.0 43.0 46.7	42.3 45.4 49.0 53.3	11.7 12.6 	4.0 4.3 	· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6599 7083 7619 8284	11880 12750 13720 14910	 137 	 149
Peoria	1 2 3 4	14.5 16.8 	35.1 41.1 38.1 45.8	39.4 46.1 45.1 54.2	11.0 12.8	3.2 3.8	5.8 4.9 	59.2 69.3	1.1 1.3	19.7 7.9	5949 6959 6781 8151	10710 12530 12210 14670	 122 	 147
Perry (east of DuQuoin anticline) (2 mines) Herrin No. 6	1 2 3 4	10.3 11.5	33.0 36.8 35.7 40.3	47.3 52.7 52.8 59.7	9.4 10.5	.9 1.0	5.4 4.7 	64.6 72.0	1.4 1.6	18.3 10.2	6358 7090 7087 8012	11450 12760 12760 14420	 128	 144
Perry (west of DuQuoin anticline) (12 mines) Herrin No. 6	1 2 3 4	10.0	36.1 40.1 39.1 44.2	43.3 48.1 49.4 55.8	10.6	3.4 3.8	5.4 4.8	62.1 69.0	1.1 1.2	17.4 9.4	6197 6886 7041 7962	11160 12400 12670 14330	 127	

TABLE 4.—COUNTY AVERAGE PROXIMATE AND ULTIMATE ANALYSES—Continued

Randolph	1	10.7	36.4	42.5	10.4	4.5					6194	11150	
(2 mines)	2		40.7	47.7	11.6	5.1					6939	12490	
Blair No. 5 (No. 4?)	3	12.4	39.1	48.5							7029	12650	127
	4		44.6	55.4							8027	14450	145
											0021	11100	
Randolph	1	10.3	36.4	41.5	11.8	3.9	5.3	60.6	1.1	17.3	6068	10920	
(5 mines)	2		40.6	46.3	13.1	4.4	4.7	67.6	1.2	9.0	6768	12180	
Herrin No. 6	3	12.2	39.8	48.0							6999	12600	126
	4		45.3	54 7							7067	1/2/0	142
	-		10.0	01						• • • • • • •	1901	14340	145
Rock Island	1	16.6	35.7	39.2	8.5	4.8					5897	10620	
(1 mine)	2		42.7	47 1	10.2	5.8					7072	12720	
Rock Island No. 1	3	18 8	37 5	13 7	10.2	0.0				• • • • • •	6525	12730	110
Rock Island Ito. I	4	10.0	46.0	52 0			••••			•••••	0535	11/00	118
	±		40.2	33.0		• • • • • •					8052	14490	145
0. 01.1			20.4	20. 6	44.0								
St. Clair	1	11.3	38.1	39.0	11.0	3.7	5.5	61.1	1.2	17.5	6108	11000	
(10 mines)	2		43.0	44.6	12.4	4.2	4.7	68.9	1.3	8.4	6887	12400	
Herrin No. 6	3	13.1	41.5	45.4							6976	12560	126
	4		47 0	FO 0	1								
	-		41.0	34.2							8031	14460	145
	-	• • • • • •	47.0	52.2				· · · · · · ·		• • • • • •	8031	14460	145
Saline	1	6.6	47.8 34.3	52.2 50.7	8.4	 2.5		69.5			8031 6895	14460 12410	145
Saline	1 2	6.6	47.8 34.3 36.7	52.2 50.7 54.3	8.4 9.0	2.5 2.7	5.4 5.0	 69.5 74.4	 1.5 1.6	 12.7 7.3	8031 6895 7383	14460 12410 13290	· · · · · 145
Saline	1 2 3	6.6 7.4	47.8 34.3 36.7 36.4	52.2 50.7 54.3 56.2	8.4 9.0	2.5 2.7	5.4 5.0	 69.5 74.4	1.5 1.6	12.7 7.3	8031 6895 7383 7622	14460 12410 13290 13720	145 137
Saline	1 2 3 4	6.6 7.4	47.8 34.3 36.7 36.4 39.3	52.2 50.7 54.3 56.2 60.7	8.4 9.0	2.5 2.7	5.4 5.0	69.5 74.4	1.5 1.6	12.7 7.3	8031 6895 7383 7622 8230	14460 12410 13290 13720 14810	145 137 148
Saline (16 mines) Harrisburg No. 5 (No. 4?)	1 2 3 4	6.6 7.4	47.8 34.3 36.7 36.4 39.3	50.7 54.3 56.2 60.7	8.4 9.0	2.5 2.7 	5.4 5.0	69.5 74.4	1.5 1.6 	12.7 7.3	8031 6895 7383 7622 8230	14460 12410 13290 13720 14810	145 137 148
Saline	1 2 3 4 1	6.6 7.4 14.2	47.8 34.3 36.7 36.4 39.3 36.1	52.2 50.7 54.3 56.2 60.7 39.1	8.4 9.0 10.6	2.5 2.7 3.9	5.4 5.0 5.7	69.5 74.4 59.0	1.5 1.6 1.1	12.7 7.3 19.7	8031 6895 7383 7622 8230 5911	14460 12410 13290 13720 14810 10640	145 137 148
Saline	1 2 3 4 1 2	6.6 7.4 14.2	47.8 34.3 36.7 36.4 39.3 36.1 42.1	50.7 54.3 56.2 60.7 39.1 45.6	8.4 9.0 10.6 12.3	2.5 2.7 3.9 4.6	5.4 5.0 5.7 4.8	69.5 74.4 59.0 68.8	1.5 1.6 1.1 1.3	12.7 7.3 19.7 8 2	8031 6895 7383 7622 8230 5911 6889	14460 12410 13290 13720 14810 10640 12400	145 137 148 148
Saline	1 2 3 4 1 2 3	6.6 7.4 14.2 	47.8 34.3 36.7 36.4 39.3 36.1 42.1 39.0	50.7 54.3 56.2 60.7 39.1 45.6 44.6	8.4 9.0 10.6 12.3	2.5 2.7 3.9 4.6	5.4 5.0 5.7 4.8	69.5 74.4 59.0 68.8	1.5 1.6 1.1 1.3	12.7 7.3 19.7 8.2	8031 6895 7383 7622 8230 5911 6889 6731	14460 12410 13290 13720 14810 10640 12400 12120	145 137 148 121
Saline	1 2 3 4 1 2 3 4	6.6 7.4 14.2 16.4	47.8 34.3 36.7 36.4 39.3 36.1 42.1 39.0 46.7	52.2 50.7 54.3 56.2 60.7 39.1 45.6 44.6 53 3	8.4 9.0 10.6 12.3	2.5 2.7 3.9 4.6	5.4 5.0 5.7 4.8	69.5 74.4 59.0 68.8	1.5 1.6 1.1 1.3 	12.7 7.3 19.7 8.2	8031 6895 7383 7622 8230 5911 6889 6731	14460 12410 13290 13720 14810 10640 12400 12120	145 137 148 148 141
Saline	1 2 3 4 1 2 3 4	6.6 7.4 14.2 16.4	47.8 34.3 36.7 36.4 39.3 36.1 42.1 39.0 46.7	52.2 50.7 54.3 56.2 60.7 39.1 45.6 44.6 53.3	8.4 9.0 10.6 12.3 	2.5 2.7 3.9 4.6	5.4 5.0 5.7 4.8 	69.5 74.4 59.0 68.8	1.5 1.6 1.1 1.3 	12.7 7.3 19.7 8.2 	 8031 6895 7383 7622 8230 5911 6889 6731 8032 	14460 12410 13290 13720 14810 10640 12400 12120 14460	145 137 148 148 148 148 148 148 148 148

a Number of mines represented by the ultimate analyses is given in Table 2.

 \ddagger The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moist mineral-matter-free; 4=dry mineral-matter-free (unit coal).

Samples			Prox	IMATE			τ	JLTIMAT	ſΈ		F	IEAT VA	LUES	
County, Number of Mines, and Coalª	Condition [‡]	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index	Unit coal index
Sangamon	1 2 3 4	13.9 16.0	36.9 42.9 39.6 47.2	39.2 45.5 44.4 52.8	10.0 11.6	4.1 4.8	5.7 4.8 	59.1 68.6	1.1 1.3 	20:0 8.9	5942 6902 6700 7976	10700 12420 12060 14360	 121	 144
Schuyler	1 2 3 4	12.5 14.0	37.9 43.3 39.6 46.1	42.1 48.1 46.4 53.9	7.5 8.6	4.5 5.2	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	6517 7451 7152 8319	11730 13410 12870 14970	 129 	 150
Schuyler	1 2 3 4	15.2 17.3 	34.7 40.9 37.4 45.2	40.2 47.5 45.3 54.8	9.9 11.6	2.7 3.1	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	6024 7103 6772 8187	10840 12790 12190 14740	 122 	· · · · · · · · · 147
Shelby	1 2 3 4	11.2 13.0	35.3 39.7 38.1 43.8	42.8 48.2 48.9 56.2	10.7 12.1	3.6 4.0	5.7 5.0	61.2 69.0	1.2 1.4 	17.6 8.5 	6150 6927 7001 8045	11070 12470 12600 14480	 126 	 145
Stark	1 2 3 4	17.5 20.1	33.1 40.1 35.4 44.3	39.3 47.6 44.5 55.7	10.1 12.3	3.7 4.5	5.9 4.8	57.2 69.3	.9 1.1	22:2 8.0	5736 6953 6471 8105	10330 12520 11650 14590	 117	

TABLE 4.-COUNTY AVERAGE PROXIMATE AND ULTIMATE ANALYSES-Continued

Tazewell.	1	15.1	35.7	39.7	9.5	3.2	5.8	59.9	1.1	20.5	5964	10740			
(2 mines)	2		42.1	40.7	11.2	3.8	4.9	10.0	1.3	8.2	7028	12050			
Springfield No. 5	3	17.2	38.3	44.5	•••						6675	12020	120 .		
	4		46.2	53.8							8062	14510		145	
Vermilion	1	14.8	34.6	41.4	9.2	2.3	5.8	60.6	1.3	20.8	6065	10920			
(6 mines)	2		40.6	48.6	10.8	2.7	4.9	71.2	1.5	8.9	7119	12810			8
Grape Creek No. 5	3	16.7	37.1	46.2							6759	12170	122	••••	Ŭ,
-	4		44.5	55.5							8110	14600		146	T
															×
Vermilion	1	13.3	37 8	39 1	98	2.8	5.8	61 2	11	19.3	6193	11150	.		ΑVI
(3 mines)	2		43 6	45 1	11.3	3.2	5.0	70.6	1.3	8.6	7142	12860			ER.A
Danville No. 7	3	15 1	40.0	44 0	11.0	0.2	0.0	10.0	1.0	0.0	6058	12530	125	• • • •	GF
Danvine 10.7	4	10.1	10.7	51 0							0100	14760	120	140	-10
	Ŧ		40.2	51.0				••••			0190	14700	• • • • •	140	RO
Warren	1	13.2	30 /	38.8	8.6	55					6236	11220			XIN
(2 minos)	2	10.2	39. 4 45 4	44 7	0.0	6.2					7190	1220		••••	ЛA
(2 mines)	2	15.0	43.4	44.1	9.9	0.5				• • • • • • •	(120	12920			TE
KOCK Island INO. I	3	15.0	41.0	43.4							0934	12480	125		A
	4		49.0	51.0							8157	14680		147	UN
		10.2	20.0	20 6	11.0			(0.1	1.0	15 0	(000	10070			Ц
wasnington	1	10.3	38.2	39.0	11.9	4.1	5.5	60.1	1.2	17.2	6083	10950	····	• • • •	
(2 mines)	2		42.6	44.2	13.2	4.6	4.9	67.1	1.3	8.9	6786	12210		• • • •	M
Herrin No. 6	3	12.2	41.9	45.9		••••				• • • • • •	7027	12650	127	• • • •	AT)
	4		47.7	52.3							8002	14400		144	E) h
															ź
White	1	8.5	35.4	47.1	9.0	2.8	5.5	66.6	1.4	14.7	6621	11920			AL.
(1 mine)	2		38.7	51.5	9.8	3.1	5.0	72.8	1.5	7.8	7239	13030			YS
Herrin No. 6	3	9.6	37.8	52.6							7371	13270	133		ES
	4		41.8	58.2							8156	14680		147	
	-										2200		1		

a Number of mines represented by the ultimate analyses is given in Table 2.

The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moist mineral-matter-free (unit coal).

Samples		Proximate					U	LTIMAT	E		I	HEAT VA	LUES	
County, Number of Mines, and Coal ^a	Condition [‡]	Moisture	Volatile Matter	Fixed Carbon	Ash	Sulphur	Hydrogen	Carbon	Nitrogen	Oxygen	Calories	British thermal units	Rank index Unit coal	index
Will (1 mine) LaSalle No. 2	1 2 3 4	15.4 16.5	34.2 40.5 35.4 42.4	45.3 53.5 48.1 57.6	5.1 6.0	1.6 1.9	6.4 5.6	63.1 74.6 	1.1 1.3 	22.7 10.6	6299 7449 6682 7998	11340 13410 12030 14400		 . 44
Williamson	1 2 3 4	7.0 8.1	34.0 36.5 36.9 40.1	47.9 51.5 55.0 59.9	11.1 12.0	3.5 3.8 	· · · · · · · ·	· · · · · · · ·		· · · · · · · ·	6605 7099 7567 8232	11890 12780 13620 14820		 !48
Williamson	1 2 3 4	8.0 9.0	33.6 36.6 36.0 39.6	49.1 53.4 55.0 60.4	9.3 10.0 	2.2 2.4 	5.3 4.9 	67.1 72.9 	1.4 1.5 	14.7 8.3 	6629 7203 7396 8125	11930 12970 13310 14630		
Woodford	1 2 3 4	14.5 15.7 	$34.8 \\ 40.7 \\ 36.3 \\ 43.1$	44.6 52.2 48.0 56.9	6.1 7.1	1.9 2.2 	5.9 5.1	64.6 75.5 	1.2 1.4	20.3 8.7	6408 7495 6881 8158	11540 13490 12390 14690	 124 1	

TABLE 4.—COUNTY AVERAGE PROXIMATE AND ULTIMATE ANALYSES—Concluded.

a Number of mines represented by the ultimate analyses is given in Table 2.

The form of analysis is denoted by number, as follows: 1=sample as received at laboratory; 2=moisture-free; 3=moist mineral-matter-free; 4=dry mineral-matter-free (unit coal).

ANALYSES OF ILLINOIS COALS

IDENTITY OF CERTAIN ILLINOIS MINES

Coal	County	Mine Index	Name of Company	Name or number	Burea Mir	iu of nes
No.	1. A.	No.ª		of mine	Bulletin	Page
1	Fulton	105	Spoon River Colliery Co	*Ellisville		
1	Jackson	12	Gus Blair Big Muddy Coal Co	*No. 2		
1	Jackson	13	Big Muddy Coal and Iron Co	*No. 9		
1	Jackson	14	Gartside Coal Co	*No. 4		
1	Jackson	15	Big Muddy Coal and Iron Co	*No.10(Harrison).		
1	Mercer	19	Alden Coal Co	*No. 7		
2	Bureau	1	Spring Valley Coal Co	*No. 5		
2	Bureau	10	Cherry Coal Co	*Cherry		
2	Grundy	7	Chicago, Wilmington and Vermilion			
			Coal Co	*No. 1		
2	Grundy	6	Big 4 Wilmington Coal Co	*No. 6		
2	Grundy	5	Wilmington Star Mining Co	*No. 7		
2	LaSalle	2	Oglesby Coal Co	*Oglesby		
2	LaSalle	9	Illinois Zinc Co	*Black Hollow		· • • • · · ·
2	LaSalle	103	Rutland Coal Co	*Rutland		
2	McLean	100	McLean County Coal Co	*Bloomington		
2	Marshall	4	Wenona Coal Co	*Wenona		
4	Knox	236	Adcock Mining Co	*Soperville		
5S	Gallatin	135	Hickory Hill Coal Co	*Hickory Hill		
5S	Saline	43	O'Gara Coal Co	*No. 9		
5S	Saline	46	Eldorado Coal and Mining Co	*No. 1		
5S	Saline	48	O'Gara Coal Co	*No. 7		
5S	Saline	128	O'Gara Coal Co	*No. 14		
5S	Saline	330	O'Gara Coal Co	*No. 4		
5S	Saline	B.M. 8	Peabody Coal Co	*No. 46	193	33
5N	Fulton	28	Monmouth Coal Co	*"A"		
5N	Fulton	29	Alden Coal Co	*No. 6		
5N	Fulton	30	Maplewood Coal Co	*No. 2		
5N	Fulton	113	Maplewood Coal Co	*No. 1		
5N	Fulton	115	Coal Creek Mining Co	*Parrville		
5N	Livingston	216	Fairbury Coal Co	*Fairbury		
5N	McLean	100	McLean County Coal Co	*Bloomington (see		
				Coal No. 2)		
5N	Macon	41	Decatur Coal Co	*Niantic		
5N	Menard	34	Wabash Coal Co	*No. 2		
5N	Peoria	-25	Clark Coal Co	*No. 2		
5N	Peoria	26	Crescent Coal Co	*Crescent No. 1		
5N	Peoria	107	Newsam Bros	*Glasford No. 4		
5N	Peoria	B.M. 2	Colliers' Cooperative Coal Co	*Colliers'	123	35
5N	Peoria	B.M. 3	Dorthel Coal Co	No. 1	123	35
5N	Sangamon	40	Williamsville Coal Co	*Selbytown		

TABLE 5.—IDENTITY OF ILLINOIS MINES, SAMPLES FROM WHICH HAVE BEEN ANALYZED AND THE RESULTS PUBLISHED BY THE UNITED STATES BUREAU OF MINES, AND OF CERTAIN ABANDONED MINES SAMPLED BY AND ANALYZED FOR THE STATE GEOLOGICAL SURVEY.

a See Table 1 or 3 for corresponding numbers. *Shipping mine abandoned or long idle.

ANALYSES OF ILLINOIS COALS

TABLE 5.—(Continued).

Coal	Connty	Mine Index	Name of Company	Name or number	Burea Min	u of ies
No.		No.		of mine	Bulletin	Page
	1	I				
5N	Tazewell	27	Tazewell County Coal Co	*Tazewell		
5N	Tazewell	108	Groveland Coal Mining Co	*Groveland		
5N	Vermilion	92	Sharon Coal Co	*Sharon		
5N	Vermilion	95	W. C. Shafer	*Shafer		
6	Christian	221	Smith-Lohr Coal Co	*No. 1, Springside		
6	Christian	B.M. 56	Smith-Lohr Coal Co	*No. 1, Springside	193	30
6	Franklin	B.M. 13	Old Ben Coal Corp	No. 14	123	33
6	Franklin	B.M. 14	Old Ben Coal Corp	No. 12	123	33
6	Franklin	B.M. 15	Chicago, Wilmington and Franklin			
			Coal Co	No. 1	524 ª	3
6	Franklin	B.M. 16	Franklin County Coal Co	No. 7	123	33
6	Franklin	B.M. 19	Brewerton Coal Co	No. 21	123	33
6	Franklin	B.M. 21	Old Ben Coal Corp	No. 10	193	31
6	Franklin	B.M. 22	Old Ben Coal Corp	No. 16	193	32
6	Franklin	B.M. 64	Old Ben Coal Corp	No. 11	193	32
6	Franklin	B.M. 65	Old Ben Coal Corp	No. 9	193	33
6	Franklin	B.M. 66	Old Ben Coal Corp	No. 8	193	33
6	Franklin	B.M. 67	Franklin County Coal Co	No. 5	193	33
6	Franklin	B.M. 68	Western Coal and Mining Co	*No. 2	193	30
6	LaSalle	99	Chicago, Wilmington and Vermilion	*No 3		
6	Macoupin	67	Clanzidge Cool Co	*North		
6	Macoupin	60	Carlinville Coal Co	*Carlinville		
6	Macoupin	185	Chicago Wilmington and Franklin	Carmovine		
0	Macoupin	105	Coal Co	*Roval		
6	Macoupin	RM 31	Superior Coal Co	No 1	123	
6	Montgomery	BM 45	Cosgrove Meehan Coal Co	*No 5	123	35
6	Perry	BM 29	Peabody Coal Co	Majestic	123	35
6	Perry	BM 69	Security Coal and Mining Co	*Security	193	33
6	Perry	B M 61	Paradise Coal Co	*Paradise	1.93	33
6	Randolph	208	Madison Coal Corp	*Crystal		
6	Williamson	60	Peabody Coal Co	*No. 3		
6	Williamson	62	Chicago, Wilmington and Franklin			
Ū.,		02	Coal Co	*"A"		
6	Williamson	63	Big Muddy Coal and Iron Co	*No. 8		
6	Williamson	64	Hafer Washed Coal Co	*No. 3		
6	Williamson	65	Chicago Big Muddy Coal Co	*Big Muddy		
6	Williamson.	150	Johnston City Washed Coal Co	*White Ash		

a Technical Paper. *Shipping mine abandoned or long idle.

IDENTITY OF CERTAIN ILLINOIS MINES

Coal	County	Mine Index	Name of Company	Name or number	Burea Min	u of es
No.		No.		of mine	Bulletin	Page
6	Williamson	156	Chicago, Wilmington and Franklin Coal Co	*''B''		
6	Williamson	157	Peabody Coal Co	*No. 26		
6	Williamson	158.	Taylor Coal Co	*No. 2		
6	Williamson	159	Taylor Coal Co	*No. 1		
6	Williamson	160	Sincerity Coal Co	*No. 2		
6	Williamson	165	T. G. Warden Coal Co	*Sunnyside		
6	Williamson	166	Peabody Coal Co	*No. 16		
6	Williamson	167	Madison Coal Corporation	*No. 8		
6	Williamson	169	West Virginia Coal Co	*West Virginia		
6	Williamson	B.M. 27	Pratt Bros (same as 61)	Jeffrey	123	36
6	Williamson	B.M. 28	Old Ben Coal Corp	No. 20	193	34
6	Williamson	B.M. 69	Freeman Coal Co	Pond Creek	193	34

TABLE 5.—(Continued).

*Shipping mine abandoned or long idle.

				inois coals, arranded bi beb,	COURT	I, AND	WIIN E.						
						Ash so	oftening	tempe	rature		Sul	fur, D	ry
County	Mine Index No.	Date	Labor- atory	Laboratory No.	No. of tests	Minimum	Maximum	Individual	Average	Dry Ash	Total	Pyritic	Organic
				ROCK ISLAND (NO. 1)	COAL	1						·	
Henry	232	1933	В. М.	90505	1 1 1 	 	 	2020 2370 2320	2233	11.3 9.9 12.0	6.2 6.5 7.5	3.3 4.3 5.1	2.7 2.0 2.0
Knox	407	1931	U. I.	16996 16997 Average	1 1 	· · · · · · · ·	· · · · · · ·	1950 1920	 1935	16.7 15.1	6.2 5.0	4.0 3.0	2.0 1.9
Mercer	19	1922 ^a	B. M.	14606-11	6	2040	2180		2110	11.7	4.9		· • • •
			LA SA	LLE AND COLCHESTER	(No. 2) COA	L						
Bureau	8 10	1922 1922	B. M. B. M.	14584-86 12467-68	.3 2	1990 1880	2130 1930	 	2050 1910	9.0 9.0	2.8 4.5	•••••	
Henry	619	1934	I. G. S.	C-839 (composite 3)					1938	11.6	4.1	2.4	1.6
Grundy	5 625	1922 1934	B. M. I. G. S.	12447. C-943. C-944. C-945. C-945. C-946 (composite 3)	1 1 1 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1880 1963 1969 2209	 1966	6.7 10.1 9.6 7.5 9.0	3:0 5.6 4.9 3.6 4.5	4.7 3.9 2.6 3.6	.9 1.0 1.0 .9

TABLE 6.—ASH SOFTENING TEMPERATURE, DRY ASH CONTENT, AND DRY TOTAL SULFUR, PYRITIC SULFUR, AND ORGANIC SULFUR CONTENTS OF CERTAIN ILLINOIS COALS, ARRANGED BY BED, COUNTY, AND MINE.

330

ANALYSES OF ILLINOIS COALS

LaSalle	3 404	1931 1931	U. I. U. I.	16963 16964 Average 17094 16965 Average	1 1 1 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1850 1865 2020 2035	 1857 2028	8.9 9.5 13.4 15.6	4.2 4.7 4.4 4.6	2.4 3.1 2.4 3.2 	1.8 1.5 1.5 1.4	
McDonough	· · · · · · · · · · · · · · · ·	1922 1922	B. M. B. M.	15117-18 14972-73	2 2	2140 1970	2240 2120	<i></i> .	2190 2050	7.6 6.8	3.2 3.7	••••	 	DAT.
McLean	100	1922	В. М.	14664-68	5	1960	2030		2000	10.8	3.3			A ON 1
Will	359	1931 1933	U. I. ° B. M.	16959	1 1 1 1 1 1 1 		· · · · · · · · · · · · · · · · · · ·	2080 1925 1905 1960 2070 1940 2080 2200		6.83 3.9 6.0 6.4 5.3 5.7 4.1 4.2	1.7 1.4 2.2 2.2 1.7 1.6 1.5 1.3	.8 .8 1.6 1.7 .9 .9 .7	.9 .6 .5 .7 .6 .6	ASH AND SULFUR FOR CERTA
Woodford	410	1931	U. I.	17002 17003	1 1			2150 2155	 	7.7 6.3	1.4 1.6	.76 .9	. 66 . 7	IN COA
	410	1933	В. М.	Average. 90282. 90283. 90284. Average.	1 1 1 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	2220 2120 2250	2153 2163	5.7 6.9 6.1	 .7 1.5 .8	 .2 .9 .2 	.5 .6 .6	ALS [*]

a Bureau of Mines data of 1922 from: Selvig, W. A., and Fieldner, A. C., Fusibility of ash from coals in the United States : United States Bureau of Mines Bull. 209, 1922.

ĝ ΗS AND SULFUR FOR CERTAIN COALS

						Ash so	ftening	tempe	rature		Sul	fur, D	ry
County	Mine Index No.	Date	Labor- atory	Laboratory No.	No. of tests	Minimum	Maximum	Individual	Average	Dry Ash	Total	Pyritic	Organic
			HA	RRISBURG (No. 5) (NO.	1?) C	OAL							·
Gallatin	426	1931	U. I.	17120 17121 Average	1 1 		· · · · · · · ·	1890 1930		12.3 11.2	4.6 4.3	2.9 2.5	1.5 1.7
Gallatin (Eagle Valley)	230(?)	1922	В. М.	23425	1			2010		8.6	2.9		
Saline	43 45 125	1922 1934 1931	B. M. "I. G. S. U. I.	12795, 14110-13, 14138-39 C-952 C-953 C-954 C-955 (composite 3) 17116	7 1 1 1 	1960 	2210	2071 2099 2078 2070	2090 2065	7.9 9.8 8.2 9.0 9.1 7.5	2.2 2.5 2.2 2.4 2.4 1.9	1.6 1.5 1.6 1.6 1.2	.8 .7 .7 .8 .7
Saline	127	1931	U. I.	17117. Average	1	· · · · · · · ·	· · · · · · · · ·	1965 1995	2017	8.1 9.5	2.7 2.7 2.7	1.8 1.8 1.6	.8 .8 1 1
		1933	B. M.	Average	1 1 1 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	2080 2190 2120	1970 2130	9.1 8.0 8.1	2.7 2.7 1.7 2.2	1.0 1.8 1.1 1.3	 .8 .6 .8

TABLE 6 .- ASH SOFTENING TEMPERATURE, DRY ASH CONTENT, AND SULFUR CONTENT OF COALS-Continued

ļ	608	1933	B. M.	91426	1			2030	1	9.7	3.6	2.5	1.0
·				91427	1			2070		10.0	3.3	2.2	1.0
				91428	1			2150		10.1	2.6	1.5	1 0
				Average					2083			1.0	1.0
	BM6	1922	B. M.	12516-17	2	2020	2020		2020	79	2.9		
	BM8	1922	B. M.	28449	1			2060		10.3	4 1		
	BM70	1922	B. M.	33101-03	3	1990	2100		2040	9.3	2.8		
	BM71	1922	B. M.	33081-83	3	2010	2040		2020	10 1	37		
	BM72	1927	B. M.	31381	1			2120		8 7	2.3		
				31382	1			2170		8.3	2 2		
				Average					2145				
				. 5	4	1		1			,		
\$	SPRINGI	FIELD	(GRAI	PE CREEK, LA SALLE SE (Eastern Illinois)	CONI) VEII	N) (N	0.5)	COAL				
Edgar	614	1934	I. G. S.	C-670	1			1996		11.7	3.9	1	1
-				C-671	1			2008		11.0	3.0		
				C-672	1			1984		11.1	3.8		
				Average 3					1996				
				C-682 (composite 3)					1986	11.2	3.5	2.3	1.2
				-									
Livingston	600	1934	B. M.	90312	1			2070		17.3	3.4	2.2	1.1
				90313	1			1990		17.2	4.6	3.0	1.5
	b			90314	1			2040		15.5	3.1	1.9	1.0
				Average					2033				
								-					
Vermilion	92	1922	B. M.	13467-71	5	2070	2160		2100	12.8	2.6		
	93	1922	В. М.	13436-41									
				13441-48	12	1930	2160	. 	2070	9.8	2.5		
	95	1922	B. M.	13450-53	4	1990	2170		2090	10.2	3.9		
	401	1931	U. J.	16947	1			2165		10.0	2.0	1.1	.9
				16948	1			2235		11.4	1.3	.7	. 5
				Average					2200			••••	
				•									l .

DATA ON ASH AND SULFUR FOR CERTAIN COALS

						Ash so	oftening	tempe	rature		Sul	fur, D	ry
County	Mine Index No.	Date	Labor- atory	Laboratory No.	No. of tests	Minimum	Maximum	Individual	Average	Dry Ash	Total	Pyritic	Organic
Vermilion (continued)	401 ,	1922 1933	B. M. B. M.	12445 90658 90659 90660	1 1 1 1		· · · · · · · · · · · · · · · · · · ·	1940 2180 2160 2160		11.9 8.3 11.4 11.5	3.7 1.5 2.2 1.6		 .5 .9 .5
· · ·		:		Average					2167				
				(western and Central Inn	1015)	1							
Fulton.	31	1922	B. M.	14554-57, 14559	5	1890	1970		1930	12.9	3.6		
	114	1933	B. M.	A88220	1			2060		13.7	2.7		· • • •
				A88221	1			2060		14.6	3.0		
4 Z				A88222	1			1990		16.2	3.3		
				Average					2037				
	328	1922	B. M.	12479-80	- 2	1890	1960		1930	13.21	3.6		
, ,	411	1931	U.I.	17005	1			2025		14.5	3 6	2.0	1.6
		1701	0. 1.	17006	1			2115		15.3	3 2	1 6	1.6
				Average	1			2110	2070	10.0	0.2	1.0	1.0
				11verage					2010			· • • · ·	
Menard	34	1022	вм	12506.07	2	1800	1970		1030	11 5	34		
wienary	521	1022	B.M.	A 26502	1	1090	1970	1000	1930	11.5	3.4	••••	
	551	1900	D. 191.	A06504	1 1			1990		11.0	2.0	• • • • •	••••
				Average	1			2030	2010	13.1	3.3		•••

TABLE 6.-ASH SOFTENING TEMPERATURE, DRY ASH CONTENT, AND SULFUR CONTENT OF COALS-Continued

			I. G. S.	C-149	1			1987		11.2	3.3	1.7	1.6
				C-150	1			2057		12.9	2.9	1.3	1.6
				C-151	1			2057		14.6	2.9	1.2	1.7
				Average					2034				
				C-152 (composite 3)					2025	12.9	3.0	1.4	1.6
Peoria	348	1922	B. M.	22982-85	4	1910	2030		1950	13.7	3.4		
		1933	B. M.	A88224	1			1990		14.7	3.2		
				A88225	1			2080		11.8	2.4		
				A88226	1			2090	<i>.</i>	16.6	2.9		
· · ·				Average	. 				2053				
	408	1931	U. I.	16998	1			1890		12.4	4.0	2.2	1.8
				16999	1			1940		12.9	3.7	2.0	1.7
				Average					1915				
	601	1933	B. M.	A90424	1			2040		10.7	3.6	1.5	2.1
				A90425	1			2070		14.5	2.9	1.1	1.8
				A90519	1			2270		8.5	2.6	.5	2.1
				Average					2127				
						1							
Sangamon	412	1931	· U. I.	17050	1			1850		13.4	4.9	2.7	2.1
				17051	1			1865		12.6	4.8	2.7	2.1
				Average	.				1857				
	607	1933	B. M.	A90785	1			1940		10.7	4.7	2.3	2.4
				A90786	1			1960	<i>:</i>	11.9	4.3	2.2	1.6
				A90787	1			1960		11.1	4.2	1.8	2.4^{-1}
				Average					1953				
	616	1934	I. G. S.	C-724	1			1965		13.1	4.9		
				C-730	1			1981		12.4	4.5		
				C-731	1		• • • • • •	1939		14.1	5.4		
				Average					1962			'	
				C-732 (composite 730 and 731)	· · · ·		• • • • • •			13.3	5.0	2.6	2.4
1													

.

÷

DATA ON ASH AND SULFUR FOR CERTAIN COALS

÷

						Ash so	oftening	; tempe	erature		Sul	fur, I)ry
County	Mine Index No.	Date	Labor- atory	Laboratory No.	No. of tests	Minimum	Maximum	Individual	Average	Dry Ash	Total	Pyritic	Organic
Sangamon (continued)	617	1934	1. G. S.	C-725 C-726	1 1			2006 1997	 	11.8 13.4	3.9 4.0		•
				C-727 C-728 C-729	1 1 1	••••••	· · · · · · ·	1998 1950 2018	· · · · · ·	$12.0 \\ 13.7 \\ 11.5$	$3.9 \\ 5.2 \\ 4.1$	· · · · · · · · · · ·	· · · · ·
н. Н				Average C-734 (composite 726 and 728) C-733 (composite 727 and 729)	 	 	· · · · · · · ·	• • • • • • •	1993 	13.3 11.8	4.6 4.1	2.3 1.9	2.3 2.1
	618	1934	I. G. S.	C-745 C-746 C-744	1 1 1			1931 1938 1945	 	12.9 12.6 11.7	5.1 5.8 4.5	· · · · · ·	
	604	1024	LCS	Average					1938 1927	12.1 14 5	4.8 39	2.6	2.1
	024	1934	1. 6. 5.	C-935. C-935.	1 1			1975 1955		12.6 11.8	3.6	1.5	2.0
Tazewell	409	1931	U. I.	C-937 (composite 3)	1			2000	1988	13.2	3.8	1.8	2.0 1.9
				17001	1			2040	2020	11.0	3.0	1.3	1.7

TABLE 6.—Ash softening temperature, dry ash content, and sulfur content of coals—Continued

Bureau	10	1931	U. I.	16966 18.9 6.8 5.3 1.4
Grundy	530	1933	В. М.	86302 1 1970 14.2 5.4 86303 1 2140 11.2 4.0 Average 2055
		• • • • • • • • •	I. G. S.	C-146 2035 13.5 5.2 3.2 1.9 C-147 2170 11.0 3.8 1.9 1.8 Average 2002 2002 1.0 1.8
Fulton.	621	1934	I. G. S.	$\begin{array}{c} \text{C-914} (\text{composite 2)}, \dots, & 1 \\ \text{C-914}, \dots, & 1 \\ \text{C-915}, \dots, & 1 \\ \text{Average}, \dots, & 1 \\ \text{Average}, \dots, & 1 \\ \text{Average}, \dots, & 1 \\ \text{C-915}, \dots, & 1 \\ $
Henry	406	1931	U. I.	C-916 (composite 2) 1 2092 10.7 3.6 2.0 1.6 16967 1 2120 17.6 3.6 2.1 1.5 16003 1 1005 1005 10.7 1.6 1.6
	527	1933	В. М. В. М.	Average. 1 1905 18.2 5.9 4.3 1.5 5 Average. 2013 2013 1 1.5 5 6 1.5 5 A86458. 1 2060 16.8 6.3 1.5 5 6
	o	·	I. G. S.	Average. 2080
Knox	526	1933_	В. М.	C-145 (composite 2) 2046 15.2 4.7 3.4 1.2 A86455 1 2070 12.0 4.2 A86456 1 2070 13.4 3.4
				Average

HERRIN (NO. 6) COAL (NORTHERN AND WESTERN ILLINOIS)

	-					Ash so	oftening	tempe	rature		Sulf	ur, D	ry
County	Mine Index No.	Date	Labor- atory	Laboratory No.	No. of tests	Minimum	Maximum	Individual	Average	Dry Ash	Total	Pyritic	Organic
Knox (continued)			I. G. S.	C-135 C-136 Average C-137 (composite 2)	1 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	2082 2030	2056 2019	12.2 13.9 13.1	3.8 3.6 3.6	2.4 2.0 2.2	1.4 1.5 1.4
LaSalle	620	1934	I. G. S.	C-869 C-870 C-871 Average C-872 (composite 3)	1 1 1	· · · · · · · ·	 	2097 2006 2144	2082 2128	11.1 10.8 10.9 10.9	4.2 4.2 4.0 4.2	2.4 2.6 2.5 2.6	1.7 1.5 1.4 1.5
Stark	528	1933	В. М.	A86462 A86463 Average.	1	· · · · · · ·		2010 2070	2040	13.7 11.2	4.8 4.6		
			I. G. S.	C-140 C-141 Average	1 1		· · · · · · · ·	2066 2057	2062	14.0 10.6	4.5 4.1	2.8 2.3	1.7 1.7
	529	1933 1933	B. M. I. G. S.	A-86461 C-144 Average.	1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	2050 2026	2033	12.2 12.7 13.1	4.3 4.8 4.2	2.5	1.4

TABLE 6.—Ash SOFTENING TEMPERATURE, DRY ASH CONTENT, AND SULFUR CONTENT OF COALS—Continued

ANALYSES OF ILLINOIS COALS

Christian	221	1922	B. M.	25748-49, 26336-37	4	1920	2090		2000	11.4	4.6			
Franklin	50	1922	B. M.	26492-96	5	2130	2260		2210	93	12			
	57	1922	B. M.	20080-82, 20723-25	6	2170	2650		2420	10 2	76		• • • •	
	134	1933	I. G. S.	C-492	1			2176		7.5	1 4	7	· · · · · 7	
				C-493	1			2052		9.8	2.4	1 7	. 1	
				C-494	1			2381		7.4	1.0	4	6	н
				C-495	1			2231		9.0	1.2	.6	.0	AT
				Average					2210					A
	428	1931	U. I.	17136	1			2225		10.9	1.1	.5	 6	NO
				17137				2065		8.4	1.6	.9	.7	A
				Average					2145					Ĥ
	BM13	1922	B. M.	23473-77	5	2080	2300		2200	9.5	1.2		••••	A
	BM14	1922	B. M.	22686-90	5	2240	2440		2290	9.20	1.0			Ð
	BM15	1922	B. M.	23442-43	2	2380	2440		2410	9.0	.9			US
	BM16	1931	U. I.	17108	1			2190		10.3	1.1	.7	. 4	LF
·				17109	1			2540		15.5	.6	.1	.5	UR
		-		Average	. .				2365					FC
	BM19	1922	В. М.	22915-17-19-20	5	2140	2520		2260	8.8	1.1			R
	BM21	1922	B. M.	29741-46	6	2220	2530		2380	9.5	.8			CE
	BM64	1922	В. М.	30892-95	4	2080	2390		2270	8.7	.9			RT.
				. · · ·										Ę
Franklin	BM65	1922	B. M.	30882-85	4	2030	2150		2080	8.7	1.5			ā
	BM66	1922	B. M.	30887-89	3	2010	2170		2070	7.9	1.5			0A
	BM67	1931	U. I.	17110				2335		8.2	.9	.3	5	\mathbf{rs}
				17111				2160		8.7	1.0	.6	.4	
				Average					2247				•	
		1922	B. M.	30867-70	4	2050	2320		2210	8.4	.8		· · ·	
	BM68	1922	B. M.	30877-80	4	1920	2000		1950	11.3	3.6			

HERRIN (NO. 6) COAL (SOUTHERN AND SOUTHWESTERN ILLINOIS)

						Ash sc	ftening	tempe	erature		Sul	fur, D	ry
County	Mine Index No.	Date	Labor- atory	Laboratory No.	No. of tests	Minimum	Maximum	Individual	Average	Dry Ash	Total	Pyritic	Organic
Gallatin (Eagle Valley)	255	1922	B. M.	23426	1			2060		9.8	3.2		
Jackson	418	1931	U. I.	17062 17063	1 1	 	· · · · · ·	1980 2190		13.5 10.7	2.9 1.3	2.0 .5	.9 .8
	419	1931	U. I.	Average. 17106. 17107.	 1 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	1975 1985	2085	14.7 13.3	3.7 3.8	2.4 2.6	1.2 1.1
		1933	В. М.	Average. A90723. A90724.	 1 1	 	 	2180 2190	1980 	11.5 10.6	2.5 2.9	1.5 1.1	.9 1.7
	419	1933	B. M.	Average	· · · · · · 1	· · · · · · · · · · · ·	· · · · · · ·	2180	2185 	14.3	3.5	1.8	1.6
Jefferson	BM63	1925	B. M.	A17498 A17499 Average	1 1 		 	2220 2340		9.4 9.7	1.5 1.4		
Macoupin	188	1931	U. I.	17054 17055	1	 . <i>.</i>		1930 1946	1027	13.7 13.2	5.2 4.6	2.7 2.2	2.4 2.4
	534	1931	U. I.	Average. 17052. 17053. Average.	1	• • • • • • • •	· · · · · · · · ·	1905 1930	1937	12.6 14.3	5.0 5.0	2.4 2.5	2.6 2.5

TABLE 6.-ASH SOFTENING TEMPERATURE, DRY ASH CONTENT, AND SULFUR CONTENT OF COALS-Continued

		1933	B. M.	A87363 1 2020 13.5 4.7	
				A87364 10.4 5.0	
				A87365 11.8 5.4	
				Average	
	BM31	1922	B. M.	18545-46. 2 2140 2160 2150 11.4 4.6	
Madison	70	1931	U. I.	17056	
				17057	
*				Average	
	BM40	1922	B. M.	10956-58	
Montgomery	76	1922	В. М.	21903-05, 21901, 11352-53 6 2010 2170 2060 13.5 4.5	
а. Х	194	1933	B. M.	A87367 1 2020 11.3 4.5	
				A87368 1 2030 12.5 4.6	
				A87369 1 2030 14.4 4.6	
				Average	
Perry (West)	417	1931	U. I.	17060	
				17061	
				Average	
	C-623	1934	I. G. S.	C-928 1 2075 12.1 4.1 2.4 1.7	
				C-929 1 2102 11.7 3.7 2.1 1.6	
				C-932 (composite 2)	
				C-930 1 2137 10.8 3.9 2.0 1.9	
				C-931 1 2146 10.9 3.8 1.9 1.9	
				C-933 (composite 2)	
	C-622	1934	I. G. S.	C-922 13.3 3.8 1.9 1.8	
				C-924 1 2070 12.0 4.1 2.2 1.9	
				C-927 (composite 2)	
				C-923 12.6 4.1 2.2 1.9	
				C-925 1 2022 10.6 4.2 2.2 1.9	
		1		C-926 (composite 2)	

DATA ON ASH AND SULFUR FOR CERTAIN COALS

			-			Ash softening temperature					Sul	Sulfur, Dry	
County	Mine Index No.	Date	Labor- atory	Laboratory No.	No. of tests	Minimum	Maximum	Individual	Average	Dry Ash	\mathbf{T} otal	Pyritic	Organic
Perry (West) (continued)	BM23	1922	В. М.	31033-36 14175-77-79-81	4 5	2050 1920	2130 2170		2090 2060	10.5 11.5	1.7 3.7	 	
Perry (East)	54	1922	В. М.	13578-83, 13585-90, 26462-67	18	2330	2610		2490	11.2	1.0		· · · ·
Randolph	613	1934	I. G. S.	C-639 C-640 C-641 Average. C-647 (composite 3)	1 1 	· · · · · · · ·	· · · · · · · ·	2010 2157 2080	2082 2084	14.9 13.6 13.3 13.9	4.9 3.8 4.1 4.3	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · 1.9
St. Clair	81 82 626	1922 1931 1934	B. M. U. I. I. G. S.	12505,09 17058 17059 Average C-947 C-948 C-949	2 1 1 1 1 1	1960 	2030	1940 1922 2019 2046 2088	2000	12.7 14.0 15.7 10.1 12.7 13.6	5.0 5.3 5.6 4.3 4.3 4.1	2.6 3.1 1.9 2.1 2.0	2.7 2.4 2.4 2.1 2.2
				C-950 C-951 (composite 3)	1 	· · · · · · · ·		2064 	2069	13.5 12.6	4.7 4.3	2.4 2.1	2.2 2.3
Washington	226	1933	I. G. S.	C-367 C-368	1 1	 	<i>.</i> .	2003 2039	· · · · · · ·	14.6 13.7	5.1 4.7	$\begin{array}{c} 2.7\\ 2.4 \end{array}$	2.4 2.3

TABLE 6.—Ash softening temperature, dry ash content, and sulfur content of coals—Concluded

				C-369
	,			Average
	· ·			
Williamson	154	1931	U. I.	17112
				17113
				Average
	423	1931	U. I.	17114
				17115
				Average
	BM28	1922	B. M.	28810-14
				30863-65
	BM69	1922	B. M.	30872-75 4 2010 2430 2220 9.4 1.0 2220 9.4 1.0
				DANVILLE (NO. 7) COAL
Bureau	532	1933	B. M.	A86596 1
				A86597 1 2040 18.2 4.7
				Average
	• • • • • • • • • •	1933	I. G. S.	C-153 1 2061 17.1 3.9 2.6 1.3
				C-154 1 2143 15.1 3.2 1.5 1.7
				Average
				C-155 (composite 2)
Vermilion	94	1922	B. M.	13484,86-89,91-96 11 1940 2180 2040 9.7 3.3
	97	1922	B. M.	13548-50,52-54
	400	1931	U. I.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
				$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	(02	1022	D 14	Average
	003	1933	B. M.	A90627 1 2020 10.5 3.5 1.7 1.7
				A90028 12.1 3.3 1.6 1.6
				$\begin{array}{c c c c c c c c c c c c c c c c c c c $
				Average

DATA ON ASH AND SULFUR FOR CERTAIN COALS

NOMOGRAPHS

APPENDIX II

NOMOGRAPHS

COAL CLASSIFICATION, PRICE, AND ECONOMY

At the suggestion of the author, Mr. Albert Jorgensen¹ has prepared for the State Geological Survey three nomographic charts as a substitute for mathematical procedure in coal classifications, Plates I, II, III.² The charts are designed to simplify the determination of moist, or dry, mineral-matter-free B.t.u. and volatile matter (or fixed carbon) values, which form the basis of the classification proposed by Parr³ or that proposed by the American Society for Testing Materials for the classification of coal by rank (Chapter II).

A sharp point of any kind and a straight edge eight inches long are all that is necessary to use the charts.

CHART I.—COAL CLASSIFICATION NOMOGRAPH

The first chart includes the entire range of coal substances from peat to anthracite. Given "as received" or "moisture-free" forms of the proximate analysis, it is possible to determine quickly and easily from this chart the dry, mineral-matter-free (unit coal) B.t.u. or volatile matter values or the moist, mineral-matter-free values from the "as received" form of analysis.

To determine mineral-matter-free values.—The heat value of a pound of the hypothetical dry mineral-matter-free coal (unit coal) is derived from the "as received" proximate analysis by the following formula:

(1) Dry, mineral-matter-free (unit coal) B.t.u. =

Determined B.t.u. — $5000 \times Sulfur$

 $1.00 - (Moisture + 1.08 \times Ash + 0.55 \times Sulfur)$

Or from the "dry" form of analysis by the formula:

(2) Dry, mineral-matter-free (unit coal) B.t.u. ==

Dry B.t.u. — $5000 \times Sulfur$

 $1.00 - (1.08 \times \text{Ash} + 0.55 \times \text{Sulfur})$

The heat value of a pound of the hypothetical moist, mineral-matter-free coal is derived from the "as received" form of the proximate analysis by the following formula:

(3) Moist, mineral-matter-free B.t.u. ==

Determined B.t.u. – $5000 \times Sulfur$

$$1.00 - (1.08 \times \text{Ash} + 0.55 \times \text{Sulfur})$$

These formulae. are quickly and easily solved by the use of the nomograph Chart I where approximate results are sufficient. The procedure is simple, the scales being used in numbered order, first Roman numerals and then Arabic, thus (letters refer to operations as indicated in key on chart):

¹Associate, Department General Engineering Drawing, University of Illinois.

²These plates are reproductions of larger more convenient charts $(12" \times 13")$ available from the State Geological Survey at 15 cents each.

^aParr, S. W., The classification of coal: University of Illinois Eng. Exp. Sta. Bull. 180, 1929.

Illinois State Geological Survey

Bulletin 62, Plate I

.

NOMOGRAPHS .

(a) Place straight edge from point on scale I (ash) to point on scale II (moisture) and check intersection with scale III. For formulae No. 2 and No. 3 the moisture value on scale II is taken at 0.

(b) Place straight edge from intersection point on scale III to point on scale IV (sulfur) and check intersection with scale V.

Operations (a) and (b) solve the denominator portion of the formula (1.00 - (Moisture + 1.08 Ash + 0.55 Sulfur).

(c) Place straight edge from point on scale 1 (B.t.u.) to point on scale 2 (sulfur) and check intersection with scale 3. (B.t.u. -5000 Sulfur).

(d) Place straight edge from intersection on scale V to intersection on scale 3 and note intersection on scale X, which gives the mineral-matter-free B.t.u. value, moist or dry as the case may be. This step divides the numerator by the denominator.

To determine the dry mineral-matter-free (unit coal) and moist mineralmatter-free Volatile Matter.—The formula used in determining dry, mineral-matterfree (unit coal) volatile matter from the "as received" analysis is as follows:

(4) Dry, mineral-matter-free (unit coal) volatile matter ==

Volatile Matter — (0.08 Ash + 0.4 Sulfur)

1.00 - (Moisture + 1.08 Ash + 0.55 Sulfur)

The determination of the dry, mineral-matter-free (unit coal) volatile matter from the moisture-free or "dry" form of analyses is as follows:

(5) Dry, mineral-matter-free (unit coal) volatile matter =

Volatile Matter — (0.08 Ash + 0.4 Sulfur)

1.00 - (1.08 + 0.55 Sulfur)

The formula used in determining the moist, mineral-matter-free volatile matter from the "as received" form of analysis is No. 5, using "as received" values instead of "dry" values. Moisture is omitted.

With the nomograph the procedure is as follows (letters refer to operations as indicated in key on chart):

(a) and (b) as in determining unit B.t.u.

(e) Lay straight edge from point on scale A (volatile matter) to point on scale B (ash) and note intersection with scale C (Volatile Matter -0.08 Ash)

(f) Lay straight edge from point on scale C to point on scale D (sulfur) and note intersection with scale E (Volatile Matter -0.08 Ash +0.4 Sulfur)

(g) Lay straight edge from intersection on scale E to intersection on scale V and note intersection with scale Y, which gives the mineral-matter-free volatile matter, dry or moist, as the case may be. This step divides the numerator by the denominator.

It will be noted that the denominators of the equations for mineral-matter-free B.t.u. and mineral-matter-free volatile matter are the same so that steps (a) and (b) need be performed only once for both determinations.

To determine "as received" B.t.u. and volatile matter values from mineralmatter-free values.—The procedure for the determination of the "as received" B.t.u. value from the mineral-matter-free heat values with the amount of ash, sulfur, and moisture known is as follows (letters refer to operations as indicated in key on chart):

For "as received" B.t.u. value:

(a) and (b) as in the two procedures described above.

(d) Place straight edge from determined point on scale V across mineral-matter-free B.t.u. value on scale X and note intersection with scale 3.

(c) Place straight edge from intersection point on scale 3 across value on scale 2 and note intersection with scale 1, which gives the "as received" B.t.u. value and solves the following equation:

As received B.t.u. value = Mineral-matter-free B.t.u. \times (1.00 - [Moisture + 1.08 \times Ash + 0.55 \times Sulfur]) + 5000 \times Sulfur

If the moist, mineral-matter-free value is used, moisture is regarded as 0 (scale II) in manipulating the chart. If sulfur-free "Heat Index" is desired, the sulfur value (scale 2) in operation (c) is read at zero. This gives the "as received" heat value without the heat of the sulfur.

If the "as received" volatile content is desired, proceed as follows:

(a) and (b) as previously described.

(g) Place straight edge from intersection point on scale V across known point on scale Y (mineral-matter-free volatile matter) and note intersection with scale E.

(f) Place straight edge from intersection point on scale E to point on scale D (sulfur) and note intersection with scale C.

(e) Place straight edge from intersection point on scale C to point on scale B (ash) and note intersection with scale A, which gives the "as received" volatile matter and completes the solution of the following equation:

"As received" Volatile Matter = Mineral-matter-free Volatile Matter \times (1.00 – [Moisture + 1.08 \times Ash + 0.55 \times Sulfur] + [0.08 \times Ash + 0.4 \times Sulfur])

Determinations derived from the moist, mineral-matter-free volatile matter value regard the moisture value as 0 (scale II).

For greater accuracy in determination of mineral-matter-free values from "as received" or "dry" values, or determination of "as received" or "dry" values from mineralmatter-free values Chart II is recommended, particularly for the high volatile groups of coals, such as are mined in Illinois.

Illinois State Geological Survey

CHART II.—Nomograph for Coal Comparison

Chart II, which may be put to a number of uses, is designed primarily to be used with mineral-matter-free values, either moist or dry, as a basis of comparison of the economy of different coals.

Comparison of heat value.—Chart II is used like Chart I in determining calorific value on any basis from that on any other basis. The scale of this chart is larger than that of Chart I as it represents a smaller range of coals and therefore permits greater accuracy in the determination of values. The method of use is similar to that employed in using Chart I.

The procedure is as follows if determination of "as received" B.t.u. value from the mineral-matter-free value is desired (letters refer to operations as indicated in key on chart):

(A) Place a straight edge across scales 1 and 2 and note its intersection with scale 3. (In case moist, mineral-matter-free B.t.u. value is the original calorific value used, the moisture value is regarded as zero on scale 1). Ignore reading on scale 3.

(B) Across scales 4 and 3 note intersection with scale 5. Ignore reading on scale 5. (C) Across scales 5 and 6 note intersection with scale 7.

(D) Across scales 7 and 8 note intersection with scale 9, which gives the "as received" B.t.u. (The sulfur-free "Heat Index" ["as received" B.t.u. minus the heat of the sulfur] is determined by regarding sulfur as zero).

The "dry" ("moisture-free") value can be determined only from the dry, mineralmatter-free (unit coal) value and "dry" ash and sulfur values must be used, the moisture scale (1) being read at zero.

The chart is limited to coals within certain ranges of mineral-matter-free values, but scale 9, being uniform can readily be extended at either end.

Comparison of prices and costs.—Chart II can also be used for making price comparisons directly. This can be done on the "as received" basis, "dry" basis, or mineralmatter-free basis (moist or dry), by reference to a standard scale showing the cost of one million B.t.u., or showing the number of B.t.u. per 1 cent of cost. Knowing the number of B.t.u. procurable for 1 cent, the relative value of the coal expressed in price per ton may be calculated, or it may be determined mechanically by the use of Chart II. For example, if it is desired to know the relative value of a coal priced at \$5.00 and carrying 12,500 B.t.u. per pound as compared with another priced at \$5.50 and carrying 12,800 B.t.u., the answer is obtained as follows (letters refer to operations as indicated in key on chart):

(E₁) A straight edge placed from 12,500 (scale 9) to 5.00 (scale 5) intersects scale 10 at the number of B.t.u. purchasable for 1 cent. The cost of one million B.t.u. at the price per ton stipulated—in this instance, 50,000 B.t.u. for 1 cent—is 20 cents.

(E₂) Similarly a straight edge from 12,800 (scale 9) to \$5.50 (scale 3) intersects scale 11 at 46,500 B.t.u. for 1 cent, which is $21\frac{1}{2}$ cents for one million B.t.u.

 (E_8) A straight edge from 12,800 through the point on scale 11 representing 50,000 B.t.u. for one cent will indicate on scale 3 that the higher B.t.u. coal should be priced at \$5.12 rather than \$5.50 to be equal in value to the \$5.00 coal.

In comparing the value of coal for which standard moist, mineral-matter-free (rank index) values are given the only other specific information necessary is their ash and sulfur content, since these provide the means for determining the "as received" B.t.u. value as explained in the preceding section entitled "Comparison of heat values". The mineral-matter factor necessary for the determination of the "as received" value from the mineral-matter-free value is the point on scale 5 determined by operation 2 in that section.

Illinois State Geological Survey

BULLETIN 62, PLATE III

ECONOMY OF COAL, OIL, AND GAS AS FUELS

CHART III.—NOMOGRAPH FOR COMPARING THE ECONOMY OF COAL, OIL, AND GAS AS FUELS

Purpose.—Chart III is to make possible without mathematical calculations the comparison of the economy of coal, oil, and gas of various calorific values in terms of the number of B.t.u. per 1 cent of cost or in terms of the cost of a million B.t.u. from each fuel. The diagram provides no means of determining the efficiency of the fuels, but with assumed or known efficiencies the cost of any three of the fuels of known calorific value may be calculated.

The chart may be used for two purposes:

(1) From it may be determined the cost of a million B.t.u. for coal, oil and gas, if the prices of their B.t.u. and the efficiency of the furnace or boiler in which they are used are known.

(2) From it may be determined the price that should be paid for one fuel to result in the same cost per million B.t.u. as obtained from another fuel of known price.

Illustration of use.—Suppose the B.t.u. values of a coal, an oil, and a gas, the heat efficiency of each, and the price per unit of each are known, and it is desired to determine the cost of one million B.t.u. for each fuel, and the price that would have to be paid for the oil and gas to obtain the same economy as is obtained from the coal, the data for the estimate being as follows:

Coal:	B.t.u. value	15,000 per lb.
	Efficiency	90 per cent
	Price	\$8.60 per ton
Oil:	B.t.u. value	19,000 per lb.
	Efficiency	80 per cent
	Gravity	53° Baume (Sp. Gr. 0.765)
	Price	\$2.00 per bbl.
Gas:	B.t.u. value	1,100 per 1000 cu. ft.
	Efficiency	73 per cent
	Price	\$0.50 per 1000 cu. ft.

Coal

(1A) A straight edge is placed on the diagram crossing scale 1 (gross value of fuel) at 15,000 B.t.u., and scale 2 (per cent efficiency) at 90 per cent. Note intersection on scale 3 (net B.t.u. value). (1B) From this point (on scale 3) extend straight edge to point indicating \$8.60 on scale 4 (price per unit in dollars), and read on scale 5 the cost of one million B.t.u. in dollars, which in this instance is \$0.319.

Oil

(2A) A straight edge is placed on the diagram crossing scale 1 at 19,000 and scale 2 at 80 per cent, and the intersection with scale 3 is noted. (2C) To determine the price of oil in terms of pounds rather than gallons place the straight edge to intersect scale 7 (price of oil) at point indicating price \$2.00 and scale 6 (density of oil) at 53° Baume and note intersection with scale 4. (2B) A straight edge intersecting scales 3 and 4 at the determined points will intersect scale 5 and give the cost of one million B.t.u. in dollars, which in this instance is \$0.49.

COAL CLASSIFICATION

Gas

(3A) A straight edge is placed on the diagram crossing scale 1 at 1,100 B.t.u. for gas and scale 2 at 73 per cent. It will intersect scale 3 at the point showing the net value of the fuel. (3B) From this point the straight edge is extended to pass through a point on scale 4 representing the price per thousand feet of gas. The cost of one million B.t.u. in dollars may then be read on scale 5, which in this case is \$0.62.

Upon scale 3 have been determined the net B.t.u. values of the three fuels, 13,500 for coal, 15,200 for oil and 800 for gas. On scale 5 the cost of one million B.t.u. of coal at \$8.60 a ton (gross) is shown to be 0.319. By running lines from the net B.t.u. value of oil or gas through this point and extending them to scale 4 the prices that should be paid for oil or gas to result in the same cost for a million B.t.u. is found to be \$0.00485 per pound for oil and \$0.26 per 1000 cu. ft. of gas. To convert the price of oil per pound into price per gallon or barrel, let the straight edge cross scale 4 at 0.00485 and scale 6 at $\$3^\circ$ Baume and the intersection with scale 7 gives the price per gallon or per barrel, which in this instance is \$1.31.