Vera M. Binks, Director 1 9 5 8 Part I. Oil and Gas Developments Part II. Waterflood Operations > Alfred H. Bell Virginia Kline Donald A. Pierre BULLETIN 83 ILLINOIS STATE GEOLOGICAL SURVEY JOHN C. FRYE, Chief URBANA, ILLINOIS # PETROLEUM INDUSTRY IN ILLINOIS IN 1956 Part I. Oil and Gas Developments Part II. Waterflood Operations > Alfred H. Bell Virginia Kline Donald A. Pierre STATE OF ILLINOIS HON. WILLIAM G. STRATTON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION HON. VERA M. BINKS, Director ## BOARD OF NATURAL RESOURCES AND CONSERVATION Hon. Vera M. Binks, Chairman W. H. Newhouse, Ph.D., Geology Roger Adams, Ph.D., D.Sc., Ll.D., Chemistry Robert H. Anderson, B.S., Engineering A. E. Emerson, Ph.D., Biology Lewis H. Tiffany, Ph.D., Pd.D., Forestry Dean W. L. Everitt, E.E., Ph.D., University of Illinois President Delyte W. Morris, Ph.D., Southern Illinois University #### GEOLOGICAL SURVEY DIVISION JOHN C. FRYE, PH.D., D.Sc., Chief JOHN C. FRYE, Ph.D., D.Sc., Chief M. M. LEIGHTON, PH.D., D.Sc., Chief Emeritus ENID TOWNLEY, M.S., Geologist and Assistant to the Chief HELEN E. McMorris, Secretary to the Chief Velda A. Millard, Junior Assistant to the Chief #### GEOLOGICAL GROUP M. L. Thompson, Ph.D., Principal Geologist Arthur Bevan, Ph.D., D.Sc., Principal Geologist, Emeritus Frances H. Alsterlund, A.B., Research Assistant #### COAL Jack A. Simon, M.S., Geologist and Head G. H. Cady, Ph.D., Senior Geologist and Head, Emeritus Robert M. Kosanke, Ph.D., Geologist John A. Harrison, M.S., Associate Geologist Paul Edwin Potter, Ph.D., Associate Geologist William H. Smith, M.S., Associate Geologist Kenneth E. Clegg, M.S., Assistant Geologist Margaret A. Parker, M.S., Assistant Geologist David L. Reinertsen, A.M., Assistant Geologist Marcia R. Winslow, M.Sc., Assistant Geologist #### OIL AND GAS A. H. Bell, Ph.D., Geologist and Head VIRGINIA KLINE, Ph.D., Associate Geologist Lester L. Whiting, B.A., Associate Geologist Wayne F. Meents, Associate Geological Engineer Margaret O. Oros, B.A., Assistant Geologist Jacob Van Den Berg, M.S., Assistant Geologist James H. Garrett, B.S., Research Assistant Jutta I. Anderson, Technical Assistant #### PETROLEUM ENGINEERING A. H. Bell, Ph.D., Acting Head #### INDUSTRIAL MINERALS J. E. LAMAR, B.S., Geologist and Head DONALD L. GRAF, Ph.D., Geologist JAMES C. BRADBURY, A.M., Associate Geologist JAMES W. BAXTER, M.S., Assistant Geologist MEREDITH E. OSTROM, M.S., Assistant Geologist #### **PHYSICS** R. J. Piersol, Ph.D., Physicist, Emeritus ## CLAY RESOURCES AND CLAY MINERAL TECHNOLOGY RALPH E. GRIM, PH.D., Consulting Clay Mineralogist W. Arthur White, Ph.D., Geologist Herbert D. Glass, Ph.D., Associate Geologist #### GROUNDWATER GEOLOGY AND GEOPHYSI-CAL EXPLORATION GEORGE B. MAXEY, Ph.D., Geologist and Head MERLYN B. BUHLE, M.S., Geologist ROBERT E. BERGSTROM, Ph.D., Associate Geologist JAMES E. HACKETT, M.S., Associate Geologist JOHN P. KEMPTON, M.A., Assistant Geologist WAYNE A. PRYOR, M.S., Assistant Geologist LIDIA SELKREGG, D.NAT.SCI., Assistant Geologist GROVER H. EMRICH, M.S., Research Assistant LOWELL A. REED, B.S., Research Assistant RONALD A. YOUNKER, B.S., Research Assistant MARGARET J. CASTLE, Assistant Geologic Draftsman (on leave) ROBERT C. PARKS, Technical Assistant ### ENGINEERING GEOLOGY AND TOPOGRAPHIC MAPPING GEORGE E. EKBLAW, Ph.D., Geologist and Head WILLIAM C. SMITH, M.A., Assistant Geologist #### STRATIGRAPHY AND AREAL GEOLOGY H. B. WILLMAN, Ph.D., Geologist and Head Elwood Atherton, Ph.D., Geologist David H. Swann, Ph.D., Geologist Charles W. Collinson, Ph.D., Associate Geologist John A. Brophy, M.S., Assistant Geologist T. C. Buschbach, M.S., Assistant Geologist F. L. Doyle, M.S., Assistant Geologist Robert W. Frame, Supervisory Technical Assistant Romayne S. Ziroli, Technical Assistant Joseph F. Howard, Assistant #### CHEMICAL GROUP GRACE C. FINGER, B.S., Research Assistant #### COAL CHEMISTRY G. R. Yohe, Ph.D., Chemist and Head Thomas P. Maher, B.S., Special Associate Chemist Joseph M. Harris, B.A., Research Assistant #### PHYSICAL CHEMISTRY J. S. Machin, Ph.D., Chemist and Head Jose M. Serratosa, Dr.Sc., Special Associate Chemist Neil F. Shimp, Ph.D., Associate Chemist Juanita Witters, M.S., Assistant Physicist Daniel L. Deadmore, M.S., Assistant Chemist Kozo Nagashima, Ph.D., Special Assistant Chemist #### FLUORINE CHEMISTRY G. C. FINGER, Ph.D., Chemist and Head LAURENCE D. STARR, Ph.D., Associate Chemist DONALD R. DICKERSON, B.S., Special Assistant Chemist RICHARD H. SHILEY, B.S., Special Research Assistant RAYMOND H. WHITE, B.S., Special Research Assistant #### X-RAY W. F. Bradley, Ph.D., Chemist and Head #### CHEMICAL ENGINEERING H. W. Jackman, M.S.E., Chemical Engineer and Head R. J. Helfinstine, M.S., Mechanical and Administrative Engineer B. J. Greenwood, B.S., Mechanical Engineer Robert L. Eissler, M.S., Assistant Chemical Engineer James C. McCullough, Research Associate (on leave) Walter E. Cooper, Technical Assistant Cornel Marta, Technical Assistant #### ANALYTICAL CHEMISTRY O. W. Rees, Ph.D., Chemist and Head L. D. McVicker, B.S., Chemist Emile D. Pierron, M.S., Associate Chemist William J. Armon, M.S., Assistant Chemist Francis A. Coolican, B.S., Assistant Chemist Sally K. Diller, B.A., Research Assistant Mary Ann Miller, B.S., Research Assistant Raymond A. Napiwocki, Research Assistant Istvan Pusztaszeri, Research Assistant JoAnne K. Wilken, B.A., Research Assistant George R. James, Technical Assistant Edward A. Schaede, Technical Assistant #### MINERAL ECONOMICS GROUP W. H. Voskuil, Ph.D., Principal Mineral Economist Hubert E. Risser, Ph.D., Mineral Economist W. L. Busch, A.B., Assistant Mineral Economist Ethel M. King, Research Assistant #### ADMINISTRATIVE GROUP #### **EDUCATIONAL EXTENSION** GEORGE M. WILSON, M.S., Geologist and Head IRA E. ODOM, M.S., Research Assistant SHIRLEY TRUEBLOOD, B.S., Research Assistant #### GENERAL SCIENTIFIC INFORMATION GENEVIEVE VAN HEYNINGEN, Technical Assistant MARIAN L. WINGARD, Technical Assistant #### **PUBLICATIONS** DOROTHY E. ROSE, B.S., Technical Editor MEREDITH M. CALKINS, Geologic Draftsman BETTY M. LYNCH, B.Ed., Assistant Technical Editor DONNA R. WILSON, Assistant Geologic Draftsman #### MINERAL RESOURCE RECORDS VIVIAN GORDON, Head SANDRA MYNLIEFF, B.A., Research Assistant HANNAH FISHER, Technical Assistant JANE T. HILL, B.A., Technical Assistant MARGERY J. MILLER, B.A., Technical Assistant ROSEMARY H. REINARTS, B.A., Technical Assistant HELEN ROSS, B.A., Technical Assistant YVONNE M. SATHER, Technical Assistant ELIZABETH SPEER, Technical Assistant JOAN R. YOUNKER, Technical Assistant #### TECHNICAL RECORDS BERENICE REED, Supervisory Technical Assistant MIRIAM HATCH, Technical Assistant #### LIBRARY OLIVE B. RUEHE, B.S., Geological Librarian BEVERLY ANN KOEHLER, Technical Assistant #### FINANCIAL RECORDS Velda A. Millard, In Charge Eleanor A. Drabik, B.A., Clerk IV Virginia C. Sanderson, B.S., Clerk-Typist III Carolyn S. Toppe, Clerk-Typist II Patricia A. Northrup, Clerk-Typist I Topographic mapping in cooperation with the United States Geological Survey * Divided time July 1, 1957 #### SPECIAL TECHNICAL SERVICES WILLIAM DALE FARRIS, Research Associate BEULAH M. UNFER, Technical Assistant A. W. Gotstein, Research Associate GLENN G. POOR, Research Associate* GILBERT L. TINBERG, Technical Assistant WAYNE W. NOFFTZ, Supervisory Technical Assistant DONOVON M. WATKINS, Technical Assistant MARY CECIL, Supervisory Technical Assistant RUBY D. FRISON, Technical Assistant #### CLERICAL SERVICES Mary M. Sullivan, Clerk-Stenographer III Lyla Nofftz, Clerk-Stenographer II Lillian W. Powers, Clerk-Stenographer II Barbara A. Carling, Clerk-Stenographer I Virginia Champion, Clerk-Stenographer I Dorothy A. Ledbetter, Clerk-Stenographer I Marilyn Scott, Clerk-Stenographer I Edna M. Yeargin, Clerk-Stenographer I Laurel F. Griffin, Clerk-Typist I Jean M. Ward, Clerk-Typist I William L. Mathis, Messenger-Clerk II Lorene G. Wilson, Messenger-Clerk I #### AUTOMOTIVE SERVICE GLENN G. POOR, In Charge* ROBERT O. ELLIS, Automotive Shop Foreman DAVID B. COOLEY, Automotive Mechanic EVERETTE EDWARDS, Automotive Mechanic #### RESEARCH AFFILIATES J Harlen Bretz, Ph.D., University of Chicago Stanley E. Harris, Jr., Ph.D., Southern Illinois University M. M. Leighton, Ph.D., D.Sc., Research Professional Scientist, State Geological Survey A. Byron Leonard, Ph.D., University of Kansas Carl B. Rexroad, Ph.D., Texas Technological College WALTER D. Rose, Ph.D., University of Illinois PAUL R. SHAFFER, Ph.D., University of Illinois HAROLD R. WANLESS, Ph.D., University of Illinois PAUL A. WITHERSPOON, Ph.D., University of California #### **CONSULTANTS** GEORGE W. WHITE, Ph.D., University of Illinois RALPH E. GRIM, Ph.D., University of Illinois | CONTENTS | | |---|--| | PART I.—OIL AND GAS DEVELOPMENTS | | | Introduction | Page | | Production and value | 7 | | TO 100 | . 12 | | | . 12 | | 0.1.25 | . 13 | | T | . 14 | | Productive acreage | . 22 | | Estimated petroleum reserves | . 22 | | Prospects for new pools | . 23 | | Gas and gas products | . 25 |
| | . 27 | | | . 47 | | County reports. | . 1/ | | PART II.—WATERFLOOD OPERATIONS | | | Introduction | . 128 | | Summary of results | | | | . 136 | | | . 168 | | | . 172 | | | | | | | | ILLUSTRATIONS | | | ILLUSTRATIONS | | | Figure | . 8 | | Figure | . 8 | | FIGURE 1. Oil production in Illinois, 1937–1956 | | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois | . 15 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois | . 15 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 | . 15
. 17
. 24 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties | . 15
. 17
. 24
. 26 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties 7. Area 2—White and Gallatin counties | . 15
. 17
. 24
. 26
. 28 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties 7. Area 2—White and Gallatin counties 8. Area 3—Wabash and Edwards counties | . 15
. 17
. 24
. 26
. 28
. 29 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties 7. Area 2—White and Gallatin counties 8. Area 3—Wabash and Edwards counties 9. Area 4—Crawford and Lawrence counties | . 15
. 17
. 24
. 26
. 28
. 29
. 30
. 31 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties 7. Area 2—White and Gallatin counties 8. Area 3—Wabash and Edwards counties 9. Area 4—Crawford and Lawrence counties 10. Area 5—Coles, Douglas, and Edgar counties | . 15
. 17
. 24
. 26
. 28
. 29
. 30
. 31
. 32 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties 7. Area 2—White and Gallatin counties 8. Area 3—Wabash and Edwards counties 9. Area 4—Crawford and Lawrence counties 10. Area 5—Coles, Douglas, and Edgar counties 11. Area 6—Cumberland and Clark counties | . 15
. 17
. 24
. 26
. 28
. 29
. 30
. 31
. 32
. 33 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties 7. Area 2—White and Gallatin counties 8. Area 3—Wabash and Edwards counties 9. Area 4—Crawford and Lawrence counties 10. Area 5—Coles, Douglas, and Edgar counties 11. Area 6—Cumberland and Clark counties 12. Area 7—Clay and Wayne counties | . 15
. 17
. 24
. 26
. 28
. 29
. 30
. 31
. 32
. 33 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties 7. Area 2—White and Gallatin counties 8. Area 3—Wabash and Edwards counties 9. Area 4—Crawford and Lawrence counties 10. Area 5—Coles, Douglas, and Edgar counties 11. Area 6—Cumberland and Clark counties 12. Area 7—Clay and Wayne counties 13. Area 8—Jasper and Richland counties | . 15
. 17
. 24
. 26
. 28
. 29
. 30
. 31
. 32
. 33
. 34 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties 7. Area 2—White and Gallatin counties 8. Area 3—Wabash and Edwards counties 9. Area 4—Crawford and Lawrence counties 10. Area 5—Coles, Douglas, and Edgar counties 11. Area 6—Cumberland and Clark counties 12. Area 7—Clay and Wayne counties 13. Area 8—Jasper and Richland counties 14. Area 9—Washington and Perry counties | . 15
. 17
. 24
. 26
. 28
. 29
. 30
. 31
. 32
. 33
. 34
. 35 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties 7. Area 2—White and Gallatin counties 8. Area 3—Wabash and Edwards counties 9. Area 4—Crawford and Lawrence counties 10. Area 5—Coles, Douglas, and Edgar counties 11. Area 6—Cumberland and Clark counties 12. Area 7—Clay and Wayne counties 13. Area 8—Jasper and Richland counties 14. Area 9—Washington and Perry counties 15. Area 10—Jefferson and Franklin counties | . 15
. 17
. 24
. 26
. 28
. 29
. 30
. 31
. 32
. 33
. 34
. 35
. 36 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties 7. Area 2—White and Gallatin counties 8. Area 3—Wabash and Edwards counties 9. Area 4—Crawford and Lawrence counties 10. Area 5—Coles, Douglas, and Edgar counties 11. Area 6—Cumberland and Clark counties 12. Area 7—Clay and Wayne counties 13. Area 8—Jasper and Richland counties 14. Area 9—Washington and Perry counties 15. Area 10—Jefferson and Franklin counties 16. Area 11—Fayette and Effingham counties | . 15
. 17
. 24
. 26
. 28
. 30
. 31
. 32
. 33
. 34
. 35
. 36
. 37
. 38 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties 7. Area 2—White and Gallatin counties 8. Area 3—Wabash and Edwards counties 9. Area 4—Crawford and Lawrence counties 10. Area 5—Coles, Douglas, and Edgar counties 11. Area 6—Cumberland and Clark counties 12. Area 7—Clay and Wayne counties 13. Area 8—Jasper and Richland counties 14. Area 9—Washington and Perry counties 15. Area 10—Jefferson and Franklin counties 16. Area 11—Fayette and Effingham counties 17. Area 12—Clinton and Marion counties | . 15
. 17
. 24
. 26
. 28
. 29
. 30
. 31
. 32
. 33
. 34
. 35
. 36
. 37
. 38
. 39 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties 7. Area 2—White and Gallatin counties 8. Area 3—Wabash and Edwards counties 9. Area 4—Crawford and Lawrence counties 10. Area 5—Coles, Douglas, and Edgar counties 11. Area 6—Cumberland and Clark counties 12. Area 7—Clay and Wayne counties 13. Area 8—Jasper and Richland counties 14. Area 9—Washington and Perry counties 15. Area 10—Jefferson and Franklin counties 16. Area 11—Fayette and Effingham counties 17. Area 12—Clinton and Marion counties 18. Area 13—Sangamon, Macon, and Christian counties | . 15
. 17
. 24
. 26
. 28
. 29
. 30
. 31
. 32
. 33
. 34
. 35
. 36
. 37
. 38
. 39
. 40 | | FIGURE 1. Oil production in Illinois, 1937–1956 2. Oil pools discovered in Illinois, 1956 3. Geologic column for southern Illinois 4. Oil and gas possibilities, December 31, 1956 5. Index map to areas and counties 6. Area 1—Hamilton and Saline counties 7. Area 2—White and Gallatin counties 8. Area 3—Wabash and Edwards counties 9. Area 4—Crawford and Lawrence counties 10. Area 5—Coles, Douglas, and Edgar counties 11. Area 6—Cumberland and Clark counties 12. Area 7—Clay and Wayne counties 13. Area 8—Jasper and Richland counties 14. Area 9—Washington and Perry counties 15. Area 10—Jefferson and Franklin counties 16. Area 11—Fayette and Effingham counties 17. Area 12—Clinton and Marion counties | . 15
. 17
. 24
. 26
. 28
. 29
. 30
. 31
. 32
. 33
. 34
. 35
. 36
. 37
. 38
. 39 | | | | P | AGE | |-----|--|---|-----| | 24. | Area 19—Monroe, St. Clair, and Randolph counties | | 46 | | 25. | Annual crude oil production in Illinois | | 129 | | 26. | Reported development of waterflood projects in Illinois | | 130 | | 27. | Waterflood and pressure maintenance operations in Illinois during 1956 | | 132 | | 28. | Detail of waterflood operations in Clark, Crawford, and Lawrence counties. | | 134 | | 29. | Detail of waterflood and pressure maintenance operations in Wabash, Edwards and White counties | | 135 | | | TABLES | | | | Тав | | | _ | | 1. | Completions and production since January 1, 1936 | | 9 | | 2. | Summary of drilling and initial production by counties, 1956 | | 10 | | 3. |
Wildcat wells drilled in 1956 | | | | 4. | Discovery wells of new pools, 1956 | | 16 | | 5. | Discovery wells of extensions to pools, 1956 | | 18 | | 6. | Discovery wells of new pays in pools, 1956 | | | | 7. | Selected list of unsuccessful deep tests in pools, 1956 | | | | 8. | Geophysical and core-drilling crews, 1956 | | 22 | | 9. | Oil and gas pools, January 1, 1957 | | 70 | | 10. | Pools consolidated | | 76 | | 11. | Oil and gas producing strata, 1956 | | 78 | | 12. | Oil production, 1956. | | 96 | | 13. | Gas production, 1956 | | 126 | | 14. | Illinois waterflood projects operating during 1956 | | 136 | | 15. | Illinois waterflood projects reported abandoned . | | 168 | | 16. | Illinois water injection during 1956 | | 172 | ### PETROLEUM INDUSTRY IN ILLINOIS, 1956 ALFRED H. BELL, VIRGINIA KLINE, and DONALD A. PIERRE ## PART I OIL AND GAS DEVELOPMENTS #### ABSTRACT Illinois produced 82,314,000 barrels of oil in 1956, a slight increase over the 1955 total of 81,131,000, marking the third consecutive year of increased production after a 13-year decline. Increased secondary recovery by waterflooding was the most important contributing factor. The 3,640 wells completed in 1956 represent a decrease of about 6 percent from wells drilled in 1955. Forty-five percent were successful completions. Seventeen new oil pools, one gas pool, 81 extensions to pools, and 19 new pays were discovered in 1956. The greatest activity was in the northern part of the productive area of the state. Details of development and production are discussed by counties with special attention to noteworthy areas. Reserves are estimated at 701.6 million barrels. #### INTRODUCTION The brief account of developments in the oil and gas industry in Illinois during 1956, which appeared in "Statistics of Oil and Gas Development and Production," issued annually by the American Institute of Mining, Metallurgical, and Petroleum Engineers, is herein expanded to provide a more detailed discussion of the Illinois petroleum industry. Developments are discussed by county, with special attention given to noteworthy areas. We gratefully acknowledge the cooperation of the many oil companies and individuals who contributed basic data for this report. The section on estimated petroleum reserves was prepared by Lester L. Whiting and Margaret Oros of the Illinois State Geological Survey's Oil and Gas Section and that on gas and gas products by Whiting and Wayne F. Meents of the same section. James Garrett and Jutta Anderson, both of the Survey staff, also assisted in preparing the report. Compilation of the statistical data and maps on waterflood operations in 1956 are largely the work of Donald A. Pierre of the Petroleum Engineering Section. They are based on data furnished by the operators through the Illinois Secondary Recovery and Pressure Maintenance Study Committee of the Interstate Oil Compact Commission. #### PRODUCTION AND VALUE Oil production in Illinois in 1956 was 82,314,000 barrels, a slight increase over the 81,131,000 barrels produced in 1955. The 1956 production was the highest for any year since 1943. Peak production was attained in 1940, after which production gradually declined to a low of 59,025,000 barrels in 1953. In 1954 the trend was reversed and daily production increased rapidly to a new but lower peak in June 1955. During the last half of 1955 and throughout 1956, daily production remained nearly constant (fig. 1 and table 1). The upward trend in oil production was caused by a big increase in secondary recovery operations and a big increase in drilling. Early in 1955 the Eldorado Consolidated pool contributed much to the high production rate. During the last few months of 1955 and throughout 1956 fewer wells were drilled; the percentage of producing wells fell off and initial productions were smaller. Nevertheless, the continuing expansion of secondary recovery operations was sufficient to maintain the rate of production throughout 1956, but cannot be expected to do so indefinitely. The number of well completions for 1956 (3,640) was the third highest in Illinois history, but was 245 fewer than in 1955 (3,885). The decrease in number of producing wells was from TABLE 1.—ILLINOIS COMPLETIONS AND PRODUCTION SINCE JANUARY 1, 1936 | | Number | Number of | Prod | luction (M bbls.) | Ъ | |----------------|--|---|--|--|---| | Period of time | of
completions* | producing
wells | New fields | Old fields ° | Total | | 1936 | 93
449
2,536
3,617
3,755
3,807
2,017
1,791
1,991
1,763 | 52
292
2,010
2,970
3,080
2,925
1,179
1,090(20) ^d
1,229(12)
1,094(15) | 2,884
19,771
90,908
142,969
128,993
101,837
77,581
72,946
70,839 | 4,542
4,304
4,004
4,678
5,145
4,753
4,675
4,467
4,371 | 4,445
7,426
24,075
94,912
147,647
134,138
106,590
82,256
77,413
75,210 | | 1946 | 2,362
2,046
2,489
2,741
2,894
2,383
2,077
2,161
3,254
3,885 | 1,387(17) 1,102(22) 1,316(21) 1,447(32) 1,328(23) 947(23) 854(35) 1,161(88) 1,896(107) 2,164(62) | 70,174 61,455 59,623 58,571 55,794 54,147 53,727 51,924 59,130 72,016 | 5,123
5,004
5,185
5,930
6,234
6,097
6,344
7,101
7,810
9,115 | 75,297
66,459
64,808
64,501
62,028
60,244
60,071
59,025
66,940
81,131 | | 1956 | 315
191
237
318
319
402
365
315
394
293
257
234 | 163(11)
104(6)
115(4)
152(4)
151(10)
179(6)
189(8)
159(7)
184(7)
135(9)
115(7)
96(6) | 6,206
5,599
5,962
5,827
6,000
5,912
6,102
6,154
5,891
6,154
5,790
6,048 | 880
829
905
866
903
860
880
888
825
906
830
1,097 | 7,086
6,428
6,867
6,693
6,702
6,982
7,042
6,716
7,060
6,620
7,145 | | | 3,640 | 1,742(85) | 71,645 | 10,669 | 82,314 | 2,164 in 1955 to 1,742 in 1956, a drop of 422 new producers. There were many good wells in 1956 which had initial productions of several hundred barrels, but none to compare with the 3000- and 4000-barrel wells in the Eldorado Consolidated pool in 1955. Illinois continued to rank eighth in oil production in the United States in 1955. Daily average production for the year was almost 226,000 barrels. It is shown below by months. | Month | | · I | M. bbls. | Mont | h | | Λ | 1. bbls. | |-------|--|-----|----------|-------|---|--|-----------|----------| | Jan. | | | 229 | July | | | | 225 | | Feb. | | | 222 | Aug. | | | | 227 | | March | | | 222 | Sept. | | | | 224 | | April | | | 223 | Oct. | | | | 228 | | May | | | 223 | Nov. | | | | 221 | | June | | | 226 | Dec. | | | | 230 | At the beginning of 1956, most of the crude oil in Illinois was selling at \$3.00 per barrel. During June and July, 10-cent cuts were made by all of the major pipeline companies, bringing the price down to \$2.90 per barrel for the second half of a Includes only oil and gas producers and dry holes. b Production figures based on Illinois Basin Scout Association's Pipe Line Production Report. c Includes Devonian production at Sandoval and Bartelso. d Figures in parentheses refer to number of producing wells included in totals which had previously been completed as dry holes. Table 2.—Summary of Drilling and Initial Production by Counties, 1956^a | , | | | Number of | Number of wells drilled | | | Total initia
production | Fotal initial
production | Footage drilled | drilled | |------------|------------------|----------------|-----------------|-------------------------|-----------------|---------------|----------------------------|-----------------------------|-----------------------------|-----------------------------| | County | Total | Total pi | Total producing | | Total dry holes | S | Oil (bble) | Gas (Mmcf) | Producing | Total | | | completions | liO | Gas | In pools | Wildcat near | Wildcat far ° | Ou (bbis:) | Cas (17111011) | wells | | | | 6 | 0 | 4.0 | | | ۳-
د - | 00 | 2.615 | 2,060 | 5,093 | | | 1
126 | 42 | | 410 | 28 | 15 | 5,237 | 000 | 73,593 | 242,625 | | | 17 | 00 | 00 | 00 | 00 | 717 | | 000 | | 2,311 | | | 6
84 | 0
29 | 00 | 16 | 0 1/2 | 32 | 4,982 | 000 | 56,644 | 167,393 | | | 64
124
99 | 26
66
27 | 000 | 17
46
23 | 14
12
31 | 9
0
16 | 1,25/
3,414
6,041 | 0
0
1.820 | 29,048
180,464
62,741 | 355,066
209,865 | | | 266 | 140
105 | 9 | 63 | 33 | 24
4 | 20,578 5,925 | 100.039
2.602 | 267,939
128,164 | 478,971
270,868 | | Cumberland | 202
11
248 | 102 | 0 \$ | 525 | 52 | 4.6 | 16,740 | 33.840 | 200,995
200,884 | 19,417
443,289
26,675 | | | 34 | 582 | 000 | 31 | 10 | 4 ∞ | 2,000 | 000 | 2,031
87,738
30,649 | 222,654 95,973 | | | 238 | 21
9
04 | 000 | 23 | 4 4 1 | ∞ m | 98
98
6,616 | 00 | 14,374
115,523 | 55,159
257,743 | | | 04 | 0 | | 0 | 0 | , | 0 | 0 | 0 | 1,100 | | | 131 | 89 | 0 | 43 | 13 | <u> </u> | 5,318 | 00 | 181,767 | 360,814 | | | 101 | 0 8 | | 58 | 50 0 | - m c | 17,309 | | 258,605 | 537,458 | | | ω 4 | 0 -1 | 00 | | 00 | 767 | ,
, | | 875 | 4,434 | | | 124 | 99 | 00 | 30 | 13 | 10 | 3,288 | | 102,662 | 252,709 | | | | 00 | 00 | 00 | 00 | | 000 | | | 2,450 | | | - | 0 | 0 | 0 | 0 | - | 0 | > | >
 | 455 | | 288, 224
3, 397
2, 812
27, 015 | 15,827
57,078
166,432
2,187
1,887
60,286 | 4,552
48,749
1,902
38,319 |
24,232
3,760
1,756
7,933
231,103 | 3,774
652,819
37,767
2,723
40,207 | 410,938
249,298
767,420
786,274
52,795 | 8,414,023 | |---|---|--|---|---|---|-----------| | 185,677 0
0
426
2,307 | 2,584
81,239
0 | 1,513
0
0
1,160 | 18,701
0
0
0
0
116,490 | 313,017
0
0
1,980 | 196,364
89,700
435,094
419,951 | 3,819,172 | | 0000 | 0.145
0
0
0
0 | 1.678
0
0
0 | 16.258
0
0
0
0 | 00000 | 2.575
0
0
0
0 | 161.572 | | 4,937
0
2
2
38 | 2,063
0
0 | . 0 0 41 0 | 0
0
0
0
0
0
0
0 | 23,427
0
0
0
112 | 7,736
1,687
11,237
14,584 | 173,076 | | 07870 | 25
5
1
26 | 3
20
1
10 | 1601140 | 21
15
14
41 | $\begin{array}{c} 1 \\ 0 \\ 26 \\ 1 \\ 1 \\ 16 \end{array}$ | 434 | | V00% | J.70 & O O 4 | 110110 | 5
0
0
1
1
12 | 04400 | 3,2,2,10 | 504 | | 46 | 168
100
100 | -1000 | 300000 | 2887 | 0
77
88
0 | 1,045 | | 00000 | 0000 | | 0000 | 00000 | 00000 | 61 | | 110 | 188 | 000-0 | 00000 | 107 | 89
45
137
148
0 | 1,596 | | 163
2
5
113 | 42
59
2
1
31 | 22
1
24
24 | 48.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1. | 220
22
22
5
18 | 176
135
135
236
262
19 | 3,640 | | Lawrence Logan | Madison
Marion
Massac
Menard
Montgomery | Morgan
Moultrie
Peoria
Perry
Piart | Pike
Pope
Pulaski
Randolph
Richland | St. Clair
Saline
Sangamon.
Schuyler
Shelby. | Jazewell Wabash Washington Wayne. White | | a Does nor include input wells, salt-water disposal wells, or old wells worked over. ^b Wells drilled between one-half mile and two miles from production. ^c Wells drilled more than two miles from production. the year. Value (at the wells) of crude oil produced in Illinois in 1956 was about \$242,825,000. To this should be added the value of natural gasoline and liquefied petroleum gases extracted from Illinois natural gas, estimated at \$4,150,000, making a total of \$246,975,000. #### DRILLING AND DEVELOPMENT A total of 3,640* wells were drilled for oil and gas in Illinois in 1956, (tables 1 and 2) a decrease of 6 percent from the wells drilled in 1955. Of the 3,640 wells completed, 1,596 were oil wells and 61 were gas wells. Most of the gas wells were in the Fishhook pool and were capped when completed. The successful wells completed in 1956 were about 45.5 percent of all wells drilled, almost 10 percent less than in 1955. The decreased percentage of successful wells is attributed to the increase in wildcat drilling in 1956. Although the total number of wells drilled in 1956 decreased by 245, the number of wildcat wells increased by 182. #### POOL DEVELOPMENT Wells were drilled in 61 counties in 1956; pool development drilling was done in 41 counties, and the other 20 counties had only wildcat drilling (table 3). There was no concentration of drilling comparable to that in 1955, when White County had 478 wells and Saline County 355. In 1956 Coles County led with 266 completions, followed by White, Douglas, Wayne, Saline, and Crawford counties. About 70 percent of the drilling was done in 14 counties each of which had more than 100 well completions. Since 1942, when intensive drilling of the Louden, Salem, and Centralia pools ended, heaviest drilling has normally been in the southern part of the structural basin. The only exception was in 1946 when development of the Mattoon pool resulted in Coles County occupying first place in drilling in the state for the first time. Douglas County, in third place, had its first producing well completed in 1955. The Coles-Douglas County area is discussed on p. 13. Although the total number of well completions decreased in 1956, the distribution was similar to that shown in 1955. For the most part counties in the deeper and better developed area of the basin showed larger decreases than the over-all 6 percent drop for the state; some of the decreases exceeded 25 percent. Counties that had major decreases in drilling activity include White, Gallatin, Saline, Hamilton, Clay, Marion, and Lawrence. Most of the marginal counties, on the other hand, showed large increases, most notable being Douglas County, which had 12 completions in 1955 and 248 in 1956. Other counties that had major increases in drilling activity include Edgar, Coles, Moultrie, Shelby, Montgomery, Madison, Clinton, Washington, Perry, Franklin, Williamson, and one deep-basin county, Wabash. In many of these counties, production is confined to a small geographic area, and most of the increased drilling was due to increased wildcat drilling. Pools with the most producing wells completed during the year were Cooks Mills Consolidated with 190, Clay City Consolidated with 180, and Main Consolidated (Crawford County) with 102. Several small pools (Oak Point in Clark and Jasper counties, Harco in Saline County, Gards Point in Wabash County, and Germantown East in Clinton County) showed promise during the year, but drilling in all of them tapered off before the close of the year. When the year ended, drilling and development had both slowed down, and there was, at least temporarily, no new area which exhibited especially good prospects. As a result, wildcat drilling was widespread. Depths of producing wells drilled in 1956 ranged from about 400 feet to 4000 feet, averaging about 2,365 feet; average depth of all wells drilled in 1956 was about 2,145 feet. ^{*} Well completion figures given in this bulletin are based on reports received from the Illinois Basin Scout Association. An undetermined number of additional wells are completed annually in the old fields of Clark. Crawford, Cumberland, Lawrence, and adjacent counties, for the most part in waterflooded areas. In fields discovered since January 1, 1937, there were 22,201 wells producing oil or gas at the end of 1956; in older fields the number was approximately 9,086, or a total for Illinois of about 31,287 wells producing at the end of 1956. #### Cooks Mills—Bourbon Area The Cooks Mills pool in northern Coles County was discovered in 1941. One producing well was completed that year and another the following year. Both produced from the Rosiclare sandstone, had low initial productions, and were soon depleted. The pool was abandoned in 1947, with a total production of less than 6,000 barrels of oil from the two wells. In 1946 a third producing well was completed. This, the discovery well of the Cooks Mills North pool, was a non-commercial well which produced less than 500 barrels of oil from the Rosiclare before it was abandoned in 1950. The next producing well in the area was drilled three years later, in 1953. This, too, was a small Rosiclare well. The following year two more producers were completed, one in the Rosiclare and the other in the Aux Vases sandstone. The three wells produced about 2,500 barrels of oil in 1954. In the same year Cooks Mills East was discovered, the discovery well being the only completion before the end of the year. In 1955 a drilling "boom" began which resulted in the discovery of one more pool in 1955, three pools in 1956, and the production of 1,725,000 barrels of oil in the area in 1956. In July 1955, a Cypress gas well was completed between the old Cooks Mills and Cooks Mills North pools. This, the discovery well of the Cooks Mills Gas pool, was soon offset by oil wells and incorporated into the Cooks Mills Consolidated pool. During 1955, 17 Rosiclare, one McClosky, and one Aux Vases-Rosiclare oil wells, and one Aux Vases and three Cypress gas wells were completed in an area extending from the old Cooks Mills North pool to south of the old Cooks Mills pool. The wells were scattered over an area $3\frac{1}{2}$ miles long by a mile wide, and infill drilling progressed rapidly. In January 1956, Cooks Mills East crossed the Coles-Douglas County line, giving Douglas County its first commercial production. Early in the year Cooks Mills East was absorbed by Cooks Mills Consolidated, which is now made up of Cooks Mills, Cooks Mills North, Cooks Mills Gas, and Cooks Mills East. Early in the year the Bourbon pool was discovered about six miles north of Cooks Mills Consolidated, and a few weeks later Bourbon North was discovered a little more than a mile northwest of Bourbon. Later, the Chesterville pool was discovered between Cooks Mills Consolidated and Bourbon. Bourbon is one of the biggest pools discovered in the last few years. By the end of 1956 it had produced almost half a million barrels of oil from about 50 wells. Chesterville (five wells) and Bourbon North (two wells) were comparatively unimportant. By the end of 1956 the Cooks Mills—Bourbon area consisted of about 260 oil wells which had produced 1,725,000 barrels of oil during the year; 90,000 barrels had been produced in the preceding 14 years. About 250 oil wells were producing in the four pools. Of this number all but three were completed in the Rosiclare sandstone, the exceptions being in the Cypress, Aux Vases, and McClosky pays. Fifteen gas wells have been drilled in the Cooks Mills Consolidated pool: seven were completed in the Cypress, one in the Aux Vases, four in the Rosiclare, and three as dual completions in the Cypress-Rosiclare. All were capped at the end of the year, but plans were being developed for a gas storage project in the pool. The Cooks Mills-Bourbon area is the northernmost Mississippian production in the state, although Pennsylvanian sands have produced a little oil to the northeast, and
several good Devonian and Silurian pools lie to the northwest. As in the Mattoon pool, two miles to the south, the Rosiclare is the most important pay. Unlike Mattoon, where the Cypress is also an important pay, in the Cooks Mills-Bourbon area only one oil well has been completed in the Cypress, which more commonly carries gas. The Aux Vases and McClosky are unimportant pays in both areas, and other possible pays are thus far unproductive. As a result of the successful drilling in the Cooks Mills-Bourbon area, there was abundant and widespread wildcat drilling in Douglas and Coles counties in 1956. Occasionally shows of oil or gas were encountered, and one Pennsylvanian pool, Ashmore East, was discovered in Coles County. By the end of 1956 the Cooks Mills-Bourbon area seemed to be almost completely drilled up, and wildcat drilling in Coles and Douglas counties was tapering off. #### EXPLORATORY DRILLING AND DISCOVERIES Wildcat wells were drilled in all of the 61 counties in which drilling was done in 1956. New pools (18 in number) were discovered in 11 counties. Douglas and Jefferson counties each had three new pools; Bond, Clinton and Saline counties each had two, and Christian, Coles, Franklin, Macoupin, Perry, and Wayne each had one. Of the 3,640 wells drilled in 1956, 1,028 (about 28 percent) were wildcats, an increase of about 12 percent in number of wildcat completions over the number completed in 1955 and in contrast to the 6 percent decrease in total completions. Of the wildcat wells drilled in 1956, 445 located more than two miles from production (table 3) discovered 11 new pools, or were about 2.5 percent successful. The 583 wildcats drilled between half a mile and two miles from production discovered seven new pools and 72 extensions to pools. Nine additional extensions were discovered by reworking old wells that had previously been completed as dry holes. Table 3.—Wildcat Wells Drilled in 1956 | Category | Total | Producers | Percentage
successful | |---------------|-------|-----------|--------------------------| | Wildcat Neara | 583 | 79 | 13.5 | | Wildcat Farb | 445 | 11 | 2.5 | | Total | 1028 | 90° | 8.8 | The one gas pool and 17 oil pools discovered in 1956 are listed in table 4 and shown in figure 2; the 81 extensions are listed in table 5, and the 19 new pays in table 6. One of the new pools, Sorento South, was lost by consolidation with Sorento before the end of the year. Most of the 1956 new pools, as shown in figure 2, are marginal pools. The locations of the 1955 new pool discoveries were greatly influenced by the 1954 developments, nine new pools being grouped around Eldorado Consolidated and five around Mt. Auburn Consolidated. The 1956 discoveries show the same influence, but to a lesser degree. Three of the new pools (Ashmore East in Coles County, Cravat East in Jefferson County, and Hornsby South in Macoupin County) produce from Pennsylvanian sandstones. At the end of 1956 each consisted of a single small well without prospects for future development. Only one new Pennsylvanian pay was discovered in 1956. At the end of the year one Pennsylvanian sandstone well was completed in the Sorento Consolidated pool (previously all Devonian production). This well is less than four miles from Old Ripley, a good Pennsylvanian pool, so it may indicate the presence of an oil-bearing Pennsylvanian sandstone lens in the Sorento area. a From ½ to 2 miles from production. b More than 2 miles from production. c Nine of the discovery wells listed in Table 4 were originally completed as dry holes and later worked over. Fig. 2. — Oil pools discovered in Illinois, 1956. - 1. Ashmore East - 2. Beckemeyer (Gas) - 3. Bourbon - 4. Bourbon North - Chesterville - 6. Cravat West - 7. Ewing West - 8. Germantown East - 9. Hornsby South - 10. Mt. Vernon North - Oakdale Orchardville North - 13. Pankeyville - 14. Pankeyville East - 15. Sicily - 16. Sorento South17. Sorento West - 18. Tamaroa West Table 4.—Discovery Wells of New Pools, 1956 | No. wells com- ing in pool pool 12/31/56 | 22.2.1.1.2.1.2.2.2.1.1.2.2.1.1.2.2.1.1.1.2.2.1.1.1.2.2.2.1.1.1.1.2.2.2.2.2.1.1.1.2 | |--|--| | Date of
com-
pletion | 4-24
6-26
4-10
5-15
8-7
10-30
4-24
7-17
11-20
7-10
7-10
7-10
7-10
7-10
7-10
7-10
7-1 | | Initial
produc-
tion
(bbls.) a | shut in 1555
1557
1558, 42
37
37
177; 107
9; 9
48
105; 32
15; 80
15; 80
15; 80
15; 80
15; 80
15; 80
15; 80
15; 80
15; 80
15; 80
16; 150
17; 107 | | Depth
to top
(ft.) | 413
1080
1654
1651
1805
1035
3008
2363
615
2274
2274
2274
2274
2274
1970
1870
1870 | | Producing
formation | Pennsylvanian Cypress Rosiclare Rosiclare Rosiclare Pennsylvanian Ohara Silurian Pennsylvanian McClosky Aux Vases Paint Creek Cypress Cypress Bethel Silurian Devonian Devonian Cypress | | Total
depth
(ft.) | 445; PB 424
1100
1677
1677
1829
1103; PB 1085
3043
2505; PB 2460
651
2726; PB 280
3070; PB 280
3070; PB 280
2706; PB 2397
1870
1870
1870
1870
1600; PB 1940
1600; PB 1160 | | Location | 16-13N-14W 27-2N-3W 11-15N-7E 3-15N-7E 3-15N-7E 7-15-1E 1-5S-3E 1-1N-4W 14-8N-6W 14-8N-6W 18-2S-3E 11-2S-4E 11-2S-4E 11-2S-4E 11-3S-4E 11-3S-4E 11-3S-4E 11-3S-4E 11-3S-4E 11-3S-4E 11-3S-4E 13-13N-4W 14-8N-6W 14-8N-6W 14-8N-6W 14-8N-6W 14-8N-6W 14-8N-6W 14-8N-6W 13-13N-4W 13-1 | | Company and farm | W. W. Henigman #1 E. H. Washburn W. Imming #1 Ackman C. B. Earnest #1 H. Pflum M. H. Richardson #1 W. C. Taylor Arnett Drig. #1 M. Miller L. Dare #1 Bates K. M. Bayer #2 Falgar Pearce National Associated Pet. #1 M. Holtgrave I. C. Nickerson #1 E. W. Hartke C. E. Brehm #1 Holman Comm. The Texas Co. #1 Green E. C. Reeves #1 Donoho Breuer & Robison #1 M. Carty Skiles Oil #2 W. F. Johnson, et al. M. Fesser #1 Orlandini F. L. Strickland #3 Eisworth Murvin & Steber #1 Ackerman J. F. Dunnill #1 M. Stein | | County | Coles Clinton Douglas Douglas Douglas Jefferson Franklin Clinton Macoupin Jefferson Jefferson Saline Saline Saline Christian Bond Bond Perry | | Pool | Ashmore East | | Line
No. | 1 1 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 | a Oil and water. b Consolidated with Sorento. Fig. 3. — Generalized geologic column for the southern Illinois oil region. Black dots identify oil-producing strata. Four Devonian or Silurian pools were discovered. The best of them, Germantown East in Clinton County, had 21 wells at the end of the year. Sicily, in Christian County, had three producing wells completed, and other wells were being drilled. The other two pools, both in Bond County, were Sorento West which was abandoned at the end of the year and Sorento South which was consolidated with Sorento. The Silurian was also opened up as a new deep pay in the Huey South pool in Clinton County. The Trenton was opened up as a new pay in the Patoka and Irvington pools. At the end of the year not enough Trenton wells had been completed in either pool to make possible an evaluation of the pay. The remaining 11 new pools and 17 new pays were all in rocks of Mississippian age. A generalized geologic column for the southern Illinois oil region indicating principal producing strata, is shown in figure 3. A selected list of unsuccessful deep tests in pools is given in table 7. No gravity meter or magnetometer work was done in Illinois in 1956. Data on geophysical and core-drilling crews operating throughout the year, by months and methods, is given in table 8. Table 5.—Discovery Wells of Extensions to Pools, 1956 | | Initial Date of comtion (bbls.) a pletion | 25; 40
200; 8
102
200 | 55
55; 20
434
5-29
150
5-8
120
10; 50
10-23
6-19
5-29
120
120 | 63 6-5
6; 80 4-17
30; 30 6-5
50; 5 1-24
35; 100
7-10
236 3-6
36; 44 3-27
22; 55 2-7
60; 40 5-1
231 | 147; 4 3–20
220; 50 6–12
32; 18 7–31
14,500,000 2–21 | 115 | |--------------------------------|---|--|--|---|--|---| | | Depth
to top
(ft.) | 2751
3079
3020
3436;
3456 | 2622
2897
1629
1616
3279
1747 | 3105
2784
3206
3184
1844
1861
1952
1819
1819
1838 | 1834
1795
1828
1580 | 1770
1775
2913
3184
3204
3242 | | | Producing
formation | Aux Vases
Ohara
Ohara
Ohara;
McClosky | Paint Creek
Bethel
Rosiclare
Rosiclare
Aux Vases
Rosiclare | McClosky
Aux Vases
Aux Vases
Ohara
Rosiclare
Rosiclare
Rosiclare
Rosiclare
Rosiclare
Rosiclare
Rosiclare | Rosiclare
Rosiclare
Rosiclare
Cypress | Rosiclare
Rosiclare
Bethel
McClosky
Aux Vases
Aux Vases | | 100mg 1000 | Total depth
(ft.) | 2880; PB 2769
3214; PB 3108
3101; PB 3036
3550; PB 3470 | 2948; PB 2648
2905
1650
1631
3295
1757 | 3120; PB 3112
2922; PB 2800
3333; PB 3235
3269
1885; PB 1864
1885; PB 1880
1975
1864; PB 1836
1872; PB 1836
1872; PB 1836 | 1874; PB 1855
1835; PB 1805
1892; PB 1852
1830 | 1807
1796; PB 1790
3220; PB 3110
3252; PB 3215
3275; PB 3226
3288 | | LAIENSIONS 10 | Location | 1–9S–9E
34–6S–4E
16–2S–14W
15–3S–8E | 30-5S-3E
30-1S-14W
11-15N-7E
12-15N-7E
35-4S-7E
26-15N-7E | 30-3N-8E
16-5N-10E
10-2S-8E
29-1N-7E
4-13N-7E
9-13N-7E
8-13N-7E
15-13N-7E
16-13N-7E | 9-13N-7E
20-14N-8E
3-13N-7E
13-14N-7E | 17-14N-7E
13-14N-7E
14-4S-10E
15-4S-10E
3-7S-5E
29-6S-5E | | IABLE 3,-DISCOVERT WELLS OF LA | Company and farm | Sun Oil #1 L. L. Miller "B"
Perrine & Perrine #1 Westbrook
Noah Pet. #1 C. Cowling
P. J. McIntyre #1 Gardner Hrs. | Nat. Assoc. Pet. #1 W. T. Lawson
Caliene #1 H. H. Howell Comm.
M. H. Richardson #1 D. E. Otto
M. H. Richardson #1 E. Selle
Collins Bros. #1 Foley Comm.
L. G. Ewart #1 N. Applegate | J. W. Rudy #1 Wraase Don Slape #1P. H. Grove Davis & Johnson #1 Hancock Inglis Oil #1 Simmons T. C. Rappe #1 Beckman Rappe & Vest #1 J. H. Caton, et al. Rappe & Vest #1 G. Taylor Rappe & Vest #1 G. Taylor E. V. Richardson #1 J. Wallace J. R. Covington #1 E. Bergfield Partlow & Cochonour #1B. Kuhn | J. E. Wheeler #1 A. Ebardt
Ashland #1 F. E. Hartford "B"
Kuykendall #1 M. E. Herschberger
J. P. Potsch #1 E. H. Schrock | E. E. Spencer, et al. #1 E. E. Schrock
M. H. Richardson #1 R. Logan
Nat. Assoc. Pet. #1 V. Sturm
Calvert #1 Z. Shepard
R. Pledger #1 Lightner
C. E. Brehm #1 M. L. Moore | | | County | Gallatin
Franklin
Edwards
Wayne | Franklin
Edwards
Douglas
Douglas
Hamilton
Douglas | Clay Jasper Wayne Wayne Coles Coles Coles Coles Coles Coles | Coles
Coles
Coles
Douglas | Douglas
Douglas
White
White
Hamilton
Hamilton | | | Pool | Ab Lake West. Akin Albion East Barnhill | Benton North Bone Gap Consol Bourbon Bungay Consol Chesterville | Clay City Consol. Clay City Consol. Clay City Consol. Clay City Consol. Cooks Mills | Cooks Mills Consol | Cooks Mills Consol Cooks Mills Consol Crossville Crossville West Dale Consol | | | Line
No. | 17004 | 5
7
7
10
10 | 111
122
133
144
170
180
190
190
190
190
190
190
190
190
190
19 | 22
23
24 | 25
27
28
30
30 | | 10-2 | 1 | 5-29 | $\begin{array}{c} 7-17 \\ 10-9 \\ 1-31 \end{array}$ | 1-17 $11-27$ $11-27$ $12-11$ $6-19$ | $ \begin{array}{c} 10-2\\ 3-27\\ 8-7\\ 10-9\\ 10-2 \end{array} $ | $\begin{array}{c} 8-7\\ 1-10\\ 3-6\\ 9-25\\ 8-7 \end{array}$ | 6-5
12-11
9-4 | 4-3 | 6-19
9-25
8-28
5-8
8-28
4-10 | |-----------------------------|---|---------------------------------------|--|---|--|---|--|-----------------------------|--| | 32; 10 | į | 172; 8 | 510
8; 14
20; 3 | 75; 30
83; 50
46,000 cu. ft.
73,400 cu. ft.
673,000 cu. ft. | 41,800 cu. ft.
232,000 cu. ft.
740,000 cu. ft.
431,000 cu. ft.
212,000 cu. ft. | 45,000 cu. ft.
35
8; 14
40
25; 7 | 60; 10
14; 5
54; 14 | 18; 60 | 120
300; 30
5, 50
32; 5
24; 11 | | 3092; | 3236 | 2846 | 2746
1208
1792 | 1941
3178
479
450
487 | 579
509
490
409
472 | 463
2883
3437
2930
2838 | 2924
2929
2332; | 2948
2305; | 2612
2851
2794
2675
2675
3014
2705 | | Aux Vases; | McClosky | McClosky | Rosiclare
Cypress
Devonian | Palestine
Aux Vases
Silurian
Silurian
Silurian | Silurian
Silurian
Silurian
Silurian | Silurian
Ohara
Rosiclare
Ohara
Aux Vases | ĀĀ | Aux Vases
Tar Springs; | Cypress Aux Vases Rosiclare Aux Vases Silurian McClosky | | 3271; PB 3265 Aux Vases; | | 7854 | 2837; PB 2784
1370; PB 1215
1876; PB 1841 | 2981; PB 2000
3346; PB 3219
520
489
558 | 618
530
516
451
480 | 473
3010; PB 2900
3520; PB 3455
3110; PB 2950
3045; PB 2898 | 3109; PB 2970
3125; PB 3030
3126; PB 3113 | 3084; PB 2650 | 3032; PB 2872
2804
2823; PB 2700
2629; PB 2616
3132; PB 3028
2830; PB 2727 | | 16–6S–6E | 10° 00° 00° 00° 00° 00° 00° 00° 00° 00° | 7-72-3E | 15-1S-3E
24-3S-2W
27-14N-3W | 23-8S-6E
29-2S-10E
26-3S-5W
2-4S-4W
5-4S-4W | 6-4S-4W
28-3S-4W
4-4S-4W
34-3S-4W
5-4S-4W | 20-3S-4W
26-1N-14W
20-3S-9E
28-8S-5E
14-8S-5E | 8–8S–5E
11–8S–5E
22–8S–5E | 34-7S-9E | 9-7S-10E
12-5N-6E
28-5N-6E
31-2N-2W
3-4N-8E
18-2N-4E | | Slagter #1 C. C. Cottingham | Niagara Oil #1 Mulch-Hall et al. | Higgins & Whittinghill #1 J. O. Camp- | bell
Cullum & Lawhead #1 Szramkowski
H. C. Herring #1 Hoover | J. Carter & E. Rue *1 Stricklin
Calvert *1 N. Everett
Western Oil *1 F. P. Hahn
S. & S. Oil *1 Hillman
W. Vette *1 Engleman | W. Vette #1 W. T. Stauffer
W. Vette #1 L. Martin
S. & S. Oil #1 Conkright
M. & N. Oil #1 W. Lahnman
R. F. Starr #1 Riley Still | A. Beach #1 C. Gray
Saber Oil #1 C. R. Seals
Nation Oil #1 Pollard
Lauderdale Oil #1 J. B. Duty
Calvert-King-Stevenson #1 Bennett | V. S. & S. Drlg. #1 Wilson-Teachers
Ret. Bd.
J. Inglis #1 B. Keelin
Calvert #1 Brown Hrs. | Collins Bros. #1 R. Sanders | Calvert-Beeler #1 Cutting
Calvert #1 W. Stortzum
G. T. Ronk #1 D. McKnelly
Kapp & Imming #1 H. Prasuhn
Texas #1 G. M. Buerster
R. Fletcher #1 E. Wiehle | | Hamilton | Jefferson | Jefferson | Washington
Christian | Saline
Edwards
Adams
Pike
Pike | Pike
Pike
Pike
Pike | Pike
Wabash
White
Saline
Saline | Saline
Saline
Saline | Gallatin | White
Clay
Clay
Clinton
Clay
Marion | | Dale Consol | Divide South | Divide West | Dubois | Eldorado West
Ellery Consol.
Fishhook Gas
Fishhook Gas | Fishhook Gas Fishhook Gas Fishhook Gas Fishhook Gas Fishhook Gas | Fishhook Gas Gards Point Goldengate Consol Harco | Harco Harco | Herald Consol. | Herald Consol. Hord Hord South Huey South Ingraham Iuka West | | 31 | 32 | 33 | 34
35 | 36
37
38
39
40 | 14 4 4 4 4 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 6 6 6 6 | 46
47
48
50 | 51
52
53 | 54 | 55
56
57
58
59
60 | Table 5.—Continued | Line
No. | | | | | | | | | | |--|---|--|---|---|---|--|---|--|--| | | Pool | County | Company and farm | Location | Total
depth
(ft.) | Producing | Depth
to top
(ft.) | Initial
produc-
tion
(bbls.) ^a | Date of com- | | 61 Kir
62 Ma
63 Ma
64 Nev
65 Nev | Kinmundy Maplegrove Consol. Matroon New Bellair New Harmony Consol. | Marion
Wayne
Coles
Crawford
Wabash | Ohio Oil #1 O. E. Garrett
Pure Oil #1 P. M. Weber
R. F. Anderson #1 Opal Arthur
F. L. Beard #1 Sellars
Kingwood #1 E. Summers | 19-4N-3E
22-1N-9E
2-12N-7E
20-8N-13W
4-1S-13W | 2479; PB 2458
3225; PB 3210
1953
1300
2720; PB 2601 | Salem
Aux Vases
Rosiclare
Aux Vases
Aux Vases | 2376
3167
1927
1277
2587 | 11; 20
172; 43
12
8; 12
10; 1 | 10–30
8–7
5–1
5–29
9–4 | | 66 Nei
75 | New Memphis South | Washington
Jasper | Collins Bros. #1 Huelskoetter Comm.
Partlow & Cochonour #1 McCash- | 16-1S-5W | 2134 | Silurian | 1994 | 5; 30 | 5-1 | | | Oakdale | Jefferson
Washington
Richland | Freeland
Eastern Pet. *1 P. D. Hughes
Texas *1 W. Reichmann
D. Slape *1 G. P. Koertge | 4-8N-14W
14-2S-4E
4-1S-4W
33-4N-10E | 1199
3100; PB 3003
2375; PB 2288
3105; PB 3058 | Aux Vases
McClosky
Devonian
McClosky | 1182
2999
2222
3050 | 30; 10
15; 35
46; 556
5 | $ \begin{array}{c} 1-10 \\ 12-28 \\ 6-19 \\ 6-19 \end{array} $ | | 71 Oln
72 Olr
73 Pat
74 Ro | Olney South Olney South Parkersburg Consol Roland Consol | Richland
Richland
Richland
White | H. & H. Oil #1 O. Maas D. Slape #1 C. Jennings D. Lambert & Butler #1 V. Heckler Calvert #1 H. G. Bayley | 14-3N-10E
21-3N-10E
22-3N-14W
4-6S-9E | 3232; PB 3187
3155
3268; PB 3108
3250; PB 2090 | McClosky
Rosiclare
Aux Vases
Degonia | 3163
3127
3071
2064 | 5
9; 120
90; 80
29; 15 | 5-8
3-27
1-17
1-24 | | | Sailor Springs Consol. Sailor Springs East Sorento Consol. Sorento Consol. Stanford South Sumpter South | Clay
Clay
Bond
Wayne
White | Partlow & Cochonour #1 Bible Grove-Dueker B. Murvin #1 Keyner F. L. Strickland #1 Eiswirth "B" Dickinson Oil #1 Vogel J. W. Sreele #1 B. E. Hale W. C. McBride #1 J. B. Jacobs | 8-5N-7E
33-4N-8E
28-6N-4W
29-6N-4W
19-2N-7E
34-4S-9E | 2540
3105
1876
1947
3201; PB 3125
3224; PB 3040 | Cypress
McClosky
Lingle
Lingle
Rosiclare
Tar Springs;
Bethel | 2490
3091
1858
1936
3105
2548; | 20; 30
7; 30
460
38; 20
2
17; 22 | 7-3
7-3
9-18
7-3
7-24
12-11 | | 81 We | West Frankfort | Franklin | R. McClement #1-A. S. Boner | 31-7S-3E | 2899; PB 2880 | Aux Vases | 2751 | 30 | 6-5 | a Oil and water. TABLE 6.—DISCOVERY WELLS OF NEW PAYS IN POOLS, 1956 | Company and farm Location Company and farm Location Company and farm Total depth Producing to top formation $(ft.)$ formation $(ft.)$ Company and farm $(ft.)$ Location $(ft.)$ $(ft.)$ $(ft.)$ $(ft.)$ $(ft.)$ | Coy Oil #1 E. Wathen C. E. Brehm #1 Westbrook Tr. et al. | | Scrivener 27–38–38 2899; PB 4161 Warsaw 4045 11; 90 27–18–38 2843 8445 11; 90 80.4 | 23–8S–6E 2981; PB 2000 Pelestrine 1941 75; 30
22–8S–5E 3126; PB 3113 Hardinsburg 2332 54; 14 ^b | 3002; PB 2890 Aux Vases 2875 50,
2629 Silurian 2585 32; 5 | Gulf #10 Stanton Texas #1 Wood Unit 11-25-4E 3767; PB 3080 McClosky 2976 72; 12 | Sun Oii # 1-1. Pugh 29-4N-1E 4056; PB 4010 Trenton 3952 139; 22 | 34–5S–5E 3426; PB 2970 Cypress 2934 42, | Cypress 2934
Cypress 2374
Pennsylvanian 508 | |---|--|----------------|--|--|--|---|---|---|---| | | | | | | Prasuhn | Gulf # 10 Stanton
Texas #1 Wood Unit | Sun Oil # 1-1. Fugh | | **** | | County | Gallatin
Franklin | White
White | Hamilton
Jefferson | Saline
 Saline | Saline
Clinton | Washington
Jefferson | Marion
Hamilton | | Gallatin
Bond | | Pool | Ab Lake West. | Crossville | | /est | Huey South | Irvington | Rural Hill North | | Shawneetown | | No. | 1 2 | ω 4 | 9 | r\ ∞ c | 10 | 117 | 34; | | 16 | a Oil and water. b Dual completion. TABLE 7.—Selected List of Unsuccessful Deep Tests in Pools, 1956 | | 12–18
11–6
2–14
9–18
10–2
4–3
5–15
11–27
7–17
7–17 | |--------------------------|---| | Depth
to top
(ft.) | 2488
5295
790
2996
3260
2152
11736
2184
2131
1987 | | Deepest
formation | Silurian Devonian St. Peter Devonian Trenton Trenton Trenton Trenton Silurian Silurian Silurian Silurian Silurian | | Total
depth
(ft.) | 2558
5483
815
3059
3310
2694
2277
1752
2900
2160
2010 | | Location | 36-4N-3W
2-4S-6E
24-4N-5W
16-13N-7E
1-1N-4W
4-12N-13W
20-8N-6W
4-5N-6W
4-15-5W
36-7N-4W
36-7N-4W
36-7N-4W
36-7N-4W
213-10N-5W
24-10N-10E | | Company and farm | Skiles Oil #1 H. Wrone Skiles Oil #1 R. Smith D. R. Woltz #1 Roberts H. J. Adams #8 D. Andres Nat'l Assoc. Pet. #1 E. Becker et al. M. L. Livingood #1 Babcock M. Mazzarino #1 Kwados F. Suhre #3 Suhre N. Friederich #1 Broeckling J. H. Miskell #1 R. Harwood Richardson #1 W. Paul J. Gambill #1 L. Lacy | | County | Bond
Hamiton
Hancock
Coles
Cinnton
Edgar
Macoupin
Madison
Clinton
Bond
Montgomery | | Pool | Beaver Creek Belle Prairie Colmar-Plymouth Cooks Mills Consol. Germantown East Grandview Grandview Gillespie-Benld Gas. Livingston South New Memphis Panama Raymond Siggins | | Line
No. | 12844301 | Table 8.—Number of Geophysical and Core Drilling Crews Active in Illinois During 1956 by Months | Month | | | | Seismo-
graph | Gravity
meter | Magneto-
meter | Core
drilling | |--------|---|---|----|------------------|------------------|-------------------|------------------| | Jan. | | | | 0 | 0 | 0 | 12 | | Feb. | | | | 0 | 0 | 0 | 15 | | Mar. | Ċ | | | 0 | 0 | 0 | 15 | | Apr | | | | 0 | 0 | 0 | 12 | | May. | | | | 0 | 0 | 0 | 13 | | Tune. | Ċ | | | 8 | 0 | 0 | 12 | | July . | | | | 8 | 0 | 0 | 8 | | Aug. | | | | 12 | 0 | 0 | 4 | | Sept | | | | 11 | 0 | 0 | 15 | | Oct | Ċ | | į. | 12 | 0 | 0 | 12 | | Nov. | Ċ | Ċ | Ċ | 12 | 0 | 0 | 9 | | Dec. | | | | 8 | 0 | 0 | 4 | #### PRODUCTIVE ACREAGE The area of proved production in Illinois, including abandoned pools, at the end of 1956 was 539,315 surface acres for oil and 28,795 for gas. Of this, 375,780 oil acres and 16,460 gas acres were in pools discovered since January 1, 1937. During 1956, 6,640 gas acres were added by 61 gas wells, most of which are capped. In pools discovered since January 1, 1937, about 16,690 surface acres for oil were added in 1956. Most of the drilling in the old pools (discovered before 1937) was development of new pays in old producing areas; little surface acreage was added to the old pools. #### ESTIMATED PETROLEUM RESERVES The Illinois State Geological Survey estimates that on January 1, 1957, Illinois oil reserves that can be produced from wells now in existence, by methods now in use, total 701.6 million barrels. This represents an increase of 0.3 million barrels over the estimate for January 1, 1956. The factors in this change are shown in the following table: | Estimated reserves, Jan. 1, 1956
Withdrawal by 1956 production | Mi. | 701.3
82.3 | |---|-----|---------------| | Added by new drilling in 1956 . | | 619.0
47.4 | | Added by upward revision | | 666.4
35.2 | | Estimated reserves, Jan. 1, 1957 | | 701.6 | The 1,694 oil producing wells, including workover wells, completed during 1956 added an estimated oil reserve of 47.4 million barrels, an average of about 27,878 barrels per well. Of this 47.4 million barrels of added reserves, it is estimated that 2.0 percent is in Pennsylvanian sandstone, 81.3 percent in Mississippian sandstones and limestones, and 15.8 percent in Devonian-Silurian limestones and sandstones. New reserves credited to the Ordovician totaled less than 1 percent. The most important pay zones for which new reserves were added by 1956 drilling are the Ste. Genevieve limestones and sandstone with 31.6 percent of the new reserves, the Aux Vases sandstone with 30.1 percent, and the Devonian-Silurian limestones and sandstones with 15.8 percent. Other important pay zones are the Cypress sandstone with 9.1 percent, and the Bethel sandstone with 5.6 percent. Pennsylvanian sandstones contributed 2.0 percent, and Mississippian pays other than those listed above contributed 5.0 percent. The Devonian-Silurian formations with 15.8 percent new reserves in 1956 have materially increased in importance during the last three years. The percentage figures for these formations were 5.9 in 1954 and 9.6 in 1955. The reserves added by the 17 new oil fields discovered during 1956 are estimated at 5,209,000 barrels of oil. A breakdown of this total by pays shows Devonian-Silurian formations in the lead with 60.8 percent, followed by the Ste. Genevieve formation with 32.0 percent, Aux Vases with
5.2 percent, and the Cypress with 1.0 percent. The other 1.0 percent is scattered among the remaining pays in the Chester and Pennsylvanian formations. The principal changes indicated are in the Devonian-Silurian for which the new pool reserves rose from 49 percent of the total in 1955 to 61 percent in 1956. This was mainly at the expense of the Chester series for which new pool reserves dropped from 21 percent in 1955 to 7 percent in 1956. The four Devonian-Silurian discoveries are all in R. 4 W. They extend from T. 1 N., in Clinton County, to T. 13 N. in Christian County. The Rosiclare sandstone discoveries, which account for 30 percent of the 32 percent new reserves attributed to the Ste. Genevieve formation, are all in Douglas County. Jefferson County had three new pools, with production from Pennsylvanian and Aux Vases sandstone and the McClosky limestone. On January 1, 1957, Illinois had about 380 producing oil pools. Three of these (Clay City Consolidated, Louden, and Salem Consolidated) had estimated reserves of 378.6 million barrels or 54 percent of the 701.6 million barrels reserves. Ten pools, including the above three, had estimated reserves of more than 10 million barrels each, for a total of 521.8 million barrels, or 74.3 percent of the total oil reserves. Approximately 320 pools had reserves of less than one million barrels each. Their total estimated reserves of 43.1 million barrels was approximately 6 percent of the total reserves. #### PROSPECTS FOR NEW POOLS An average of 25 to 35 new pools has been discovered in Illinois annually for about 20 years. In 1956 only 18 new pools were discovered, and the number may continue to be smaller than in the past. As productive areas are drilled up, discovery wells are more apt to be extensions of pools rather than discovery wells of new pools. Figure 4 is a map of the state that classifies oil and gas possibilities by areas. The map is slightly modified after a similar classification map prepared by the Survey in 1930, seven years before oil was discovered in the deep part of the basin (outlined by the dashed line in fig. 4). From 1937 to 1954 most of the new pools discovered were in the deeper part of the basin and produced from Pennsylvanian and Mississippian pays. Outstanding exceptions include two marginal pools, Marine with Devonian-Silurian production Fig. 4. — Oil and gas possibilities in Illinois, December 31, 1956. and St. Jacob, a Trenton pool, and, in the deep part of the basin, the Devonian and Trenton in the Salem Consolidated and Centralia pools. In these two latter pools, however, Mississippian pays were first discovered and developed and the deeper pays were found by deepening wells within the pools. Many of the counties in the deeper part of the basin, such as Wabash, Wayne, White, and Edwards, have been developed to an extent allowing little possibility for finding new pools. Only one of the 1956 new pools was in this area. In 1954, 1955, and 1956 most of the new pools were near the margin, or outside the deeper part of the basin. In these three years there has been a great increase in number and relative importance of new Devonian and Silurian pools. At the end of 1956 new Trenton pays were discovered in the Irvington and Patoka pools, both fairly close to the good Trenton production in Salem Consolidated and Centralia. Tests of the Trenton and Devonian are rare in deeper parts of the basin. In most counties testing of the Salem and St. Louis limestones has also been limited to only a few wells. In the past all but a very small percentage of Illinois' oil production has come from Pennsylvanian and upper Mississippian rocks. Results of drilling in the last three years suggest that pre-Mississippian rocks warrant further testing. #### GAS AND GAS PRODUCTS An estimated 32 billion cubic feet of gas was produced from Illinois oil wells during 1956, either as solution gas or in separate gas reservoirs in the oil areas. Most of the 110.7 million cubic feet of dry gas marketed in Carmi and Eldorado was obtained from dry gas wells within oil fields. An additional 683.1 million cubic feet of dry gas from oil wells was delivered to gas pipe lines for distribution throughout the state. Details are shown in the chart given below. About 7.2 billion cubic feet of solution gas from Illinois oil wells was processed during 1956 by the three principal operating companies, with the resultant production of 1,660,000 barrels of natural gasoline and allied products. This figure does not include natural gasoline and allied products produced at one plant in Illinois which processes gas from outside the state. Data furnished by the companies indicate that approximately 469.1 million cubic feet of dry residue gas was returned to the producing formations, the remainder being used as plant or lease fuel. The amount of plant residue gas flared was insignificant. In addition to the 7.2 billion cubic feet of metered solution gas processed, a somewhat smaller amount of unmetered gas was used largely for lease fuel. Between 20 and 25 billion cubic feet of gas was flared during the year, principally in the Saline County area. Sixty-one new gas wells located in eight different pools in nine different counties were completed during 1956. None of the gas has been marketed for use away from the producing area. Two of the eight pools in which this gas is found are the Fishhook pool in Pike and Adams counties, which has produced only gas to date, and the Cooks Mills Consolidated pools in Coles and Douglas counties, which produces both gas and oil. One of the major gas suppliers to the northern part of the state is currently installing pipelines in this field for the dual purpose of using the presently available gas and eventually using the structure as a storage reservoir. ## Gas Produced in Illinois and Marketed in 1956 | Field, County | | | Market | Amount
Used | |-------------------------------------|-----|---|--------------|----------------| | Eldorado, Saline | ; | | . Eldorado | 29,628,000 | | Herald Consolidat
White-Gallatin | ea, | | . Carmi | 81,137,000 | | Eldorado, Saline
Harco, Saline | | | . Pipe Lines | 606,183,000 | | narco, Sanne . | • | • | . Pipe Lines | 76,927,000 | | | | | | 793,875,000 | Fig. 5. — Index map to areas and counties covered in this report. See detail maps, figures 6-24. County reports, arranged alphabetically, begin on page 47. ## OIL PRODUCING STRATA OF ILLINOIS (SEE FIG. 3, PAGE 17) Oil production from sandstones in the upper two groups of Pennsylvanian age, the McLeansboro and Carbondale groups, is very minor; Tradewater and Caseyville sandstones have yielded about one-sixth of the state's oil. The original low gas content of many Pennsylvanian oils resulted in rather low primary recovery and together with shallow depth makes the Pennsylvanian reservoirs particularly attractive for secondary recovery. Despite the fact that little oil has been found in the Pennsylvanian in the last few years, Pennsylvanian production has been increasing, owing to the development of secondary recovery projects. Chester sandstones have to date produced more than one-half of Illinois' oil and the proportion is mounting. The higher sandstones, the Degonia, Clore, and Palestine, are of little consequence and are productive only in the region of the lower Wabash Valley. The middle sandstones, Waltersburg, Tar Springs, and Hardinsburg, are more productive with some very prolific pools, but significant accumulations are confined to a relatively small area in the southern and eastern oil counties. The lower Chester sandstones in general, and the Cypress and Aux Vases in particular, are productive nearly throughout the oil country. The high water content of the Aux Vases makes oil more difficult to recognize than in other sandstones, and Aux Vases production was sometimes passed by during the earlier stages of exploration. Finegrained reservoirs react spectacularly to hydraulic fracturing. Although the Aux Vases has produced less oil in the past than the Benoist (Bethel) and Cypress sands, it is probably leading in current production and is by far the most important single horizon in current development. The most prolific reservoirs in the lower Mississippian rocks are onlitic limestones, which have produced one-fifth of Illinois' oil. Most important is the McClosky zone, which consists of porous lenses of onlitic limestone in the Fredonia member of the Ste. Genevieve formation. The oolitic Ohara pay zone in the Levias member of the Ste. Genevieve is quite similar to the McClosky, as are oolites in the St. Louis and Salem formations. Hydraulic fracturing of the oolitic reservoirs is not particularly helpful, but in most instances productivity can be increased greatly by acidizing. Waterflooding is simple, but as primary recovery is generally high, less oil is left for secondary recovery than in the sandstone reservoirs. The Rosiclare zone is a typical oolite in the southern and eastern oil counties, with occasional sand grains accompanying the oolites. Toward the northwest the sand grains become more numerous and production is obtained from a slightly limy sandstone, a bit coarser than the average Chester sandstone. Devonian production comes from sandstones, limestones, dolomites, and cherts, and is difficult to characterize briefly. Silurian production, approaching one percent of Illinois' total, is from two quite different types of rock. Much Silurian dolomite in the southern part of Illinois is too fine-grained for production, but occasional streaks, generally purer, are coarse enough to approach the lower limit of productive dolomite rock. As might be expected, this fine-grained rock reacts favorably to fracturing but poses problems in waterflooding. Silurian "coral" reefs in the northern part of Illinois are dolomitized, porous, and very permeable. In the oil area the reefs are limestone with very low porosity but have a few vugs and an extensive
fracture system that may contain oil. Silurian reef rock produces oil from Marion County westward. The Trenton limestone has produced less than one percent of Illinois' oil. The limestone generally is quite dense. Porosity and permeability increase westward across the western part of the oil area, and fractures are of considerable importance in the westernmost pools. Acidizing is a common completion practice, and it seems likely that hydraulic fracturing will be of relatively little help. Fig. 6. — Area 1: Hamilton and Saline counties. Fig. 7. — Area 2: White and Gallatin counties. Fig. 8. — Area 3: Wabash and Edwards counties. Fig. 9. — Area 4: Crawford and Lawrence counties. Fig. 10. — Area 5: Coles, Douglas, and Edgar counties. Fig. 11. — Area 6: Cumberland and Clark counties. Fig. 12. — Area 7: Clay and Wayne counties. Fig. 13. — Area 8: Jasper and Richland counties. Fig. 14. — Area 9: Washington and Perry counties. Fig. 15. — Area 10: Jefferson and Franklin counties. Fig. 16. — Area 11: Fayette and Effingham counties. Fig. 17. — Area 12: Clinton and Marion counties. Fig. 18. — Area 13: Sangamon, Macon, and Christian counties. Fig. 19. — Area 14: Shelby and Moultrie counties. Fig. 20. — Area 15: Macoupin and Montgomery counties. Fig. 21. — Area 16: Pike and Adams counties. Fig. 24. — Area 19: Monroe, St. Clair, and Randolph counties. ### **COUNTY REPORTS** Adams County | Fig. | 21. | Area | 16 | |------|-----|------|----| | | | | | | 37 | | | | | | Total | Oil | Gas | Dry | |-------|---|---|---|---|---|-------------|-------|----------------|-------| | Year | | | | | | wells | wells | wells | holes | | 1937. | | | | | | 0 | 0 | 0 | 0 | | 1938. | | | | | | 0 | 0 | 0 | 0 | | 1939. | | | | | | 2 | 0 | 0 | 2 | | 1940. | | | | | | 1 | 0 | 0 | 1 | | 1941. | | | | | | 5 | 0 | 0 | 5 | | 1942. | | | | | | 2 | 0 | 0 | 2 | | 1943. | • | • | • | • | • | ī | ŏ | ő | ī | | 1944 | • | | • | • | • | Ô | ŏ | ő | 0 | | 1945. | • | • | • | • | • | ŏ | ő | ő | ŏ | | 1946. | • | | • | • | • | 1 | 0 | 0 | 1 | | 1740. | • | • | • | • | • | 1 | U | Ų | 1 | | 1947. | | | | | | 0 | 0 | 0 | 0 | | 1948. | | | | | | 0 | 0 | 0 | 0 | | 1949. | | | | | | 1 | 0 | 0 | 1 | | 1950. | | | | | | 3 | 0 | 0 | 3 | | 1951. | | | | | | 2 | 0 | 0 | 2 | | 1952. | | | | | | 0 | 0 | 0 | 0 | | 1953. | Ċ | Ċ | Ċ | Ċ | Ċ | ŏ | Ŏ | Ŏ | Ŏ | | 1954. | | ٠ | • | • | • | ŏ | Ö | 0 | ŏ | | 1955. | • | • | · | • | • | $\check{2}$ | ŏ | ĭ | ĭ | | 1956. | | | | | | $\tilde{9}$ | ŏ | $\overline{4}$ | 5 | | | | | | | - | | | | | | | | | | | | 29 | 0 | 5 | 24 | Adams County has had no commercial production of oil or gas. The first producing well in the county was a small gas well completed in 1955 in the Fishhook pool. In 1956 four more gas wells were completed; initial open flow capacities ranged from 46,000 cu. ft. daily to 2,000,000. These wells are in a Silurian limestone about 500 feet deep. They are in the Fishhook pool, most of which lies to the east in Pike County. All wells in the pool have been capped. The Fishhook pool may be used for gas storage. The five dry holes drilled in 1956 included one dry hole in the Fishhook pool and four wildcats. No successful oil well has yet been drilled in Adams County. ### BOND COUNTY ### Fig. 22, Area 17 As shown in the table, Bond County produced more oil in 1956 than in any previous year, in fact 1956 production was almost a third of the total production to date for the county. Most of the producing wells drilled in 1955 were completed near the end of the year and still had compara- tively high production rates in the early months of 1956. Most of the producing wells drilled in 1956 were completed early in the year and production had declined by the end of the year. Unless drilling results are better in 1957 than in 1956, production for 1957 will probably be less than in 1956. In number of wells drilled, 1956 was second only to 1955 and far surpassed the third best year, 1950. However, only a third of the wells drilled in 1956 were completed as producers. Of the 84 dry holes completed, 41 were in pools and 43 were wildcats. Of the wells drilled in pools, 50 percent were dry, a very low success ratio. Bond County was one of the counties which had an unusually high rate of wild-cat drilling in 1956. Discoveries in pre-Mississippian pays during 1954 and 1955 increased interest in the possibilities of deep production in the counties along the western margin of the deep basin area. Two new pools discovered in 1956 are producing from a sandstone at the top of the Devonian. One, Sorento West, consisted of a single well which was abandoned at the end of the year. The second, Sorento South, expanded rapidly and was consolidated with Sorento before the end of 1956. ### BOND COUNTY | Year | | | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | |------|---|----|----------------|--------------|--------------|--------------|-------------------| | 1937 | | | 5 | 0 | 1 | | | | 1937 | • | | | - | 1 | 4 | 0 | | | ٠ | • | 12 | 1 | 1 | 10 | 350 | | 1939 | | | 7 | 0 | 0 | 7 | 400 | | 1940 | | | 54 | 26 | 1 | 27 | 96,000 | | 1941 | | | 21 | 4 | 0 | 17 | 164,000 | | 1942 | | ٠. | 16 | 3 | 1 | 12 | 89,000 | | 1943 | | | 13 | 0 | 1 | 12 | 63,000 | | 1944 | | | 18 | 7 | 0 | 11 | 65,000 | | 1945 | | | 3 | 0 | 0 | 3 | 52,000 | | 1946 | | | 12 | 0 | 1 | 11 | 46,000 | | 1947 | | | 19 | 9 | 0 | 10 | 73,000 | | 1948 | | | 15 | 2 | 0 | 13 | 87,000 | | 1949 | | | 23 | 11 | 1 | 11 | 86,000 | | 1950 | | | 58 | 27 | 1 | 30 | 114,000 | | 1951 | | | 39 | 4 | Õ | 35 | 107,000 | | 1952 | | | 25 | 2 | 0 | 23 | 92,000 | | 1953 | | | 14 | 0 | Ō | 14 | 80,000 | | 1954 | | | 31 | 11 | ŏ | 20 | 79,000 | | 1955 | • | | 163 | 90 | 2 | 71 | 993,000 | | 1956 | | | 126 | 42 | õ | 84 | 1,090,000 | | | | | 674 | 239 | 10 | 425 | 3,378,000 | Two new pays were discovered in Bond County in 1956. In Sorento Consolidated Pennsylvanian sandstone production was opened up, and in Woburn Consolidated two Aux Vases wells were completed, the first Aux Vases production reported in the county. Although Bond County has had 11 oil or gas pools, as shown on the county map, most of the oil has come from two pools: Woburn Consolidated, which produced 614,000 barrels in 1956 for a total of 2,455,000 barrels, and Sorento Consolidated, which produced 419,000 barrels for a total of 639,000 barrels. Only three other pools had production reported for 1956. Old Ripley produced 48,000 barrels to make a total of 102,000; Beaver Creek, 8,000 barrels for a total of 179,000, and Dudleyville East, a few hundred barrels for the year and a total production of about 2,000 barrels. Bond County has one secondary recovery project. A small waterflood in the Bethel in the Woburn Consolidated pool, begun in 1951, has produced about 11,000 barrels of oil. A pressure maintenance project, begun in 1953, is credited with 14,000 barrels of oil produced in the Beaver Creek pool. #### CHRISTIAN COUNTY ### Fig. 18, Area 13 Drilling activity in Christian County in 1956 was a little less than in 1955, but remained higher than average for the county. Most of the new producing wells were in the Mt. Auburn—Kincaid—Edinburg West area. One new pool, Sicily, was discovered during the year; three producing wells were completed in it. The percentage of successful wells for the county was low because of the large number of wildcat wells drilled. Twentynine producing wells and 16 dry holes were drilled in pools, a success ratio of about 2 to 1. Unsuccessful wildcats numbered 39. Production for the year set a new record. Eleven pools produced a total of 1,-846,000 barrels of oil. Biggest producer was the Kincaid South pool, which made 810,- | CHRISTIAN COUNTY | | | | | | | | | | |------------------|----------------|--------------|--------------|--------------|-------------------|--|--|--|--| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | | | | | 1937 | 3 | 0 | 0 | 3 | . 0 | | | | | | 1938 | 4 | 0 | 0 | 4 | 0 | | | | | | 1939 | | 0 | 0 | | 0 | | | | | | 1940 | 4
1 | 0 | 0 | 4
1
3 | 0 | | | | | | 1941 | 3 | 0 | 0 | 3 | 0 | | | | | | 1942 | 2 | 0 | 0 | 2 3 | 0 | | | | | | 1943 | 2
4 | 1 | 0 | | 3,000 | | | | | | 1944 | 0 | 0 | 0 | 0 | 4,000 | | | | | | 1945 | 1
7 | 1 | 0 | 0 | 4,000 | | | | | | 1946 | 7 | 1 | 0 | 6 | 8,000 | | | | | | 1947 | 3 | 1 | 0 | 2 3 | 6,000 | | | | | | 1948 | 5 | 2 | 0 | | 11,000 | | | | | | 1949 | 172 | 130 | 0 | 42 | 1,099,000 | | | | | | 1950 | 18 | 7 | 0 | 11 | 1,219,000 | | | | | | 1951 | 27 | 10 | 0 | 17 | 820,000 | | | | | | 1952 | 22 | 4 | 0 | 18 | 528,000 | | | | | | 1953 | 34 | 20 | 0 | 14 | 487,000 | | | | | | 1954 | 152 | 84 | 0 | 68 | 751,000 | | | | | | 1955 | 95 | 43 | 0 | 52 | 1,608,000 | | | | | | 1956 | 84 | 29 | 0 | 55 | 1,846,000 | | | | | | | 641 | 333 | 0 | 308 | 8,395,000 | | | | | 000 barrels for the year, giving it a total production of 885,000 barrels. Assumption Consolidated was second for the year, producing 342,000 barrels; it has a cumulative total of 5,384,000 barrels. Three other pools each produced 200,000 to 235,000 barrels, and the remaining six pools had a combined total production of 32,000 barrels. Secondary recovery has been important in maintaining production in Christian County. The first waterflood project in the county was in the Benoist sandstone in the Assumption Consolidated pool. In general the Benoist wells in the pool were not as good as the Rosiclare wells, and were much more restricted in area than the Devonian wells. Waterflooding began in 1950; by the end of 1956 it had produced 858,000 barrels from the Benoist sand, more than 10 percent of all of the oil produced in the county. In 1955 waterflooding of the Rosiclare sandstone and Devonian limestone was begun. Only a small amount of secondary recovery oil has so far been produced from these two pays. However, in 1956, 188,000 barrels of the 342,000 barrels produced in the Assumption Consolidated pool was attributed
to secondary recovery, mainly from the Benoist. Total secondary recovery pro- duction for the pool is 925,000 barrels, more than 10 percent of the total production for the county. If results of flooding the Rosiclare and Devonian are comparable to the Benoist flood, secondary recovery should become extremely important. ### CLARK COUNTY ### Fig. 11, Area 6 | 1.5. 11, 11101 0 | | | | | | | | | |------------------|---------------------|--------------|-------------------|-----------------|---------------------|--|--|--| | Year | Total
wells
5 | Oil
wells | Gas
wells
1 | Dry
holes | New pool production | | | | | 1937 | | 0 | | 4 | 0 | | | | | 1938 | 24 | 7 | 3 | 14 | 0 | | | | | 1939 | 20 | 4
5
7 | 0 | 16 | 0 | | | | | 1940 | 15 | 5 | 0 | 10 | 0 | | | | | 1941 | 20 | 7 | 1 | 12 | 0 | | | | | 1942 | 11 | 1 | 0 | 10 | 0 | | | | | 1943 | 6 | 2
9 | 0 | 4 | 0 | | | | | 1944 | 22 | 9 | 0 | 13 | 0 | | | | | 1945 | 5 | 1 | 0 | 4 | 0 | | | | | 1946 | 8 | 2 | 0 | 6 | 0 | | | | | 1947 | 46 | 10 | 0 | 36 | 0 | | | | | 1948 | 37 | 10 | 0 | 27 | 0 | | | | | 1949 | 50 | 16 | 0 | 34 | 28,000 | | | | | 1950 | 105 | 39 | 4 | 62 | 199,000 | | | | | 1951 | 57 | 26 | Ō | 31 | 266,000 | | | | | 1952 | 59 | 22 | 0 | 37 | 236,000 | | | | | 1953 | 41 | 9 | ŏ | 32 | 187,000 | | | | | 1954 | 34 | 10 | ŏ | $\frac{32}{24}$ | 151,000 | | | | | 1955 | 67 | 33 | ŏ | 34 | 152,000 | | | | | 1956 | 64 | 26 | ő | 38 | 233,000 | | | | | | 696 | 239 | 9 | 448 | 1,450,000 | | | | ### CUMBERLAND COUNTY Fig. 11, Area 6 | | Total | Oil | Gas | Dry | New pool | |------|-------|-------------|-------|-------|------------| | Year | wells | wells | wells | holes | production | | 1937 | 0 | 0 | 0 | 0 | 0 | | 1938 | 5 | 0 | 0 | 5 | 0 | | 1939 | 11 | . 0 | 0 | 11 | 0 | | 1940 | 1 | 0 | 0 | 1 | 0 | | 1941 | 0 | 0 | 0 | 0 | 0 | | 1942 | 5 | 0 | 0 | 5 | 0 | | 1943 | 10 | 0 | 0 | 10 | 0 | | 1944 | 6 | 1 | 0 | 5 | 0 | | 1945 | 3 | 0 | 0 | 3 | 0 | | 1946 | 50 | 26 | 0 | 24 | 10,000 | | 1947 | 19 | 4 | 0 | 15 | 85,000 | | 1948 | 16 | 7 | 0 | 9 | 52,000 | | 1949 | 6 | 0
2
3 | 0 | 6 | 29,000 | | 1950 | 9 | 2 | 0 | 7 | 19,000 | | 1951 | 16 | 3 | 0 | 13 | 13,000 | | 1952 | 5 | 1 | 0 | 4 | 12,000 | | 1953 | 9 | 2
3 | 0 | 7 | 8,000 | | 1954 | 18 | | 0 | 15 | 9,000 | | 1955 | 10 | 0 | 0 | 10 | 10,000 | | 1956 | 11 | 0 | 0 | 11 | 7,000 | | | 210 | 49 | 0 | 161 | 255,000 | # CLARK AND CUMBERLAND COUNTIES — OLD POOLS | Year | | Old pool
production | Year | Old pool production | |--------------------------------------|--|---|--|---| | 1937
1938
1939
1940
1941 | | 462,000
193,000
283,000
335,000
394,000 | 1947 .
1948 .
1949 .
1950 .
1951 . |
795,000
1,136,000
1,450,000
1,694,000
1,660,000 | | 1942
1943
1944
1945
1946 | | 374,000
365,000
386,000
451,000
734,000 | 1952 .
1953 .
1954 .
1955 .
1956 . |
. 1,517,000
. 1,448,000
. 1,589,000
. 1,886,000
. 1,880,000
 | ^{*} Includes 51,080,000 barrels of oil produced before 1937. Clark and Cumberland were among the early oil producing counties, production dating back to 1904. It is impossible to break down the old production accurately between the two counties, so they must be treated as a unit. Many of these old pools are being waterflooded. Wells drilled in the waterflood areas are not included in the above tables. Clark County has two good pools discovered since 1937, Weaver and Oak Point. Twelve of the producers drilled in 1956 were in the Oak Point pool. The 38 dry holes include 15 in pools and 23 wildcats. Most of the Cumberland County "new pool" production comes from the Lillyville pool. There were no producing wells drilled in Cumberland County in 1956 outside of waterflood projects. The 11 dry holes included four in pools and seven wildcats. Secondary recovery is very important in maintaining the level of production in the old pools of Clark and Cumberland counties. In 1956, 1,587,000 barrels of oil out of the 1,880,000 barrels produced were the result of waterflooding. Some of the projects are new, and others are being developed. ### CLAY COUNTY ### Fig. 12, Area 7 Clay County had no new pool and no important new pay in 1956. Forty of the 66 producing wells completed were in the Sailor Springs Consolidated pool, and the | CLAY COUNTY | | | | | | | | | | |-------------|----------------|--------------|--------------|--------------|-------------------|--|--|--|--| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | | | | | 1937 | 91 | 75 | 0 | 16 | 1,522,000 | | | | | | | 153 | 141 | ő | 12 | 3,922,000 | | | | | | 1938 | 159 | 136 | ő | 23 | 4,159,000 | | | | | | 1939 | | 23 | 0 | 14 | 4,687,000 | | | | | | 1940 | 37 | | 0 | 34 | 1,785,000 | | | | | | 1941 | 93 | 59 | U | 37 | 1,705,000 | | | | | | 1942 | 137 | 74 | 0 | 63 | 2,165,000 | | | | | | 1943 | 201 | 148 | 0 | 53 | 4,158,000 | | | | | | 1944 | 176 | 135 | ŏ | 41 | 4,138,000 | | | | | | 1945 | 105 | 63 | ŏ | 42 | 4,005,000 | | | | | | 1945 | 186 | 108 | ŏ | 78 | 4,317,000 | | | | | | 1940 | 100 | 100 | Ů | , 0 | -,, | | | | | | 1947 | 196 | 125 | 0 | 71 | 4,407,000 | | | | | | 1948 | 310 | 183 | 0 | 127 | 5,868,000 | | | | | | 1949 | 167 | 101 | 0 | 66 | 4,475,000 | | | | | | 1950 | 130 | 70 | 0 | 60 | 3,719,000 | | | | | | 1951 | 150 | 61 | 0 | 89 | 5,004,000 | | | | | | | | | | | | | | | | | 1952 | 92 | 25 | 0 | 67 | 3,888,000 | | | | | | 1953 | 119 | 58 | 0 | 61 | 3,543,000 | | | | | | 1954 | 225 | 125 | 0 | 100 | 4,945,000 | | | | | | 1955 | 199 | 113 | 0 | 86 | 4,212,000 | | | | | | 1956 | 124 | 66 | 0 | 58 | 4,403,000 | | | | | | | 3,050 | 1,889 | 0 | 1,161 | 79,322,000* | | | | | ^{*} Estimated in part and subject to revision. other 26 about equally divided between Clay City Consolidated and the rest of the pools in the county. Forty-six of the dry holes were drilled in pools and 12 were wildcats. Clay is one of the counties which showed the biggest decreases in drilling in 1956, a much bigger decrease than that for the state as a whole. There has never been a period of intensive drilling in the county, but it has annually ranked among the top dozen or so in number of completions. As a result, it is one of the most extensively drilled counties, and new pools of consequence are not apt to be found. However, only a few wells have tested pre-Mississippian strata in the county. The best hope for the future in Clay County lies in the discovery of profitable deep pays. Secondary recovery projects are in operation in five pools in Clay County. All are small or quite recent. The Ingraham pool flood was begun in 1956, and had not shown any results at the end of the year. The other four pools with waterflood projects (Clay City Consolidated, Kenner West, Sailor Springs Consolidated, and Stanford South) produced 408,000 barrels of second- ary recovery oil, less than 10 percent of the county's production for 1956. Cumulative secondary recovery oil production is about 1,037,000 barrels. | CLINTON | COUNTY | |---------|--------| | CLINION | COCHII | | | | Fig. | 17, Are | a 12 | | |------|-------|-------|---------|-------|-------------| | | Total | Oil | Gas | Dry | Annual | | Year | wells | wells | wells | holes | production | | 1937 | 29 | 15 | 0 | 14 | 84,000 | | 1938 | 444 | 398 | 0 | 46 | 2,909,000 | | 1939 | 62 | 35 | 0 | 27 | 2,756,000 | | 1940 | 450 | 369 | 0 | 81 | 10,163,000 | | 1941 | 64 | 25 | 1 | 38 | 4,215,000 | | 1942 | 59 | 28 | 0 | 31 | 3,1 4,000 | | 1943 | 44 | 9 | 2 | 33 | 2,520,000 | | 1944 | 19 | 1 | 0 | 18 | 2,381,000 | | 1945 | 27 | 11 | 0 | 16 | 2,409,000 | | 1946 | 53 | 22 | 0 | 31 | 2,354,000 | | 1947 | 46 | 21 | 0 | 25 | 1,964,000 | | 1948 | 42 | 24 | 0 | 18 | 1,663,000 | | 1949 | 103 | 71 | 0 | 32 | 2,188,000 | | 1950 | 165 | 81 | 1 | 83 | 1,769,000 | | 1951 | 120 | 41 | 0 | 79 | 1,756,000 | | 1952 | 84 | 22 | 0 | 62 | 1,819,000 | | 1953 | 68 | 11 | 0 | 57 | 1,659,000 | | 1954 | 121 | 49 | 1 | 71 | 1,788,000 | | 1955 | 93 | 31 | 2 | 60 | 1,678,000 | | 1956 | 99 | 27 | 2 | 70 | 2,318,000 | | | 2,192 | 1,291 | 9 | 892 | 54,932,000* | ^{*} Estimated in part and subject to revision. Includes 3,424,000 barrels of oil produced before 1937. Two new pools were discovered in Clinton County in 1956. One, Germantown East, was the second best discovery of the year according to drilling and production by the end of the year; only Bourbon in Douglas County surpassed it. By the end of the year the 21 completed wells had produced 329,000 barrels of oil from the Devonian, and other wells were being drilled. Clinton County is in the part of the state where the Devonian, Silurian, and Trenton pays have produced the most oil. It should be possible to discover more new pools like Germantown East. The second new pool was Beckemeyer Gas. Two gas wells and one oil well were completed by the end of the year. The two gas wells were capped and the oil well had not sold any oil. All three were Cypress sandstone wells. Twenty-four of the 29 producing wells drilled in 1956 were in the two new pools, 23 of the 70 dry holes were pool dry holes, and the other 47 were wildcats. Secondary recovery projects are in operation in two pools in Clinton County. The first project began in 1952 in the Bartelso pool. In 1956 the three floods operating in that pool produced 217,000 of the 356,000 barrels produced from the pool. Waterflooding was begun in the Centralia pool in 1956 and produced 136,000 barrels of oil in the first year. About 800,000 barrels of oil has been produced in Clinton County by secondary recovery operations. ### CRAWFORD COUNTY | rıg. | 9, | Area | 4 | |------|----|------|---| | Oil | (| as | D | | 11 | | 11 | 1 | | Year
1937
1938
1939
1940
1941 | Total wells 20 19 7 13 5 | Oil wells 13 7 2 1 | Gas wells 0
1 0 0 0 0 | Dry holes 7 11 5 12 4 | Annual production 1,632,000 1,597,000 1,063,000 1,226,000 1,398,000 | |--|--------------------------|--------------------|------------------------|-----------------------|---| | 1942 | 16 | 3 | 0 | 13 | 1,352,000 | | 1943 | 7 | 0 | 0 | 7 | 1,305,000 | | 1944 | 5 | 1 | 1 | 3 | 1,282,000 | | 1945 | 7 | 4 | 0 | 3 | 1,281,000 | | 1946 | 10 | 3 | 0 | 7 | 1,328,000 | | 1947 | 19 | 8 | 0 | 11 | 1,278,000 | | 1948 | 18 | 5 | 2 | 11 | 1,299,000 | | 1949 | 27 | 14 | 0 | 13 | 1,398,000 | | 1950 | 53 | 15 | 1 | 37 | 1,527,000 | | 1951 | 56 | 30 | 0 | 26 | 1,518,000 | | 1952 | 72 | 45 | 2 | 25 | 1,715,000 | | 1953 | 74 | 28 | 0 | 46 | 2,055,000 | | 1954 | 219 | 94 | 3 | 122 | 2,427,000 | | 1955 | 233 | 133 | 1 | 99 | 2,599,000 | | 1956 | 203 | 105 | 2 | 96 | 2,953,000 | | | 1,083 | 512 | 13 | 558 | 172,623,000* | ^{*} Includes 140,390,000 barrels produced before 1937. Although few Illinois counties have produced as much oil as Crawford County, most of the drilling and production occurred during the 30 years preceding 1937. During that period about 9,000 producing wells were drilled and 140,390,000 barrels of oil were produced as compared with 525 oil and gas wells drilled in the past 20 years, and 32,233,000 barrels of oil produced. When the deep basin was opened up in 1937, there had been little drilling in Crawford County for 10 years, and production was dropping. In 1954 several new pays were opened up in the old producing areas, and Crawford County has been one of the most active drilling counties for the past three years. Secondary recovery by means of both gas and water has been tried in Crawford County, but water injection has proved more satisfactory than gas. The steady increase in production since 1950 must be attributed to secondary recovery. In 1956, 1,887,000 barrels, or two-thirds of the production for the year, resulted from waterflooding. ### Coles County Fig 10 Area 5 | Fig. 10, Area 5 | | | | | | | | |-----------------|----------------|--------------|--------------|--------------|-------------------|--|--| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | | | 1937 | 1 | 0 | 0 | 1 | 0 | | | | 1938 | 7 | 0 | 0 | 7 | ŏ | | | | 1939 | 17 | 3 | Ō | 14 | ŏ | | | | 1940 | 9 | 1 | Ō | 8 | 9,000 | | | | 1941 | 8 | 1 | 0 | . 7 | 9,000 | | | | 1942 | 12 | 1 | 0 | 11 | 8,000 | | | | 1943 | 8 | î | ŏ | 7 | 11,000 | | | | 1944 | 14 | 10 | ŏ | 4 | 28,000 | | | | 1945 | 93 | 60 | ŏ | 33 | 446,000 | | | | 1946 | 378 | 299 | ŏ | 79 | 4,272,000 | | | | 1947 | 38 | 21 | 0 | 17 | 2,058,000 | | | | 1948 | 49 | 26 | ĭ | 22 | 1,295,000 | | | | 1949 | 22 | 2 | Ō | 20 | 779,000 | | | | 1950 | 18 | $\bar{0}$ | ŏ | 18 | 597,000 | | | | 1951 | 19 | 4 | Ö | 15 | 464,000 | | | | 1952 | 9 | 0 | 0 | 9 | 392,000 | | | | 1953 | 10 | ĭ | ŏ | 9 | 379,000 | | | | 1954 | 12 | 3 | ő | 9 | 415,000 | | | | 1955 | $\frac{1}{49}$ | 22 | 4 | 23 | 542,000 | | | | 1956 | 266 | 140 | 6 | 120 | 1,636,000 | | | | | 1,039 | 595 | 11 | 433 | 13,340,000 | | | As shown in the table, 1956 was the second biggest year for oil well drilling in Coles County, due to the development of the Cooks Mills area. This development is discussed on page 13. The biggest year of drilling was 10 years earlier when the Mattoon pool was being developed. Outside of these two pools, Coles County has no significant production. Westfield North produced less than 1,000 barrels before it was abandoned. Ashmore East, a one-well Pennsylvanian sandstone pool discovered in 1956, had had no pipeline runs at the end of the year. Two old pools are mainly in other counties, and their production is assigned to those counties. They are Warrenton-Borton, which is included in Edgar County production, and Westfield, included with Clark County. Until 1956 the Mattoon pool produced almost all of the Coles County oil. It has produced a total of 12,248,000 barrels of the 13,340,000 barrels produced in the county. Waterflooding was begun in 1950 in the Rosiclare sandstone, and a second project was begun in 1952 in the Cypress and Rosiclare pays. Secondary recovery is credited with a total of 551,000 barrels of oil, including 332,000 barrels of the 635,000 barrels produced in 1956. The Cooks Mills Consolidated pool produced 1,001,000 barrels of oil in Coles County in 1956, bringing its total production up to 1,092,000 barrels. Douglas County Fig. 10, Area 5 | | | ~ -8. | , | | | |--------------|----------------|--------------|--------------|--------------|-------------------| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | 1937 | 0 | 0 | 0 | 0 | . 0 | | 1937 | 0 | ő | ő | ő | Ö | | 1939 | | ő | ŏ | | Ö | | 1939 | 2 | ŏ | ŏ | 2 | ŏ | | 1940 | 2
2
2 | ő | ő | 2
2
2 | 0 | | 1941 | 2 | U | · · | - | | | 1942 | 0 | 0 | 0 | 0 | 0 | | 1943 | i | 0 | 0 | 1 | 0 | | 1944 | 2 | 0 | 0 | 2 | 0 | | 1945 | ō | 0 | 0 | 0 | 0 | | 1946 | 0 | 0 | 0 | 0 | 0 | | 1047 | 1 | 0 | . 0 | 1 | 0 | | 1947 | 1 | 0 | ŏ | i | ŏ | | 1948
1949 | | 0 | ő | | ŏ | | 1949 | 3 | ő | ő | 3
3 | ŏ | | 1950 | 3
3
4 | ő | ŏ | 4 | ŏ | | 1931 | 4 | U | U | | · · | | 1952 | 4 | 0 | 0 | 4 | 0 | | 1953 | · 0 | 0 | . 0 | 0 | 0 | | 1954 | 1 | 0 | 0 | 1 | 0 | | 1955 | 12 | 1 | 0 | 11 | 0 | | 1956 | 248 | 102 | 0
5 | 141 | 724,000 | | | 286 | 103 | 5 | 178 | 724,000 | Prior to 1956 very little testing for oil or gas had been done in Douglas County. The nearest production of economic value was about 10 miles to the south in the Mattoon pool. A few producing wells had been drilled closer to the county line, but none had produced oil in commercial quantity. The Murdock pool in Douglas County, dis- covered in 1955, is a single Pennsylvanian sandstone well which has produced only a few barrels of oil. Toward the end of 1955 good Rosiclare sandstone production was found in the Cooks Mills area in northern Coles County. Early in 1956 the Cooks Mills Consolidated pool was extended into Douglas County. Three more pools — Bourbon, Bourbon North, and Chesterville—were discovered in 1956, all of them a short distance north of Cooks Mills Consolidated in Douglas County. One of these pools, Bourbon, was the best pool discovered in 1956. It had 50 producing wells at the end of the year and had produced almost half a million barrels of oil. The Cooks Mills-Bourbon area is discussed in more detail on page 13. Of the 248 wells drilled in Douglas County in 1956, only 107 were successful. However, only 52 of the dry holes were in pools, giving a success ratio of 2 to 1 for pool drilling. The other 89 dry holes were wildcats. Some of them had fairly good shows of oil, but Bourbon lies close to the northern edge of the part of the state having the best possibilities for oil. EDGAR COUNTY | Fig. | 10. | Area | 5 | |------|-----|-------|---| | 115. | 10, | riica | 0 | | | | O | | | | |------|----------------|--------------|--------------|--------------|-------------------| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | 1937 | 1 | 0 | 0 | 1 | 1,000 | | 1938 | 5 | 0 | 0 | 5 | 500 | | 1939 | 9 | 0 | 0 | 9 | 500 | | 1940 | 10 | 0 | 0 | 10 | 500 | | 1941 | 9 | 1 | 1. | 7 | 500 | | 1942 | 3 | 0 | 0 | 3 | 0 | | 1943 | 1 | 0 | 0 | 1 | 0 | | 1944 | 0 | 0 | 0 | 0 | 0 | | 1945 | 3 | 0 | 0 | 3 5 | 0 | | 1946 | 7 | 0 | 2 | . 5 | 0 | | 1947 | 12 | 1 | 0 | 11 | 0 | | 1948 | 5 | 1 | 0 | 4 | 0 | | 1949 | 155 | 64 | 2
5 | 89 | 132,000 | | 1950 | 113 | 40 | 5 | 68 | 596,000 | | 1951 | 34 | 4 | 2 | 28 | 374,000 | | 1952 | 20 | 2
7 | 0 | 18 | 270,000 | | 1953 | 24 | | 1 | 16 | 183,000 | | 1954 | 20 | 3
2
5 | 0 | 17 | 133,000 | | 1955 | 23 | 2 | 1 | 20 | 124,000 | | 1956 | 34 | 5 | 0 | 29 | 116,000 | | | 488 | 130 | 14 | 344 | 1,958,000* | ^{*} Includes 27,000 barrels of oil produced prior to 1937 from the Warrenton-Borton pool. Edgar is one of the counties which had big increases in drilling in 1956 in contrast to the over-all decrease. Because of the county's proximity to the Cooks Mills—Bourbon area, an increase in wildcat drilling might have been expected. However, most of the drilling was in pools. Five small producing wells were completed, four in Grandview and one in Inclose, 19 dry holes were drilled in pools, and only 10 of the 34 wells drilled in 1956 were wildcats. Oil produced during 1956 included 64,000 barrels from the Dudley pool, 50,000 from Elbridge, and insignificant amounts from Inclose, Grandview, and Warrenton-Borton pools. Two pools, Redmon North and Dudley West, consist of one gas well each, and Grandview and Inclose are essentially gas pools. A few of the wells are being used, but no gas is being metered and none of the wells can be considered commercial. | \mathbf{F} | n | w | A | RI | 20 | Cor | INTV | |--------------|---|---|---|----|----|-----|------| | | | | | | | | | | | | Fig. | 8, Are | a 3 | | |------|-------|-------|--------|-------|------------| | | Total | Oil | Gas | Dry | Annual | | Year | wells | wells | wells | holes | production | | 1937 | 1 | . 0 | 0 | 1 | 0 | | 1938 | Ō | ŏ | ŏ | Ō | ŏ | | 1939 | 34 | 17 | Ŏ | 17 | 55,000 | | 1940 | 79 | 62 | Ō | 17 | 1,067,000 | | 1941 | 52 | 36 | Ō | 16 | 1,466,000 | | 1942 | 49 | 30 | 0 | 19 | 1,775,000 | | 1943 | 68 | 37 | 0 | 31 | 1,355,000 | | 1944 | 143 | 95 | 0 | 48 | 1,914,000 | | 1945 | 145 | 105 | 0 | 40 | 2,855,000 | | 1946 | 65 | 37 | 0 | 28 | 1,929,000 | | 1947 | 77 | 33 | 0 | 44 | 1,538,000 | | 1948 | 63 | 27 | 0 | 36 | 1,337,000 | | 1949 | 70 | 31 | 0 | 39 | 1,207,000 | | 1950 | 106 | 56 | 1 | 49 | 1,216,000 | | 1951 | 103 | 39 | 0 | . 64 | 1,544,000 | | 1952 | 101 | 40 | 0 | 61 | 1,506,000 | | 1953 | 119 | 68 | 0 | 51 | 1,565,000 | | 1954 | 62 | 24 | 0 | 38 | 1,379,000 | | 1955 | 84 | 43 | 0 - | 41 | 1,462,000 | | 1956 | 70 | 28 | 0, | 42 | 1,534,000 | | | | | | | | ^{*} Estimated in part
and subject to revision. 808 1,491 Edwards is one of the most densely drilled counties. Unless new pays are opened up, the amount of future drilling . 1 26,704,000* will probably be small. In 1956 there was no area of concentrated drilling. The 28 new producing wells were distributed, for the most part, one or two to a pool; no pool had more than half a dozen. The 42 dry holes included 31 in pools and 11 wildcats. Waterflooding and pressure maintenance are being used effectively in the Albion Consolidated pool. Waterflooding is also being used in Maplegrove Consolidated and Samsville North, and pressure maintenance in Bone Gap Consolidated. In 1956, 422,000 barrels of oil, more than one-fourth of the year's production, was recovered by secondary recovery operations. Over 2,000,000 barrels of the county's total production is attributed to secondary recovery. ### EFFINGHAM COUNTY Fig. 16, Area 11 | | 11g. 10, Alca 11 | | | | | | | | |------|------------------|---------------|--------------|--------------|-------------------|--|--|--| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | | | | 1937 | 4 | 0 | 0 | 4 | 0 | | | | | 1938 | 8 | 0 | Õ | 8 | ő | | | | | 1939 | 13 | 0 | . 0 | 13 | Ö | | | | | 1940 | 12 | 3 | Õ | 9 | 2,000 | | | | | 1941 | 32 | 17 | 0 | 15 | 173,000 | | | | | 1942 | 38 | 16 | 0 | 22 | 104 000 | | | | | 1943 | 44 | 29 | 0 | 22
15 | 194,000 | | | | | 1944 | 38 | 15 | ő | 23 | 365,000 | | | | | 1945 | 88 | 55 | 0 | 33 | 390,000 | | | | | 1946 | 42 | 12 | 0 | | 980,000 | | | | | 1940 | 42 | 12 | U | 30 | 835,000 | | | | | 1947 | 39 | 19 | 0 | 20 | 577,000 | | | | | 1948 | 33 | 8
12 | . 0 | 25 | 476,000 | | | | | 1949 | 23 | 12 | 0 | 11 | 453,000 | | | | | 1950 | 71 | 34 | 0 | 37 | 589,000 | | | | | 1951 | 48 | 20 | 0 | 28 | 440,000 | | | | | 1952 | 23 | 2 | | . 01 | 205 000 | | | | | 1953 | 19 | $\frac{2}{4}$ | 0 | 21 | 395,000 | | | | | 1954 | 39 | . 16 | 0 | 15 | 326,000 | | | | | 1955 | - 58 | | 0 | 23 | 473,000 | | | | | | | 24
13 | 0 | 34 | 545,000 | | | | | 1956 | 38 | 13 | 0 | 25 | 558,000 | | | | | • | 710 | 299 | 0 | 411 | 7,768,000 | | | | As shown in the table, Effingham County has had no outstanding peaks or lows in drilling activity or oil production; variation in drilling from year to year has usually been no greater than that for the state as a whole. Most of the pools are small. About 70 percent of the production has come from the two biggest pools, Iola Consolidated and Sailor Springs Consolidated. both of which have most of their wells and production in Clay County. A small area of the Louden pool extends from Fayette County into Effingham. At present Iola Consolidated has the highest production rate in the county. Eleven of the 13 producing wells completed in 1956 were in the Iola Consolidated pool, which produced 188,000 barrels for the year, bringing its total production to 2,863,000 barrels. Sailor Springs Consolidated produced only 98,000 barrels in 1956, but has a total production of 3,291,000 barrels. The only secondary recovery operations in Effingham County are in this pool. Four waterflood projects, all in the Rosiclare or McClosky, were begun in 1954 and 1955. In 1956, 33,000 barrels, about one-third of the year's production, was due to waterflooding. About 50,000 barrels of oil has so far been produced in this way. Hill East, the largest pool lying wholly in Effingham County, had a 1956 production of 187,000 barrels, bringing its total up to 462,000 barrels. Eleven of the dry holes drilled in 1956 were in pools and 14 were wildcats. No new pool or important new pay was discovered. ### FAYETTE COUNTY ### Fig. 16, Area 11 Fayette is one of the few counties in the state in which oil wells outnumber dry holes. During 1938, 1939, and 1940, when Louden and St. James pools were being developed, about 90 percent of all wells drilled were producers. Annual completions for the entire state usually show a majority of the holes to be dry. Fayette County had a second period of intensive drilling in 1950 during which an extension to the Louden pool was drilled up. Except for these two periods, Fayette has had few wells drilled and most of them have been unsuccessful. Of the 29 wells drilled in 1956, nine were producers, eight were dry holes in pools, and 12 were unsuccessful wildcats. | | FAYETTE COUNTY | | | | | | | | |------|----------------|--------------|--------------|--------------|-------------------|--|--|--| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | | | | 1937 | 11 | 2 | 0 | 9 | 0 | | | | | 1938 | 575 | 509 | 1 | 65 | 1,940,000 | | | | | 1939 | 960 | 895 | 0 | 65 | 18,791,000 | | | | | 1940 | 577 | 515 | 0 | 62 | 28,281,000 | | | | | 1941 | 238 | 190 | 0 | 48 | 24,871,000 | | | | | 1942 | 69 | 47 | 0 | 22 | 19,499,000 | | | | | 1943 | 44 | 18 | 0 | 26 | 14,845,000 | | | | | 1944 | 19 | 1 | 0 | 18 | 12,234,000 | | | | | 1945 | 9 | 0 | 0 | 9 | 10,197,000 | | | | | 1946 | 24 | 4 | 0 | 20 | 8,930,000 | | | | | 1947 | 22 | 3 | 2 | 17 | 8,055,000 | | | | | 1948 | 12 | 6 | 0 | 6 | 7,255,000 | | | | | 1949 | 78 | 52 | 2 | 24 | 6,631,000 | | | | | 1950 | 173 | 114 | 0 | 59 | 7,718,000 | | | | | 1951 | 80 | 24 | 3 | 53 | 6,514,000 | | | | | 1952 | 36 | 7 | 6 | 23 | 6,016,000 | | | | | 1953 | 18 | 6 | 0 | 12 | 5,620,000 | | | | | 1954 | 14 | 7 | 0 | 7 | 6,668,000 | | | | | 1955 | 18 | 4 | 0 | 14 | 8,075,000 | | | | | 1956 | 29 | 9 | 0 | 20 | 10,369,000 | | | | | | 3,006 | 2,413 | 14 | 579 | 212,509,000 | | | | Three of the five pools in Fayette County are small. St. Paul, Patoka West, and Laclede had a combined production of about 25,000 barrels in 1956, and a total production of less than 1,000,000 barrels of oil. A secondary recovery project by water-flooding was begun in the St. James pool in 1954. Only nine producing wells are included in the project, so the amount of oil produced by this method is comparatively small. Only 25,000 of the 406,000 barrels produced in 1957 are attributed to secondary recovery, and only 80,000 barrels of the pool's total production of about 13,743,000 barrels of oil is so classified. Pressure maintenance was used in the Louden pool from early in the pool's development. In 1950 one waterflood project was begun. Others have been or are being started, including five new floods in 1956. Flooding has been confined to the Chester (Mississippian) sands; pressure maintenance is still used in the Devonian. In 1956, Louden produced 9,928,000 barrels of oil, of which 7,694,000 barrels were attributed to waterflooding or pressure maintenance. These same operations are credited with 30,950,000 barrels of the total production of 197,968,000 barrels of oil from the Louden pool. #### Franklin County Fig. 15, Area 10 | V | Total | Oil | Gas | Dry | Annual | |----------|-------|-------|-------|-------|------------| | Year | wells | wells | wells | holes | production | | 1937 | 0 | 0 | 0 | 0 | 0 | | 1938 | 6 | 0 | 0 | 6 | 0 | | 1939 | 9 | 1 | 0 | 8 | 3,000 | | 1940 | 20 | 16 | 0 | 4 | 79,000 | | 1941 | 277 | 231 | 0 | 46 | 7,144,000 | | 1942 | 65 | 23 | 0 | 42 | 5,588,000 | | 1943 | 58 | 25 | Ō | 33 | 2,737,000 | | 1944 | 50 | 23 | Ō | 27 | 2,129,000 | | 1945 | 28 | 9 | 0 | 19 | 1,650,000 | | 1946 | 10 | 1 | 0 | 9 | 1,301,000 | | 1947 | 49 | 30 | 0 | 19 | 1,233,000 | | 1948 | 127 | 78 | Ō | 49 | 1,776,000 | | 1949 | 116 | 64 | 0 | 52 | 2,034,000 | | 1950 | 77 | 39 | 0 | 38 | 1,687,000 | | 1951 | 32 | 7 | 0 | 25 | 3,150,000 | | 1952 | 20 | 6 | 0 | 14 | 3,310,000 | | 1953 | 16 | 7 | Ŏ | 9 | 2,996,000 | | 1954 | 36 | 21 | 0 | 15 | 2,386,000 | | 1955 | 53 | 28 | Ŏ | 25 | 2,285,000 | | 1956 | 84 | 40 | ŏ | 44 | 2,075,000 | | | 1,133 | 649 | 0 | 484 | 48,962,000 | Franklin County is one of the few Illinois counties that showed an appreciable increase in drilling last year in contrast to the state's over-all decrease. Drilling was widespread; 12 of the 40 new oil wells completed were in the Akin pool, 11 were in the West Frankfort pool, and most of the others were distributed one or two to a pool. Of the 44 dry holes, 23 were in pools and 21 were unsuccessful wildcats. One new pool was discovered, Ewing East, which had not run any oil at the end of the year. The Benton pool produced 1,050,000 barrels of oil in 1956, slightly more than half of the production for the county. The total for the pool on January 1, 1957, was 32,708,000 barrels or about three fourths of the county's total production. Secondary recovery has probably been more important in the Benton pool than in any other pool in the state except possibly Salem Consolidated and Louden. In 1949 when waterflooding began, annual production had dropped to 511,000 barrels; in 1956 secondary recovery is credited with 734,000 barrels in Benton, which has had a total of 9,449,000 barrels of oil recovered by waterflooding. #### GALLATIN COUNTY Fig. 7, Area 2 | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | |------|----------------|--------------|-------------------|--------------|---| | | | | | | production | | 1937 | 0 | 0 | 0 | 0 | 0 | | 1938 | 0 | 0 | 0 | 0 | 0 | | 1939 | 19 | 6 | 0 | 13 | 25,000 | | 1940 | 24 | 12 | 0 | 12 | 109,000 | | 1941 | 96 | 62 | 0 | 34 | 878,000 | | | | | | | , | | 1942 | 53 | 30 | 1 | 22 | 878,000 | | 1943 | 49 | 39 | 0 | 10 | 1,052,000 | | 1944 | 42 | 25 | ŏ | ĨŽ | 1,317,000 | | 1945 | 31 | 15 | ŏ | 16 | 967,000 | | 1946 | 22 | 9 | ŏ | 13 | 929,000 | | 1710 | 22 | , | U | 13 | 727,000 | | 1947 | 88 | 45 | 1 | 42 | 859,000 | | 1948 | 217 | 149 | 1 | 67 | 2,245,000 | | 1949 | 194 | 112 | ī | 81 | 3,057,000 | | 1950 | 123 | 54 | $\dot{\tilde{2}}$ | 67 | 1,914,000 | | 1951 | 78 | 31 | ī | 46 | 1,632,000 | | 1/31 | 70 | 31 | 1 | 10 | 1,052,000 | | 1952 | 65 | 30 | 0 | 35 | 1,463,000 | | 1953 | 83 | 47 | Õ | 36 | 1,456,000 | | 1954 | 96 | 63 | ŏ | 33 | 1,480,000 | | 1955 |
200 | 118 | ŏ | 82 | 2,675,000 | | 1956 | 131 | 68 | ŏ | 63 | 3,057,000 | | 1730 | 131 | | | | 3,037,000 | | | 1,611 | 915 | 7 | 689 | 25,992,000 | | | | | | | | Gallatin is one of the counties that had the biggest decrease in drilling in 1956, but drilling was so far above normal in 1955 that in spite of a decrease of more than 25 percent, 1956 was the fourth highest drilling year for the county. Most of the new producing wells were in either Roland Consolidated (37 wells) or Inman East Consolidated (19 wells). Forty-three of the dry holes were drilled in pools, and 20 were wildcats. Secondary recovery operations are widespread and successful. Four pools, Inman East Consolidated, Inman West Consolidated, Junction, and Roland Consolidated, have waterflood projects, and Omaha has pressure maintenance. More than half of the 1956 production (1,687,000 barrels) is the result of secondary recovery operations, and almost 20 percent of the county's total production (5,121,000 barrels). #### Hamilton County #### Fig. 6, Area 1 Dry Total Oil Gas Annual production Year wells wells wells holes Ω 680,000 8,837,000 9,964,000 7,317,000 5,887,000 4,874,000 3,956,000 3,700,000 3,587,000 3,346,000 3,887,000 4,603,000 4,104,000 3,435,000 3,311,000 4,095,000 4,252,000 79,837,000 2,615 1,630 Most of the pool wells drilled in Hamilton County in 1956 were in the Dale Consolidated pool, and most of the new production is from the Aux Vases sandstone. A total of 57 producing wells, 51 of them in the Aux Vases, were completed in Dale Consolidated and 15 Aux Vases and six Renault wells in Bungay Consolidated. The 81 dry holes include 58 pool wells and 23 wildcats. Secondary recovery operations are in effect in the two biggest pools in the county. Dale Consolidated, which has produced and is currently producing about three-fourths of the Hamilton County oil, has four small waterflood projects; their 1956 production was only 157,000 barrels out of 3,018,000 for the pool for the year. In Bungay Consolidated an Aux Vases flood produced 202,000 barrels in 1956, or more than 25 percent of the pool's production for the year which amounted to 792,000 barrels. ### HANCOCK AND McDonough | | Total | Oil | Gas | Dry | Annual | |------|------------------|-------------|-------|-------------|------------| | Year | wells | wells | wells | holes | production | | 1937 | 17 | 12 | 0 | 5 | 148,000 | | 1938 | 9 | 2 | Ŏ | 7 | 128,000 | | 1939 | 10 | 2 | 0 | 8 | 136,000 | | 1940 | 11 | 2
4
3 | 0 | 7 | 121,000 | | 1941 | 11 | 3 | 0 | 8 | 114,000 | | 1942 | 6 | 1 | 0 | - 5 | 107,000 | | 1943 | 1 | 0 | 0 | 1 | 97,000 | | 1944 | 5 | 0 | 0 | 5 | 108,000 | | 1945 | 9 | 4 | 0 | 5 | 107,000 | | 1946 | 0 | 0 | 0 | 0 | 108,000 | | 1947 | 5 | 0 | 0 | 5 | 101,000 | | 1948 | 5
5
3
3 | 1 | 0 | 4 | 94,000 | | 1949 | 5 | 1 | 0 | 4
3
3 | 76,000 | | 1950 | 3 | 0 | 0 | 3 | 75,000 | | 1951 | 3 | 0 | 0 | 3 | 74,000 | | 1952 | 8 | . 0 | 0 | 8 | 78,000 | | 1953 | 6 | 1 | 0 | 5 | 72,000 | | 1954 | 2 | 0 | 0 | 2 | 58,000 | | 1955 | 15 | 2 | 0 | 13 | 71,000 | | 1956 | 8 | 1 | 0 | 7 | 67,000 | | | 139 | 34 | 0 | 105 | 4,080,000* | | | | | | | | ^{*} Includes 2,140,000 barrels produced before 1937. Oil production in Hancock and Mc-Donough counties is from a single pool, Colmar-Plymouth, and cannot be divided. The pool was discovered in 1914. A total of 497 producing wells have been drilled in the two counties, 463 of them before 1937, and more than half of the oil produced was produced before 1937. In the 20 years since the deep basin was opened up, there has been little drilling in Hancock or McDonough counties. The eight wells completed in 1956 include one oil well, one pool dry hole, and three wildcats in McDonough County and one pool dry hole and two wildcats in Hancock County. ### JACKSON COUNTY Fig. 23, Area 18 Results of drilling in Jackson County have not been encouraging. Only two of the 55 wells drilled in the past 20 years have been completed as producing wells, and it is doubtful that either will be economically successful. | Jackson County | | | | | | | | | |----------------|-----------------------|--------------|--------------|-----------------------|-------------------|--|--|--| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | | | | 1937 | 0 | 0 | 0 | 0 | 0 | | | | | 1938 | 3 | 0 | 0 | 3 | 0 | | | | | 1939 | 1 | 0 | 0 | 1 | 0 | | | | | 1940 | 1
5 | 0 | 0 | 1
5
9 | 0 | | | | | 1941 | 10 | 1 | 0 | 9 | 500 | | | | | 1942 | 5 | 0 | 0 | 5 | 500 | | | | | 1943 | 2 | 0 | 0 | 2 | 500 | | | | | 1944 | 2 | . 0 | 0 | 2 | 500 | | | | | 1945 | 2
2
2 | 0 | 0 | 2
2
2 | 500 | | | | | 1946 | 0 | 0 | 0 | 0 | 200 | | | | | 1947 | 1 | 0 | 0 | 1 | 0 | | | | | 1948 | 3 | 0 | 0 | 3 3 | 200 | | | | | 1949 | 3 | 0 | 0 | | 200 | | | | | 1950 | 0 | 0 | 0 | 0 | 0 | | | | | 1951 | 0 | 0 | 0 | 0 | 500 | | | | | 1952 | 2 | 0 | 0 | 2 | 0 | | | | | 1953 | 3 | 0 | 0 | 3 | 0 | | | | | 1954 | 2
3
4
5
4 | 0 | 0 | 2
3
4
5
3 | 0 | | | | | 1955 | 5 | 0 | 0 | 5 | 0 | | | | | 1956 | 4 | 1 | 0 | 3 | 0 | | | | | | 55 | 2 | 0 | 53 | 4,000 | | | | Ava—Campbell Hill, older of the two pools in the county, was discovered in 1916 and abandoned in 1943. It had both oil and gas wells but produced little of either. In 1956 a Cypress oil well was completed, which revived the pool, but no production was reported for 1956. The Elkville pool consists of a single well drilled in 1941 which has produced about 4,000 barrels of oil. No production has been reported since 1951. ### JASPER COUNTY Fig. 13, Area 8 No new pool was discovered in Jasper County in 1956, but the Oak Point pool expanded from Clark County into Jasper County, and the first production in Jasper County from Sailor Springs Consolidated was reported, from a well drilled in 1955. Thirteen Aux Vases sandstone oil wells were completed in the Jasper County portion of Oak Point and eight McClosky wells in Ste. Marie West. Most of the other wells among the 62 producing wells completed in the county in 1956 were in Clay City Consolidated. The 62 dry holes include 30 in pools and 32 wildcats. Four pools in the county have waterflood projects: Clay City Consolidated, Dundas East, Ste. Marie and Willow Hill East. The Ste. Marie waterflood began in 1948, one of the early ones in the deep basin. In 1956 secondary recovery projects produced 207,000 barrels of oil, about 10 percent of the county's production for the year. About 600,000 barrels of oil have been recovered by secondary recovery methods. | ASPER | COUNTY | |-------|--------| | Jinor | | | | Total | Oil | Gas | Dry | Annual | |------|-------|-------|-------|-------|-------------| | Year | wells | wells | wells | holes | production | | 1937 | 3 | 0 | 0 | 3 | 0 | | 1938 | 6 | 0 | 0 | 6 | 0 | | 1939 | 8 | 1 | 0 | 7 | 0 | | 1940 | 63 | 47 | 0 | 16 | 608,000 | | 1941 | 176 | 140 | 0 | 36 | 3,887,000 | | 1942 | 101 | 71 | 0 | 30 | 3,026,000 | | 1943 | 26 | 11 | 0 | 15 | 1,499,000 | | 1944 | 18 | 5 | 0 | 13 | 975,000 | | 1945 | 40 | 18 | 0 | 22 | 1,055,000 | | 1946 | 61 | 26 | 0 | 35 | 1,183,000 | | 1947 | 97 | 46 | 0 | 51 | 1,373,000 | | 1948 | 118 | 49 | 0 | 69 | 1,310,000 | | 1949 | 77 | 33 | 0 | 44 | 1,374,000 | | 1950 | 70 | 29 | 0 | 41 | 1,382,000 | | 1951 | 32 | 9 | O | 23 | 1,479,000 | | 1952 | 40 | 8 | 0 | 32 | 1,114,000 | | 1953 | 30 | 8 | 0 | 22 | 613,000 | | 1954 | 27 | 16 | 0 | 11 | 1,360,000 | | 1955 | 165 | 117 | 0 | 48 | 2,104,000 | | 1956 | 124 | 62 | 0 | 62 | 2,209,000 | | | 1,282 | 696 | 0 | 586 | 26,551,000* | ^{*} Estimated in part. Subject to revision. ### JEFFERSON COUNTY Fig. 15, Area 10 Three new pools, Cravat West, Mt. Vernon North, and Oakdale, were discovered in Jefferson County in 1956. Cravat West had had no commercial production from its two Pennsylvanian wells at the end of the year. Mt. Vernon North was a one-well McClosky pool which produced about 5,000 barrels of oil. Oakdale had four Aux Vases and two McClosky wells which had produced 61,000 barrels of oil. Divide West had more producing wells drilled in 1956 than any other pool in the county. Thirteen Ste. Genevieve and four | Jefferson County | | | | | | | | |------------------|----------------|--------------|--------------|--------------|-------------------|--|--| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | | | 1937 | 0 | 0 | 0 | 0 | 0 | | | | 1938 | 68 | 40 | 0 | 28) | 071 000 | | | | 1939 | 73 | 36 | 0 | 37 | 971,000 | | | | 1940 | 33 | 16 | 0 | 17 | 960,000 | | | | 1941 | 184 | 147 | 0 | 37 | 3,449,000 | | | | 1942 | 84 | 32 | 0 | 52 | 3,922,000 | | | | 1943 | 116 | 64 | 0 | 52 | 3,029,000 | | | | 1944 | 142 | 88 | 0 | 54 | 2,743,000 | | | | 1945 | 173 | 120 | 0 | 53 | 4,918,000 | | | | 1946 | 76 | 46 | 0 | 30 | 4,449,000 | | | | 1947 | 51 | 19 | 0 | 32 | 3,538,000 | | | | 1948 | 89 | 39 | 0 | 50 | 3,222,000 | | | | 1949 | 47 | 23 | 0 | 24 | 3,003,000 | | | | 1950 | 50 | 17 | 0 | 33 | 2,477,000 | | | | 1951 | 52 | 11 | 0 | 41 | 2,050,000 | | | | 1952 | 63 | 26 | 0 | 37 | 1,995,000 | | | | 1953 | 52 | 25 | 0 | 27 | 2,011,000 | | | | 1954 | 98 | 52 | 0 | 46 | 2,271,000 | | | | 1955 | 85 | 43 | 0 | 42 | 2,506,000 | | | | 1956 | 93 | 39 | 0 | 54 | 2,832,000 | | | | | 1,629 | 883 | 0 | 746 | 50,346,000 | | | St. Louis wells were completed. The 54 dry holes included 31 in pools and 23 wildcats. Waterfloods were begun in two Jefferson County pools in 1954 and in two more in 1955. Results are most apparent in the Boyd pool, where 353,000 barrels of the 936,000 barrels produced in 1956 are from waterflooded leases. Other secondary recovery projects have been in operation too short a time to have been very effective. Pressure maintenance has been practised in the old Dix area of the Salem Consolidated pool for many years. In 1956 it was credited with 437,000 barrels of the 445,000 barrels produced in the Jefferson County part of the pool. Cumulative pressure maintenance production is
7,993,000 barrels of the total 8,435,000 barrels for the pool. ### LAWRENCE COUNTY ### Fig. 9, Area 4 Lawrence County has produced more oil than any other county except Marion. However, half a dozen counties are currently outproducing it and will probably pass it in the next few years. Oil was discovered in Lawrence County in 1906; in the following 30 years about 4/5 of the producing wells which have been drilled in the county were completed, and about 4/5 of the total oil production had been produced. Total production from the new pools is less than annual production from the old Lawrence pool. | LAWRENCE | COUNTY | |----------|--------| |----------|--------| | Year | Total
wells | | Gas
wells | | | Annual
roduction | |------|----------------|-----|--------------|-----|--------------|---------------------| | | | | | | New
Pools | Old
Pools | | 1937 | 13 | 5 | 2 | 6 | 0 | 2,038,000 | | 1938 | 36 | 10 | 15 | 11 | 0 | 1,751,000 | | 1939 | 41 | 3 | 18 | 20 | 0 | 1,304,000 | | 1940 | 28 | 6 | 9 | 13 | 500 | 1,528,000 | | 1941 | 48 | 18 | 8 | 22 | 5,000 | 1,826,000 | | 1942 | 58 | 37 | 5 | 16 | 42,000 | 1,733,000 | | 1943 | 66 | 31 | 5 | 30 | 35,000 | 1,726,000 | | 1944 | 57 | 20 | 3 | 34 | 28,000 | 1,615,000 | | 1945 | 20 | 3 | 0 | 17 | 24,000 | 1,702,000 | | 1946 | 51 | 25 | 0 | 26 | 54,000 | 1,865,000 | | 1947 | 67 | 25 | 0 | 42 | 142,000 | 1,845,000 | | 1948 | 35 | 12 | 0 | 23 | 84,000 | 1,760,000 | | 1949 | 95 | 36 | 0 | 59 | 167,000 | 1,885,000 | | 1950 | 184 | 62 | 0 | 122 | 700,000 | 2,030,000 | | 1951 | 75 | 26 | 0 | 49 | 505,000 | 1,951,000 | | 1952 | 133 | 70 | 0 | 63 | 539,000 | 2,224,000 | | 1953 | 106 | 53 | 0 | 53 | 520,000 | 2,654,000 | | 1954 | 141 | 74 | O | 67 | 364,000 | 2,878,000 | | 1955 | 255 | 175 | 0 | 80 | 352,000 | 3,479,000 | | 1956 | 163 | 110 | 0 | 53 | 313,000 | 4,553,000 | | | 1,672 | 801 | 65 | 806 | 3,876,000 | 262,364,000* | * Includes approximately 220,000,000 barrels produced before Ruark had eight new producing wells completed and Ruark West six in 1956. The remaining 96 were in the old Lawrence pool. Most of these were drilled to new pays in areas of old production. The 53 dry holes included 46 in pools and only seven wildcats. Secondary recovery operations are an important factor in maintaining production in Lawrence County. Projects now in operation in the old Lawrence pool have produced 8,624,000 barrels of oil, including 2,526,000 barrels in 1956, 55 percent of the pool's production for the year. ### MACON COUNTY ### Fig. 18, Area 13 The Macon County drilling "boom" resulting from the discovery of the Blackland pool in 1953 seems to be ending. One | | | MAC | on Cou | INTY | | | \mathbf{M}_{A} | ACOUPIN CO | DUNTY | | |------|----------------------|--------------|--------------|----------------------|-------------------|------|------------------|--------------|--------------|--------------| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | | 1937 | 0 | 0 | 0 | 0 | 0 | 1937 | 0 | 0 | 0 | 0 | | 1938 | $\overset{\circ}{2}$ | ŏ | ŏ | $\overset{\circ}{2}$ | ŏ | 1938 | ğ | ŏ | ž | ž | | 1939 | $\tilde{2}$ | Ŏ | ŏ | $\bar{2}$ | ŏ | 1939 | 4 | Ŏ | 3 | i | | 1940 | $\bar{4}$ | ŏ | ŏ | $\bar{4}$ | ŏ | 1940 | 9 | Ŏ | 0 | 9 | | 1941 | 0 | Õ | Ō | Ō | Õ | 1941 | 8 | 3 | Ō | 5 | | 1942 | 1 | 0 | 0 | 1 | 0 | 1942 | 20 | 1 | 4 | 15 | | 1943 | 0 | 0 | 0 | 0 | 0 | 1943 | 2 | 0 | 0 | 2 | | 1944 | 0 | 0 | 0 | 0 | 0 | 1944 | 3 | 1 | 0 | 2 | | 1945 | 0 | 0 | 0 | 0 | 0 | 1945 | 3 | 2 | 0 | 1 | | 1946 | 2 | 0 | 0 | 2 | 0 | 1946 | 4 | 0 | 0 | 4 | | 1947 | 1 | 0 | 0 | 1 | 0 | 1947 | 3 | 0 | 0 | 3 | | 1948 | 1 | 0 | 0 | 1 | 0 | 1948 | 1 | 0 | 0 | 1 | | 1949 | 10 | 0 | 0 | 10 | 0 | 1949 | 15 | 0 | 0 | 15 | | 1950 | 5 | 0 | 0 | 5 | 0 | 1950 | 12 | 1 | 0 | 11 | | 1951 | 6 | 0 | 0 | 6 | 0 | 1951 | 11 | 0 | 0 | 11 | | 1952 | 1 | 0 | 0 | 1 | 0 | 1952 | 7 | 0 | 0 | 7 | | 1953 | 6 | 1 | 0 | 5 | 0 | 1953 | 14 | 0 | 1 | 13 | | 1954 | 49 | 20 | 0 | 29 | 87,000 | 1954 | 15 | 1 | 0 | 14 | | 1955 | 17 | 1 | 0 | 16 | 104,000 | 1955 | 19 | 0 | 0 | 19 | | 1956 | 13 | 1 | 0 | 12 | 72,000 | 1956 | 15 | 1 | 0 | 14 | | | 120 | 23 | 0 | 97 | 263,000 | | 174 | 10 | 10 | 154 | producing well was drilled in the Oakley pool in 1956 and one former dry hole was worked over into a producer in the Harristown pool. Two of the 13 wells drilled in 1956 were dry holes in pools and 10 were unsuccessful wildcats. Shows of heavy oils are fairly common in Macon County, but there has been little production except in the Blackland pool which is in the extreme southern part of the county and extends into Christian County. The Macon County part of the pool produced 65,000 barrels in 1956, for a grand total of 236,000 barrels. Three smaller pools, Decatur, Harristown, and Oakley, had a combined production for the year of 7,000 barrels. The only other pool, Decatur North, was abandoned in 1955. ### MACOUPIN COUNTY Fig. 20, Area 15 Although oil was discovered in Macoupin County in 1909, the amount of oil which has been produced is insignificant. Data are incomplete because most of the oil has not been marketed through pipe lines, but production has probably averaged less than 1000 barrels per year. In 1956 known production was less than 500 barrels. One new pool, Hornsby South, was discovered in 1956. The discovery well was completed in late November with an initial production of nine barrels of oil and nine of water per day from a Pennsylvanian sandstone. No more wells were drilled and no oil marketed before the end of the year. The 14 dry holes drilled in 1956 included three in pools and 11 wildcats. ### Madison County Fig. 22, Area 17 Results of drilling in Madison County during the past few years have been very poor. In 1956, 42 wells were completed. These included three small Pennsylvanian sand oil wells in Livingston and Livingston South, one small Pennsylvanian sand gas well which was drilled as a wildcat and capped when completed, 8 dry holes in pools, and 30 unsuccessful wildcats. The Marine pool, producing from the Devonian and Silurian, is the biggest pool in Madison County. It had a 1956 production of 297,000 barrels, making its total 9,568,000 barrels, about 72 percent of the total production for the county. St. Jacob produced 61,000 barrels from the Trenton in 1956, to bring its total up to 2,862,000 | | | Madi | son Co | UNTY | | | | Mar | ion Coi | JNTY | | |------|----------------|--------------|--------------|--------------|-------------------|------|----------------|--------------|--------------|--------------|-------------------| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | 1937 | 1 | 0 | 0 | 1 | 0 | 1937 | 122 | 93 | 0 | 29 | 469,000 | | 1938 | $\overline{4}$ | Ō | Ō | 4 | 0 | 1938 | 729 | 643 | Ō | 86 | 3,662,000 | | 1939 | 9 | 1 | Ó | 8 | 0 | 1939 | 1,242 | 1,155 | Ō | 87 | 51,974,000 | | 1940 | 7 | 0 | 0 | 7 | 0 | 1940 | 952 | 890 | 0 | 62 | 73,958,000 | | 1941 | 3 | 0 | 0 | 3 | 0 | 1941 | 127 | 95 | 0 | 32 | 32,480,000 | | 1942 | 35 | 23 | 0 | 12 | 261,000 | 1942 | 42 | 13 | 0 | 29 | 17,070,000 | | 1943 | 23 | 14 | 0 | 9 | 442,000 | 1943 | 61 | 36 | 0 | 25 | 12,375,000 | | 1944 | 51 | 38 | 0 | 13 | 893,000 | 1944 | 46 | 26 | 0 | 20 | 9,969,000 | | 1945 | 47 | 33 | 0 | 14 | 1,184,000 | 1945 | 62 | 31 | 0 | - 31 | 9,025,000 | | 1946 | 70 | 54 | 0 | 16 | 1,454,000 | 1946 | 48 | 16 | 0 | 32 | 8,490,000 | | 1947 | 42 | 24 | 0 | 18 | 1,272,000 | 1947 | 56 | 29 | . 0 | 27 | 7,443,000 | | 1948 | 43 | 9 | 0 | 34 | 1,271,000 | 1948 | 45 | 17 | 0 | 28 | 6,380,000 | | 1949 | 75 | 18 | 0 | 57 | 1,174,000 | 1949 | 78 | 42 | 0 | 36 | 5,628,000 | | 1950 | 102 | 19 | 0 | 83 | 1,044,000 | 1950 | 42 | - 18 | 0 | 24 | 5,417,000 | | 1951 | 75 | 17 | 1 | 57 | 943,000 | 1951 | 37 | 5 | 0 | 32 | 4,880,000 | | 1952 | 35 | 7 | 0 | 28 | 807,000 | 1952 | 71 | 27 | . 0 | 44 | 4,855,000 | | 1953 | 53 | 11 | 1 | 41 | 668,000 | 1953 | 120 | 83 | . 0 | 37 | 3,960,000 | | 1954 | 52 | 0 | 0 | 52 | 568,000 | 1954 | 180 | 120 | . 0 | 60 | 6,399,000 | | 1955 | 34 | 4 | 0 | 30 | 488,000 | 1955 | 92 | 52 | 0 | 40 | 8,621,000 | | 1956 | 42 | 3 | 1 | 38 | 415,000 | 1956 | 59 | 30 | 0 | 29 | 7,266,000 | | | 803 | 275 | 3 | 525 | 12.883,000* | | 4,211 | 3,421 | 0 | 790 | 283,271,000* | ^{*} This does not include about 1,000 barrels produced from the old Collinsville pool which was abandoned in 1921. * Estimated in part and subject to revision. Includes 2,960,-000 barrels of oil produced before 1937. barrels or 22 percent of the county total. The remaining 6 percent is Pennsylvanian oil from Livingston and Livingston South pools. Secondary recovery is unimportant at present in Madison County. Two projects were started in the Livingston pool, one in 1952 and one in 1954. Only 3,000 barrels of oil has been recovered by waterflooding. ### Marion County ### Fig. 17, Area 12 Marion County has produced more oil than any other Illinois county. However, more than 50 percent of the oil was produced during a 4-year period, 1938 through 1941, when Salem and Centralia were being developed. About 80 percent of the producing wells in the county were drilled in the same period. Eight of the 30 producing wells completed in Marion County in 1956 were Trenton wells in the Patoka pool. The Trenton was a new pay at Patoka, but is an important pay in the Centralia and Salem Consolidated pools, so its discovery at Patoka may prove to be one of the most important developments of 1956. No new pool was discovered in Marion County in 1956. Twelve of the 30 producing wells were in the Patoka pool and most of the others scattered throughout the county with only two or three in any one pool. The 29 dry holes included 16 dry holes in pools and 13 wildcats. Secondary recovery has been very important in the Marion County pools. One
of the earliest waterfloods in the basin was begun in the Patoka pool in 1943. In 1956 waterflooding is credited with 143,000 of the 231,000 barrels of oil produced from the Patoka pool. Later, smaller floods were begun in the Odin, Tonti, and Wamac pools. In 1950 the Salem Unit was set up and flooding of the Salem Consolidated pool was begun. At that time it was the largest unitized project in the United States. In 1956, the Salem Consolidated pool produced 4,906,000 barrels of oil by secondary recovery operations. Secondary recovery projects in Marion County produced 5,129,000 barrels of oil in 1956. The total amount so far produced in the county by secondary recovery is about 22,700,000 barrels. Monroe County Fig. 24, Area 19 | | Total | Oil | Gas | Dry | Annual | |------|-------------|-------|-------|-------|------------| | Year | wells | wells | wells | holes | production | | 1937 | 0 | 0 | 0 | 0 | 0 | | 1938 | 1 | 0 | 0 | 1 | 0 | | 1939 | 16 | 7 | 0 | 9 | 10,000 | | 1940 | 16 | 8 | 0 | 8 | 21,000 | | 1941 | 3 | 3 | 0 | 0 | 17,000 | | 1942 | 1 | 0 | 0 | 1 | 6,000 | | 1943 | 2
2
0 | 1 | 0 | 1 | 4,000 | | 1944 | 2 | 0 | 0 | 2 | 2,000 | | 1945 | | 0 | 0 | 0 | 2,000 | | 1946 | 1 | 0 | 0 | 1 | 4,000 | | 1947 | 0 | 0 | 0 | 0 | 2,000 | | 1948 | 0 | 0 | 0 | 0 | 1,000 | | 1949 | 0 | 0 | 0 | 0 | 1,000 | | 1950 | 1 | 0 | 0 | 1 | 0 | | 1951 | 1 | 0 | 0 | 1 | 0 | | 1952 | 2 | 0 | 0 | 2 | 0 | | 1953 | 0 | 0 | 0 | 0 | 0 | | 1954 | 1 | 0 | 0 | 1 | 1,000 | | 1955 | 1 | 0 | 0 | 1 | 0 | | 1956 | 0 | 0 | 0 | 0 | 1,000 | | | 48 | 19 | 0 | 29 | 238,000* | ^{*} Includes 166,000 barrels produced before 1937. Monroe County has only one oil or gas pool, and has had only one producing well completed in 15 years. Waterloo, the only pool, was discovered in 1920; 23 producing wells were drilled before 1937, and there was another period of development in 1939 and 1940. In 1951 the northern part of the pool was converted into underground gas storage. Three producing wells at the southern end of the pool still produce a small amount of oil. ### Montgomery County ### Fig. 20, Area 15 Montgomery was one of the counties having the biggest increases in drilling in 1956. The 31 wells drilled in 1956 included one dry pool test and 30 wildcats. In the past four years 70 wells have been drilled, all of them dry. Most of the oil produced in Montgomery County has come from Pennsylvanian pays. Recent development of Devonian and Silurian production in Christian and Bond counties encourages the hope that deep production may also be found in Montgomery County, but drilling has not substantiated this hope. | | | Montgo | MERY (| COUNTY | | |------|--------|-------------|--------|-----------------------|------------| | | Total | Oil | Gas | Dry | Annual | | Year | wells | wells | wells | holes | production | | 1937 | 0 | 0 | 0 | 0 | 0 | | 1938 | 7 | 0 | 1 | 6 | 0 | | 1939 | 11 | 1 | 0 | 10 | 0 | | 1940 | 40 | - 6 | . 0 | 34 | 1,000 | | 1941 | 15 | 1 | 0 | 14 | 4,000 | | 1942 | 4 | 1 | 1 | 2 | 2,000 | | 1943 | 10 | 2 3 | 0 | 2
8
8
2
1 | 3,000 | | 1944 | 11 | 3 | 0 | 8 | 2,000 | | 1945 | 2
1 | 0 | 0 | 2 | 3,000 | | 1946 | 1 | 0 | 0 | 1 | 2,000 | | 1947 | 8 | .1 | 0 | 7 | 1,000 | | 1948 | 15 | 2 | 0 | 13 | 3,000 | | 1949 | 31 | 2
4
1 | 0 | 27 | 4,000 | | 1950 | 23 | | 1 | 21 | 5,000 | | 1951 | 20 | 2 | 0 | 18 | 2,000 | | 1952 | 35 | 4 | 0 | 31 | 10,000 | | 1953 | 13 | 0 | 0 | 13 | 7,000 | | 1954 | 11 | 0 | 0 | 11 | 6,000 | | 1955 | 15 | 0 | 0 | 15 | 6,000 | | 1956 | 31 | 0 | 0 | 31 | 5,000 | | | 303 | 28 | 3 | 272 | 88,000* | ^{*} Includes 22,000 barrels produced in Litchfield pool before 1937. ### Morgan County | | 1.10 | | ~ | | |------|----------------------|--------------|---------------|-----------------------| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | | 1937 | 0 | 0 | 0 | 0 | | 1938 | $\overset{\circ}{4}$ | ŏ | ŏ | | | 1939 | i | ŏ | ŏ | 4
1 | | 1940 | | ŏ | ŏ | Ô | | 1941 | 0
5 | 0 | ő | 0
5 | | 1741 | 3 | V | U | 5 | | 1942 | 3 | 0 | 0 | 3 | | 1943 | 0 | 0 | 0 | 0 | | 1944 | 0 | 0 | 0 | 0 | | 1945 | 0 | 0 | 0 | 0 | | 1946 | 4 | 0 | 2 | 2 | | | | | | | | 1947 | 1 | 0 | 0 | 1 | | 1948 | 4 | 1 | 2 | 1 | | 1949 | 4 3 | 0 | $\frac{2}{1}$ | 1
1
2
5
1 | | 1950 | | 0 | 1 | 5 | | 1951 | 6
1 | 0 | 0 | 1 | | | | | | | | 1952 | 0 | 0 | 0 | 0 | | 1953 | 8 | 1 | 1 | 6 | | 1954 | 8
8
7 | 1 | 3 | | | 1955 | 7 | 0 | 1 | 6 | | 1956 | 6 | Ö | ī | 4
6
5 | | -200 | | | _ | - | | | 61 | 3 | 12 | 46 | | | | | | | At present Morgan County has two pools, Prentice and Waverly, both of which were discovered by gas wells and now contain non-producing oil and gas wells. Superficially Morgan County appears to have a fair record with one-fourth of its wells completed as producers. However, all three oil wells were too small to be operated profitably and have been non-operating since completion. The gas has been too limited in quantity to be utilized for any considerable period, so most of the wells were capped when completed. An attempt has been made to use the Waverly pool for gas storage but without success to date because of leakage from the reservoir. Another attempt at some time in the future is planned. The Jacksonville Gas pool in Morgan County was discovered in 1910 and abandoned in 1939 after producing an unknown quantity of gas. Although Morgan County has two oil and gas pools, and completed a new gas well in 1956, it has no commercial production and is located in a part of the state where there is only a slight possibility of finding a good pool. ### MOULTRIE COUNTY Fig. 19, Area 14 | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | |------|----------------|----------------------|--------------|------------------|-------------------| | 1937 | 0 | 0 | 0 | 0 | 0 | | 1938 | | ŏ | ŏ | | ő | | 1939 | 2
4 | ŏ | ŏ | $\frac{2}{4}$ | ŏ | | 1940 | Ô | ŏ | ŏ | Ô | Ö | | 1941 | ĭ | ŏ | ŏ | ĭ | ŏ | | 1711 | | O | Ü | | · · | | 1942 | 0 | 0 | 0 | 0 | 0 | | 1943 | 1 | 0 | 0 | 1 | 0 | | 1944 | 0 | 0 | 0 | 0 | 0 | | 1945 | 1
7 | 0 | 0 | 1 | 0 | | 1946 | 7 | 1 | 0 | 6 | 0 | | | | | | | | | 1947 | 1 | 0 | 0 | 1 | 100 | | 1948 | 1 | Ō | 0 | 1 | 100 | | 1949 | | 0 | . 0 | | 100 | | 1950 | 6
5
3 | 0 | 0 | 6
5
3 | 0 | | 1951 | 3 | Ō | 0 | 3 | 0 | | | _ | - | | | | | 1952 | 2 | 0 | 0 | 2 | 0 | | 1953 | 2
2
1 | ŏ | ŏ | 2 | ŏ | | 1954 | ĩ | ŏ | ŏ | ĩ | ŏ | | 1955 | 9 | $\overset{\circ}{4}$ | ŏ | 2
2
1
5 | 11,000 | | 1956 | 22 | Ô | ŏ | $2\overline{2}$ | 6,000 | | 1750 | | | | | | | | 68 | 5 | 0 | 63 | 17,000 | Moultrie County had more wells drilled last year than in any previous year; the 22 wells completed in 1956 are almost a third of the total number of wells drilled in the past 20 years. One of the 1956 completions was a dry hole in the Gays pool; the other 21 were unsuccessful wildcats. Undoubtedly much of the increased interest shown in Moultrie County in 1956 was due to the successful development of the Cooks Mills—Bourbon area only a few miles to the east. However, results of exploratory drilling were as unsatisfactory in northern Douglas County as in Moultrie County, so it is unlikely that the 1956 rate of wildcat drilling will continue into 1957. The only oil pool in Moultrie County is Gays in the extreme southeastern part, only a few miles west of Mattoon. Production for 1956 was 6,000 barrels, making a total production of 17,000 barrels for the county. PERRY COUNTY Fig. 14, Area 9 | Year
1937
1938
1939
1940
1941 | Total wells 1 5 16 8 5 | Oil wells 0 0 0 0 0 0 | Gas
wells
0
0
0
0 | Dry holes 1 | Annual production 0 0 0 0 0 0 | |--|---------------------------|-----------------------|----------------------------------|--------------------------|--| | 1942
1943
1944
1945
1946 | 14
5
5
5
3 | 3
0
0
0 | 0
0
0
0 | 11
5
5
5
3 | 2,000
1,000
4,000
2,000
2,000 | | 1947
1948
1949
1950
1951 | 5
9
5
8
9 | 0
1
1
0
0 | 0
0
0
0 | 5
8
4
8
9 | 0
1,000
3,000
2,000
3,000 | | 1952
1953
1954
1955
1956 | 33
10
7
13
24 | 9
1
0
0
1 | 1
1
0
0
0 | 23
8
7
13
23 | 52,000
50,000
28,000
20,000
18,000 | | | 190 | 16 | 2 | 172 | 187,000 | Perry County has oil production on all sides and should have good possibilities, but results so far have been disappointing. In 1956, 24 wells were drilled; one discovered a new pool, Tamaroa West, two were dry holes in pools, and 21 were unsuccessful wildcats. Perry County has had three oil pools; one, Craig, produced about 2,000 barrels before it was abandoned; no production was reported from Tamaroa West, a 1956 discovery. Tamaroa, the only good pool in the county, produced 18,000 barrels of oil in 1956, giving it a total of 185,000 barrels out of the county's 187,000 barrels of oil. PIKE COUNTY Fig. 21, Area 16 | Year
1937
1938
1939
1940
1941 | Total wells 1 0 2 4 1 | Oil
wells
0
0
0
0 | Gas
wells
0
0
0
0 | Dry
holes
1
0
2
4
1 | |--|-------------------------|----------------------------------|----------------------------------|---------------------------------------| | 1942
1943
1944
1945
1946 | 0
1
2
0
0 | 0
0
0
0
0 | 0
0
0
0 | 0
1
2
0
0 | | 1947
1948
1949
1950
1951 | 0
1
1
3
0 | 0
0
0
0
0 | 0
0
0
0 | 0
1
1
3
0 | | 1952
1953
1954
1955
1956 | 0
0
0
10
48 | 0
0
0
0 | 0
0
0
5
38 | 0
0
0
5
10 | | | 74 | 0 | 43 | 31 | As a result of the discovery of the Fishhook pool in 1955, Pike was one of the counties which showed major
increases in drilling in 1956. Results of drilling showed a percentage of successful completions much higher than that for the state as a whole. The 48 completions in 1956 included 38 gas wells and two dry holes in the Fishhook pool and eight unsuccessful wildcats. The gas wells were capped on completion. At the end of the year it seemed probable that an attempt would eventually be made to use the pool for underground storage. Pike County has had no oil production. An earlier gas pool, the Pittsfield or Pike County Gas pool, discovered in 1886, marketed some gas, but no production data are available. RANDOLPH COUNTY Fig. 24, Area 19 | Year
1937
1938
1939
1940
1941 | Total wells 1 5 7 9 7 | Oil wells 0 0 1 0 | Gas
wells
0
0
0
0 | Dry holes 1 | Annual production 0 0 0 0 0 0 0 | |--|---------------------------|------------------------|----------------------------------|-------------------------|---| | 1942
1943
1944
1945
1946 | 2
2
3
0
2 | 0
0
0
0 | 0
0
0
0 | 2
2
3
0
2 | 0
0
0
0
0 | | 1947
1948
1949
1950
1951 | 0
0
3
3
1 | 0
0
1
0
0 | 0
0
0
0 | 0
0
2
3
1 | 0
0
0
0
0 | | 1952
1953
1954
1955
1956 | 24
22
22
10
5 | 2
17
4
3
0 | 0
0
0
0 | 22
5
18
7
5 | 412,000
518,000
361,000
304,000
218,000 | | | 128 | 28 | 0 | 100 | 1,813,000 | All five of the wells drilled in Randolph County in 1956 were unsuccessful wildcats. Randolph County is essentially a one-pool county. In 1956 Tilden produced 217,000 barrels of oil, bringing its total up to 1,808,000 barrels. The Baldwin pool produced about 1,000 barrels in 1956. Both pools produce from Silurian pays. A little oil and gas were produced in the Sparta area between 1888 and 1900, and again in 1949. Production data are lacking, but quantities of oil and gas were negligible, and the oil is not included in the table for Randolph County. ### RICHLAND COUNTY ### Fig. 13, Area 8 No new pool or important new pay was discovered in Richland County in 1956. Most of the 40 producing wells were in the Clay City Consolidated pool. The 37 dry holes included 23 in pools and 14 wildcats. Six Richland County oil pools have secondary recovery projects, but all are small or too new to have produced much oil. Five of the pools, Calhoun Consolidated, Clay City Consolidated, Olney Consolidated, | | | Richi | AND CO | UNTY | | | | St. C | lair Co | UNTY | | |------|----------------|-----------------|--------------|--------------|-------------------|--------|----------------|--------------|--------------|--------------|-------------------| | Year | Total
wells | | Gas
wells | Dry
holes | Annual production | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | 1937 | 60 | 48 | 0 | 12 | 948,000 | 1937 | 2 | 0 | 0 | 2 | 33,000 | | 1938 | 180 | 135 | 0 | 45 | 4,656,000 | 1938 | 11 | 5 | 0 | 6 | 36,000 | | 1939 | 102 | 91 | Ō | 11 | 2,376,000 | 1939 | 38 | 21 | Ō | 17 | 146,000 | | 1940 | 111 | 99 | 1 | 11 | 5,011,000 | 1940 | 24 | 15 | 0 | 9 | 182,000 | | 1941 | 99 | 68 | 0 | 31 | 4,430,000 | 1941 | 38 | 27 | Ō | 11 | 304,000 | | 1942 | 92 | 49 | 1 | 42 | 3,996,000 | 1942 | 24 | 5 | 0 | 19 | 272,000 | | 1943 | 47 | 30 | Õ | 17 | 3,849,000 | 1943 | 17 | 0 | 0 | 17 | 28,000 | | 1944 | 111 | 74 | 1 | 36 | 4,078,000 | 1944 | 12 | 4 | 0 | 8 | 15,000 | | 1945 | 151 | 105 | 0 | 46 | 4,485,000 | 1945 | 3 | 0 | 0 | 3 | 95,000 | | 1946 | 161 | 93 | 1 | 67 | 4,112,000 | 1946 | 8 | 2 | 0 | 6 | 127,000 | | 1947 | 109 | 68 | 0 | 41 | 3,451,000 | 1947 | 3 | 3 | 0 | 0 | 124,000 | | 1948 | 156 | 71 | ŏ | 85 | 2,631,000 | 1948 | 7 | 7 | 0 | . 0 | 148,000 | | 1949 | 71 | $\frac{71}{26}$ | ŏ | 45 | 2,286,000 | 1949 | 5 | 3 | 0 | 2 | 106,000 | | 1950 | 149 | 59 | ĭ | 89 | 3,372,000 | 1950 | 10 | 5 | 0 | 5 | 75,000 | | 1951 | 162 | 59 | Ô | 103 | 3,386,000 | 1951 | 3 | 1 | 0 | 2 | 80,000 | | | | | | | | 1952 | 5 | 0 | 0 | 5 | 47,000 | | 1952 | 86 | 43 | 0 | 43 | 3,100,000 | 1953 | 7 | 0 | 0 | 7 | 50,000 | | 1953 | 69 | 31 | 0 | 38 | 3,199,000 | 1954 | 8 | 0 | 0 | 8 | 36,000 | | 1954 | 122 | 85 | 0 | 37 | 2,916,000 | 1955 | 16 | 1 | 0 | 15 | 28,000 | | 1955 | 113 | 78 | 0 | 35 | 2,784,000 | 1956 | 3 | 0 | 0 | 3 | 16,000 | | 1956 | 77 | 40 | 0 | 37 | 3,102,000 | | 244 | 99 | 0 | 145 | 2,826,000* | | | 2,228 | 1,352 | 5 | 871 | 68,168,000* | * I1. | | | | | before 1937. | | | | | | | | " Inci | udes 8/8,0 | oo barreis | 5 01 011 | produced | before 1737. | ^{*} Estimated in part and subject to revision. dated, Seminary, and Stringtown, had a combined secondary recovery production of 541,000 barrels of oil in 1956, and a total of about 900,000 barrels of secondary recovery oil. A project in Dundas East was not started until late 1956. D----- C----- ### St. Clair County ### Fig. 24, Area 19 All of the oil production shown in the table is from the Dupo pool which was discovered in 1928. By 1937 a total of 237 producing wells had been drilled, only 45 of which were still in operation. The entire pool was shut down late in 1954, but 30 wells were put back into operation in 1955. The Freeburg South pool, consisting of one small well, was discovered in 1955. Three wells were drilled in 1956, two wildcats and one pool dry hole which was later worked over into a small gas well. Both oil and gas production in Freeburg South must be considered non-commercial. ### SALINE COUNTY Fig. 6, Area 1 | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | |------|----------------|--------------|--------------|--------------|-------------------| | 1937 | 0 | 0 | 0 | 0 | 0 | | 1938 | | ŏ | ŏ | 4 | ŏ | | 1939 | 4
7 | ŏ | ŏ | Ź | ŏ | | 1940 | 5 | ŏ | ŏ | 5 | ŏ | | 1941 | 13 | 2 | ŏ | 11 | 1,000 | | 1942 | 12 | 0 | 0 | 12 | 3,000 | | 1943 | 2 | 0 | 1 | 1 - | 2,000 | | 1944 | 2
6
5 | 1 | 0 | 5 | 2,000 | | 1945 | 5 | 2 | 0 | 3 | 48,000 | | 1946 | 10 | 4 | 0 | 6 | 79,000 | | 1947 | 6 | 1 | 0 | 5
5 | 76,000 | | 1948 | 5 | 0 | 0 | | 44,000 | | 1949 | 16 | 0 | 0 | 16 | 27,000 | | 1950 | 25 | 4
3 | 0 | 21 | 49,000 | | 1951 | 18 | 3 | 0 | 15 | 61,000 | | 1952 | 12 | 2 | 1 | 9 | 65,000 | | 1953 | 43 | 26 | 0 | 17 | 204,000 | | 1954 | 140 | 92 | 0 | 48 | 791,000 | | 1955 | 355 | 192 | 1 | 162 | 4,099,000 | | 1956 | 220 | 107 | 0 | 113 | 2,390,000 | | | 904 | 436 | 3 | 465 | 7,941,000 | Saline County had its second biggest year for both drilling and production in 1956. The Eldorado Consolidated pool was almost completely drilled up in 1955; the 1956 drilling was concentrated in an area west and northwest of Eldorado Consolidated in the Harco, Harco East, and Dale Consolidated pools. These three pools had 93 of the 107 producing wells completed in 1956. Almost all of the new wells produced from the Aux Vases sandstone, alone or in combination. The decrease in production from 4,099,000 barrels in 1955 to 2,390,000 barrels in 1956 was a result of the much greater drop in production in the Eldorado Consolidated pool where the decrease was from 3,521,000 barrels (1955) to 965,000 barrels (1956). Part of the decrease in production in the Eldorado Consolidated pool was compensated for by major increases in the three pools where drilling was heaviest. Harco showed the biggest gain, from 6,000 to 547,000 barrels; Dale Consolidated increased from 110,000 to 406,000 barrels, and Harco East from 9,000 to 133,000 barrels. Two new pools, Pankeyville and Pankeyville East, were discovered in Saline County in 1956. At the end of the year Pankeyville consisted of two Cypress wells which had produced 5,000 barrels of oil and Pankeyville East had only 1 well and had not marketed any pipeline oil. The 113 dry holes drilled in 1956 included 58 pool dry holes and 55 unsuccessful wildcats. In drilling, Saline County ranked fifth in the state for 1956, dropping back from the second place position it held in 1955. #### SANGAMON COUNTY ### Fig. 18, Area 13 Sangamon County has had a poor record so far as an oil producing county. Less than 10 percent of the wells drilled have been completed as oil wells and of the 10 "oil wells" at least three were economically unsuccessful. Roby, the oldest pool in the county, was discovered in 1949, but no oil was reported as marketed until 1956, when 3,000 barrels of oil was produced. The biggest pool is Edinburg West, most of which is in Christian County. The four | SANGAMON COUNTY | | | | | | | | | | | |-----------------|----------------|--------------|--------------|--------------|-------------------|--|--|--|--|--| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | | | | | | 1937 | 0 | 0 | 0 | 0 | 0 | | | | | | | 1938 | Ĭ | Ō | 0 | 1 | 0 | | | | | | | 1939 | | 0 | 0 | | 0 | | | | | | | 1940 | $\frac{2}{0}$ | 0 | 0 | 2
0 | 0 | | | | | | | 1941 | 0 | 0 | 0 | 0 | 0 | | | | | | | 1942 | 0 | 0 | 0 | 0 | 0 | | | | | | | 1943 | 2 | 0 | 0 | 2 | 0 | | | | | | | 1944 | 0 | 0 | 0 | 0 | 0 | | | | | | | 1945 | 1 | 0 | 0 | 1 | 0 | | | | | | | 1946 | 1 | 0 | 0 | 1 | 0 | | | | | | | 1947 | 1 | 0 | 0 | 1 | 0 | | | | | | | 1948 | 0 | 0 | 0 | 0 | 0 | | | | | | | 1949 | 1 | 1 | 0 | 0 | 0 | | | | | | | 1950 | 3 | 0 | 0 | 3 | 0 | | | | | | | 1951 | 4 | 0 | 0 | 4 | 0 | | | | | | | 1952 | 2 | 0 | 0 | 2 | 0 | | | | | | | 1953 | 0 | 0 | 0 | | 0 | | | | | | | 1954 | 17 | 2
7 | 0 | 15 | 0 | | | | | | | 1955 | 49 | | 0 | 42 | 59,000 | | | | | | | 1956 | 22 | 0 | 0 | 22 | 40,000 | | | | | | | | 106 | 10 | 0 | 96 | 99,000 | | | | | | pool wells which are in Sangamon County produced 29,000 barrels in 1956 to make a total production of 60,000 barrels. The New City pool (three wells) produced 8,000 barrels in 1956 for a total of 35,000 barrels. Glenarm, the only other pool, consists of one well which has produced
less than 1.000 barrels of oil. The 22 wells drilled in 1956 included three pool dry holes and 19 wildcats. All production in the county is in the southeastern part within 10 miles of Christian County, and it is doubtful that production with commercial value will be found much farther to the north or west. ### SHELBY COUNTY ### Fig. 19, Area 14 Shelby County is in an area where possibilities for oil or gas production should be moderately good, but actual results, as shown in the table, have been poor. Only about 10 percent of the wells drilled have been completed as producing wells, and not all of them produced enough oil to pay drilling costs. The 18 wells drilled in 1956 include one producing well in the | | | Shei | LBY COU | NTY | | Wabash County | | | | | | |------|----------------|--------------|--------------|--------------|-------------------|---------------|----------------|--------------|--------------|--------------|-------------------| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | 1937 | 1 | 0 | 0 | 1 | 0 | 1937 | 19 | 9 | 0 | 10 | 139,000 | | 1938 | 17 | 0 | 0 | 17 | 0 | 1938 | 23 | 6 | 0 | 17 | 384,000 | | 1939 | 17 | 1 | 0 | 16 | 3,000 | 1939 | 217 | 170 | 0 | 47 | 1,039,000 | | 1940 | 11 | 2 | 0 | 9 | 7,000 | 1940 | 202 | 142 | 0 | 60 | 3,352,000 | | 1941 | 17 | 2 | 0 | 15 | 19,000 | 1941 | 356 | 285 | 1 | 70 | 4,531,000 | | 1942 | 4 | 0 | 0 | 4 | 16,000 | 1942 | 95 | 61 | 0 | 34 | 3,136,000 | | 1943 | 12 | 2 | 0 | 10 | 16,000 | 1943 | 194 | 144 | 0 | 50 | 2,491,000 | | 1944 | 5 | 0 | 0 | 5 | 17,000 | 1944 | 201 | 136 | 1 | 64 | 3,400,000 | | 1945 | 5 | 0 | 0 | 5 | 17,000 | 1945 | 124 | 79 | 0 | 45 | 2,355,000 | | 1946 | 46 | 9 | 0 | 37 | 27,000 | 1946 | 182 | 108 | 0 | 74 | 2,492,000 | | 1947 | 19 | 3 | 0 | 16 | 35,000 | 1947 | 301 | 175 | 0 | 126 | 2,433,000 | | 1948 | 10 | 4 | ŏ | 6 | 39,000 | 1948 | 312 | 178 | 0 | 134 | 2,740,000 | | 1949 | 19 | $\hat{2}$ | ŏ | 17 | 47,000 | 1949 | 357 | 224 | 0 | 133 | 3,838,000 | | 1950 | 11 | õ | Ö | 11 | 38,000 | 1950 | 223 | 120 | 0 | 103 | 2,962,000 | | 1951 | 12 | ŏ | Ŏ | 12 | 33,000 | 1951 | 133 | 59 | 0 | 74 | 2,887,000 | | 1952 | 12 | 1 | 0 | 11 | 33,000 | 1952 | 87 | 34 | 0 | 53 | 3,012,000 | | 1953 | 4 | 0 | 0 | 4 | | 1953 | 115 | 59 | 0 | 56 | 2,543,000 | | 1954 | 9 | 0 | 0 | 9 | 27,000 | 1954 | 203 | 108 | . 0 | 95 | 3,333,000 | | 1955 | 4 | 0 | 0 | 4 | 25,000
23,000 | 1955 | 144 | 73 | 0 | 71 | 3,318,000 | | 1956 | 18 | 1 | ő | 17 | 21,000 | 1956 | 176 | 89 | 0 | 87 | 3,336,000 | | | 253 | 27 | 0 | 226 | 444,000 | | 3,664 | 2,259 | 2 | 1,403 | 57,854,000* | * Estimated in part and subject to revision. Includes 4,133,-000 barrels of oil produced before 1937. Shelby County has four pools. The best of them, Lakewood, produced 9,000 barrels last year for a total of 234,000 barrels of oil. Stewardson also produced 9,000 barrels in 1956, making its total 161,000 barrels. Clarksburg has produced 21,000 barrels including 2,000 last year, and Shelbyville Consolidated, 28,000 barrels including 1,000 in 1956. ### Wabash County ### Fig. 8, Area 3 Wabash is the only county in the extreme southeastern part of the state which had an increase in drilling in 1956. In 1955 it was one of the few counties which showed decreased drilling. It has probably had more of its area drilled than any other county in Illinois. No new pool or pay was discovered in 1956. Fifteen of the 89 new producing wells were in the Gards Point pool, and most of the others in the New Harmony Consolidated pool. The 87 dry holes included 77 in pools and 10 wildcats. Secondary recovery operations are a major factor in maintaining the level of pro- duction. In 1956, 1,155,000 barrels of oil, more than one-third of the year's production, was the result of secondary recovery in the Allendale, Browns East, Friendsville North, Keensburg South, Lancaster South, Mt. Carmel and New Harmony Consolidated pools. About 4,300,000 barrels of secondary recovery oil have been produced. ### WASHINGTON COUNTY ### Fig. 14, Area 9 More wells were drilled in Washington County in 1956 than in any previous year. However, a comparison of 1956 with 1939, previously the highest drilling year, shows that in 1939 almost three-quarters of all wells drilled were successful, whereas in 1956 only a third were successful. Of the 135 wells drilled in 1956, 45 were completed as oil wells, two as capped gas wells, 41 as pool dry holes, and 47 as unsuccessful wildcats. No new pool was discovered in Washington County in 1956, but the New Memphis South pool was extended from Clinton County into Washington County. One new deep pay was discovered; in the Irvington pool the first Trenton wells | | Washington County | | | | | | WAYNE COUNTY | | | | | |------|-------------------|--------------|--------------|----------------------|-------------------|------|-------------------|--------------|--------------|-----------------|-------------------| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | 1937 | 3 | 0 | 0 | 3 | 0 | 1937 | 20 | 9 | 0 | 11 | 57,000 | | 1937 | 19 | 0 | 0 | 19 | 0. | 1938 | 107 | 80 | ŏ | $\frac{11}{27}$ | 917,000 | | 1939 | 133 | 96 | 0 | 37 | 470,000 | 1939 | 237 | 193 | ő | 44 | 4,698,000 | | 1940 | 102 | 76 | ő | 26 | 1,248,000 | 1940 | 265 | 229 | ŏ | 36 | 6,717,000 | | 1941 | 69 | 43 | ő | 26 | 1,707,000 | 1941 | 404 | 340 | ŏ | 64 | 10,939,000 | | ., | 0, | | | | -, , | | | | | | , , | | 1942 | 29 | 14 | 0 | 15 | 1,261,000 | 1942 | 297 | 201 | 0 | 96 | 12,142,000 | | 1943 | 24 | 10 | 0 | 14 | 987,000 | 1943 | 228 | 151 | 0 | 77 | 8,921,000 | | 1944 | 13 | 4 | 0 | 9 | 812,000 | 1944 | 330 | 242 | 0 | 88 | 9,806,000 | | 1945 | 25 | 5 | 0 | 20 | 663,000 | 1945 | 217 | 139 | 0 | 78 | 8,558,000 | | 1946 | 27 | 1 | 0 | 26 | 605,000 | 1946 | 312 | 196 | 0 | 116 | 8,340,000 | | 1947 | 16 | 1 | 5 | 10 | 528,000 | 1947 | 253 | 147 | 0 | 106 | 6,357,000 | | 1948 | 33 | 9 | 3 | 21 | 556,000 | 1948 | 342 | 199 | ŏ | 143 | 7,788,000 | | 1949 | 17 | ó | ŏ | $\tilde{1}\tilde{7}$ | 475,000 | 1949 | $\frac{247}{247}$ | 145 | ŏ | 102 | 8,263,000 | | 1950 | 10 | ŏ | ŏ | 10 | 420,000 | 1950 | 205 | 94 | Ŏ | 111 | 6,322,000 | | 1951 | 47 | 18 | ŏ | 29 | 913,000 | 1951 | 236 | 114 | 0 | 122 | 3,886,000 | | 1952 | 49 | 13 | 0 | 36 | 1,045,000 | 1952 | 298 | 155 | 0 | 143 | 5,827,000 | | 1952 | 90 | 39 | 0 | 51 | 1,095,000 | 1953 | 383 | 260 | ŏ | 123 | 9,203,000 | | 1953 | 80 | 26 | 0 | 54 | 936,000 | 1954 | 419 | 289 | ŏ | 130 | 7,565,000 | | 1955 | 131 | 67 | 0 | 64 | 1,020,000 | 1955 | 252 | 166 | ŏ | 86 | 8,650,000 | | 1955 | 135 | 45 | . 2 | 88 | 1,159,000 | 1956 | 236 | 137 | 0 | 99 | 7,614,000 | | | 1,052 | 467 | 10 | 575 | 15,900,000 | | 5,288 | 3,486 | 0 | 1,802 | 142,570,000* | * Estimated in part and subject to revision. were completed. All five of them were small, but Irvington is close to the Centralia and Salem Consolidated pools, both of which have good Trenton production. Most of the new producers drilled during the year were in Irvington (11 oil wells) or Dubois Consolidated (26 oil wells and two gas wells). Production was high in 1956, but not as high as in 1940, 1941, and 1942 when the Irvington and Cordes pools were at their production peaks. Secondary recovery, begun in the Cordes pool in 1950, has been very important in maintaining the level of production in Washington County. Production in the Cordes pool increased from 191,000 barrels in 1950 to 689,000 in 1951. A corresponding increase for the county is shown in the table. In 1956, secondary recovery is credited with 155,000 barrels of oil, about 13 percent of the county's production of 1,159,000 barrels for the year. About 2,139,000 barrels of oil has been produced by waterflooding. ## WAYNE COUNTY Fig. 12, Area 7 In 1955 Wayne County showed a major decrease in number of wells completed, a contrast to the over-all increase in the state. In 1956 there was a small decrease which was about the same as that for the entire state. One new pool, Orchardville North, was discovered in Wayne County, the only 1956 discovery in the deep, densely drilled part of the basin. Only one well had been completed at the end of the year; its production was about 2,000 barrels. Wayne County had a better drilling record in 1956 than most counties. Of the 236 completions, 137 were producers and only 99 were dry holes. The dry holes included 69 in pools and 30 wildcats. Wayne is another of the deep basin counties that is rapidly becoming drilled up. However, only a dozen or so wells have tested the deepest Mississippian and pre-Mississippian strata, so there is still a possibility of developing deeper production. Five pools in Wayne County — Aden Consolidated, Barnhill, Clay City Consolidated, Goldengate Consolidated, and Keenville — have secondary recovery projects in operation. Waterfloods in those five pools produced 1,185,000 of the 7,614,000 barrels of oil produced in Wayne County in 1956, and have produced a total of 4,202,000 barrels of oil. WHITE COUNTY Fig. 7, Area 2 | | | 1.5. | ,, | | | |------|----------------|--------------|--------------|--------------|-------------------| | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | | 1937 | 1 | 0 | 0 | 1 | 0 | | 1938 | 4 | ŏ | ő | 4 | ŏ | | 1939 | 104 | 68 | 3 | 33 | 238,000 | | 1940 | 479 | 412 | 4 | 63 | 5,102,000 | | 1940 | 839 | 728 | 1 | 110 | 15,383,000 | | 1941 | 033 | 720 | 1 | 110 | 13,303,000 | | 1942 | 302 | 213 | 0 | 89 | 13,369,000 | | 1943 | 203 | 148 | 0 | 55 | 10,376,000 | | 1944 | 277 | 186 | 0 | 91 | 9,640,000 | | 1945 | 230 | 150 | 0 | 80 | 9,216,000 | | 1946 | 315 | 219 | 0 | 96 | 9,780,000 | | | | | | | , , | | 1947 | 223 | 134 | 1 | 88 | 8,797,000 | | 1948 | 182 | 88 | 1 | 93 | 7,472,000 | | 1949 |
240 | 127 | 0 | 113 | 7,222,000 | | 1950 | 290 | 163 | 1 | 126 | 6,680,000 | | 1951 | 320 | 176 | 1 | 143 | 6,797,000 | | | | | - | 1.50 | < 071 000 | | 1952 | 305 | 146 | 7 | 152 | 6,871,000 | | 1953 | 247 | 136 | 0 | 111 | 7,324,000 | | 1954 | 452 | 335 | 1 | 116 | 9,324,000 | | 1955 | 478 | 304 | 0 | 174 | 10,110,000 | | 1956 | 262 | 148 | 0 | 114 | 9,055,000 | | | 5,753 | 3,881 | 20 | 1,852 | 152,756,000* | | | | | | | | ^{*} Estimated in part and subject to revision. White County is currently producing more oil than any other county in Illinois except Fayette. However, two other counties, Marion and Lawrence, have produced so much more oil than White County, it is doubtful that White will be able to surpass them. White County had the biggest decrease in drilling in 1956. Few counties have had more wells drilled, and most of the county has been tested through the Ste. Genevieve formation. Very few wells have gone deeper. No new pool or important new pay was discovered during the year. Of the 148 producing wells completed in 1956, 42 were in Phillipstown Consolidated, 27 in Herald Consolidated, 25 in Roland Consolidated, and the remainder distributed in small numbers among other pools. The 114 dry holes include 88 dry holes in pools and 26 wildcats. In 1956, 2,206,000 barrels of oil, almost one-fourth of the year's production, were produced by secondary recovery projects in eight pools: Albion Consolidated, Centerville East, Concord Consolidated, Herald Consolidated, New Haven Consolidated, New Harmony Consolidated, Phillipstown Consolidated, and Roland Consolidated. Total oil recovered by waterflooding amounts to 9,470,000 barrels. ### WILLIAMSON COUNTY Fig. 23, Area 18 | Year | Total
wells | Oil
wells | Gas
wells | Dry
holes | Annual production | |------|----------------|--------------|--------------|--------------|-------------------| | 1937 | 0 | 0 | 0 | 0 | 0 | | 1938 | ĭ | ŏ | ŏ | | Ŏ | | 1939 | Ŝ | ŏ | ŏ | 1
5
5 | Ō | | 1940 | 5
5 | ŏ | ŏ | 5 | Õ | | 1941 | 10 | ŏ | ŏ | 10 | Ŏ | | 1711 | 10 | 0 | v | 10 | Ŭ | | 1942 | 7 | 0 | 0 | 7 | 0 | | 1943 | | 0 | 0 | 5 | 0 | | 1944 | 5
4 | 0 | 0 | 4 | 0 | | 1945 | Ō | 0 | 0 | 0 | 0 | | 1946 | 1 | Õ | 0 | 1 | 0 | | | | | | | | | 1947 | 0 | 0 | 0 | 0 | 0 | | 1948 | 0 | 0 | 0 | 0 | 0 | | 1949 | 3 | 0 | 0 | 3
1 | 0 | | 1950 | 1 | (1) | 0 | 1 | 0 | | 1951 | 1 | 0 | 0 | 1 | 500 | | | | | | | | | 1952 | 2 | 0 | 0 | 2 | 0 | | 1953 | 0 | 0 | 0 | 0 | 0 | | 1954 | 2 | 0 | 0 | 2 | 0 | | 1955 | 2
15 | 0 | 0 | 15 | 0 | | 1956 | 19 | 0 | 0 | 19 | 0 | | | 81 | (1) | 0 | 81 | 500 | With a total of 81 wells drilled in the past 20 years Williamson County has had no commercial well completed. In 1950 a dry hole was worked over and less than 500 barrels of oil obtained from it. Developments in Saline and Franklin counties during 1955 and 1956 extended production in those two counties almost to Williamson County. It is reasonable to assume that some production will be discovered in northern and eastern Williamson County, although it may be limited in quantity and area. #### OTHER COUNTIES Wildcat wells were drilled in 1956 in 18 counties which have had no oil or gas production. Champaign County had six wildcats, more than in any previous year. This increase in drilling probably resulted from the discovery in 1956 of three new oil pools in Douglas County, the adjoining county on the south. Schuyler County had five wildcats, which is an unusually high number for that county also. Each of five counties had two wildcats: Brown, Logan, Massac, Piatt, and Pope. Each of the remaining 11 counties had one wildcat: Alexander, Cass, Fulton, Greene, Jersey, Johnson, Kendall, Menard, Peoria, Pulaski, and Tazewell. Geographic distribution of these "wildcat" counties is less widespread than during most recent years. Only one county, Kendall, is in the northern quarter of the state, and only one other, Peoria, is in the northern third. Twelve of the 18 counties are adjacent to counties in which oil or gas has been found. Thirteen of these counties lie north and northwest of the basin productive area, but 12 are wholly or largely within an area considered to have moderate possibilities for oil or gas production (see fig. 4). Kendall on the north and Alexander, Johnson, Massac, Pope, and Pulaski are shown as having slight possibilities. Table 9.—Illinois Oll and Gas Pools* January 1, 1957 | Pool: County | Township | Range | Pool: County | Township | Range | |---|--|-----------------------------------|--|--|---------------------------------| | Ab Lake: Gallatin Ab Lake West: Gallatin Aden Consol.: Wayne, Hamilton Akin: Franklin | 88
8–98
2–38
38
68 | 10E
9-10E
7E
7E
4E | Carlyle: Clinton Carlyle North: Clinton Carlyle South: Clinton Carmi: White Carmi North: White | 22
33
55
55
55
55 | 3W
3W
9E | | Akin West: Franklin | 68
28
1–38
28
38 | 4E
10E
10E
14W
10E | Casey: Clark Centerville: White Centerville East: White Centerville North: White Centerville North: White | 10–11N
4S
3–4S
3S
3S
3S | 14W
9E
9-10E
10E | | Allendale: Wabash, Lawrence | $\begin{array}{c} 1\\ 2-1\\ 3-1\\ 3-1\\ 3-1\\ 3-1\\ 3-1\\ 3-1\\ 3-1\\ 3$ | 11–13W
2E
14W
14W
14W | Centralia: Clinton, Marion | 1-2N
1N
15N
6S
8S | 1E, 1W
1W
7E
1E
14W | | Ashley: Washington | 2S
13N
13-14N
12N
7S | 14W
14W
1E
1E
4W | Clarksburg: Shelby. Clay City Consol.: Clay, Wayne, Richland, Jasper J Clay City West: Clay Coil: Wayne Coil: Wayne | 10N
-7N, 1–2S
2N
1S
1S | 4E
6-10E
7E
5E
4E | | Ayers Gas: Bond | 6N
4S
2-3S
1-2N
1N | 3W
6W
8E
3W
3W | Collinsville: Madison Colmar-Plymouth: Hancock, McDonough Concord Consol.: White Concord East Consol.: White Cooks Mills Consol.: Coles, Douglas | 3N
4N
6S
6S
6-7S
13-14N | 8W
4–5W
10E
7–8E | | Bartelso South: Clinton | 11
12
25
25
14
18 | 3.4
2.4
2.2
2.3
2.3 | Cordes: Washington | 38
98
28
48
18 | 3W
7E
6E
1E | | Beaver Creek North: Bond | 2.4
NN 2.4
NN 8
NN 8
4.5 | 3W
2–3W
3W
14W
6–7E | Cravat West: Jefferson Crossville: White Crossville West: White Dahlgren: Hamilton Dale Consol.: Hamilton, Saline, Franklin | 15
48
48
38
5-7S | 1E
10E
10E
5E
4-7E | | 2E
3E
3E
3E | 3E
1-2W
1W
13W | 13W
2-3W
10E
10W
6E | 3W
3-4W
8E
11W | 6-7E
7E
6E
2E
4W | $^{1}_{9-10E}$ $^{10}_{10E}$ $^{10}_{10E}$ | 7E
7E
7E
8E
9–10E | 33 3E | |---|---|---|--|---|---|---|---| | 16N
17N
1S
1S
2S | 15
18
38
38
13–14N | 13N
4-5N
18, 4-5N
18, 18, 18 | 14N
14N
14N
8S
12-13N | 888
888
888
888
888 | 2288
2288
3888
248
2588
268
268
268
268
268
268
268
268
268
2 | 7N
7N
7N
5S
5S
5-6S | 82 28 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z | | | | | | | | | | | Decatur: Macon Decatur North: Macon Divide: Jefferson Divide East: Jefferson Divide South: Jefferson | Divide West: Jefferson Dix South: Jefferson Dubois: Washington Dubois Central: Washington Dudley: Edgar | Dudley West Gas: Edgar Dudleyville East: Bond Dundas East: Richland, Jasper. Dupo: St. Clair Eberle: Effingham | Edinburg: Christian
Edinburg South: Christian
Edinburg West: Christian, Sangamon
Elba: Gallatin.
Elbridge: Edgar | Eldorado Consol.: Saline Eldorado East: Saline Eldorado West: Saline Elk Prairie: Jefferson Elk Prairie: Vashington | Elkville: Jackson
Ellery Consol.: Edwards, Wayne
Ellery East: Edwards
Ellery North: Edwards
Ellery South: Edwards | Elliottstown: Effingham Elliottstown East: Effingham Elliottstown North: Effingham Enfield: White | Evers: Effingham. Evers South: Effingham Ewing: Franklin Ewing East: Franklin Exchange: Marion | | 4E
13–14W
11W
10W
10E | 2–3E
2E
14W
3E
7E | $ \begin{array}{r} 7E \\ 1E - 1W \\ 13W \\ 7E \\ 9E \end{array} $ | 9E
9E
10–11E, 14W
14W | 2W
1W
7E
7E
1-2E | 7E
7E
1E
14W
14W | 14W
7E
9E
10E
9-10E | 10-11E
10E
9E
7W
7W | | 12337
1337
1337
1337
1337
1337
1337
1337 | 6S
5-6S
1-2N
6S
6S | 5N
15N
4S
4S
4S
6N | 6N
5-6N
1S
1S
1S
1S | 2-3N
3N
15N
15N
15N
15 | 6S
7S
1N
1-2S
1-2S | 28
48
84
87
10
10
10
10
10
10
10
10
10
10
10
10
10 | 2N
3N
2N
10N | | Belle Rive: Jefferson Bellmont: Wabash Beman: Lawrence Beman East: Lawrence Bennington South: Edwards
 Benton: Franklin Benton North: Franklin Berryville Consol.: Wabash, Edwards Bessie: Franklin Bible Grove North: Effingham | Bible Grove South: Clay Blackland: Macon, Christian Black River: White Bairsville West: Hamilton Bogota: Jasper | Bogota North: Jasper Bogota South: Jasper Bone Gap Consol.: Edwards Bone Gap East: Edwards Bone Gap West: Edwards | Boulder: Clinton | Broughton: Hamilton Broughton South: Saline. Brown: Marion Browns: Edwards, Wabash Browns East: Wabash | Browns South: Edwards. Bungay Consol: Hamilton Burnt Prairie South: White. Calhoun Central: Richland. Calhoun Consol.: Richland, Wayne | Calhoun East: Richland. Calhoun North: Richland Calhoun South: Wayne. Carlinville: Macoupin Carlinville North: Macoupin | ^{*} Includes abandoned pools. TABLE 9.—(Continued) | Pool: County | Township | Range | Pool: County | Township | Range | |---|--|--------------------------------------|---|--|-------------------------------| | Exchange East: Marion | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | 4E
3E
1E, 1W
4-5W
1E | Keensburg South: Wabash | 2-3S
11S
11S
11S
3N | 13W
5E
5E
3E
5-6E | | Flora South: Clay Francis Mills: Saline Freeburg South: Saline Freeburg South: St. Clair Freeburg South: Wahash | 22
72
73
73
74
75
75
75
75
75
75
75
75
75
75
75
75
75 | 6E
7E
7W
13W | Kenner North: Clay | 37.
37.
37.
37.
37.
34.
54. | 6E
5E
5E
2W
3E | | Friendsville Contran. Friendsville North: Wabash. Frogrown: Clinton Frogrown North: Clinton Gards Point: Wabash Gards Point: Wabash | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 | 12–13W
3–4W
3–4W
14W
14W | Kincaid: Christian Kincaid South: Christian Kinmundy: Marion Kinmundy North: Marion Laclede: Fayette | 21
12
13
14
14
15
17
17
17
17
17
17
17
17
17
17
17
17
17 | 3W
3W
3E
4E | | Gays: Moultrie Cinton Germantown East: Clinton Gillespie-Wyen: Macoupin Gillespie-Benld Gas: Macoupin Glenarm: Sangamon |
Z.1.8884
X.X.8.8.4 | 6E
4W
6W
6W
5W | Lakewood: Shelby Lancaster: Wabash Lawrence Lancaster Central: Wabash Lancaster East: Wabash Lancaster South: Wabash | 100
1-22
122
1222
1222
1222 | 2–3E
13W
13W
13W | | Goldengate Consol.: Wayne, White Goldengate East: Wayne Goldengate North Consol.: Wayne. Grandview: Edgar Greenville Gas: Bond | 2-4S
3S
2S
12-13N | 9E
9E
8–9E
13W
3W | Langewisch-Kuester: Marion Lawrence: Lawrence, Crawford. Lawrence West: Lawrence Lexington: Wabash Lexington North: Wabash | 2-57
3-57
13
15
15 | 1E
11–13W
13W
14W | | Half Moon: Wayne Harco: Saline Harco East: Saline Harrisbug: Saline Harrisbug: Saline | | 9E
5E
6E
6E | Lillyville: Cumberland, Effingham Litchfield: Montgomery Livingston: Madison Livingston East Gas: Madison Livingston South: Madison | % 8 8
-8 8
-8 9
-8 9
-8 9
-8 9
-8 9
-8 9 | 6W
6W
6W
6W | | Harristown: Macon | 16N
16N
18
18
18
18
18
18
18
18
18
18 | 1E
9-10E
10E
9E
6E | Locust Grove: Wayne Locust Grove South: Wayne Long Branch: Saline, Hamilton. Long Branch South: Saline . | N1
11S
77S
88
88
80-90 | 9E
9E
6E
6E
2-4E | | 6E
4E
4W
10-14W
9-10E | 10E
2E
6W
3E
4E | 4-5E
4E
13-14W
5E
9-10E | 10E
7-8E
11E
10-11E, 14W | 6E
6E
13W
13W
4E | 7-8E $14W$ $14W$ $6E$ $1-2W$ | 12W
9E
5W
3E
3E | 10E
2E
13W
4W
13-14W | |--|---|--|---|---|---|--|------------------------------------| | $\begin{array}{c} 4.4\\ 8.8\\ 8.8\\ 1.1\\ \end{array}$ | 1N
3S
4N
9S
2-3S | 25
2–35
9–10N
6N
11S | 15
11–12N
6S
5–6S
6S | 2-3S
2S
9N
9N
4N | 2–4S
1N
1N
10S
15N | 1N, 1S
1N
8N
3S
3S
2S | 16N
3S
8N
14N
1N, 1–5S | | Lynchburg: Jefferson. McKinley: Washington Main: Crawford Maple Grove Consol.: Edwards, Wayne | Maple Grove South: Edwards | Markham City North: Jefferson, Wayne . Markham City West: Jefferson. Martinsville: Clark Mason North: Effingham Massilon: Wayne, Edwards | Massilon South: Edwards Mattoon: Coles Maunie East: White Maunie North Consol.: White | Mayberry: Wayne Mayberry North: Wayne Melrose: Clark Melrose South: Clark Miletus: Marion | Mill Shoals: White, Hamilton, Wayne. Mills Prairie: Edwards Mills Prairie North: Edwards Mitchellsville: Saline. Mt. Auburn Consol.: Christian. | Mt. Carmel: Wabash Mt. Erie North: Wayne Mt. Olive: Montgomery Mt. Vernon: Jefferson Mt. Vernon North: Jefferson | Murdock: Douglas | | 6E
72W
6E
6E | 6W
2W
2W
2W
10E | 14W
11E
2-3E
3E
13-14W | 8E
10E
9-10E
5E
5-6E | 5E
5E
1W
1E
1W | 4E
3E
9W
14W
14W | 6–7E
6E
6E
5–6E | 1E
1E
9E
9E
13W | | $^{\circ}_{\mathrm{N}}^{\circ}_{\mathrm{N}}^{\circ}_{\mathrm{N}}^{\circ}_{\mathrm{N}}^{\circ}$ | $\overset{\$}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$ | 77
48
48
120
121 | 4N
7-8S
7-8S
7-8S
7-8S
7-8S | 4N
5N
1S
1N, 1S | 2N
2N
15N
9–10N
9N | 18, 118
118 118 118 118 118 118 118 118 118 | 2N
2N
8–9S
8–9S
2S | | Hill East: Effingham. Hoffman: Clinton. Hodville East: Hamilton Hord South: Clav | Hornsby South: Macoupin Hoyleton West: Washington Huey: Clinton Huey South: Clinton Huey South: Asper | Hunt City East: Jasper | Ingraham: Clay | Iola South: Clay Iola West: Clay Irvington: Washington Irvington East: Efferson Irvington North: Washington | .= 00 | Johnsonville Consol.: Wayne | | Table 9.—(Continued) | Pool: County T | Township | Range | Pool: County | Township | Range | |--|--|-----------------------------------|--|---|-----------------------------------| | New Harmony South: White New Harmony South (Ind.): White New Haven Consol.: White New Hebron East: Crawford New Memphis: Clinton | 58
58
78
18, 18 | 14W
14W
10-11E
12W
5W | Rochester: Wabash Roland Consol: White, Gallatin Roland West: Saline Ruark: Lawrence Ruark West Consol: Lawrence. | 28
5-78
77
2N
2N
2N
2N | 13W
8–9E
7E
12W
13W | | New Memphis North: Clinton New Memphis South: Clinton, Washington Newton: Jasper Newton North: Jasper Newton West: Jasper | 11.
8.27.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7 | 5W
5W
9E
10E | Rural Hill North: Hamilton Russellville Gas: Lawrence Russellville West: Lawrence St. Francisville: Lawrence St. Francisville: Lawrence | \$2
\$2
\$2
\$2
\$2
\$2
\$2
\$2
\$2
\$2
\$2
\$2
\$2
\$ | SE
10–11W
11W
11W | | Noble West: Clay Oakdale: Jefferson Oakley: Macon Oak Point: Clark, Jasper Oak Point West: Clark | $^{3N}_{2S}$ $^{2S}_{16N}$ $^{8-9N}_{9N}$ | 8E
4E
3E
14W
14W | St. Jacob: Madison St. Jacob East: Madison St. James: Fayette St. Paul: Fayette Ste. Marie: Jasper | 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 6W
6W
2-3E
3E
11E-14W | | Odin: Marion. Okawville: Washington Okawville North: Washington Old Ripley: Bond. Olney Consol.: Richland. | 2N
1S
1S
1S
NA
18
18
18
18
18
18
18
18
18
18
18
18
18 | 1–2E
4W
4W
4W
10E | Ste. Marie East: Jasper. Ste. Marie West: Jasper. Sailor Springs Central: Clay Sailor Springs Consol.: Clay, Effingham Sailor Springs East: Clay | 26 -6
NNA -6
NNA -6 | 14W
10E
7-8E
6-7E
8E | | Olney South: Richland Omaha: Gallatin Omaha East: Gallatin Omaha South: Gallatin, Saline Omaha West: Saline | 3N
88
88
7-83 | 10E
8E
8E
7-8E | Sailor Springs North: Clay Salem Consol.: Marion, Jefferson Samsville: Edwards Samsville North: Edwards Samsville Northwest: Edwards | 4.
1-2N, 1S
11N
11N
11N | 8E
1-2E
11E
14W
10E | | Omega: Marion Orchardville: Wayne. Orchardville North: Wayne. Oskaloosa: Clay Oskaloosa East: Clay | 3.4.0
NN NN | 4E
5E
5E
5E
5-6E | Samsville West: Edwards Sandoval: Marion Sandoval West: Clinton Santa Fe: Clinton Schnell: Richland | ZZZZZ |
10E
1E
1W
3W
9E | | Oskaloosa South: Clay | 3N
11–12N
7N
9S
9S | 5E
1E
3-4W
6E | Schnell East: Richland Schnell South: Clay Seminary: Richland Sesser: Franklin Shattuc: Clinton | 22
22
28
28
28
28 | 9E
8E
10E
1–2E | | 9E
10E
10E
4E
4W | 10-11E, 14W
4W
7W
5-6W | 5W
7W
7W | 5E
9-10E
11E-14W
14W
3W | 13W
9E
10E
9E
9E | 9E
11W
22W
7E | 4E
4E
4E
5W
6-7E | 6E
2E
3W
8–9E
8E | |--|--|---|--|---|--|--|--| | 98
98
98
111
13N | 10–11N
6N
6N
9N
9N
9S-4 | $^{52}_{XXXX}$ | 10N
S-6S
A-5N
A+N
A+N | 48
45-4
84-58
84-58 | 48
48
48
58
58 | 75
75
75
78
78
5N | 4N
2-3N
13N
5S
5S | Macoupin | | | | | | | | |

 | | | | | in
ranklin .
Franklin | | | tin
Gallatin
Gallatin | Clark
as: | oh.
oin
1pin | land
nd | | | lin
rank
Fran | | | | und, (Sond nd ek Golph | ndolp
Nay
pin
acoup | oy
Vhite
and
Richlar
Bond | nce
e
White
White
White | hite
erry
klin
Iton | rank
t: F:
th:
y . | ay . | | Ga
East:
North
Shelb | lberla
l.: Bose
e Cre
Rand | Ra:
h: Cacoul
acoul
M: | Shell
.: V
Richl
Ist: | vrenc
hite
: W
h: V
h: V | : W
erry
t: P
Fran
Hami | E. F. Eas
E. Not
Holph
Cla | : Cl
on
Stian
Vhite
st: V | | own:
own
own
ee: | Cum
Jonso
Vest:
Veedl
As: | South:
South:
M:
Gas:
Wes | on:
onsol
'n:
'n Ea | Lawren
White
East: V
North: | West
E. Pe
Wes
III: | nville
nville
nville
Rane
Sast: | South: Cla
Marion
Christian
Il: White | | Shawneetown: Gallatin
Shawneetown East: Gallatin
Shawneetown North: Gallati
Shelbyville: Shelby
Sicily: Christian | Siggins: Cumberland, Clark
Sorento Consol.: Bond
Sorento West: Bond
Spanish Needle Creek Gas:
Sparta Gas: Randolph | Sparta South: Randolph.
Stanford South: Clay
Staunton: Macoupin
Staunton Gas: Macoupin
Staunton West: Macoupin | Stewardson: Shelby. Storms Consol.: White Stringtown: Richland Stringtown East: Richland Strubblefield South: Bond | Sumner: Lawrence
Sumpter: White
Sumpter East: Wh
Sumpter North: W | Sumpter West: White
Tamaroa: Perry
Tamaroa West: Perry
Taylor Hill: Franklin
Thackeray: Hamilton | Thompsonville: Franklin
Thompsonville East: Franklin
Thompsonville North: Frankli
Tilden: Randolph.
Toliver East: Clay | Toliver South: Clay. Tonti: Marion Tovey: Christian. Trumbull: White Trumbull West: White | | Shav
Shav
Shav
Shel
Shel | Sigg
Sore
Sore
Spar
Spar | Spat
Stan
Stau
Stau
Stau | Stev
Stor
Strii
Strii
Strik | Sum
Sum
Sum
Sum | Sum
Tan
Tay
Tay | Tho
Tho
Tho
Tild | Ton
Ton
Tra | | >> ==================================== | estestes > | × 12888 | ~~~~~ | ************************************** | m888m | 1W
8E
6E
7E | 3W
1EEEEE | | 10–11E, 14W
14W
10E
8E
8–9E | 8
3
3
3
3
1
3
1
3
1
3
1
3
1
3
1
3
1
3
1 | 10–11E, 14W
10E
11W
11W
4–5W | 8W
2W
2W
2W
2W
2W | 2W
3W
8W
1E
6E | 6E
4–5W
4W
13W
3E | 11W
8E
6E
7E
7E | 10–11E
11E
1E
1E
3W | | | ZZZZZ | | 38
38
38
1N | ZZZZs | 88
00
NA
15
15 | 2288
227
227
227
227 | 3N
2S
5N
5N | | 2.1
NN 2.4
NN 2.4
NN 3.4 | 44484
XXXX | 3–5S
5S
4N
4A
8S
5S | 98881 | 11N
116N
11
17–8S | 88
10N
10N
14N
15 | 0.∞400 | 22233 | Richland, Edwards
Awards
Ichland, Edwards | | | | | | | | | Edwidwar | | dwai | | | | | | | land,
rds
nd, E
Clay | | te, E | | | iery | | | | Rich
Idwai
ichlai
Iand, | | Whi
White |
Igton
igton | uc | ery.
ery.
itgom
ar . | on | nd . | | ol.:
1: E
: R
: Rich | Clay
n
Marion
Marion
Fayette | sol.:
h: vence
Lawr | oupin
ton
ashir
ashin | nton
nton
.n.
Mario | Saline
tgom
Mon
Edg | ingte
tin | l
ichland
on
Jefferson
n | | Cons
Soutl
West
Jay
th: | st: 'arion': M | Cons
Sout
Lawre
St: 1 | Maccshing: W | Clin
Cli
forga
te:] | th: Mon
Mon
ast:
rth:
Jeffer | v: Washington :: Gallatin :: Clay Wayne Vorth: Wayne | Richland
North: Ric
s: Jefferso
North: J | | burg
burg
ourg
t: C | t We
Mi
East:
South
West | town
town
ff: I
ff Eas
d Gas | w:
Was
Jorth
outh:
Clin | last:
Vest:
:: N
:: Lak
:: Sa | Sout
nd:
nd E.
nor nor | or Wa | Ric
North
S: J
s Not
Sang | | Parkersburg Consol.: Richland, Edwa
Parkersburg South: Edwards
Parkersburg West: Richland, Edwards
Passport: Clay
Passport South: Richland, Clay | Passport West: Clay
Patoka: Marion
Patoka East: Marion
Patoka South: Marion
Patoka West: Fayette | Philipstown Consol.: White, Edward
Philipstown South: White
Pinkstaff: Lawrence
Pinkstaff East: Lawrence
Pittsfield Gas: Pike | Plainview: Macoupin. Posen: Washington Posen North: Washington Posen South: Washington Posey: Clinton | Posey East: Clinton Posey West: Clinton Prentice: Morgan Raccoon Lake: Marion Raleigh: Saline | Raleigh South: Saline Raymond: Montgomery Raymond East: Montgomer Redmon North: Edgar Jefferson | Richview: Washington
Ridgway: Gallatin
Riffle: Clay
Rinard: Wayne
Rinard North: Wayne | Ritter: Richland
Ritter North: Richland
Roaches: Jefferson
Roaches North: Jeffers
Roby: Sangamon | | E E E E E | Pa
Pa
Pa | | | S S T R R | xxxxxx | 조조조조조 | \(\frac{1}{2} \) \(\fra | | | | 7 | | |---|-------|--------|--| | • | τ | 7 | | | | a | 7 | | | | ť | 3 | | | | Ţ | 3 | | | | - | ₹ | | | | - | 2 | | | | 7 | 7 | | | | • | • | | | | σ | 3 | | | | 7 | 5 | | | | r | J | | | | |) | | | | | | | | | | ٠. | | | | 1 | | | | | 1 | | | | | ' | : | | | | 1 | • | | | | , | : | | | | , | ر
د | | | | ' | | | | | 2 12 | 4 | | | | 2 12 | 4 | | | | 0 210 | 1 | | | | 2 12 | 1 | | | | 0 210 | 1 | | | Pool: County | Township | Range | Pool: County | Township | Range | |--|------------------------------------|--------------------------------------|--|--------------------------------------|---| | Valier: Franklin Waggoner: Montgomery. Wakefield Jasper. Wakefield North: Jasper. Wakefield South: Richland | $^{68}_{ m NZZZZ}$ | 2E
5W
9E
9E | Westfield: Clark, Coles Westfield
East: Clark |
11–12N
11–12N
12N
5-6S | 11E-14W
14W
14W
3E
3E | | Walpole: Hamilton Walpole South: Hamilton Waltonville: Jefferson Wamac: Clinron, Marion, Washington Wamac East: Marion | 6-7S
7S
3S
1IN
1 | 6E
6E
2E
1E | Whittington West: Franklin Williams Consol.: Jefferson Willow Hill East: Jasper Woburn Consol.: Bond Woodlawn: Jefferson |
5S
3S
6-7N
6-7N
2-3S | $\begin{array}{c} 2E\\ 2E\\ 10-11E\\ 2W\\ 1-2E \end{array}$ | | Warrenton-Borton: Edgar, Coles | 13–14N
1–2S
13N
11N
7S | $13-14W \\ 10W \\ 8W \\ 10W \\ 2-3E$ | Xenia: Clay Xenia East: Clay York: Cumberland Zenith: Wayne Zenith North: Wayne |
2222
2222
2222
2222 | 5E
5E
10–11E
5E
6E | | | | | Zenith South: Wayne | NI | 5E | Table 10.—Pools Incorporated into Other Pools by Consolidation | | | Date | |-------------------------------|--|-------| | Original pool name; | Present pool | of | | First consolidation | assignment | first | | | | con- | | Manager - | | sol. | | A.1 . NT1. | A.1 C 1 | 1044 | | Aden North | Aden Consol. | 1944 | | Albion North
Allison-Weger | Albion Consol. | 1944 | | Allison-Weger | Main Consol. | 1955 | | Assumption North | Assumption Consoi. | 1953 | | Barnhill East | Goldengate Consol. | 1944 | | Bend | New Harmony Consol. | 1952 | | Bennington | Maple Grove Consol. | 1952 | | Bible Grove Consol. | Sailor Springs Consol. | 1949 | | Bible Grove East; | 8 11 | 1040 | | Bible Grove Consol. | Sailor Springs Consol. | 1948 | | Birds | Main Consol. | 1955 | | Blairsville | Bungay Consol. | 1951 | | Bone Gap South | Bone Gap Consol. | 1952 | | Bonpas West | Parkersburg Consol. | 1951 | | Bonpas West | Parkersburg Consol. | 1944 | | Boos; Dundas Consol | Clay City Consol. | 1941 | | Boos East; | | 10.15 | | Willow Hill Consol | Clay City Consol. | 1947 | | Boos North | Clay City Consol. | 1948 | | Boyleston Consol | Clay City Consol. | 1948 | | Brownsville; Stokes- | 5 | 40. | | Brownsville | Roland Consol. | 1946 | | Burnt Prairie; | | | | Leech Twp | Goldengate Consol. | 1947 | | Calvin | New Harmony Consol. | | | | & Phillipstown | | | | Consol. | 1941 | | Calvin North | Phillipstown Consol. | 1948 | | Cantrell Consol | Dale Consol. | 1955 | | Cantrell North | Dale Consol. | 1956 | | Cantrell South; | | | | Cantrell Consol | Dale Consol. | 1953 | | Chapman | Main Consol. | 1954 | | Cisne | Clay City Consol. | 1948 | | Cisne North | Clay City Consol. | 1954 | | Clay City North | Clay City Consol. | 1954 | | Concord Central; | | | | Concord South | | | | Consol | Herald Consol. | 1952 | | Concord North | Concord Consol. | 1955 | | Concord South Consol. | Herald Consol. | 1955 | | Cooks Mills East | Cooks Mills Consol. | 1956 | | Cooks Mills Gas | Cooks Mills Consol. | 195. | | Cooks Mills North . | Cooks Mills Consol. | 195 | | Cottonwood | Herald Consol. | 1953 | | Cottonwood North | Herald Consol. | 1953 | | Covington; Boyleston | | | | Consol | Clay City Consol. | 194 | | Covington East | Clay City Consol. | 1948 | | Cowling | New Harmony Consol. | 1941 | | Dead River | New Haven Consol. | 1950 | | Dix | Salem Consol. | 1954 | | Dubois West | Dubois Consol. | 195 | | Dundas | Clay City Consol. | 1948 | | Eldorado Central | Eldorado Consol.
Eldorado Consol. | 195 | | Eldorado North | Eldorado Consol. | 195. | | Eldorado Mortir | E11 C 1 | 1952 | | Ellery West | Ellery Consol. | 173 | | TC11 XX7 | Ellery Consol.
Clay City Consol.
Clay City Consol. | 194 | ## Table 10.—(Continued) ## Table 10.—(Concluded) | I HBBE IV | o. (continued) | | | | | |--|---|--|--|---|--| | Original pool name;
First consolidation | Present pool
assignment | Date of first consol. | Original pool name;
First consolidation | Present pool
assignment | Date of first consol. | | Epworth East Fairfield Fairfield East Flannigan | New Harmony Consol.
New Harmony Consol.
Calhoun Consol.
Clay City Consol.
Clay City Consol.
Goldengate North | 1951
1953
1953
1955
1954
1955
1949
1946
1947
1948 | Maunie West Merriam. Mitchell Mt. Auburn Central Mt. Auburn East Mt. Carmel West Mt. Erie Mt. Erie South New Haven North New Haven West New Hebron Noble | Clay City Consol. Ellery Consol. Mt. Auburn Consol. Mt. Auburn Consol. New Harmony Consol. Clay City Consol. Clay City Consol. Concord East Consol. Inman East Consol. Main Consol. Clay City Consol. | 1953
1952
1954
1954
1948
1944
1948
1950
1949
1955
1948 | | Gossett | Phillipstown Consol.
Albion Consol.
New Harmony Consol.
Ruark West Consol.
Herald Consol. | 1953
1954
1948
1949
1941
1952
1953
1953 | Noble North Noble South Norris City North City Olney East Parker Parkersburg North Patton Patton Patton West | Clay City Consol. Roland Consol. Christopher Consol. Olney Consol. Main Consol. Parkersburg Consol. Allendale Allendale | 1948
1948
1955
1954
1949
1954
1951
1948
1948 | | Hoodville Hoosier; Bible Grove Consol. Hoosier North; Bible Grove Consol. Ingraham West; Bible Grove Consol. Inman Inman | | 1943
1948
1948
1948
1950
1949 | Roundprairie Rural Hill Rural Hill West Sailor Springs South Sailor Springs West Shelbyville East Sims Sims North Springerton | Dale Consol. Dale Consol. Sailor Springs Consol. Sailor Springs Consol. | 1941
1951
1955
1942
1949
1956
1948
1945 | | Inman North Inman North Inman South Iron Keensburg Lancaster North Lancaster West Leech Consol. | Inman West Consol.
Inman West Consol.
Roland Consol.
New Harmony Consol.
Ruark West Consol.
Berryville Consol. | 1949
1950
1954
1948
1952
1949 | Stanford West Stokes-Brownsville; Iron Consol Swearingen gas | Clay City Consol. & Sailor Springs Consol. Sailor Springs Consol. Roland Consol. | 1953
1953
1953
1955 | | Maple Grove East Mason Mason South Maud Central; Maud North Consol. Maud Consol. Maud North Consol. | Parkersburg Consol. Iola Consol. Iola Consol. New Harmony Consol. | 1952
1956
1948
1949
1951
1951 | Toliver West End West Frankfort South West Liberty; Dundas Consol. Williams South Willow Hill Consol. | | 1955
1955
1948
1941
1953
1948 | | Maud West; Maud North Consol. Maunie | New Harmony Consol. | 1948
1948 | Willow Hill North;
Willow Hill Consol
Woburn South | | 1947
1950 | Table 11.—Oil and Gas Producing Strata, 1956 | System or series
Group
Formation
Pay 'sand''
Pool: County | Acres | Approx.
depth
(ft.) | System or series Group Formation Pay "sand" Pool: County | Acres | Approx.
depth
(ft.) | |---|-------|---------------------------|--|---------------------|---------------------------| | PENNSYLVANIAN
McLeansboro
Trivoli | | | Bone Gap Consol.: Edwards | 10
80
160 | 2110
380
440 | | Trivoli
Lawrence: Lawrence, Crawford
Anvil Rock | × | 290 | Carmi: White
Casey
Casev: Clark | 1.540 | 1210 | | Anvil Rock
Herald Consol.: White, Gallatin
Phillipstown Consol.: White, Edwards | 360 | 700
795 | Cravat West: Jefferson .
Pennsylvanian
Elbridge: Edgar . | 20 20 | 1045 | | Jamestown
New Harmony Consol.: White, Wabash,
Edwards | × | 720 | Several sands Epworth Consol.: White Biehl | 100 | 1320-1840 | | Carbondale
Cuba
Dyketra | | | Friendsville North: Wabash | 120 | 1620 | | Unction City: Marion | × | 510 | Grandview Fdear Macoupin | 45 | 650
650 | | Lawrence: Lawrence, Crawford | × × · | 450
510 | Hornsby South: Macoupin. | 320
10 | 1090–1750
640
540 | | Jake Creek
Jake Creek
Omaha: Gallatin. | . 210 | 385 | Inman East Consol.: Gallatin Inman West Consol.: Gallatin | 2505 | 780–1450
925 | | Pleasantview
Allendale: Lawrence, Wabash | × | 099 | Irvington East: Jefferson * Jacksonville gas: Morgan | $\frac{40}{1,380}$ | 1030
330 | | Upper Gas
Casey: Clark
Upper Dudley | . 200 | 265 | Johnson North: Clark | 1,200 | 415
390 | | Dudley: Edgar | . 340 | 390 | Casey
Johnson North: Clark
Johnson South: Clark | 300 | 465
450 | | "Shallow"
Martinsville: Clark
First (Upper) Siggins | . 40 | 255 | Upper Partlow
Johnson North: Clark
Johnson South: Clark | $\frac{250}{1,700}$ | 535
490 | | Siggins: Cumberland, Clark Unnamed Westfield North: Coles | 3,200 | 400 | Lower Partlow
Johnson South: Clark | 850 | 009 | | | | | | | | | Erowning Lower Gas Casey: Clark 400 300 | Pe | |--|--| | Oas
Dudley West: Edgar | Keensburg South: Wabash 60 Biehl | | Kickapoo
Johnson North: Clark | Lancaster East: Wabash | | | | | Cultibetiand, Ciair. | Duchanan
Lawrence: Lawrence, Crawford x 1250 | | Warrenton-Borton: Edgar | Pennsylvanian | | Westfield: Clark, Coles 9,050 280 | Livingston: Madison | | | Livingston East gas: Madison 40 540
Livingston South: Madison 370 530 | | × : | | | |
Several sands Main Consol.: Crawford, Lawrence x 900-1250 | | Epworth Cons.: White | ပ <u>ိ</u>
 | | Inclose: Edgar, Clark | Pennsylvanian | | | | | ction City South: Marion | Several sands | | | Mt. Carmel: Wabash 810 13/
Pennsylvanian | | Melrose South: Clark | | | Soint: Clark | *New Bellair: Crawford | | Wilson
Wamac East: Marion | Several sands New Harmony Consol.: White, Wabash, Figure 7 1340-1850 | | York: Cumberland, Clark | Pennsylvanian | | • | Omaha: Gallatin | | | Parkersburg South: Edwards | | Albion Consol.: Edwards, White 1,900 1490-2000 Allendale: Wabash, Lawrence 1070-1500 | Several sands Phillipstown Consol.: White, Edwards x 135 | | Pennsylvanian Ashmore East: Coles | Pennsylvanian Plainview: Macoupin | | "500", "800"
Bellair: Crawford, Jasper x 560, 815 | Prentice: Morga
Raymond: Mon | | Pennsylvanian Benton: Franklin | Raymond East: Montgomery 60 Redmon North: Edgar 40 | | Abandoned. ** Undetermined. ** Undetermined. | | Table 11.—(Continued) | System or series Group Formation Pay "sand" Pool: County | Acres | Approx. depth (ft.) | System or series Group Formation Pay "sand" Pool: County | Acres | Approx.
depth
(ft.) | |--|---|--|---|---|--| | Rochester: Wabash | 130
50
50
50
290
10
10
10
10
10
10
10
10
10
1 | 1300
1410
1600
760
1100
1305
480-600
600
300
460
515
505
610
720
720
490
490
1920
1920
1920
1920
1933 | Epworth Consol.: White Harrisburg: Saline Herald Consol.: White, Gallatin Inman East Consol.: Gallatin Inman West Consol.: Gallatin Junction: Gallatin Junction: Gallatin Junction East: Gallatin. Junction East: Gallatin. Maunie North Consol.: White Maunie South Consol.: White Mitchellsville: Saline Mit. Carmel: Wabash New Harmony Consol.: White, Wabash, Edwards New Harmony South: White Parkersburg Consol.: Richland, Edwards Phillipstown Consol.: White, Edwards Rochester: Wabash Roland Consol.: White, Gallatin Ruark West Consol.: White, Edwards Roland Consol.: White, Gallatin Ruark St. Francisville East: Lawrence St. Francisville East: Lawrence St. Francisville East: Lawrence Shawneetown: Gallatin Storms Consol.: White Tar Springs Albion Consol.: White Centerville East: White Clay City Consol.: White Clay City Consol.: White Concord Consol.: White Concord Consol.: White Concord Consol.: White Concord East Consol.: White Concord East Consol.: White Concord East Consol.: White | 30
80
80
540
100
100
100
100
20
30
30
400
400 | 2345
2020
2020
2020
2020
1980
1150
1150
11505
11690
1270
1280
1280
1280
1390
1390
1390
1385
1285
1280
1385
1280
1385
1385
1385
1385
1385
1385
1385
1385 | | 2200
2190
2190
2115
2260
2260
2260
1890
1410
1170
2350
1790 | 2215
2350
2350
2350
2345
2340
2340
2340
2575
2575
266 | 2390
2635
1780
2615
2485
2485
2350
2350
2350
2350
2350
2350
2350
235 | |---|---|---| | 170
60
80
170
170
1,520
770
10
10
110
520
520 | 1,300
10
130
200
200
320
20
700
20
20
20
20
20
20
20 | 10
60
8
7
10
10
10
130
130
10
220
190 | | | | | | Eldorado Consol.: Saline Eldorado East: Saline Epworth Consol.: White Harrisburg Gas: Saline Herald Consol.: White, Gallatin Inman East Consol.: Gallatin Inman West Consol.: Gallatin Iola Consol.: Clay, Effingham Kenner: Clay Lawrence: Lawrence, Crawford Louden: Fayette, Effingham Maunie North Consol.: White. Maunie South Consol.: White Mt. Carmel: Wabash New Harmony Consol.: White, | Edwards New Harmony South: White New Haven Consol.: White Omaha: Gallatin. Phillipstown Consol.: White, Edwards Phillipstown South: White, Edwards Raleigh: Saline Roland Consol.: White, Gallatin Sailor Springs Central: Clay, Effingham Sailor Springs Central: Clay Sailor Springs Consol.: Clay, Effingham †Shawneetown: Gallatin Storms Consol.: White Sumpter: White Sumpter: White Sumpter: White Walpole: Hamilton West Frankfort: Franklin Woodlawn: Jefferson Glen Dean Is. | Hardinsburg Hardinsburg Hardinsburg Hardinsburg Albion Consol.: Edwards, White Allendale: Wabash, Lawrence Centerville East: White Concord Consol.: White Dale Consol.: Hamilton, Saline, Franklin Eldorado Consol.: Saline Harco: Saline Inman East Consol.: Gallatin Inman West Consol.: Gallatin | | 1850
1975
2065
1990
1865
2100
1965
1725
1725
2010
2010 | 1835
2225
2225
1920
1915
1940
1765
2070
2000
1580
1955
1700
2050 | 2085
1720
2020
2365
1540
2310
2175
2140 | | 20
470
10
30
190
20
60
60
60
10
10 | 250
250
250
250
250
250
360
360
360
360
360 | 20
20
20
630
830
1,420 | | | | | | New Harmony South (Ind.): White. Phillipstown Consol.: White, Edwards Roland Consol.: White, Gallatin Storms Consol.: White. Clore Clore Black River: White. Epworth Consol.: White Herald Consol.: White Inman East Consol.: White Seworth Consol.: White Feworth Consol.: White Phillipstown Consol.: White, Wabash, Edwards Phillipstown Consol.: White, Edwards Storms Consol.: White | Palestine Ab Lake: Gallatin Centerville East: White Eldorado Consol.: Saline Eldorado East: Saline Eldorado West: Saline Eldorado Wost: Saline Eldorado Consol.: White Herald Consol.: White, Gallatin Inman East Consol.: Gallatin Inman West Consol.: Gallatin Inman West Consol.: Gallatin I. Long Branch: Saline, Hamilton Maunie South Consol.: White. Mt. Carmel: Wabash New Harmony Consol.: White, Wabash, Edwards New Harmony South (Ind.): White Omaha: Gallatin Phillipstown Consol.: White, Edwards Rideway: Gallatin | Roland Consol.: White, Gallatin †Shawneetown: Gallatin Waltersburg Waltersburg Ab Lake West: Gallatin Albin Consol.: Edwards, White Allendale: Wabash, Lawrence Bone Gap Consol.: Edwards Clay City Consol.: Clay, Wayne, Richland, Jasper Concord East Consol.: White Edorado Consol.: Saline | x Undetermined. † Abandoned, revived. Table 11.—(Continued) | | | | | - | |
--|--|--|--|---|---| | System or series Group Formation Pay "sand" Pool: County | Acres | Approx.
depth
(ft.) | System or series
Group
Formation
Pay "sand"
Pool: County | Acres | Approx. depth (ft.) | | Junction: Gallatin Lawrence: Lawrence, Crawford Maunic Consol.: Crawford Maunic North Consol.: White New Haven Consol.: White New Haven Consol.: White Roland Consol.: White, Gallatin St. Francisville East: Lawrence Sumpter: White Carlyle: Clinton Carlyle: Clinton Panama: Bond, Montgomery Roland Consol.: White, Gallatin St. James: Fayette Jackson Lawrence: Lawrence, Crawford Mt. Carmel: Wabash Mt. Carmel: Wabash St. James: Fayette Jackson Lawrence: Lawrence, Crawford Mt. Carmel: Wabash Ath. Barlow' Is. Irvington: Washington Cypress-Weiler Cypress-Weiler Ab Lake West: Gallatin Akin: Franklin Akin: Franklin Akin: Franklin Akin: Franklin Albion Consol.: Edwards Allendale: Wabash, Lawrence Alma: Marion *Ava—Campbell Hill: Jackson Carlyle Bartelso: Clinton Bartelso: Clinton Bartelso West: | 10
10
10
10
10
10
10
10
10
10 | 2120
1570
1075
2265
2245
2245
2245
2310
2020
2310
2020
2425
2505
1525
1526
1920
1920
1920
1920
1920
1920
1920
1920 | Huey South: Clinton Inman East Consol.: Gallatin Inman West Consol.: Gallatin Iola Consol.: Clay, Effingham Irvington: Washington Irvington East: Jefferson Irvington North: Washington Junction Gallatin Junction North: Gallatin Keensburg South: Wabash Kenner West: Clay Langewisch-Kuester: Marion Kirkwood Lawrence: Lawrence, Crawford Cypress-Weiler Lexington: Wabash Long Branch: Saline, Hamilton Manne South Consol.: White Manne South Consol.: White Odin: Marion Omaha West: Saline Parkeryville: Saline Parkersburg Consol.: Richland, Edwards Parckar: Marion Paroka: Marion Paroka: Marion Paroka: Marion Paroka: Marion Paroka: Marion Paroka: Marion | 1,450
1,246
1,246
290
290
60
40
40
30
30
30
30
30
30
30
30
30
30
30
30
30 | 1080
2390
2390
2390
1380
1380
1380
1380
1380
1400
1400
1400
1480
1480
1750
2570
2570
2570
2570
2570
2570
2570
2 | | beckemeyer gas: Cumou | | | | | | TABLE 11.—(Continued) | Approx. depth (ft.) | 1000
1000
1000
2250
22820
22820
22820
2110
2110
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
2210
221 | |---
--| | Acres | 70
4000
4000
100
100
100
100
100 | | System or series
Group
Formation
Pay "sand",
Pool: County | McKinley: Washington. Main Consol.: Crawford, Lawrence Mason North: Effingham Maunie North Consol.: White. Maunie South Consol.: White. Miletus: Marion. Mit. Carmel: Wabash New Harmony Consol.: White, Wabash, Edwards New Harmony South: White Omaha: Gallatin. Oskaloosa: Clay Pana: Christian Oskaloosa: Clay Panama: Bond, Mongomery Pankeyville East: Saline Parkersburg South: Edwards Patoka East: Marion Patoka East: Marion Patoka East: Marion Patoka West: Fayette Phillipstown Consol.: White, Edwards Posen South: Washington Roaches: Jefferson Salor Springs Consol:: Lawrence St. Francisville East:: Lawrence St. Francisville East:: Lawrence St. Paul: Fayette Salor Springs Consol:: White Edwards Salor Springs Consol:: White Salor Springs Consol:: Marion, Jefferson Shawnectown East:: Gallatin Screms Consol:: White | | Approx. depth (ft.) | 2675
2530
2255
2530
2040
1600
2040
1540
2830
2850
2860
2910
2910
2910
2910
1940
1140
1140
2650
2880
1119
2880
1119
2880
2880
2880
2880
1119
2880
2880
2880
2880
1119
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880
2880 | | Acres | 30 | | tem or series
broup
Formation
Pay "sand"
Pool: County | Harco: Saline Herald Consol.: White, Gallatin Iola Consol.: Clay, Effingham Lancaster: Wabash, Lawrence Lawrence: Lawrence, Crawford Lawrence: Lawrence, Crawford Lawrence: Lawrence, Crawford Lawrence: Lawrence, Crawford Lawrence: West: Lawrence Louden: Fayette, Effingham Maunie North Consol.: White, Wabash New Harmony Consol.: White, Wabash, Edwards Orchardville North: Wayne Parkersburg Consol.: White, Edwards Phillipstown Consol.: White, Edwards Phillipstown Consol.: White, Gallatin Bethel or Benoist Albion Consol.: White, Gallatin Ashion East: Edwards Albion Consol.: Christian *Assumption Consol.: Christian *Beaver Creek South: Clinton Beaver Creek South: Clinton Beaver Creek South: Clinton Beaver Creek South: Clinton Beaver Creek South: Edwards Boulder: Clinton Boyd: Jefferson Browns: Edwards, Wabash Browns: Edwards, Wabash Browns: Edwards | | 3025
1930
2460
2615
2490
1020
1960
2710 | 2735
3000
2925
3270
2800
2770
2775
2775
2775
2935
2690
2690 | 2770
2735
3200
3245
3100
3045
3020
2280
2280
1200
1805
1805
2740
2130
2130 | |---|--|--| | 10
40
40
170
170
1,900
10 | 40
100
150
150
10
10
10
10
10
10
10
10
10
10
10
10
10 | 1,260
1,260
100
100
100
200
120
8
10
640
30
20
20
20
40
20
100
40
100
680
100
680 | | | | | | th: White | allatin ol: Edwards, White Edwards sol.: Hamilton t Consol.: White ist: Saline stole: White on Clay, Effingham Clay, Effingham Lawrence, Crawford h. Consol.: White | Gallatin West: Gallatin sol.: Wayne, Hamilton anklin nnsol.: Edwards, White ist: Edwards Sst: Richland Wayne. Crawford, Jasper rie: Hamilton Lawrence stst: Lawrence crawford, Jasper rie: Hamilton Lawrence orth: Franklin ve South: Clay ve South: Clay Consol.: Edwards Edwards, Wabash. | | ter Sou : Mar myille: ington ms Cor rn Con lawn: East: | : Gall. : Gall. : Gonsol.: : Gonsol. : Gonsol. : Fast C : Fast C : Fast C : Gonsol. : Gonsol.: Gonsol.: : Gonsol.: : Frankli | Ab Lake: Gallatin Ab Lake West: Gallatin Ab Lake West: Gallatin Aden Consol.: Wayne, Hamilton Akin: Franklin Albion East: Edwards, Wh Albion East: Edwards, Wh Allendale: Wabash, Lawrence *Amity West: Richland Barhill: Crawford, Jasper
Bellar: Crawford, Jasper Bellar: Crawford, Jasper Benan: Lawrence Beman: Lawrence Beman: Lawrence Benton North: Franklin Bible Grove South: Clay Bone Gap Consol.: Edwards Boyd: Jefferson Browns: Edwards, Wabash. | | 2990
3055
1355
1440
1770
2800
1260
2070 | 2880
2975
1950
1335
1335
260
3110
3100
1435
2790
1260
2790
2790 | 2290
2490
1535
1950
1950
2950
2705
2705
11180
1915
2040
2540
2550
1650
1650
1650
1650 | | 10
10,400
1,400
20
20
1,220
120 | 2,100
410
10
10
280
280
280
280
10
10
10
10
10
10
10
10 | 820
820
820
820
820
220
33
80
80
80
80
70
70
80
80
80
80
80
80
80
80
80
80
80
80
80 | | *Centerville North: White Centerville Northeast: White Centralia: Clinton, Marion. Centralia West: Clinton Clarksburg: Sheby Jayor. Jasper Cordes: Washington. Cordes: Washington. | †Crossville: White Dale Consol.: Hamilton, Saline, Franklin *Dix South: Jefferson Dubois Consol.: Washington Dubois Central: Washington Elba: Gallatin Elkville: Jackson Ellery Consol.: Edwards, Wayne †Ellery North: Edwards Frizman: Marion, Clinton *Fitzgerrell: Jefferson Friendsville Central: Wabash Goldengate North Consol.: Wayne Herald Consol.: White, Gallatin Hoffman: Clinton Hoffman: Clinton Ilola Central: Clay | lola Consol.: Clay, Emngnam Livington: Washington Irvington East: Jefferson Irvington Bast: Jefferson Irvington North: Washington Johnsonville Consol.: Wayne Johnsonville Consol.: Wayne Kenner: Clay Kenner West: Wayne Keyeport: Clay Keyeport: Clay Keyeport: Clinton Kimmundy North: Marion Laclede: Fayette Laclede: Fayette Lakewood: Shelby Lancaster: Wabash, Lawrence Lancaster: Wabash, Lawrence Lancaster: Wabash, Lawrence Lawrence: Lawrence, Crawford Lawrence: Lawrence Lawrence: Lawrence Lawrence: Lawrence Louden: Fayette, Effingham | x Undetermined. Table 11.—(Continued) | System or series Group Formation Pay 'sand'' Pool: County | Acres | Approx. depth (ft.) | System or series
Group
Formation
Pay "sand"
Pool: County | Acres | Approx.
depth
(ft.) | |---|--|---|--|--|--| | Browns South: Edwards Burgay Consol.: Hamilton. Burnt Prairie South: White *Calhoun South: White Carmi: White Carmi: White Carmis North: White Carmistopher Consol.: Franklin Clay City Consol.: Franklin Clay City Wayne. Coll: Wayne Coll West: Jefferson. Concord East Consol.: White Concord East Consol.: Coles, Douglas †Crossville: White †Crossville: White †Crossville: White †Crossville: White †Crossville: White †Crossville: White †Crossville: Saline Eldorado East: Jefferson Eldorado East: Saline Eldorado East: Saline Eldorado East: Saline Ellery East: Edwards †Ellery South: North: Edwards †Ellery South: Edwards †Ellery North: Edwards †Ellery North: Edwards †Ellery Montherie Goldengare Consol.: Wayne †Alf Moon: Wayne |
2,950
100
100
100
100
100
100
100
460
460
460
460
100
11,600
11,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,00 | 22950
33395
33395
33395
33396
33240
2055
2056
2057
2060
2060
2060
2060
2060
2060
2060
206 | Omaha East: Gallatin Omaha South: Gallatin, Saline Omaha West: Saline Orchardville: Wayne Orchardville: Wayne Oskaloosa East: Clay Parkersburg Consol.: Richland, Edwards Phillipstown Consol.: White, Edwards Phillipstown South: White, Edwards Phillipstown South: White Raleigh: Saline Ranch: Lawrence Ste. Marie West: Jasper Sallor Springs Consol.: Clay, Effingham Sallor Springs Consol.: Clay, Effingham Sallor Springs Consol.: Shelby Sallor Consol.: Marion, Jefferson Sesser: Franklin †Shawneetown East: Gallatin Shawneetown Shelby Stewardson: Shelby Stewardson: Shelby Stewardson: White Sumpter West: White Sumpter West: White Sumpter West: White Thompsonville East: Franklin Toliver South: Clay Tonti: Marion Tonti: Marion Walpole: Hamilton Walpole: Hamilton Wast Frankfort: Franklin | 2,350
100
100
100
1,640
200
100
1,640
200
100
1,640
200
100
100
100
100
100
100
100
100
10 | 2790
2870
2870
2870
2870
2880
2880
2985
2986
2986
2986
2986
2986
2986
2986
2986 | | | | | | | | | 2735
2680
2550
1055
1975
2785 | 3290
3310
3310
3310
3310
3310
3310
3310
33 | 2905
2820 | |--|---|---| | 40
150
280
40
240
10 | 140
140
140
140
140
150
160
170
170
170
170
170
170
170
17 | 40 | | | | : . | | Whittington: Franklin | Wayne, Hamilton. in Franklin Franklin Edwards. Edwards. abash, Lawr, frone. Franklin sol.: Eranklin ssol.: Waba, ssol.: Edwards ssol.: Edwards ssol.: Edwards str.: ssol.: Etwards ssol.: Etwards ssol.: Richlan White onsol.: Richlan Str.: White onsol.: Frat str.: Str. frat str.: Saline flitte frat rson Fran Fran Fran Fran Fran Fran Fran Fra | Dundas East: Kichland, Jasper
Elba: Gallatin | | 2866
29865
2735
2715
2715
2715
2720 | 2000
2000
2000
2000
2000
2000
2000
200 | 1190
2730 | | 490
160
2,100
20
10
210
470
1,525 | 2,270
170
1,020
170
1,020
10
10
20
20
20
20
20
20
20
20
20
20
20
20
20 | 70
70
70 | | Harco: Saline. Harco East: Saline Herald Consol.: White, Gallatin Hord South: Clay Ilmraham: Clay Inman East Consol.: Gallatin Inman West Consol.: Gallatin Iola Consol.: Clay, Effingham. | Johnsonville Sours. Johnsonville Sours. Johnsonville West: Wayne Johnsonville West: Wayne Junction North: Gallatin Keenville: Wayne Keenville: Wayne Kenner: Clay King: Jefferson Lawrence Lawrence, Crawford Lawrence Wayne Loust Grove: Wayne Louisville North: Clay Main Consol.: Crawford, Lawrence Maple Grove Consol.: Edwards, Wayne Markham City North: Jefferson Maston North: Effingham Mattoon: Coles Maunie Bast: White Maunie Sourh Consol.: White Mil Shoals: White, Hamilton, Wayne Mt. Vernon: Jefferson New Harmony Consol.: White | Oak Point West: Clark | x Undetermined. † Abandoned, revived. TABLE 11.—(Continued) | stem or series
Group
Formation
Pay "sand"
Pool: County | Acres | Approx. depth (ft.) | System or series Group Formation Pay "sand" Pool: County | Acres | Approx. depth (ft.) | |---|-------|--
--|--|---| | Eldorado Consol.: Saline Ellery Consol.: Edwards, Wayne Ellery East: Edwards †Enfeld: White Ewing East: Franklin Exchange: Marion Exchange East: Marion Fractis Mills South: Saline Gards Point: Wabash Gards Point: Wabash Goldengate Consol.: Wayne, White Goldengate East: Wayne Harro: Saline Harro: Saline Harro: Saline Harro East: Saline Harro East: Saline Harro East: Wayne Honan West Consol.: Wayne Honan West Consol.: Wayne Johnsonville North: Wayne Johnsonville North: Wayne Johnsonville North: Wayne Johnsonville West: Wayne Lancaster: Central: Wabash Keensburg East: Wabash Keensburg South: Wabash Lancaster: Central: Wabash Lancaster: Central: Wabash Lancaster: Central: Wabash Lancaster: Court Grove: Wayne Maple Grove Consol.: Edwards **Massilon: Wayne, Edwards **Massilon: Wayne, Edwards **Massilon: South: Edwards | 0.00 | 2900
3300
3300
3300
3010
2010
2010
2010
20 | Berryville Consol.: Wabash, Edwards Bible Grove North: Effingham Blairsville West: Hamilton. Bogota: Jasper Bone Gap Consol.: Edwards Bourbon: Douglas Bourbon: Douglas Bourbon: Edwards, Wabash. Bungay Consol.: Hamilton. *Calhoun Central: Richland. Calhoun Central: Richland Calhoun Central: Richland Centerville: White Centerville: Douglas *Claremont Gas: Richland Clay City Consol.: Clay, Wayne, Richland, Jasper Concord Consol.: White Concord East Consol.: Coles, Douglas *Claremont Gas: Richland Clay City Consol.: Coles, Douglas blasper Concord East Consol.: Coles, Douglas *Concord East Consol.: Coles, Douglas Dale Consol.: Hamilton, Saline, Franklin Divide East: Jefferson Divide West: Jefferson Divide West: Jefferson Dubois Central: Washington Dubois Central: Washington Dubois Central: Washington Dubois Central: Washington Blerle: Effingham Eldorado East: Saline Ellery East: Edwards *Elliery Korkl. Edwards *Elliery Korkl. Effingham Epwarth Consol.: White *Ellicy West: Effingham Epwarth Consol.: White Ellery East: Edwards *Ellictstown: Effingham Epwarth Consol.: White *Ellicy Korkl. Consol.: White *Ellicy Korkl. Consol.: White *Ellicy Korkl. Effingham Epwarth Consol.: White *Ellicy Korkl. Effingham Epwarth Consol.: White *Ellicy Korkl. W | 850 80 80 80 80 80 80 80 80 80 80 80 80 80 | 2850
2835
3345
3046
1600
1650
1650
1600
1650
3046
3160
3160
3185
3200
3035
3030
2200
2200
2200
2200
220 | | | | | | | | | | *Evers South: Effingham
Exchange East: Marion | 180 | 2650
2780 | |---|---|-----------|--------------| | | Goldengate Consol.: Wayne, White | 1,000 | 3275 | | 260 | | 120 | 3280 | | | • | 100 | 2970 | | White Wahash | Herald Consol.: White, Gallatin Hidalao North: Cumbarland | 140
40 | 3005 | | - | 2 | | 2693 | | Richland | | | 2540 | | Omaha East: Gallatin | Člaý | 620 | 3000 | | Wayne 20 | t Consol.: (| 20 | 2790 | | ds x | Consol.: | 40 | 2815 | | 40 | | 006 | 2400 | | iite, Edwards 480 | Iola South: Clay. | 100 | 2590 | | Raccoon Lake: Marion | ٠. | 100 | 2660 | | Hita Callatin | | 140 | 3150 | | Ruark: Lawrence 2075 | Johnsonville Courty, Wayne | 06 | 3220 | | | . – | | 3015 | | ffingham 240 | C) | | 2860 | |) u | | 20 | 3060 | | 20 | Kenner: Clay. | 20 | 2875 | | o9 | Jefferson . | 140 | 2815 | | \cdot | Lancaster Central: Wabash | 260 | 2810 | | Franklin 60 | Lancaster East: Wabash | 20 | 2660 | | × · · · · · · · · · · · · · · · · · · · | Lawrence: Lawrence, Crawford | × ; | 1860 | | Trumbull: White | Wayne . | 20 | 3300 | | | Manuel Grove Consol.: Edwards, Wayne | | 3250 | | Whittington West Franklin 100 2800 | Mattoon: Coles | 3 820 | 1950 | | 40 | Manual North Cosol · White | 340 | 3025 | | | - | 200 | 292 | | onsol.: Wayne, Hamilton 100 | Ha | 220 | 3345 | | Aden South: Hamilton 160 3330 | | 240 | 2350 | | 20 | | 20 | 2790 | | | New Harmony Consol.: White, Wabash, | | | | 08 | | × | 2910 | | bash, Lawrence x | Olney Consol.: Richland | | 3050 | | *Alma: Intarion | <u>r</u> | 00/ | 3100 | | 200 | Darksontn: Gallatin, Saline | 07 | 2865 | | | _ | 40 | 3005 | | | Passport South: Richland | 20 | 3025 | | Lawrence 90 | _ | 180 | 3030 | | | Patoka: Marion | 500 | 1550 | | managed of 1 x 11. | | | | | . Abandoned, revived. | | | | TABLE 11.—(Continued) | Approx.
depth
(ft.) | 27880
27880
27880
2787
2787
2787
2787
27 | |--|--| | Acres | 1, 100
1, 300
8,
x
3,600
400
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,0 | | System or series Group Formation Pay "sand" Pool: County | Divide South: Jefferson. Divide West: Jefferson. Dundas East: Richland, Jasper Eberle: Effingham Elbridge: Edgar Eldorado Consol.: Saline *Elk Prairie: Jefferson Ellery Consol.: Edwards †Ellery North: Edwards †Ellery South: Edwards †Enfield: White *Evers: Effingham Exchange: Marion Exchange: Marion *Exchange: Marion *Exchange Porth: Marion *Exchange North: Cansol.: Wayne Half Moon: Wayne Herald Consol.: White, Gallatin †Hidalgo: Jasper #Hill: Effingham *Hododville East: Hamilton Hord: Clay Hord: Clay Hord South: Clay Hord South: Clay *Hunt City South: Jasper Hunt City South: Jasper Hunt Satt Consol.: Gallatin Ilman Mest Consol.: Gallatin Ilman West Consol.: Gallatin Ilman West Consol.: Gallatin Ilola Consol.: Clay, Effingham *Jola West: Clay *Iola West: Clay *Iola West: Clay *Iuka: Marion | | Approx.
depth
(ft.) | 2860
2733
2733
2733
2733
2733
2733
2733
273 | | Acres | 1, 600
1, 600 | | System or series Group Formation Pay "sand" Pool: County | Phillipstown Consol.: White, Edwards Raccoon Lake: Marion Riffie: Clay Rinnet Clay Rinnet Clay Rinnet Consol.: White, Gallatin Roaches: Jefferson Roaches: Jefferson Roaches: Jefferson Roaches: Jefferson Ruark West Consol.: Lawrence HRUTH Hill North: Hamilton Russellville West: Lawrence St. James: Fayette Franklin Sumpter East: Clay Tont: Marion Trumbull: White Whittington West: Franklin Whittington West: Franklin Whittington West: Franklin Woodlawn: Jefferson Zenith North: Wayne McClosky limestone Ab Lake West: Gallatin Aden Consol.: Wayne, Hamilton Akin: Franklin | | White ence rds sh, Edwards gham n. hh. de d. Wayne, Richland, hite sh, Douglas show hite sh, Sh, Douglas | 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | 3330
3330
3330
3330
3330
3330
3340
3340 | luka West: Marion Johnsonville Consol.: Wayne Johnsonville North: Wayne Johnsonville South: Wayne Johnsonville South: Wayne Johnsonville South: Wayne Junction: Galatin *Keensburg East: Wabash Keenville: Wayne Kenner Wayne Kenner North: Clay Kenner North: Clay Kenner West: Clay Lancaster: Wabash, Lawrence Lancaster South: Wabash Lawrence: Lawrence, Crawford Lawrence: Lawrence, Crawford Lawrence: Lawrence, Cawford Lough Branch: Saline, Hamilton Long Branch: Saline, Hamilton Long Branco: Jefferson Mancham City: Jefferson Markham | 8, 308
160
160
170
180
180
180
180
180
180
180
18 | 2700
31700
31700
31800
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
31900
3 | |--|--|--
---|--|---| | Covington South: Wayne Covington South: White Crossville West: White Dahlgren: Hamilton. Dale Consol.: Hamilton, Saline, Franklin Divide: Jefferson Divide East: Jefferson | | 3310
3120
3185
33300
3150
2750
2750 | Miletus: Marion Mill Shoals: White, Hamilton, Wayne Mt. Carmel: Wabash Mt. Erie North: Wayne Mt. Vernon: Jefferson Mt. Vernon North: Jefferson | 60
700
1,300
100
180
20 | 2350
3375
2360
3240
2800
2675 | x Undetermined. TABLE 11.—(Continued) | stem or series
Group
Formation
Pay "sand"
Pool: County | Acres | Approx.
depth
(ft.) | System or series Group Formation Pay "sand" Pool: County | Acres | Approx.
depth
(ft.) | |--|--|--------------------------------------|---|-----------------------------|--------------------------------------| | New Harmony Consol.: White, Wabash,
Edwards | × | 2925 | Kinmundy: Marion | 20
x | 2430
1660 | | New Harmony South: White New Haven Consol.: White | | 3010
2820 | : <u>=</u> | 780 | 480 | | *Newton: Jasper *Newton North: Jasper Noble West: Jasper Noble West: Jasper | 20
80
80
80
80
80
80
80 | 2855
3000
3035
3035 | St. Louis Is. Roland Consol.: White, Gallatin Salem Consol.: Marion, Jefferson | 20
x
40 | x
2100
3080 | | Olney Consol.: Richland †Olney South: Richland Omaha West: Saline | 520
20
20 | 3100
3115
2910 | Westfield Is. Westfield: Clark, Coles | 9,000 | 335 | | *Omega: Marion | | 2490
2905
2895
2770 | Salem ls. Aden Consol.: Wayne, Hamilton Barnhill: Wayne. Clay City Consol.: Clay, Wayne, Richland, Jasper | 80
40
1,500 | 3735
3795
3590 | | Parkersburg Consol.: Richland, Edwards Parkersburg West: Richland, Edwards Passport: Clay Passport South: Richland | . 5,000
. 200
. 1,060
. 20 | 3175
3260
3020
3030 | Grandview: Edgar *Jacksonville Gas: Morgan Lawrence: Lawrence, Crawford Main Consol.: Crawford, Lawrence | 0 x x x | 570
330
1955
1815 | | Patoka East: Marion Phillipstown Consol.: White, Edwards *Pinkstaff: Lawrence Pinkstaff East: Lawrence | 1,060
20
20
20 | 1635
3000
1735
1640 | New Harmony Consol.: White, Wabash, Edwards Salem Consol.: Marion, Jefferson Warsaw | 09 | 3755
2160 | | Raccoon Lake: Marion Reservoir: Jefferson Ridgway: Gallatin *Rinard: Wayne Rinard North: Wayne | 260
200
200
200
200 | 1950
2700
2840
3145
3140 | Warsaw ls. Clay City Consol.: Clay, Wayne, Richland, Jasper Dahlgren: Hamilton. | 10
20 | 3600
4110 | | Ritter North: Richland. Roaches: Jefferson Polond Concol. White Gallatin | 120 | 321 <i>5</i>
2250
3070 | Cole
Weaver: Clark | 20 | 1565 | | Russellville: Lawrence Ste. Marie: Jasper. *Ste. Marie East: Jasper. Ste. Marie West: Jasper. | 280
40
800
800
200 | 2400
1560
2860
2885
2815 | Casey: Clark. Johnson North: Clark Louden: Fayette, Effingham Martinsville: Clark Mattroon: Coles | 30
20
20
820
10 | 1300
1325
2830
1340
2950 | | Sailor Springs Consol.: Clay, Effingham | x 2925
3 3020
0 3030 | Oak Point: Clark Westfield: Clark, Coles | 20 2
70 2 | 2220
875 | |---|--|--|--|--------------------------------------| | ferson | | Sylamore Sylamore (Hardin) Marine: Madison St. Jacob East: Madison | x 1 20 1 | 1700
1840 | | Sesser: Franklin. 100 Sesser: Franklin. 200 Shawneetown North: Gallatin 20 Stanford South: Clay 110 Storms Consol: White 120 Stringtown: Richland 800 | 3025
3025
0 3045
0 3090
0 3055
0 3025 | ated
inton | 100 2
20 2
2,500 2 | 2475
2850
2870 | | *Stringtown East: Richland. Sumner: Lawrence Sumpter East: White Thackeray: Hamilton | | Clay City Consol.: Clay, Wayne, Richland, Jasper. Dudleyville East: Bond. Edinburg West: Christian, Sangamon | | 4350
2370
1660 | | clin | | 5 프 :: | | 1950
3205
2795
1550 | | sper sper sper sper sper sper sper sper | 23290
0 2715
0 3000
0 2825
0 2825 | Posey East: Clinton. *Posey West: Clinton Salem Consol.: Marion, Jefferson | 40 2
10 2
5,860 3
80 3 | 2740
2585
3440
3500
2030 | | Whiteington Westankiii Whiteington Woods. Frankliin Williams Consol.: Jefferson. Willow Hill East: Jasper Woodlawn: Jefferson Zenith: Wayne Zenith: Wayne | | Lingle ss. †Sorento Consol.: Bond | 520 1
20 1
870 2
240 3 | 1850
1880
2275
3690 | | av.
Wavne, Richland, | | Valley Is. umption Consol.: Christian umption South: Christian nburg: Christian. | 2,870 2
60 2
20 1
140 2 | 2300
2630
1810
2285 | | erson .
dwards, V
Aarion
Clinton | 0 3025
0 2850
0 2810
0 3430
0 2940
0 1200
0 2775 | Geneva
Geneva dolomite
Boulder: Clinton.
Louden: Fayette, Effingham | 2,860 2
2,800 3
40 20 2
390 2 | 2630
3000
2835
2950
2920 | * Abandoned. x Undetermined. Table 11.—(Concluded) | System or series
Group | | | System or series | | | |--|----------------|---------------------|--|-----------------------|---------------------| | Formation
Pay "sand"
Pool: County | Acres | Approx. depth (ft.) | System of Series
Group
Formation
Pay "sand"
Pool: County | Acres | Approx. depth (ft.) | | Clear Creek
Clear Creek chert | | | Harristown: Macon | 40
20 | 2050
2585 | | Beaucoup: Washington | 280 | 3050 | McKinley: Washington. | 200 | 2240 | | Christopher Consol.: Franklin | 50
50
70 | 4430
2895 | Mt. Auburn Consol.: Christian | 2,100
2,240 | 1890 | | Irvington: Washington | 400 | 3090
4360 | New City: Sangamon | 60
760 | 1730
1980 | | Hibbard "sand" | 3 | 0001 | New Memphis South: Clinton, Washington | 40 | 2000 | | Edinburg South: Christian. | 40 | 1795 | Okawville: Washington. | 80 | 2325 | | Kincaid South: Christian | 200 | 1815 | *Pittsfield Gas: Pike. | 8,960 | 265 | | Hoing ss. Colmar-Plymouth: Hancock, McDonough | 2,500 | 450 | σ | 99 | 1775
1860 | | | | | | 500 | 2160 | | Bailey 1s.
Elkton: Washington | 40 | 2340 | Edgewood dolomite | 2 6 | 0001 | | DEVONIAN-SILURIAN | | | Fishhook Gas: Pike, Adams | 6,000 | 450 | | Devonian-Silurian Is.
Frogrown North: Clinton | 580 | 2250 | , Is. | ; | 1 | | New Memphis North: Clinton. | 300 | 2050 | Beaucoup: Washington | $\frac{20}{1,400}$ | 4095
3930 | | | 720 | 1020 | ≒ . | , 50
000
1 | 3650 | | SILURIAN | | | Irvington: Washington | 100 | 4273 | | Silurian undifferentiated
Baldwin: Randolph | 09 | 1535 | Louden: Fayette, Effingham | 88 | 3905
2700 | | Bartelso: Clinton | 250 | 2420 | Patoka: Marion | 200 | 3950 | | Bartelso East: Clinton | 320 | 2550 | Posen: Washington | 0
0
1
0
1 | 3900 | | *Collinguille: Madison | 4,0
40 | 1305 | St Jacob: Madison | 1.120 | 2260 | | Decatur: Macon | 120 | 2000 | Salem Consol.: Marion, Jefferson | 2,160 | 4500 | | *Decatur North: Macon. | 20 | 2220 | Shattuc: Clinton | 240 | 4020 | | Edinburg West: Christian, Sangamon | 680 | 1690 | | 230 | 410 | | Germantown East: Clinton | 99 | 2350 | Westheld: Clark, Coles | 340 | 2300
3170 | | Glenarm: Sangamon | 07 | 1000 | Woburn Consol.: Donu | 240 | 31/0 | ``` 58 Abandoned 1943; revived and abandoned 1951; revived Footnotes to Tables 12 and 13, p. 96-127. Cam, Cambrian; Ord, Ordovician; Sil, Silurian; Dev. Devonian; Mis, Mississippian; Pen, Pennsylvanian. L, limestone; LS; sandy limestone; OL, oolitic limestone; D, dolomite; DS, sandy dolomite; S, sandstone. A, anticline; AC, anticline with accumulation due to change in character of rock; AF, anticline with faulting as an important factor; Af, anticline with faulting as an important factor; Af, anticline with faulting as a minor factor; AL, anticline-lens; AM, accumulation due to both anticlinal and monoclinal structures; D, dome; H, strata horizontal or nearly horizontal; MC, monocline with accumulation due to change in character of rock; MF, monocline-fault; ML, monocline-lens; MU, monocline-unconformity; R, reef. Undetermined. Abandoned 1952; revived 1953. Abandoned 1951. Abandoned 1956. 57 Abandoned 1951; revived 1952 58 Abandoned 1949; revived 1953. Abandoned 1951. 60 Abandoned 1952; revived 1955. 61 Abandoned 1952 Abandoned 1950; revived 1955. Includes Concord South Consol. 63 64 Abandoned 1943; revived 1949; abandoned 1952. Abandoned 1950. 66 Abandoned 1944. Includes Toliver. Abandoned 1950. Undetermined. Undetermined. Wells producing from 2 or more pays. Abandoned 1945; revived 1950. Total of lines 2, 8, 12, 13, 18, 25, 31, and 36. Includes Allison-Weger, Birds, Chapman, Flat Rock, Hardinsville, Kibbe, New Hebron, Oblong, Parker, Robinson, and Swearingen Gas. Pool also listed in table 13. Pool also listed in table 12. Total of lines 57 and 77. Total of lines 1, 44, 45, 78, 79. Abandoned 1943; revived 1956. Abandoned 1921. Abandoned 1921. Abandoned 1933; revived 1949. 69 Abandoned 1954. Abandoned 1946; revived 1954. Abandoned 1945; revived 1950. 72 Includes Mason. Abandoned 1945. Abandoned 1947. 75 Abandoned 1946. Abandoned 1952. Abandoned 1954. 78 Abandoned 1956. Abandoned 1950. Abandoned 1941. 81 Abandoned 1951. ¹² Abandoned 1933; revived 1949. Abandoned 1953. Abandoned 1947. ¹³ Abandoned 1950. Abandoned 1935. Abandoned 1952; revived 1955. Abandoned 1923. Includes Maunie West. Includes Maunie. 15 Abandoned 1923. Abandoned 1939. Abandoned 1904; revived 1942. 87 Abandoned 1950. Abandoned 1952. Gas not used until 1905; abondoned 1930. Abandoned 1934. Abandoned 1900. Abandoned 1956. Illinois portion only. Abandoned 1948; revived 1952; abandoned 1954; revived Abandoned 1900. Abandoned 1919. Abandoned 1930; revived 1939; converted in part to gas storage 1951. Total of lines 95 to 123 inclusive. Total of line 1 to 13 inclusive. Has produced in multiple pay or workover wells only. No 1956. Abandoned 1952; revived 1956. Abandoned 1948. Abandoned 1953. Abandoned 1940; revived 1949. original completions. Abandoned 1953. Abandoned 1953. Abandoned 1949. Abandoned 1947; revived 1951: abandoned 1954. Abandoned 1951. Abandoned 1954. Abandoned 1954. Abandoned 1954. 28 Abandoned 1944. Abandoned 1946; revived 1955; abandoned 1956. Abandoned 1942. Abandoned 1951; revived 1954. Includes Norris City and Gossett. Abandoned 1950; revived 1956. 100 Abandoned 1946. 101 31 Abandoned 1950. Abandoned 1956. Abandoned 1955. 103 33 104 Abandoned 1954. Abandoned 1952. Abandoned 1952. Abandoned 1951. 34 106 Abandoned 1955. Abandoned 1952; revived 1955; abandoned 1956. Abandoned 1951; revived 1955; abandoned 1956. Abandoned 1942; revived 1951; abandoned 1952. 107 37 Abandoned 1953. Abandoned 1954. 109 Abandoned 1953. Abandoned 1956. Abandoned 1947. 110 Abandoned 1949; revived 1952. Abandoned 1948. Abandoned 1951; revived 1953. Abandoned 1952; no gas marketed. 40 112 Abandoned 113 Abandoned 1950; revived 1955. 1953: revived 1955. Abandoned 43 Abandoned 1952; no gas marketed. Includes Concord North. Abandoned 1951. Abandoned 1952; revived 1956. Abandoned 1953; revived 1956. Includes Cantrell Consol., Cantrell North, Flannigan, Rural 115 1940; revived 1947. Includes Sorento South. Abandoned 116 Abandoned Abandoned 1956. 1950. 118 Abandoned 1950. 1956. 119 Abandoned Hill West, and West End. 49 Abandoned 1955. Abandoned 1946. 51 Abandoned 1951. 52 Abandoned 1940. 120 Abandoned 1947. 121 Abandoned 1956. 122 Abandoned 1956. 123 Abandoned 1947; revived 1953; abandoned 1954. 123 Abandoned 1955. ``` 124 Abandoned 1956. Table 12.—Oil Production in Illinois, 1956 | ll. | | | Oil | Oil production (M bbls.) | n (M bb) | ls.) | | Producing formation | matio | u | | Numl | Number of wells | vells | | Deepest zone tested | zone | |--|---|--------------|-------------------------------------|--------------------------|---|---------|--|--|------------|---|--|---|-----------------|---|----------------|----------------------|------------------------| | 9 | | over. | During 1956 | 3 1956 | To end of 1956 | of 1956 | p | | | | oţ | | 1956 | 9 | | | | | Z C | Pool: County | Year of disc | Secondary | IstoT | Secondary | [stoT | Total prove
area (acres) | Name: Age ^a | Characterb | Depth to
top (ft.) | Av. thick-
ness (ft.)
Completed
end of 1956 | Com- | Aban- | doned. Produc- ing end ing year | Structure | Name | Depth of
hole (ft.) | | 108459 | Warrenton-Borton: Edgar, Coles
Westfield: Clark, Coles | 1906
1904 | 00 % % 00 | ***** | 52
8 x x 0
0 | 32 **** | 10,000
9,050
9,050
9,000
300 | Unnamed: Pen
Gas: Pen
Westfeldi. Mis
Carper: Mis
Trenton: Ord | s syst | 200
280
335
875
2,300 | 20
25 25
25 1,6
18 1,4 | 29
667
208
450
7 | | 0 2 2 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | ğanana
İ | Trenton
St. Peter | 2,212
3,009 | | 8
9
10 | Siggins: Cumberland, Clark | 1906 | 931
x | * * * | 9,696
x
x | * * * | 4,000
3,200
500 | 1st (Upper) Siggin
2nd (Lower) Siggin | SS | 400
480 | 1,0
25 8 | 042
888
93 | | 26 448
x x | | Dev | 2,010 | | 11
12
13
14
15
15
16 | York: Cumberland, Clark ²
Casey: Clark | 1907
1906 | 37
0
0
37 | **** | 364
364
0
0 | **** | 1,000
350
2,100
200
400
1,540 | 3rd & 4th Si
Isabel: Per
Upper Gas:
Lower Gas:
Casev: Per | | 580
590
265
300
445 | | 202
71
71
844
83
83
326 | | x
0 7
0 295
0 4 | AAAAA
WWWWW | Dev
Dev | 2,642
1,717 | | 17
18
19
20
22
23
23 | 17
18 Martinsville: Clark
20
21
22
23 | 1907 | 000 x x 00 | ***** | 46
00
00
00 | ***** | 1,600
1,600
380
780
820
820 | Carper: 1 Shallow: Casey: P. Martinsvil Carper: 1 Devonian: | s sstst | 1,300
255
500
480
1,340
1,550 | | 260
8
83
23
53 | x000x0 | 0
10 129
2
2
8
8 | | St. Peter | 3,411 | |
24
25
27
28
29 | 24 25 Johnson North: Clark 26 27 28 29 | 1907 | 37
00 x x | ***** | 448
0
0
0
x x | ***** | 2,400
2,400
1,200
900
250 | Trenton: Kickapoo Claybool: Casey: I | വ യയയയ | 2,700
315
415
465
535 | | 2
33
298
183
47 | | 0
40 232
0
×
× | | Dev | 2,260 | | 33
33
34
34 | Johnson South: Clark | 1907 | 420
0
0
x x | **** | 1,693
0
x | **** | 2,200
200
200
300
1,700 | Carper: Mis Claypool: Pen Casey: Pen Upper Partiow: Pen | ი დდდ | 1,325
390
450
490 | | 568
38
60
429 | | 21 214
x
x | | Dev | 2,030 | | 35
36
37
37
38
39
40
41
42
43 | Bellair: Crawford, Jasper | 1907 | 136
136
0
0
0
0
0 | ***** | 1,495
1,495
0
0
0
0
0 | ***** | 1,600
x x x x 10
10
20
30
20 | Lower Falchow. "500 ft.": Pen "900 ft.": Mis Cypress: Mis Renault: Mis Aux Vases: Mis Ohara: Mis | Losososo a | 560
815
885
1,210
1,200
1,200
860 | x 0 | 22
111
184
122
1 | | 7 7 100
1 1 100
0 0 0 0 0 0 0 0 0 0 0 0 0 0 | A PAPAPANANA - | Mis | 1,471 | | 44 | Clark County Divisions | | 1,594 | 1,880 | 13,807 | 70,482 | 24,250 | | | | 5,057 | | 19 10 | 109 1,607 | | St. Peter | 3,411 | | 45 | 45 Main Consol.: Crawford,
Lawrence 4, 5 | 1906 | 1,887 | 2,953 | 7,143 | 172,613 | 84,400 | | | | 9,656 | | 100 17 | 173 4,490 | ML | St. Peter | 4,654 | | | | ** | 0- | | |--|--|---|---|---| | | 5,190 | 2,164 | 2,571 | | | | eter | | eter | | | | St. Peter | Mis | Mis Mis | | | ZZZZZZZZZZ
COOCTTTTTTCOO | বৰবৰবৰবৰবৰবৰব | . 3 | WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW | | | , | 2,133 | 41 | 2,174 | 8,715 | | 00 * * * * * * * * * 00 0 | 8
200 x0 x x x x x x x x x x x x x x x x x | ×00×1 | 200
200
200
200
200
200
200
200
200
200 | 385 8 | | 0
1
1
1
1
1
1
1
3
1
0
0 | 777700128
777700128 | 3
0
10
5 | 10
55
0
0
0
11
1
0
0
0
0
0
0
0
0
0
0
0
0 | 277 | | 74
,272
,272
,25
,25
33
33
31
112
112
12
4 | 4,933
11,260
11,260
510
510
1,132
887
887
887
887 | ,015
3
1
42
77 | 5,010
3
3
8
12
12
12
12
13
13
10
10
11
11
11
11
11
11
11
11
11
11
11 | 20,665 | | x 25 9, 15 11 11 11 11 11 11 11 11 11 11 11 11 | * * * * * * * * * * * * * * * * * * * | | 30
12
12
10
10
10
10
10
10
10
10
10
8 | 20 | | 510
750
750
1,250
1,480
1,580
1,580
1,530
1,815
2,795 | 290
450
450
450
450
11,250
11,570
11,570
11,600
11,650
11,755 | 1,860
1,660
1,955
1,845 | 660
11,070
11,290
11,450
11,450
11,540
11,600
11,920
2,200
2,300
2,300 | | | LLLSSSSSSSS | იაიაიაიაიაიაია
ია | JJJ & | $\Gamma_{N}^{\Gamma} \Gamma_{N} \nabla_{N} $ | | | x Cuba: Pen 20 Unnamed: Pen x Robinson: Pen x Pennsylvanian: Pen x Cypress: Mis x Bethel: Mis x Max Vases: Mis x McClosky (Oblong): Mis x Salem: Mis x Devonian: Dev | | | x Pleasantview: Pen x Bridgeport: Pen x Bridgeport: Pen x Bridgeport: Pen x Jordan: Pen x Valtersburg: Mis x Tar Springs: Mis x Tar Aux Springs: Mis x Cypress: Mis x Aux Vases: Mis x Obara: Mis x Quesciare: Mis x Obara: Mis x Coperas: Mis x Coperas: Mis x Copress: Mis x Copress: Mis x Coperas: Mis x Coperas: Mis x Coperas: Mis x Coperas: Mis | 20 | | 7 | 39,000 | 9 |
8,000
8,000
0,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000 | 156,4 | | ***** | ******** | **** | 262,364
15,679
15,679
15,679
15,679 | 521,170 156,450 | | 7,143
0
0
0
0
0
0
0 | %
62
60
60
60
60
60
60
60
60
60
60
60
60
60 | 0000 | 8,624
697
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 30,271 | | **** | ********* | : x x x | 27.00 × × × × × × × × × × × × × × × × × × | 10,173 | | 1,887
0
0
0
0
0
0
0
0 | 1.
2,526
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0000 | 2,526
453
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 6,460 | | | n Consol insol. onsol. onsol. in Consol in Consol 1906 | × | 1912 | | | 446
448
550
550
551
553
553
553
554 | 57 Allison-Weger—Now included in Main Consol. 58 Birds—Now included in Main Consol. 59 Chapman—Now included in Main Consol. 60 Flat Rock—Now included in Main Consol. 61 Plaw Hebron—Now included in Main Consol. 62 Parker—Now included in Main Consol. 63 Swearingen gas—Now included in Main Consol. 64 Lawrence: Lawrence, Crawford 1906 65 66 67 77 71 72 73 74 74 75 76 77 77 78 | 80
81
82
83
84 St. Francisville: Lawrence | 85 Lawrence County Division? 86 Allendale: Wabash, Lawrence 88 89 90 91 92 92 94 95 96 97 100 97 101 94 97 101 94 97 | cluded in Allendale
103 Total Southeastern Fields ⁸ | | 3,582
4,212 | 3,405 | 2,177 | 2,177 | 805
1,800
3,290
1,390
1,390
3,000
5,023 | 3,130 | 1,760
2,768 | | 2,941 | 2,964 | 5,395 | 3,466 | 3,515 | |---|--|---|---|---|---|---|-------------------------------------|--|---|---|---|--------------------------------| | Trenton
St. Peter | Dev
Mis | St. Peter | St. Peter | Ord
Ord
Trenton
Ord
Ord
St. Peter
St. Peter | Trenton | Mis
Pre-Cam | | Mis | Mis | Dev | Mis | Mis | | AUUR | MMKA | AC
AL | ML | A MI MI MI A MI A MI A MI A MI A MI A M | П | $_{\rm A}^{\rm DF}$ | | MARA | ZZZZZZ
CCLCC | $_{\rm AC}^{\rm AA}$ | AC
AC
AC | $_{\rm AL}^{\rm A}$ | | 39 | 7 8 | 32 | 0 | 200
30
0
2
2
0
0
18 | 0 | 10 | 9,086 | π , | 11 | 80 | 118 | 28 | | 0440 | -00-0 | 2 × × 0 | 0 | HH00070000 | 00 | 00 | 399 | 0000 | -0000+0 | 000000 | 00000 | 0000 | | 1000 | 10100 | 0000 | 0 | -000007+00 | 0 11 | 00 | 282 | 0000 | ,00000 | 770000 | 10001 | 1200 | | 16
78
51
27 | £ κ κ κ ∞ | 185
5
179 | 9 | 497
320
14
23
18
1153
1123
28 | 7 7 | 108
41 | 22,176 | 3 7 7 9 7 9 | 41
0
0
1
1
1
1
1
1 | 100
122
0
74
0
0 | 2
0
0
1 | 29
111
15 | | 18
15
12 | 20
7
15 | 10
20 | 20 | 21
50
7
7
8
8
8
8
10
20
20 | | 20
50 | 22 | v & 0 | 10
20
9
6 | 10
7
5
4
4
16 | 8786 | 10 | | 780
2,420 | 510
845
1,660 | 900 | 1,305 | 450
700
950
650
330
660
1,400
1,540 | 850 | 720
410 | | 1,835
2,735
2,770 | 725
2,020
2,425
2,735
2,830 | 3,200
3,290
3,320
3,320
3,735 | 3,245
3,310
3,330
3,395 | 2,840
3,100 | | rs s | აააა | SL | H | LSS SSL | S | rs
Ls | | മപ്ര | Losooo | ∞ 1 1 1 1 1 1 1 1 1 1 | s Lrs | တလ | | Cypress: Mis Carlyle (Cypress): Mis Silurian: Sil | Dykstra: Pen
Wilson: Pen
Cypress: Mis | Golconda: Mis
Carlyle (Cypress): Mis | Silurian: Sil | Hoing: Dev
Carlyle (Cypres): Mis
Unamed: Pen,
Unmamed: Pen,
Unmamed: Pen
Cypress: Mis
Gabenoist: Mis
Ganeris: Day | Cypress: | Petro: Pen
Trenton: Ord | | Palestine: Mis
Renault: Mis
Aux Vases: Mis ²⁵ | Pennsylva
Waltersbu
Cypress:
Aux Vases
McClosky | Aux Vases: Mis Obara: Mis ^{as} Rosiclare: Mis McClosky: Mis Salem: Mis ^{as} | Aux Vases: Mis
Ohara: Mis ²⁶
Rosiclare: Mis
McClosky: Mis | Cypress: Mis
Aux Vases: Mis | | 80
600
350
250 | 340
x
x
x
x
x
80 | 0 0 | 40 | 2,500
1,000
1,000
45
60
100
200
200
200
460
300
300
300
400
100
300
300
400
400
400
400
400
400
400
4 | 20 | 250
230 | 163,535 | 00
00
04
04
04
04
04 | 190
10
70
120
20 | 2,380
1,260
140
100
2,340
80 | 400
100
20
160
340 | 380
180
200 | | 3,046
x | **** | 3,857
x | П | 2,826
2,826
x
x
2
2,765
3,765 | × | 605
238 | 541,950 1 | 26
7
x | 45
0
x
x
2.5 | 7,940
x
x
x
x
x | 503
x x x x | 947
x
x | | 675
675
0 | 00000 | 000 | 0 | 00000000 | 0 | 3 | 30,949 | 0000 | 000000 | 1,061
646
0
0
415 | 00000 | 000 | | 356
x
x | 70 × × × | 20
x x | 0 | 67
16
0
0
0
29
0
0 | 0 | 8 1 | 10,675 | mm00 | 24.
0
0
0
0
0 | 342
x x x x x | 52 ×××× | 273
x
x | | $\begin{array}{c} 0 \\ 217 \\ 217 \\ 0 \end{array}$ | 0000 | 000 | 0 | 000000000 | 0 | 00 | 6,677 | 0000 | 000000 | 203
115
0
0
88
88 | 00000 | 000 | | 1916
1936 | 1910 | 1911 | 1909 | 1914
1928
1918
1915
1910
1909 | 1888 | 1921
1920 | | 1947 | 1950 | 1938 | nsol.
1945 | 1942 | | | 108 Brown, Junction City, Langewisch- Kuester: Marion 110 110 1110 112 Carlianille, Moccardiol | | 117 Collinsville: Madison ¹¹ | | Sparta: Randolph ⁵ , ²⁰ | Wamac: Marion, Clinton, Wash-
ington
Waterloo: Monroe ²² | Total of fields discovered prior to | January 1, 1937 ²³
133 Ab Lake: Gallatin 1
134
135 | Ab Lake West: Gallatin 1 | Aden Consolidated: Wayne, Hamilton | Aden North—Now included in Aden Consol.
Aden South: Hamilton | Akin: Franklin 1 | | | 3,435 | 3,510 | 5,185 | 3,254 | 3,420
3,692 | 3, 089
3,010
3,100
3,116
445
3,070 | 2,740
2,234
3,878 | |---|---|---
--|--|--|---|---| | | Mis | Mis | Dev | Mis | Mis
Dev | Mis
Mis
Mis
Dev
Pen
Ord | Dev
Trenton
Mis | | AC | 4 AL
AC
AC
AC | м ж ж
9 | 370 AM
MIF
MIF
MIF
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL
AL | 29
AL
AL
AL
AL
AL
AL | 2 A A A A A A L | AC
1 MC
0 x
10 x
151 A
AL
AL | | | 000 | 0000 | 00 | - 8000000000000000000000000000000000000 | 070000000 | 0000 | 000000000 | 00000 | | 700 | 00000 | 0480 | 000000000000000000000000000000000000000 | 08000118180 | 0 10 10 | 1001170000 | 0
12
12
0
0
0 | | 70, | 19700% | 1 / 9 0 | 429
100
100
100
37
33
33
33
33
27
27
27
27
27
27
27
27
27
27
27
27
27 | 084
04
00
00
00
00
00
00
00
00
00
00
00
00 | o 1004 | 4 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3
135
48
2
3
68 | | 18
9 | 8
10
12
4 | r 0 4 | 252 6 4 2 0 2 4 5 8 2 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7
6
10
17
7 | n 1-00 | 01
24
77
77
77
78
78 | 15
x
x
15
6
9
9 | | 3,100
3,270 | 2,715
3,050
3,080
3,130 | 3,350
3,395 | 1,650
2,100
2,100
2,100
2,100
2,125
2,125
2,125
3,100
3,111
3,110
3,200
3,200
3,200
3,200 | 2,800
2,910
2,920
2,925
3,020
3,100
3,125
3,155 | 3,375
1,805
1,945 | 2,085
2,960
2,925
1,430
1,415
1,050
1,170
2,300 | 2,630
1,535
3,325
3,370
3,400
3,450 | | ココ | গ্রমন | 니니 | NO N | $^{L}_{C}$ $^{L}_{S}$ S S | J SS. | LSS SSSLOL | TO S TO TO | | Ohara: Mis
McClosky: Mis ²⁵ | Cypress: Mis
Ohara: Mis ²⁵
Rosiclare: Mis ²⁵
McClosky: Mis | ohara: Mis
McClosky: Mis ²⁵ | Mansfield: Pen Bridgeport: Pen Bridgeport: Pen Bridgeport: Pen Bridgeport: Mis Valtersburg: Mis Tar Springs: Mis Tardinsburg: Mis Gypress: Mis Bethel: Mis Bethel: Mis Renault: Mis Aux Vases: Mis Rostelare: Mis Rostelare: Mis McClosky: Mis | Lypress: Mis Paint Creek: Mis Bethel: Mis Bethel: Mis Aux Vases: Mis Aux Vases: Mis Rosiclare: Mis McClosky: Mis | McClosky: Mis
Cypress: Mis ²⁸
Bethel: Mis | McCloaky: Mis
McCloaky: Mis
Rosiclare: Mis
Aux Vases: Mis
Bethel: Mis
Pennsylvanian: Pen
Bethel: Mis
Rosiclare: Mis
Codar Valley: Dev | Cedar Valley: Dev
Silurian: Sil
Aux Vases: Mis
Ohara: Mis
Rosiciare: Mis
McClosky: Mis | | 40
20 | 100
20
20
20
20
60 | 180
180
20 | 5,500
300
1,500
20
630
900
420
100
940
200
200
1,600 | 730
120
10
20
20
40
120
203
80
240 | 20
70
10
60 | 40
160
20
10
120
120
2,900
430
320
2,870 | 60
1,780
640
140
180
1,140 | | ×× | 76
× × × × | 80
x x | 16,296
x x x x x x x x x x x x x x x x x x x | 1,004
× × × × × × × × × | 1
79
x | 26
26
.1
.0
67
67
5,384
x | 9
4,090
x
x x x x | | 0 | 00000 | 000 | 2,863
496
446
7
7
7
8
9
9
9
9
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 00000000 | 0000 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0
0
0
.5
.5
.0
912 | | ×× | 4 × 0 × × | 36
x | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2.
4. * * * * * * * * * * * | | 342
342
342
3 x x x | 1.
386
x x x x x | | 00 | 00000 | 000 | 516
0 0 2 × 0 × 8 0 0 0 × 0 0 0 × 0 0 0 × 0 0 0 0 | 00000000 | | 188
126
126 | # | | | 1948 | 1955 | 1940 | 1943 | ion Consol.
1953
1941 | 1942
1953
1953
1953
1956
1948 | Assumpti
1951
1954
1939 | | -22 | 4 Akin West: Franklin
6
7
8 | Modern September 1 | 4 Albion Consol.: Edwards, White ⁵ 6 7 8 9 1 1 1 4 4 4 6 6 6 7 7 7 8 8 8 8 8 8 8 | 9 Albion East: Edwards 1 2 3 4 4 6 6 5 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 | 0 Albion North—Now included in Albion Consol. 1 Albion West: Edwards ²⁶ 2 Alma: Marion 1941 | 6 Amity: Richland 7 Amity: Richland** 8 Amity South: Richland** 9 Ashley: Washington 0 Ashnore Bast: Coles 1 Assumption Consol:: Christian | S Assumption North—Now included in Assumptio
6 Assumption South: Christian 1951
7 Baldwin: Randolph 1954
8 Barnhill: Wayne 1939
9 | | 161 | | 27.77 | 2,477,43
477,43
1,74,74,53
1,84,74,63
1,84,74,63
1,84,74,63
1,84,74,74,74,74,74,74,74,74,74,74,74,74,74 | 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2002020 | 222222222222222222222222222222222222222 | 215
215
225
227
227
227 | Table 12.—(Continued) | Pool: County Pool | | | Oil | production (M bbls.) | ı (M bbls | | | Producing formation | rmatio | Ü, | | Nui | Number of wells | f wells | | Deer | Deepest zone
tested | U | |--|--|--------------------------------------|-------------------------------|----------------------|----------------------|------------------------|--|--|------------------------|---|---------------------|--|-----------------|------------------|---------|---------------------|------------------------|---| | Total provery Total proves Tot | Ť | OVETY | During | 1956 | To end o | £ 1956 | Þ | | | | | 01 | 11 | 956 | | | | | | ed in Goldengste Consol. ed in Goldengste Consol. Co | | vaib to resY | | IstoT | | lstoT | Total prove
area (acres) | | Character ^b | Depth to
top (ft.) | ness (ft.) | end of 1956 | pleted | doned
Produc- | of year | | | Depth of
hole (ft.) | | ed in Coldengate Cornsol. 1952 1954 1955 1955 1955 1955 1955 1955 1955 | | | 00 | ∞ × | 00 | ω × | 20
40 | | 니니 | 3,520 | - 8 | 1
10 | 100 | 000 | AC | | | | | 1951 1951 15 15 15 15 15 | I East—Now included in Golde
Seast: Clinton
South: Clinton
West: Clinton | ngate C.
1950
1942
1945 | | 25. | 0000 | 442
23
17 | 320
100
140 | Silurian:
Devonian:
Cypress: | 거니ග | 2,550
2,475
960 | 7 3 3 15 | 16
3
12
14 | 0000 | 00-0 | | Sil
Dev
Trent | | 2,788
2,652
2,520 | | ton, 1951 0 63 0 20 Betheli Mis 100 Betheli Mis 104 0 10 105 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 1951 | 000 | N X X | 000 | 90c | 280
280
20 | Clear Cree
Trenton: | 니니 | | 12
5 | 13
0
• | 000 | 000 | | | | 7 | | 1956 0 32 0 10 Cypress; Mis 2 1,000 25 1,000 25 1,000 25 1,000 25 1,000 25 1,000 25 1,000 25 1,000 25 1,000 25 1,000 25 1,000 25 2,000
25 2,000 25 25 25 25 25 25 25 | up South: Washington
Creek: Bond, Clinton
Creek North: Bond ²⁹
Creek South: Clinton, Bond ⁵ | 1951
1942
1949
1946 | 0000 | 63
8
0
32 | 0 4 1
0 0 0 | 399
183
1
316 | | Bethel: Bethel: Bethel: Bethel: I | ഗഗഗ ഗ | 1,430
1,130
1,115 | 004 6 | 22
16
44
42 | 00000 | | | | 8000 | 3,122
2,526
2,556
2,556
2,539 | | 1943 0 10 0 316 200 McClosky: Mis L 3,085 6 5 1 0 0 0 3 AC Mis 1951 0 0 3 6 5 70 McClosky: Mis L 2,840 7 3 0 0 0 0 M M Mis 1942 0 7 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | eyer Gas: Clinton ⁵
rairie: Hamilton | 1956
1940 | | 32
0
18
x x | 00000 | 316
0
600
x | | Cypress: M
Bethel: Mis
Cypress: M
Aux Vases:
McClosky: | വര രാവ | 1,140
1,140
1,070
3,250
3,420 | 23
23
88
6 | 17
17
10
10 | 0000 | 00000 | | | 212 | 2,730
5,483 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | - | 1943
1951 | 000 | 10
25 | 000 | 316
65
10 | | n
McClosky:
Bethel: Mis | J s | 3,085 | 9 | - v 4 - | 0000 | 0000 | | | 60.60 | 3,201
3,006 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | : Lawrence | 1942 | 0000 | 67 X X | 0000 | 241
x
x | 500
40
480 | Ohara: Mis
Aux Vases: Mis
Ste. Genevieve: | LS L | 2,840
1,805
1,850 | 7
20
7 | 3
23
19 | 0000 | 0000 | | | 2 | 2,000 | | w. Harmony Consol. i.i. Maple Grove Consol. ii. Maple Grove Consol. ii. Maple Grove Consol. iii. | East: Lawrence | 1947 | 000 | 2 × × | 000 | 104
x
x | 100
20
90 | Aux Vases: Mis
Ste. Genevieve: | ςΩ | 1,805
1,860 | 20 | 28H8+ | 0000 | 0-0-0 | | | 1 | 1,907 | | 734 1,050 9,449 32,708 2,400 Tar Springs: Mis S 2,100 10 243 0 0 A M Sis O D D A D A D A D A D A D A D A D A D | -Now included in New Harmon;
gton—Now included in Maple (
gton South: Edwards ³⁰
:: Franklin | y Consol
Grove Co
1944
1941 | 1.
onsol.
0
734
0 | $1,050 \\ 0$ | 0
9,449
0 | 10
32,708
x | $\begin{array}{c} 20 \\ 2,400 \\ 20 \end{array}$ | McClosky: Mis
Pennsylvanian: | JS | 3,240 | 8 6 | $\begin{array}{c} 1 \\ 243 \\ 0 \end{array}$ | 000 | | | | ฑัฑ์ | 3,420
3,205 | | x 0 x 30 Bethel: Mis S 2,600 20 3 0 0 x 0 x 100 Aux Mis S 2,685 10 3 0 0 x 0 x 220 Ohara: Mis L 2,730 8 6 1 0 x 0 x 160 Rosiclare: Mis S 2,775 6 4 0 0 | North: Franklin | 1941 | 734
0
0
0 | 1,050
93
x | 9,449
0
0
0 | 32,708
1,805
x | ,400
750
130
150 | Tar Springs:
Cypress: Mi
Paint Creek: | လ လလ | 2,100
2,460
2,595 | 10 17 | 243
60
13
8 | 04 | | | | 2, | 2,906 | | | | | 0000 | *** | 0000 | *** | 30
100
220
160 | Bethel: M
Aux Vases:
Ohara: M
Rosiclare: | യവയ | | 20
10
8
6 | w w o 4 | 00-0 | 0000 | AAA | | | | | | 3,125 | 3,457 | 2,999 | 2,953 | 3,780
3,071 | 3,507 | 3,234 | 3,150 | | 3,156 | 3,388 | 3,813 | 2,946
1,715
1,674
3,870 | |-------------------|--|--|---|--|---|--|-------------------------------|---|--|--|---|---|---| | | , | (,) | (4 | | (1) (1) | ., | (1) | .,,,,,, | , | (1) | (4) | | 31112 | | | Mis | Mis | Mis | Mis | Ord
Mis | Mis | Mis | Mis
Mis | | Mis | Mis | Trenton | Dev
Mis
Mis
Dev | | A | MMM | MC | ZŽZZ | MM | × SE | AC
AC | AAC. | ^K C× β | ACCAPE
ACCAPE
ACCAPE | MMC | × | QQ | AAAA
CAAAAA | | | 4 | 1 | 2 | 2 | 11 1 | ທ | 9 | 17 1 | | 0 | 0 | 31 | 1
49
2
110 | | 00 | 7007 | 00 | 0- | 0000 | 010 | -00 | 000 | 700% | 000000000000000000000000000000000000000 | 0110 | 0 | 3 6 | w0400000 | | 0 | 00000 | 00 | 0000 | 0000 | 000 | 0000 | 0-0 | -00- | 1000000 | 0000 | 0 | | 200000000000000000000000000000000000000 | | 9
14 | 18
4 T T T T T T T T T T T T T T T T T T T | - | 2137 | - 6 - 6 | 15 | 00 0 6 | -6 | 23 1 8 | 27
11
12
12
13
14
15
17
17
17
17
17
17
17
17
17
17
17
17
17 | 2244 | ₩ | 47 | 20
1
50
2
115
73
6 | | 10 | 6
12
10 | 10 | 12 N N | 10 | 177 | 9 8 | 41 | ~ 6 8 | 8 2 5 0 1 1 0 0 8 8 0 5 2 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 10 | ις | 20 | 12
12
16
19
15
2 | | 2,800 | 2,900
2,850
2,890 | 2,895 | 2,535
2,835
2,875 | ,500 | 1,935
1,865 | 3,345 | 060, | | 2,110
2,310
2,710
2,880
3,020
3,040
3,045
3,200 | 980 | , 290 | ,190 | 2,630
2,850
1,600
1,650
2,060
2,130
2,230 | | L 2 | 222
111 | L 2 | S Z Z L | | STS | L 3 | 1. | 277 | LLLSSSSS | 2 L 3 | L 3 | | LS 1 1 2 2 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 | | 360 McClosky: Mis | 520
100 Ohara: Mis
20 Rosiclare: Mis
420 McClosky: Mis | 40 Ohara: Mis | 130
50 Cypress: Mis
40 Rosiclare: Mis
60 McClosky: Mis | 50
10 Cypress: Mis
40 Any Voces: Mis | Silurian:
Clore: N | 200
20 Rosiclare: Mis ²⁵
200 McClosky: Mis | 280
20 Rosiclare: | 260 McClosky: Mis
10 McClosky: Mis
480 McClosky: Mis | + | 1
40
20 Ohara: Mis
20 McClosky: Mis | 20 Ohara: Mis | 720
530 Bethel: Mis | 240 Centeva: Dev
20 Devonian: Dev
560 Rosiclare: Mis
40 Rosiclare: Mis
1,430 Bethel: Mis
680 Aux Vases: Mis
40 Ohara: Mis ²⁶ | | × | 917
x
x | 76 | 7.7
× × × | 102 | 245
12 | 320
x
x | 465 | 461
0
418 | 244
244
10
10
10 | 13
13
0 | 73 | 6,005
x | 12
489
7
11,367
x | | 0 | 0000 | 0 | 0000 | 000 | 000 | 000 | 000 | 0000 | 290000000000000000000000000000000000000 | 000 | 0 | 00 | 0
0
0
10,243
x
x
0
0 | | × | 10 x x x | 4 | 1017 | 4 rč r | 67 | 10
x x | r-11 | 0085 | 0 | 110 | 0 , | 366
x | x 489
936 1
x x x | | 0 | 0000 | onsol. | ngs Consol.
0
0
0
0 | 000 | 00 | 0,00 | 000 | 000; | 0000003 | 000 | Consol. onsol. |
00 | 353
353
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 1943 | 1943
ailor Springs C | l in Sailor Spri
1947 | 1942 | 1953
1952 | 1951
1951 | 1943 | 1949
1944 | | 1951 | in Bone Gap 1954 sburg Consol. Parkersburg C y Consol. y City Consol | ay City Consc
1941 | 1955
1956
1956
1944 | | 270 | 12 Berryville Consol.: Wabash, 13 Edwards 14 15 15 | 77 Bessie: Franklin
78 Bible Grove—Now included in Sailor Springs C | 19 bible Grove East—Now included 80 Bible Grove North: Effingham 82 83 83 83 | 84
85 Bible Grove South: Clay
86 | 88 Blackland: Macon, Christian 1953
89 Black River: White 1971 | 90 Diarsville—Joow included in Dung
91 Blairsville West: Hamilton
93 | 94
95 Bogota: Jasper
96 | 99 Bogota North: Jasper ³¹
99 Bogota South: Jasper Jasper Barnord | 300
300
300
303
305
306
307
307 | 09
110 Bone Gap East: Edwards ³²
12 | 313 Bone Gap South—Now included in Bone Gap Consol 314 Bone Gap West: Edwardse 1954 0 315 Bonpas—Now included in Parkersburg Consol. 316 Bonpas West—Now included in Parkersburg Consol. 317 Bose—Now included in Clay City Consol. 318 Boos Bast—Now included in Clay City Consol. | 19 Boos North—Now included in Cl20 Boulder: Clinton21 | 322
323 Boulder East: Clinton
324 Bourbon: Douglas
325 Bourbon North: Douglas
327
328
329
330 | | 000 | 3 0000 | 100 | 20000 | 2000 | 1000 | 10000 | 1000 | 2006 |) w w w w w w w w | <i>w w w w</i> | ~~~~~ | m m m | mmmmmmmmm | | 3,355
3,300
3,147 | 3,113
3,095 | 3,565 | 3,565 | 3,335 | 3,990 | 3,380 | 3,350 | 1,970
2,558
1,194
3,340 | 3,452 | |---|---|---
--|------------------------------|--|---|---|--|---| | | | | | | | | | uo | | | Mis
Mis
Mis | Mis
Mis | Mis | Mis | Mis | Mis | Mis
Mis | Mis | Trenton
Dev
Mis
Mis | Mis | | $^{\rm AL}_{\rm AC}$ | ZZZZ | AL
AC
AC
AC | *** | ZZZX | PAPA | $_{\rm A}^{\rm MC}$ | × | $_{\rm ML}^{\rm ML}_{\rm ML}$ | Af Af Af | | 0
0
37 | 39 | 181 | | 0 | 65 | 2 1 | 0 | 35
0
2 | 4 | | 000000000 | -00000 | 000000 | 100, | 1000 | 0-00-0 | 00000 | 00 | 0117000 | 00000 | | 0000000000 | 00000 | 21
6
15
0
0
0 | 000 | 000 | 00000 | 0000 | 00 | 0101010 | 000000 | | 51
11
11
11
27
27
20
00 | 225 | 216
13
173
2
2
2
10
6 | 80-1-1-1 | 177 | 100
19
11
56 | 41
20
10 | | 9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 791041 | | 24 411
112
122
125
126
127
127
128
129
129
129
129
129
129
129
129
129
129 | 13
15
8 | 10
15
8
8
8 | 24
6 | 4 0, | 3
6
10 | 5 10 111 | w | 10
6
4
11
8 | 6
113
14 | | 3,275
3,215
3,215
2,365
2,785
2,965
2,965
3,000 | 2,570
2,850
2,950 | 3,270
3,295
3,335
3,400
3,425 | 3,330 | 3,245 | 3,280
3,140
3,160
3,180 | 3,265
3,155
3,170 | 3,175 | 440
1,150
1,075
1,210
2,800
3,145 | 3,150
2,940
3,080
3,270 | | LLLSSSS LL | တ လလ | LLLSS | S Li | | 1 1 1 | LS OL | S | ೲೲೲ ೲೲೲ | | | Mis
Mis
Mis
Mis
Mis
Ins
Mis
Mis | Mis
Mis
: Mis | Mis
: Mis
Iis
Mis
: Mis | . Mis
tis | Mis | Mis
Mis
Mis | Mis ²⁵
Mis ²⁵ | : Mis | Pen
Ais
Mis
mian: Pen
Mis: | $\begin{array}{ll} \text{Mis} \\ \text{Mis} \\ \text{k: } \text{Mis} \\ \text{: Mis} \end{array}$ | | McClosky: Mis McClosky: Mis Tar Springs: Mis Cypress: Mis Bethel: Mis Aux Vases: Mis Ohara: Mis Rosiclare: Mis McClosky: Mis | Cypress: Mis Bethel: Mis Aux Vases: Mis | 0 Renault: Mis
0 Aux Vases: Mis
0 Ohara: Mis
0 Rosiclare: Mis
1 AcClosky: Mis | Aux Vases: Mis
Ohara: Mis | McClosky:
Rosiclare: | McClosky: Mis Ohara: Mis Rosiclare: Mis | McClosky:
Rosiclare:
McClosky: | Aux Vases: | Pottsville: Per
Bethel: Mis
Cypress: Mis
Pennsylvanian:
Cypress: Mis
Aux Vases: Mi | McClosky: Cypress: Mi Paint Creek: Aux Vases: | | 20 N
20 N
20 O
10 1
280 C
50 H
40 C
20 N
40 C | 540 C
30
20 E
20 A | 3,260
150 Re
2,950 Au
80 OF
80 Rc
260 M | 50
20 C | 2040
2040
3040
3040 | 2,400
x C x E x E x X X X X X X X X X X X X X X X | 160 N
40
20 F
40 N | 10 A | 120 F
470 E
100 C
10 F
40 C | | | 1,587
0 0
0 x
x x x x x x x x x x x x x x x x | 2,278
17
x | 9,479
x
x
x
x | 16.5
3.5
10 | ω rύ κ | 3,32×
×
× | 206 s
57
x | - | 439
2
46
46
39 | 207
x
x | | 000000000 | 0000 | 473
0
473
0
0 | 000 | 000 | 308
0
308
308 | 0000 | 0
Consol. | 000000 | 00000 | | 0000 ***** | 65
x x | 792
x x x x x x x x x x x x x x x x x x x | 450 | v.00 | 101
× × × | Noxx | | 443
7
0
0
0 | 13
x x x | | | | | | | | | Phillips | | | | 000000000000000000000000000000000000000 | 0000 | 202
0
202
0
0 | onsol.
0
0 | 000 | 37
0
0
37 | 0000 | ol. and
Consol. | 000000 | 00000 | | lty Consol
1951
1951
1943 | 1946
1943 | d Consol.
1941 | engate C
1947 | 1950 | 1944 | 1950
1944 | 1953
ony Consipstown (sol.) | le Consol
1941
1950
1951
1939 | 1942 | | Boyleston: Now included in Clay City Cons
Broughton: Hamilton ³⁴ 1951
Broughton South: Saline ³⁵ 1951
Browns: Edwards, Wabash 1943 | ø, | Brownsville—Now included in Roland Consol. Bungay Consol.: Hamilton 1941 | Burnt Frante—Now included in Goldengate
Burnt Prairie South: White 1947 | $ m Richland^{36}$ | Calhoun Consol.: Richland, Wayne | d
nđ | Calhoun South: Waynes ⁷ 1953 0 Calvin—Now included in New Harmony Consol. and Phillipstown Calvin North—Now included in Phillipstown Consol. Cantrell—Now included in Dale Consol. Cantrell North—Now included in Dale Consol. | Cantrell South—Now included in Dale Consol. carlinville North: Macoupin ^{6, 38} 1941 Carlyle North: Clinton Carlyle South: Clinton ³⁹ 1951 Carmi: White ⁴⁰ 1939 | | | w includamiltonad
amiltonad
h: Salin
ards, Wał | Wabash
Edwards | Brownsville—Now included i
Bungay Consol.: Hamilton | Now inclouth: M | | l.: Richl | Calhoun Bast: Richland
Calhoun North: Richland | Wayne included in included included included included | -Now in
th: Mac
Clinton
Clinton ⁶ | White | | n: Nc
on: H
on Sout
Edwa | Browns East: Browns South: | Consol | airie—
rairie S | Calhoun Central: | Conso | East:
North | South
Now in
Forth—
Now
North- | South—
le North:
North:
South:
White ⁴⁰ | | | lesto
ughtc
ughtc
wns: | Browns East:
Browns South | ownsv | nt
Tr
PP | houn | houn | houn | houn
vin—
vin N
trell- | Cantrell
Carlinvill
Carlyle D
Carlyle S
Carmi: | Carmi North: | | | | | Man
Man
Man
Man
Man
Man
Man
Man
Man
Man | | | | 5 Cal
2 Cal
3 Cal
3 Car
3 Car | 22 Car
Car
Car
Car
Car | S Car | | 331
332
333
334
335
337
337
338
339
340
341 | 345
344
345
346
346
746 | 348
349
350
351
352
353
354
354 | 33333 | 361
362
362 | 364
364
365
366
367 | 368
369
370
371
371 | 377. | 380
381
382
383
384
385
385 | 387
388
389
390
391 | | 3,919 | 3,427 | 3,290
3,407
4,170 | 3,021
1,829
4,600 | 2,454 | 7,205 | 4,973 | 3,022 | |--|---|--|--|--|--|---|---------------------------------| | Mis | Mis | Mis
Mis
Ord | Dev
Mis
Dev | Mis | St. Peter | Dev
Mis | Mis | | ZZZZZ | A SCHEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF | ML | Z×4444 | Ą | APACCO APECT | AAL
AL
AC
AC | | | ıν | 107 | 0
1
427 | 174 | - | 205 | | ∞ ` | | 10100 | 0400000004 | 00000000 | 00-0000 | 0 | 80
00
00
00
00
00
00
00
00
00
00
00
00
0 | 000000 | 00 | | 00000 | 000000000000000000000000000000000000000 | -0000000 | 000000000 | 0 |
180
0
0
1
1
1
2
2
2
3
3
9
9
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0 | 000000 | 00 | | 10
0
4
0
0
5 | 122
282
28
29
0
0
0
1
1
10 | 15
1
995
50
319
59 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 2 | ,295
1 8 4111
1110
1110
9 9
64
0 0
249 | 22
1
1
20
17
17 | 16
4 | | 9
0
1
8
4 | 24
22
22
20
21
21
5 | 13
14
12
20
20
22 | 98 88 x | 9 | 4 9 115 115 115 115 110 110 110 110 110 110 | 10
7
15
10
10 | 15 | | 3,240
3,310
x
3,370 | 2, 225
2, 500
2, 500
2, 500
2, 980
2, 980
3, 175
3, 175
3, 185 | 2,990
3,055
1,200
1,355
2,870
3,930 | 1,440
1,780
2,605
2,675
4,430 | 1,770 | 2,175
2,560
2,560
2,560
2,560
2,560
3,020
3,030
3,030
4,360
4,360 | 2,700
2,950
3,065
2,700
3,065 | 2,720 | | s 3
CL 3
OL 3 | osssssssssssssssssssssssssssssssssssss | LLSS SS | S I I | s
1 | SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | S 2 2 0 3 3 0 1 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | s z | | 200
10 Aux Vases: Mis ²⁵
100 Ohara: Mis ²⁵
20 Rosiclare: Mis ²⁶
120 McClosky: Mis | 1,350 20 Palestine: Mis 20 Tar Springs: Mis 400 Tar Springs: Mis 90 Cypress: Mis 20 Paint Creek: Mis 180 Bethel: Mis 180 Bethel: Mis 180 Aux Vases: Mis 20 Chara: Mis 20 Roscidare: Mis 20 Roscidare: Mis 20 Roscidare: Mis 20 Mis | 10 Bethel: Mis
10 Bethel: Mis
3,360 Cypress: Mis
500 Cypress: Mis
1,400 Bethel: Mis
1,400 Devonian: Dev
1,400 Trenton: Ord | 90 Bethel: Mis
100 Rostclare: Mis
290 Aux Vases: Mis
270 Aux Vases: Mis
20 Chara: Mis
20 Clear Creek: Dev ²⁸ | 20 Eethel: Mis | 83,000 10 Waltersburg: Mis 160 Tar Springs: Mis 160 Tar Springs: Mis 14,400 Aux Vases: Mis 14,400 Aux Vases: Mis 14,400 Aux Lous: Mis 220 St. Lous: Mis 1,500 Salem: Mis 1,500 Salem: Mis 10 Warsaw: Mis ⁵⁶ 20 Devonian: Dev ²⁵ | 560
10 Cypress: Mis
80 Aux Vases: Mis
540 McClosky: Mis
480 Aux Vases: Mis
20 McClosky: Mis | 300
100 Aux Vases: Mis | | 462
x
x
x | 4,386
x x x x x x x x x x x x x x x x x x x | 0
3
39,471
x
x
x | 386
11
253
x
0
x | 21 | 88,
,88,
,42,
,42,
,43,
,43,
,43,
,43,
,43,
,43 | 1,690
20
x
x
1,393
1,392 | 583
x | | 00000 | 103
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0
170
x
x
0
0
34 | 00000 | 0 | 2,326
0
0
0
0
375
x
x
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0000000 | 00 | | 13
0
x x x | 25
1 × × × × × × × × × × | 20
20
20
20
20
20 | 11.
69
8 x
8 x | 2 | 9
270
8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 0 × × × 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 15
x | | 00000 | 63
000000000000000000000000000000000000 | 0
136
0
0
0 | 00000 | ol. 0 | 1,292
0
0
0
228
x
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | 00 | | 1940 | 1941 | 1947
1955
1937 | 1940
1956
1951 | City Cons
1946 | 1937 | 1941 | 1942 | | 393 Centerville: White 394 395 395 396 397 397 397 397 397 397 397 397 397 398 397 308 | 399 Centerville East: White 4400 4402 4403 4405 4405 4405 4405 4405 4405 4407 4407 | 411 Centerville North: White-
412 Centerville Northeast: White-
413 Centralia: Clinton, Marion
414
415
416 | | 427 Cisne North—Now included in Clay City Cons
428 Clarkburg: Shelby Shelby 1946
420 Clay City Consol : Clay Wavne | | 444 Clay City West: Clay 1941
445 447 448 Coil: Wayne 1942
448 Coil: Wayne 1942
450 611 Wort 1 Transcript 1942 | 451 Ccil West: Jefferson
452 | TABLE 12.—(Continued) | one | | Depth of
hole (ft.) | | 3,138 | 3,125 | 2,888 | 2,887 | 3,397 | 3,735
2,363
2,320
3,251 | |--------------------------|----------------|-------------------------------|---|--|---|---|---|-------------------|--| | Deepest zone tested | | ne | | | | | | | | | Dec | | Name | | Mis | Mis | Dev | Dev
Mis | Mis | Ord
Mis
Mis
Mis | | | | Structure | AC
AC | APC
APC
ACC
APC
APC | AACAAAAAA
ACCAAAAAAA | 44444 | A × | $^{\mathrm{AC}}$ | $_{ m M}^{ m A}$ AA | | s | | Produc-
ing end
of year | | 103 | 23 | 197 | 88 | 2 | 0 7 7 7 | | Number of wells | 1956 | Арап-
фопед | 0000 | 0010010 | -000000000 | moomoo | 00 | 0 | 00000 | | umber | | Com-
pleted | 0000 | -00000-00 | 000000000 | 179
1
1
0
0
0
0 | 0 5 | 0 | 0
2
4
1 | | Z | ot
G | Completed
end of 1956 | 2001 | 122
20
20
11
15
24
24
44
44 | 788
177
177
177
177
177
177
177
177
177 | 204
1
1
200
1 | 144
1 | ∞ | $\begin{array}{c} 1 \\ 111 \\ 2 \\ 10 \\ 3 \end{array}$ | | | | Av. thick-
ness (ft.) | r- ×∞ | 111
10
14
8
8
8 | 10
4 4
6 6
12
6 5
7 | 20
15
9
4 | 41
× | Ŋ | 20
10
10
9 | | u | | Depth to
top (ft.) | 2,790
2,805
2,880 | 2,270
2,485
2,625
2,905
3,930
2,990 | 2,140
2,175
2,540
2,800
2,800
2,825
2,895
2,895
2,995 | 1,600
1,765
1,800
1,840 | 1,260 | 3,310 | 3,650
2,070
1,045
2,880 | | matio | | Character ^b | 니니니 | LLLssss | Loctoroso | Lwww | rs. | J | S SST | | Producing formation | | Name: Age ^a | Ohara: Mis
Rosiclare: Mis ²⁵
McClosky: Mis | Tar Springs: Mis Hardinsburg: Mis Cypress: Mis Aux Vases: Mis Rohara: Mis Rosiclare: Mis McClosky: Mis | Waltersburg: Mis Tar Springs: Mis Cypress: Mis Cypress: Mis Renault: Mis Aux Vases: Mis Robrar: Mis Rosiclare: Mis* | Cypress: Mis Aux Vases: Mis Rosiclare: Mis AcClosky: Mis | Bethel: Mis
Ohara: Mis | McClosky: Mis | Trenton: Ord
Bethel: Mis
Pennsylvanian: Pen
Bethel: Mis | | | pe
(| Total prove
area (acres) | 100
x
200 | 1,560
200
10
230
450
40
60
1,120 | 320
330
30
160
10
10
60
60
60
60
30 | 2,700
10
20
2,680
20 | $\frac{1,220}{20}$ | 320 | 20
120
20
120
30 | |) · · · | f 1956 | IstoT | *** | 4,453
x
30
x
x
x
x
x | 377
****** | 1,308
x
x
x
x | 7,316 | 170 | 332
332
16
x | | Oil production (M bbls.) | To end of 1956 | Secondary | 000 | 139
0
0
0
35
0
x x | 00000000 | 00000 | 2,139 | 0 | 00000 | | roduction | 1956 | Total | *** | 223
X
10
X
X
X
X | 161
× × × × × × × × × × × × × × × × × × × | 1,217
x
x
x
x | l. 289
3 | 2 | 000v.× | | Oil p | During 1956 | recovery | 000 | .i.
30
00 00 x x | | 00000 | ills Consol. Ils Consol. Mills Consol 155 0 1. Consol. | sol. | .i
00000 | | | | Secondary | | Consol | | Consol | Mills Chills Mills Of Cor | Con | Consol | | | OVET | Year of disc | | 1942
1942 | 1942 | ncord
rald Co | Cooks Dooks | ay City
1943 | mony C
1948
1939
1956
1946 | | | | Pool: County | | Concord Central—Now included in Herald C
Concord Consol.: White ⁴⁴ 1942 | Concord East Consol.: White | 476 Concord North—Now included in Concord Com
478 Concord South—Now included in Herald Conso
479 Cooks Mills Consol.: Coles, Douglas' 1941
480
481
482 | Cooks
Mills East—Now included in Cooks Mills Com Cooks Mills Gas—Now included in Cooks Mills Cons Cooks Mills North—Now included in Cooks Mills Cons Cordes: Washington 1939 155 Cottage Grove: Saline 1955 0 Cottage Chow included in Herald Consol. Cottonwood—Now included in Herald Consol. | | | | | | Line
No. | 453
455
455
455 | 455
455
460
460
463
463
463
463
463
463
463 | 466
466
468
470
471
471
473
473 | 44444444444444444444444444444444444444 | 4885
4886
4887
4889
4889
4889 | 492
493
494 | 495
496
497
498
499
500 | | | 3,242 | 5,299 | 5,345 | 2,240
2,240
2,951 | 2,911 | 3,635 | 2,283
3,100 | 4,217 | 2,997 | 3,158 | |--|---|--------------------------------------|---|---|---|---|--|----------------------------------|--|--| | | Mis | Dev | Dev | Ord
Sil
Mis | Mis | $ rac{Mis}{Mis}$ | Mis
Dev | Ord | St. Peter
Ord | Mis | | MC | ML | 444 | বৰবৰবৰবৰৰ | M W W A A A A C A A C A C A C A C A C A C | $_{\rm AL}^{\rm A}$ | ACC ACC ACC | Z×× | AL
AL | MKK
KL | 444 | | | - | 4 | 996 | 1008 | 29 | 6 2 | 3 | 82 | 62 | 52 | | 0000 | 0000 | 000 | 200000000000000000000000000000000000000 | w000000 | 00000 | 0000 | 0000 | 0000 | 0000 | 000 | | 700+ | 0- | 100 | 83
0
0
0
0
0
1
1
7
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 000000 | -0000 | 171
00
24
83 | 0000 | 26
22
4
0 | 0000 | 000 | | 315 | -2 | 44
1 | ,215
25
0
48
48
9
110
777
55
55
51
131 | 917100111 | 411
9
3
3
4 | 201
11
10
4
11 | 2610 | 88
56
31 | 74
20
54
2 | 60 7 19 | | 20
3
5 | ∞ > | 11
15 | 1 25 1 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10 | 10
111
5
6 | 10
10
5 | 5 10 6 6 | 8 12 | 01
10 | 20
50
5 | 10 | | 3,030
3,100
3,120 | ,030 | 3,300
4,110 | 2,430
2,700
2,700
2,950
3,1150
3,1150
3,130
3,150 | 2,000
2,200
2,705
2,770
2,750
2,850 | 2,620
2,700
2,750 | 2,880
2,680
2,700
2,750
2,810 | 1,950 | 1,530
1,325 | 310
410
2,370 | 2,905 | | 333
LLS | S + | | LLSSSSSS | JJ JZJJ | STI | LLS LL | တ တ- | ww L | Lss | 00
00
01 | | 30 Aux Vases: Mis
20 Ohara: Mis
60 McClosky: Mis | 30 Aux Vases: Mis | ~ | 900
400 Tar Sprin
100 Hardinsb
890 Cypress:
220 Paint Cre
600 Aux Vale
100 Ohara: Ja
400 Rosiclare:
100 McClosky | 120 Silurian: Sil
20 Silurian: Sil
300 Onara: Mis ²⁵
20 Ohara: Mis ²⁵
28 McClosky: Mis
40 St. Louis: Mis | 700
110 Aux Vases: Mis
60 Rosiclare: Mis
600 McClosky: Mis | 100 McClosky: Mis
, 500
120 Ohara: Mis
320 Rosiclare: Mis
80 St. Louis: Mis
1, 100 McClosky: Mis | 20 Bethel: Mis
50
10 Bethel: Mis | Kosiciare
Cypress:
Bethel: | 580
260 Upper Dudley: Pen
560 Lower Dudley: Pen
40 Devonian: Dev | 1,660
x Ohara: Mis
x Rosiclare: Mis | | * * * | 4-10 | 1,179 $1,178$ 1 | 58,735
x x x 2,
x x 2,
x x 111,
x x 2, | 1.2
45.8
x x x x x | 1,324
x
x
x | 184
3,330
x
x
x | 13
37
0 | 869
x
x | 648
x x
2 | 2,080
x
x | | 000 | 000 | 0000 | 593
0
0
0
0
0
0
0
0
0
0
0
0 | 000000 | 3008 | 000000 | 000 | 0000 | 0000 | 81
0
0 | | *** | 3 | ა ი 4 ↔ | 3,478 | 300
300
300
300 | 99 × × × | 10
246
x
x
x
x | 0
13
0 | 13
268
x
x | 4 x x z | 107
x | | 000 | 000 | 0000 | 157
0
0
0
0
0
0
157
0
0
0
0 | ol.
0
0
0
0
0
0 | 3008 | 000000 | 000 | 0000 | 0000 | 8900 | | | 1952 | 1941 | 1940 | ew Haven Cons
1953
1954
1943 | 1947 | 1948
1944 | nsol.
1941
1954 | 1939 | Oubois Consol.
1948
1954 | Ŭ | | 01
02
03 | 04
05 Crossville West: White ⁴⁷
06 | 507
508 Dahlgren: Hamilton
510 | | 122 Dead River—Now included in New Haven Con
123 Deceatur. Macon
1953
124 Deceatur. North: Macon ¹⁹ 1954
125 Divide: Jefferson
127
128 | 330
331 Divide East: Jefferson
532
334 | 535 Divide South: Jefferson
537 Divide West: Jefferson
539
540
541 | 543 Dix—Now included in Salem Consol.
544 Dix South: Jefferson ⁸⁰
455 Dubois Central: Washington
546 | | 552 Dubois West—Now included in Dubois Consol.
553 Dudley: Bdgar ⁶
554 S55
555 Dudleyville Bast- Rond 1954 | 557 Dundas—Now included in Clay City
558 Dundas Bast: Richland, Jasper
559 (60 | | 500 | , y, y, y, | กัญญัง | ကိုကိုက်တဲ့တဲ့တဲ့လူလူ လ | ດ ໃດ ເດ ເດ ເດ ເດ ເດ ເດ ເດ | ທ ທ ທ ທ ທ່ | ນ ຄົນ ຄົນ ຄົນ ຄົນ ຄົນ ຄົນ | ກຸດທຸດທຸດທຸ | no no no no n | n no no no no ir | กับเกษากับ | | 2,882 | 1,853
1,902
2,285 | 2,991 | 2,093 | 3,606 | 3,102 | 3,138
2,956
2,485
2,387
3,556
3,390 | |---|---|--|---|--|---|--| | | | | | | | | | Mis | Dev
Sil
Ord | Mis | Dev | Mis | Mis | Mis
Dev
Mis
Mis | | A NZZN | 4× 444 | **** | DDDK | AACL AALL AAC AAC AAC AAC AAC AAC AAC AA | AAL
AAL
AC | MM HHHHHHHXXXXXX | | ıv | 31 | 7 | 27 | 210 | 18 | 2
0
1
1
0
167
24 | | 000000 | 00 101 | 00000 | 00000 | 91101110 | 71100000 | 000000000000000000000000000000000000000 | | 000000 | 01 404 | 044000 | 0000 | 000000000000000000000000000000000000000 | 0000000 | 440000004040404 | | 33 | 34
34
31 | 110372 | 3,73,87 | 218
131
131
131
133
24
44
10
10
10 | 20
10
10
10
10
10
10
10
10
10
10
10
10
10 | 13
183
183
16
16
13
13
13
14
14
13 | | 10
10
5
7 | 13
6
8 | 10
3
11 | 3
3
20 | 220
125
88
127
127
128
127
127
127 | 10
10
20
6
4 | 18
6
6
6
7
7
7
7
7
7
10
10
10
10
10
10
10
10
10
10
10
10
10 | | 2,950
2,475
2,680
2,820 | 1,810
1,795
1,660
1,690 | 2,660
2,770
2,780
2,820 | 760
950
1,950 | 1,920
2,125
2,125
2,200
2,350
2,575
2,680
2,900
2,900
2,900 | 1,915
2,190
2,515
2,885
2,975 | 1,940
2,910
2,910
2,735
2,735
2,000
2,000
3,135
3,320
3,430
3,430
3,430 | | OL S LS | | rsrs | RLIS | $\Gamma_{\rm N}^{\rm L}$ | Losos | STUTUS SSUUTIUS | | x McClosky: Mi 110 110 Cypress: Mis 20 Rosiclare: Mis
80 McClosky: Mi | 0
2
858
7
x x 6 | 0 15 100 x 50 Bethel: Mis 0 x 10 Remalt: Mis 0 x 40 Aux Vases: Mis 0 x 40 Ohara: Mis | 0 1,276 360 1
0 x 20 Pennsylvanian: Pen
0 x 360 Fredonia: Mis
0 x 20 Devonian: Dev ²⁵ | 0 5,036 2,300 | 0 193 260 Mis 0 x 10 Palestine: Mis 0 x 20 Tara Springs: Mis 0 x 30 Cypress: Mis 0 x 190 Aux Vases: Mis 1 x 20 Rosiclare: Mis 1 | 15 30 10 10 Palestine: Mis 11 10 Palestine: Mis 10 11 10 Palestine: Mis 10 11 10 Palestine: Mis 10 10 Palestine: Mis 10 10 Palestine: Mis M | | * *** | 0
258
x | 2 * * * * | 50
x x
0 | × × × × × × × × × × × × × × × × × × × | 31
0 × × × × 0 | 112
100
100
100
100
100
100
100
100
100 | | | 25 | | | 6 | 40 | 100 x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 8 0000 | 00 000 | 00000 | 0000 | | 00000 | | | 1947 | 1949
1955
1954 | 1955 | 1949 | 1941 | 1953 | 1 Eldorado CC
1938
1955
1941
1941 | | 561
562
563 Bberle: Effingham
564
565 | 567 Edinburg: Christian
568 Edinburg South: Christian
569 Edinburg West: Christian,
570
571 | 573 Elba: Gallatin
574 575
576 576
577 | 579
580
581
581
583
583 Fildondo Control Nominol. 454 : | 584 Eldorado Consol.: Salines 1941
585 586 587
587 589 589 589 589 589 589 599 599 599 599 | 595 Eldorado East: Saline ⁵
597
598
599
600
601 | 603 Eldorado Nosth—Now meluded in Eldorado 604 Eldorado West: Saline 605 606 606 607 608 Elk Prairie: Jefferson ²² 609 Elkton: Washington 611 Ellery Consol.: Edwards, Wayne 613 614 615 616 617 618 618 619 619 619 619 610 610 610 610 610 610 610 610 610 610 | | 3,496 | 3,434 | 2,884
2,867
2,865
4,259 | 3,240 | 2,808
2,771
3,094
2,869
3,006
2,831
4,100
3,012 | |--|---|---|---|---| | MC MC Mis ML MC | $\begin{array}{ccc} 3 & \mathrm{M} & \mathrm{Mis} \\ \mathrm{ML} & \mathrm{MC} \end{array}$ | 0 HL Mis
0 HL Mis
1 HL Mis
14 A Mis
AC AC | 65 A Mis ALL ALL ALL ALL ALL ALL AC | 3 A Mis AC AC 0 AC Mis 3 AL 1 X 1 X 1 MC 15 X X X X 1 MC 17 X X X X X X X X X X X X X X X X X X X | | 0010100 | 0000 | 00000 | 4000000004000 | 000000000000000000000000000000000000000 | | 0000000 | 0000 | 000000 | ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 000000010004040000 0000 | | 11
0
13
0
13 | | 1
10
10
2
2
2
3 | 74
16
16
17
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | 481181710002179110 41110 | | 6
4
4
112
8
7 | 15
9 | 8 4 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 10
10
10
12
10
10
10
10
10
2 | 748 870 01 01 01 01 01 01 01 01 01 01 01 01 01 | | 3,255
3,255
3,100
3,230
3,345
3,420 | 3,200
3,300 | 2,730
2,485
2,430
3,250
3,310
3,385 | 1,320
1,840
2,090
2,100
2,150
2,345
2,360
2,730
3,095
3,115 | 2, 610
2, 650
2, 650
2, 650
2, 835
3, 010
2, 73
2, 73
2, 73
2, 73
2, 73
2, 73
2, 73
2, 74
2, 74
2, 74
1, 435
2, 80
2, 80 | | TI wwwI | SΗ | ALL NON | μηνηνονονονο | $\forall \neg \neg \sigma_{\mathcal{O}}^{1}$ whi in the second of $\sigma_{\mathcal{O}}^{1}$ | | 180 Ohara: Mis 40 Rosiclare: Mis 140 20 Bethel: Mis 10 Aux Vascs: Mis ²⁶ 80 Rosiclare: Mis 40 McClosky: Mis | 200
40 Aux Vases: Mis
160 McClosky: Mis | 20 Rosiclare: Mis 10 Cypress: Mis 20 Cypress: Mis 280 140 Aux Vases: Mis 40 Ohara: Mis | 830 So Biehl: Pen 60 Degonia: Mis 190 Clore: Mis 30 Palestine: Mis 30 Waltersburg: Mis 80 Tar Springs: Mis 80 Cypress: Mis 10 Remult: Mis 270 Aux Vases: Mis 20 Ohara: Mis 80 Cyprase: Mis 81 Respirate Mis 82 Cypress: Mis 83 Cypress: Mis 84 Respirate Mis 85 Cypress: Mis 86 Cypress: Mis 87 Cypress: Mis 88 Cypress: Mis 89 Cypress: Mis 80 Respirate: Mis | 70 Rosiclare: Mis 10 McClosky: Mis 110 Rosiclare: Mis 150 Aux Vases: Mis 140 McClosky: Mis 20 Ohara: Mis 80 Ohara: Mis 80 McClosky: Mis 20 Ohara: Mis 180 Rosiclare: Mis 180 Rociolare: Becclosky: Mis 190 Bethel: Mis 10 Bethel: Mis 10 Bethel: Mis 10 Bethel: Mis 110 Bethel: Mis 110 Bethel: Mis | | 22×××° | 162
24
138 | 14
10
274
10
10
10 | , t
, t
, t
, t
, t
, t
, t
, t
, t | 53
53
1
1
489
589
589
600
80
80
80
80
80
80
80
80
80 | | 000000 | 000 | 0
0
127
127
0
0 | 00000000000 | 000000000000000000000000000000000000000 | | * | 990 | 0
30
1
1
1
1 | 25
25
27 × × × × × × × × × × × × × × × × × × × | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 000000 | 000 | 00088000 | Consol. | sol.
000000000000000000000000000000000000 | | 1942 | 1943 | llery Consol.
1947
1954
1953
1950
ay City Consol | in Clay City (| L Epworth Con
1948
1944
1945
1955
1955
City Consol.
City Consol.
Clay City Consol. | | 621
622
624
624
625
626
627
627 | B Ellery South: Edwards ⁶⁴ | 2 Ellery West-Now included in Ellery Consol. 3 Elliottstown: Effingham ³⁶ 4 Elliottstown Bast: Effingham ³⁶ 5 Elliottstown North: Effingham 1953 6 Enfield: White ³⁷ 7 8 9 9 O Enterprise—Now included in Clay City Cons | | 6 Epworth East—Now included in Epworth Consol 7 Evers: Effingham ⁸⁸ 1948 8 Berers South: Effingham ⁸⁹ 1944 1 Ewing: Franklin 1944 2 Exchange: Marion 1956 5 Exchange: Marion 1955 8 Exchange East: Marion 1955 9 Exchange North: Marion ⁸⁰ 1951 1 Expansible Marion ⁸⁰ 1951 2 Fairfield—Now included in Clay City Consol. 8 Fairman: Marion, Clinton 1939 9 Fitzgerrell: Jefferson ⁸¹ 1939 1939 1944 | | 621
622
622
622
622
623
623
633
633
633
633 | | | | | TABLE 12.—(Continued) | zone | | Depth of
hole (ft.) | 3,361
3,238
3,180
2,000 | 2,630
2,592 | 2,456 | 2,961
2,955
3,305 | | 3,310
1,720
3,607 | 3,420
3,509 | 2,694 | 3,510 | |--------------------------|----------------|-------------------------------|--|--|-------------------------------------|--|--|---|---|---|---| | Deepest zone tested | | Name | Mis
Mis
Ord | Mis
Mis | Sil | Mis
Mis
Dev | | Trenton
Sil
Mis | Mis
Mis | Ord | Mis | | | 1 | Structure | AC | MC | DDM | MW WC | | AC AC AC AC | MMMM _K * | M | MIC | | s | | Produc-
ing end
of year | 8 | 0 % | 29 | 16 1 4 | | 21
1
156 | 04 | 4 | 44
M | | Number of wells | 1956 | Aban-baned | 0000 | 0 | 2 0 2 | 00000 | 0 | 3011160 | 0000000 | 1 2 | 000 | | umber | | Com-
pleted | 0000 | 0 | 000 | 15
0
4
0
0 | 0 | 217 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 00 00 00 00 | ε 4 | 9 0 7 | | Z | ot | Completed
end of 1956 | 4 | 5 | 34
5
29 | 16
1
5
4
0 | 0 | 21
210
210
69
13
17 | 14
10
00
11
00
2 | 12 | 44
1
18 | | | | Av. thick-
ness (ft.) | 6
5
111
30 | 15
12 | 10 8 | 98 38 | | 30
9
115
6
7 | 25
45
6 | 10 | 118 | | u | | Depth to
top (ft.) | 2,985
2,675
3,010
380 | $^{2,330}_{1,620}$ | 1,200
2,250 | 2,870
2,850
1,970
3,205 | | 2,350
1,680
3,180
3,250
3,275
3,275 | 3,290
3,095
3,235
3,300
3,325
3,325 | 560 | 3,190 | | rmation | | Characterb | SLSC | SS | 디디 | LS LL | | TO S OF T | ררריט ע | S | sП | | Producing formation | | Name: Age ^a | McClosky: Mis
Cypress: Mis
Ohara: Mis
Cypress: Mis | Bethel: Mis
Biehl: Pen | St. Louis: Mis
Devonian-Silurian | Ohara: Mis
Ohara: Mis
Aux Vases: Mis
Devonian: Dev ²⁵ | | Silurian: Sil
Silurian: Sil
Aux Vases: Mis
Rostclare: Mis
McClosky: Mis | Ohara: Mis Bethel: Mis
²⁵ Aux Vases: Mis Ohara: Mis ²⁵ Rosiclare: Mis McClosky: Mis | ı
Pennsylvanian: Pen | Aux Vases: Mis
Ohara: Mis | | | Þ.e | Total prove
area (acres) | 100 N
10 C
20 O
10 C | 50 B
120 B | 580
100 S
580 L | 320 O
20 O
100 A
20 I | | 760 Si
3,860
760 A
800 O
1,000 R
2,000 M | 20
460
10 B
120 O A
120 O A
120 C | 50 P | 880
20 A
380 O | | s.) | of 1956 | IstoT | 150
51
5
x | 31
202 | 1,482
x
x | 140
19
17
x | | 329
1
7,376
x
x
x
x
x | 272
x
x
x
x
x | 2 | 1,623
x
x | | n (M bbl | To end of 1956 | Secondary
recovery | 0000 | 0
142 | 000 | 00000 | | 0000 x x 6 | 0000000 | 0 | 000 | | Oil production (M bbls.) | 3 1956 | IstoT | 7 8 3 x | 0 5 | 143
x
x | 83
1
83
83 | | 329
.5
.339
x x x x x | 0 4 2 2 X X X X X | Consol. | 268
x
x | | Oil | During 1956 | Secondary | 0
0
0
0
0 | 2 | 000 | 00000 | | 1 x x 0 5 0 0 | 000000 | e North Consol. 0 ol. | o1.
0 | | Λ | cover | Year of dis | Consol. 1946 1952 1955 1955 | 1946
1946
New Ha | | 1951
1952
1946 | ol.
Consol | 1956
1955
1938 | 1951
1945 | oldengat
sol.
1945
m Conse | y Conso
1947 | | | ,
, | Fool: County | Flora—Now included in Sailor Springs Consol. Flora South: Clay Prancis Mills: Sailne 1952 Francis Mills South: Saline 1953 Freeburg South: St. Clary | Friendsville Central: Wabash 1946 Friendsville North: Wabash 1946 Friendsville South: Now included in New Ha | rogtown North: Clinton | Gards Point: Wabash 1951
Gards Point North: Wabash 1952
Gays: Moultrie® 1946 | Geff—Now included in Clay City Consol.
Geff West—Now included in Clay City Consol | Germantown Bast: Clinton
Glenarm: Sangamon
Goldengate Consol.: Wayne, White | Goldengate Bast: Wayne
Goldengate North Consol.: Wayne | Goldengate West—Now included in Goldengate Gossett—Now included in Roland Consol. Grandview: Edgar 1945 Graville—Now included in Phillipstown Consol Grayville West—Now included in Albion Consol Grayville West—Now included | Griffin—Now included in New Harmon:
Balf Moon: Wayne | | | ; | No. | | 688
F F F F F F F F F F F F F F F F F F F | | 269
2097
2098
2098
2098 | | | 711 G
712 G
713 G
714
715 | 720
720
721
722
723
6
723
6
723 | 724 G
725 H
726
727 | | | 3,107 | 3,031 | 2,930
2,352
2,080 | 3,394 | 4, 140
2, 776
2, 710
3, 251 | 2,914 | 3,411 | 2,954
2,975 | 651
2,965
2,720 | |-------------------|--|--|--|---|---|----------------------------------|---|--|--| | | Mis | Mis | Mis
Mis
Sil | Mis | Dev
Mis
Mis | Dev | Mis | Mis
Mis | Pen
Sil
Dev | | MC | **** | *** | ×××
MU | AACL AACL AACL AACL AACL AACL AACL AACL | $X \times X \times X$ | AAA | Z | ZZZZ | Y × × Q | | | 51 | 21 | 7 0 2 | 408 | 0
0
31 | 27 | 0 | 10
24 | | | 0 | 000000 | 00000 | 0000 | 112000000000000000000000000000000000000 | 000++000 | 0000 | 0 | | 000 | | 0 | 38 2 0 0 2 0 3 8 8 4 9 | 20421- | 100001 | 40000000000000000000000000000000000000 | 00077000 | 0000 | 0 | 7117 | 000 | | 19 | 480 £ 6 £ 4 £ | 13 2 1 3 2 1 3 2 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 7 7 7 8 6 - | 490
13
13
3
3
3
4
142
197
197
197
15 | 32 5 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 48
12
35 | 1 | 111
26
2 | 7117 | | 10 | 6
8
110
110 | 20
8
14 | 41
6
8 × 8 | 10
112
113
110
110
113
113
114
114
110
6 | 4 1 1 2 1 2 2 8 8 8 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 | 111 | ю | v % r | 1
12
6 | | 3,300 | 2,330
2,675
2,860
2,965
2,970 | 2,575
2,865
2,880 | 2,020
2,115
2,300
2,050 | 1,060
1,750
1,750
1,920
1,940
1,940
2,240
2,240
2,260
2,560
3,005
3,010 | 2,575
2,655
2,565
2,460
2,660
2,700 | 1,190
1,320 | 3,365 | 2,800 | 2,790
640
2,895
1,260 | | h | rs s s s | SSA | Lsss | ULT WOO WOO WOO WOO | LES LST | လလ | Ŋ | -1 S | avus | | 400 McClosky: Mis | Paint Creek: Mis
Hardinsburg: Mis*
Aux Vases: Mis
Oblara: Mis
Rosiclare: Mis | Cypress
Aux Vas
Ohara: | Waltersburg: Mis Tar Springs: Mis Cypress: Mis | Pennsylvanian: Pen Pennsylvanian: Pen Pennsylvanian: Pen Pennsylvanian: Pen Pennsylvanian: Mis Palestine: Mis Palestine: Mis Palestine: Mis Cypress: Mis Cypress: Mis Partit Creet: Mis Bethel: Mis Aux Vases: Mis Rosiclare: Mis McClosky: Mis McClosky: Mis McClosky: Mis | McClosky: Mis
Rosidare: Mis
McClosky: Mis
Cypress: Mis
Rosiclare: Mis
McClosky: Mis | Cypress: Mis Bethel: Mis | McClosky: Mis | Ste. Genevieve: Mis Aux Vases: Mis | ote. Genevieve:
Pennsylvanian:
Clear Creek: De
Bethel: Mis | | 400 | 550
30
10
490
80
80 | 240
60
160
40 | 90
80
10
10
40 | 4,900
160
160
30
30
30
20
10
420
420
420
420
1,480
1,480
1,00
10
2,140
420
140
420
140
420
420
420
420
420
420
420
420
420
4 | 60
40
80
430
250
40
160 | 260
120
180 | 20 | 24(
56(| 20
10
100
100 | | × | 553
x x x x x | 142
x
x | 105
105
.5
0 | %
14.
14.
14.
14.
14.
14.
14.
14.
14.
14. | 10
13
41
462
228
x | 710
x
x | 11 | 283
913
x | ××-∞ | | 0 | 00000 | 0000 | 00000 | 29
00
00
00
00
00
00
00
00
00
00
00
00
00 | 000000 | 000 | 0 | 000 | 0000 | | × | 547
x x x x x x | 133
x
x | 28
28
0
1 | 0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0 | 0
1
0
187
136
x | 10
× × | 0 | 62
37
x | ×× | | 0 | 00000 | 0000 | 00000 | 000000000000000000000000000000000000000 | 000000 | 000 | 0 | 0.0 | 0000 | | | 1954 | 1955 | 1954
1955
1954 | k West Consol. | Herald Consol.
In Storms Consol.
1940
1945
1943
1954 | 1939 | ale Consol.
1944
or Springs Consol. | in Sailor Springs (
1950
1942 | 1956
1955
1945 | | | larco: Saline | Jarco Bast: Saline | Harrisburg: Saline ⁵
Harrisburg South: Saline
Harristown: Macon | Hefena—Now included in Ruark West Consol. Herald Consol.: White, Gallatinis ¹⁶ 1939 | Herald East—Now included in Herald Consol. Hidalgo: Jasper ⁴ Hidalgo: Jasper ⁴ Hidalgo North: Cumberland Hill: Effingham ⁴⁸ Hill East: Effingham | Hoffman: Clinton | Hoodville—Now included in Da
Hoodville East: Hamilton ⁶⁶
Hoosier—Now included in Sailo | Hoosier North—Now included i
Hord: Clay
Hord South: Clay ⁶⁷ | 787
788 Hornsby South: Macoupin
789 Hoyleton West: Washington
790 Huey: Clinton | | 729 | 730
731 Harco: Saline
732
733
734
735
736 | ast: | 742 743 Harrisburg: Sal 744 745 Harrisburg South 747 Harristown: M. | 748 Helena—Now in
749 Herald Consol.:
750
751
752
754
755
757
757
757
760
760
761 | 765 Herald Bast—Now i
766 Herald North—Now
767 Herald North—Now
769 Hidalgo: Jasper ⁶⁴
770 Hill: Effingham ⁶⁶
771 Hill Bast: Effingha
773 | 776 Hoffman: Clint
777
778 | 024 | 779
780 Hoodville—Now
781 Hoodville East:
782 Hoosier—Now | 779 779 779 781 Hoodville—Now included in Dale Consol. 781 Hoodville Bast: Hamilton ⁶⁶ 782 Hooster—Now included in Sailor Springs Consol. 783 Hooster North—Now included in Sailor Springs C 784 Hord: Clay 785 Hord: Clay 786 Hord: Clay 787 | | 2,675
2,715
1,855
2,559
3,498
3,150
1,600
3,148 | 3,020 | 3,094 | 2,723 |
--|--|--|--| | Sil Missis Missi | Mis | Mis | Mis
Dev | | 11 11 × × 11 | 324
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | 208
LYCLTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT | 192 AL
AL
AL
AC
AAC
AAC
AAC
AAC
AAC
AAC
AAC | | 00,00000000000 | 100000001000 | 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 10-0000001-00- | 200003000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 00000011100000000000000000000000000000 | | 21
22
23
24
25
25
26
27
27
28
28
28
28
28
28 | 355
4
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1 | 243
44
88
77
80
34
11
11 | 49
247
1
27
0
0
30
87
22
27
54 | | 201
00
00
7
7
4
4
4
8
8
8
8
8
8
8
8 | 10
4 4 0
10
10
10
10
10
10
10
10
10
10
10
10
10 | 8
113
10
10
10
10
17
7
7
7
7
7
12
8
8
8
6
8
10
10
10
10
10
10
10
10
10
10
10
10
10 | 5
10
10
10
10
10
10 | | 1,080
2,585
2,545
1,845
2,7445
3,000
2,940
3,45
3,000
3,000
3,000 | 780
780
780
780
725
725
725
840
880
880
135
715
775
770 | 925
1,630
2,1080
2,1080
2,300
2,415
2,775
2,775
2,775
2,815
2,815
2,940 | 2,420
11,890
2,125
2,255
2,290
2,320
2,325
2,400
2,425 | | 84844 8448 844
8484 848 | LLLVONONONONON | 777878888888 | S S S S S S S S S S S S S S S S S S S | | Mis
Sij
Sij
Mis
Mis
Mis
Mis
en Mis
en Mis | nian: Pen nian: Pen nian: Pen is Mis Nis Mis R: Mis R: Mis R: Mis R: Mis Mis I: Mis I: Mis Mis I: Mi | nian: Pen nian: Pen Mis Pen Mis Ris Mis S: Mis Ris Mis Mis Mis Mis Mis Mis Mis Mis | lis
s: Mis ²⁵
Mis
k: Mis ²⁵
k: Mis ²⁵
Mis
Mis | | Cypress: Mis Silurian: Sil Rosiclare: Mis Fredoma: Mis McClosky: Mis St. Loudi: Mis McClosky: Mis Isabel: Pen Aux Vases: Mis Rosiclare: Mis Rociclare: Mis | Pennsylvanian: Degonia: Mis Degonia: Mis Clore: Mis Clore: Mis Palestine: Mis Waltersburg: I Tar Springs: M Tardinsburg: I Cypress: Mis Cypress: Mis Max Vases: Mis Ohara: Mis McClosky: Mis McClosky: Mis | Pennsylvanian. Pennsylvanian. Palestine: Mii. Waltersburg: Tar Springs: Hardinsburg: Cypress: Mis Renault: Mis Renault: Mis Aux Vases: M Mohara: Mis Rosiclare: Mii Weclosky: M | Bethel: Mis Tar Springs: Miss* Cypress: Mis Paint Creek: Mis Bethel: Mis Renault: Miss* Renault: Miss* Renault: Miss* Miss* Aux Vases: Mis McClosky: Mis | | 130
110
20
20
20
20
50
60
60
60
60
60
60
60
60
60
60
60
60
60 | 3,520
40
40
40
40
50
50
570
1,520
1,520
210
210
20
20
20
140 | $\begin{array}{c} 2,950 \\ 40 \\ 40 \\ 10 \\ 100 \\ 770 \\ 170
\\ 170 \\ $ | 10
3,150
10
470
30
820
10
1,520
900
820 | | 25.8 x 11 4.8 2 3 2 3 2 4 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4 | 13,465 | 3,919 | 9,354
x x x x x x x x x x x x x x x x x x x | | 000000000000 | 2,128
0
0
0
0
0
0
0
0
0
0
0 | 46
00
00
46
00
00
00
00 | 000000000 | | 00 x000000 x 7 x x x | , 1
1, 4, 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 | 490 × × × × × × × × × × | 409
×××××××× | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | Consol.
1,198
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 46
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 000000000 | | | ()(| 2.5 | 1954
1939 | | Huey South: Clinton 1953 Hunt City: Jasper* Hunt City East: Jasper* Hunt City South: Jasper* Hunt City South: Jasper Ina. Jefferson* Ina North: Jefferson Inclose: Edgar, Clark* Ingraham: Clayn Ingraham West—Now included in Sailor Sprin Inman—Now included in Janan West Consol. | Inman Central—Now included in Inman West Inman Bast Consol.: Gallatin 1940 Inman North—Now included in Inman West Inman South—Now included in Inman West | . Gallatin | Clay, Bffingham ⁷² | | Clinton Jasper ⁴⁸ ast: Jaspouth: Ja | Onsol. | Consol. | Clay,
Clay, | | Huey South: Clinton Hunt City: Jasper* Hunt City East: Jasper* Hunt City South: Jasper Ina: Jefferson' Ina Jefferson' Ina North: Jefferson Inclose: Edgar, Clark* Ingraham: Clay* Ingraham West—Now incl | Inman Centr
Inman Bast (
Inman North-
Inman North- | nman West | Iola Central:
Iola Consol.: | | 791 F 792 F 793 F 794 F 795 | 808
808
810
810
811
813
815
815
816
817
818
820
821
821
822
823
824
825
827 | 826 1
827
828
828
830
831
833
834
835
835
836
838
838 | 840
841 Id
842 843
844
845
846
846
848
848
849
849 | | 4,325 | 2,613 | 4,440 | 2,222 | 4,334 | 7,711 | 2,801
5,198 | 3,335 | 3,300 | 3,251 | 2,818 | 2,970 2,983 | |--|----------------------|---|---|---|---|---|---|--|--|---|--| | 12 A Dev
AL
AC
AC | 0 MC Mis | 108 A Ord
AC
A
A
A
A | 26 x Mis
x x x | | MC M | 3 x Mis
336 A Dev
AL AC
AC
AC
AC | 5 A Mis
AC
AC
AC | 25 A Mis AC | 17 M
ML
MC
MC
MC | 17 MC Mis ML ML ML ML ML MC MC | 2 x Mis
11 M Mis | | -0-00 | 0 | | 00000 | 0000 | -000-0 | | 00000 | 0000 | | 000-0 | 000 | | 00000 | 0 | 11
0
10
10
10
10
10
10
10
10
10
10
10
10 | 10005 | 0 | 100180 | 0270004 | 00000 | 0000 | 00000 | 000000 | 000 | | 15
9
1 | , , | 130
26
82
15 | 26
4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 6 6 6 6 | 26
24
22
22 | , 1081
2080 | 14
416
0
91
6
5 | 0°2040 | 33
26
1 | 28
11
13 | 21
13
11
0 | 1
13 | | 10
6
3 | 11 | 3
12
12
90 | 15
x | 16
6 | 5
10
10 | 5
10
10
18
15 | m∞m | 51 | 0 10041 | , 741
12
9 | 14 | | 2,490
2,590
2,650 | 2,495 | 1,525
1,380
1,535
3,090
4,275 | 1,030
1,750
1,950 | 1,340
1,470 | 2,650
2,660
2,750
2,775 | 2,700
2,950
3,020
3,120
3,150 | 3,190
3,220
3,250 | 3,060 | 2,200
2,925
2,900
2,930
3,015 | 3,100
1,150
1,750
2,120
2,275
2,730 | 2,000 | | rrs
Lrs | IJ | しななけり | လလလ | တလ | 니니니니 | | 1010 | STF | a asttr | Tossos L | S | | Bethel: Mis
Rosiclare: Mis
McClosky: Mis | McClosky: Mis | Barlow: Mis*
Cypress: Mis
Bethel: Mis
Clear Creek: Dev
Trenton: Ord | Pennsylvanian: Pen
Cypress: Mis
Bethel: Mis | Cypress: Mis
Bethel: Mis | Ohara: Mis
Rosiclare: Mis ²⁵
McClosky: Mis
St. Louis: Mis | 1 AcClosky: Mis Bethel: Mis ²⁵ Aux Vases: Mis Ohara: Mis McClosky: Mis McClosky: Mis | ohara: Mis ²⁵
Rosiclare: Mis
McClosky: Mis ²⁶ | Aux Vases: Mis Rosiclare: Mis | McCJOSKY: MIS Bethel: Mis Aux Vases: Mis Ohara: Mis Rosiclare: Mis | McCJosky: Mis Pennsylvanian: Pen Waltersburg: Mis Hardinsburg: Mis Cypress: Mis McClosky: Mis ²⁶ | ı
Waltersburg: Mis | | 200
120
100
40 | 20 | 1,200
10
290
870
400
100 | 280
40
60
200 | 260
40
220 | 780
120
100
300 | 80
9,000
30
2,460
600
8300 | 120
40
40
40 | 440
270
20 | 370
170
60
20
20
20 | 210
210
30
140
10
20
20 | 20 | | 193
x
x | ĸ. | 6,079
x
x
x
x | 191
12
x
x | 472
x
x | 87
87
8 | 30,521
x
x
x
x | . 10
. x x x | 489
x
x | 531
× × × × | 495
16
466
× | 29
75 | | 0000 | 0 | 00000 | 0000 | 000 | 00000 | 534
0
0
0
0
0
534 | 0000 | 000 | 00000 | 0
194
194
0
0 | 0 0 | | 13
x x x | 0 | 333
××××× | 119
3
x | 112
x
x | 111
× × × × | 3
1,055
x
x
x
x | : 2; ××× | 27
x
x | × 2 × × × × | x 24
1 88
0 0 x x | 4
24 | | 0000 | 0 | 000000 | 0000 | 000 | 00000 | 301
0
0
0
0 | 0000 | 000 | 00000 | 0003030 | 0 0 | | 1947 | 1945 | .oland Consol.
1940 | 1951 | 1953 | 1947 | 1955
1940 | 1943 | 1942 | 1942 | 1939 | 1953
1946 | | 851 Iola South: Clay 1947
852 853 854 854 | 855 Iola West: Clay? | 857 Iron Consol.:—Now included in R.
858 Irvington: Washington
850
861
862
863 | 864
865 Irvington East: Jefferson
866
867
867 | 869
870 Irvington North: Washington
872 | 873 Iuka: Marion
874
875
876
877 | 878 879 Iuka West: Marion 880 Johnsonville Consol.: Wayne 881 883 884 | 885
887 Johnsonville North: Wayne
888
889 | 891
892 Johnsonville South: Wayne
893
894 | 895
897
898
899
899
890 | 901
903 Junction: Gallatin
903
905
906
907 | 908
909 Junction East: Gallatin
910 Junction North: Gallatin | TABLE 12.—(Continued) | Oil production (M bbls.) | |---| | During 1956 To end of 1956 | | Year of dis Secondary Total Total Secondary | | | | Consol.
0
0
0 | | | | 1945 118 158
115 x
0 x
0 x
3 x | | 1951 0 6
1942 0 0 | | 00000 | | | | 1950 0 x
1947 120 157
x x x
0 x | | 1949 0 12
1955 0 234
1955 0 810 | | 0000 | | $\begin{array}{cccc} 1950 & 0 & 2 \\ 0 & 2 & \end{array}$ | | 2,301
2,608
1,794 | 2,908 | 2,888 | 2,750 | 2,817 | 2,324 | 3, 031
3, 045
4, 000
2, 378
845
3, 420 | 3,394
3,389 | 3,210
4,680 | |--|--|--|---|---|--
--|--|--| | 122 | 2 | 2 | 2 | 2 | 2 | w w40 w | m w | | | Mis
Mis
Mis | Mis | Mis | Mis | Mis | Mis | Mis
Mis
Ord
Mis
Mis | Mis
Mis | Mis
St. Peter | | | ACCAPIC
ACCAPIC
ACCAPIC | MMK
CCC | ML | MMK | **** | AAC
MC
MI
MI
MI
MI | AL
AL
AC
AC | APL
APL
APL
APL | | 0
11 | 09 | ıν | 8 | = | 23 | 1
8
3
7
7 | ~ ∞ | ,981 | | 10000 | 000000 | 00000 | 0000 | 0000 | 00000 | 000000000000000000000000000000000000000 | 000000 | 00000000000000000000000000000000000000 | | 10000 | 000000 | 00000 | 0000 | 0000 | 00000 | 000007111000 | 0 0 0 0 0 0 0 | 0000007000 | | 11421 | 5
102
1
69
30 | 14 ₁ | 4467 | 113 | 25
0
1
1
2
2 | 11
10
10
10
10
10
10
10
10
10
10
10
10
1 | 112242 | ,180
,203
,203
174
428
428
1
1
0
0
0 | | 7
6
15 | 8
14
10
7 | r-r-8 | 10 | 6
6
12 | 451
8
11 | 01
10
10
10
10
10
10
10
10
10
10
10
10
1 | 10
8
13
9 | 8
30 1
15 10
66
4
4
9
9 | | 2,430
2,040
2,335
1,690 | 1,720
2,530
2,540
2,670
2,690 | 2,750
2,810
2,815 | 1,745
2,660 | 2,520
2,670
2,720 | 2,040
2,050
2,110
2,225 | 2,585
2,970
2,915
2,425
2,425
535
3,215
3,240
3,280 | 3,300
2,070
2,745
3,095
3,220 | 2,660
1,500
1,540
1,550
1,785
2,830
3,900 | | S SSP | s ssll | 니니니 | RS | STI | Losoo | るけいしゅく らいし | Losso L | LUSTSSSS S | | Salem: Mis
Bethel: Mis
Bethel: Mis
Bethel: Mis | Aux Vases: Mis Paint Creek: Mis Bethel: Mis Ohara: Mis McClosky: Mis | Ohara: Mis
Rosiclare: Mis
McClosky: Mis | Biehl: Pen
Rosiclare: Mis | Bethel: Mis
Ohara: Mis
McClosky: Mis | Paint Creek: Mis*
Bethel: Mis
Aux Vases: Mis | | Rosiclare: Mis Palestine: Mis Cypress: Mis Aux Vases: Mis McClosky: Mis | Cypress: Mis Cypress: Mis Paint Creek: Mis Bathel: Mis Aux Vases: Mis AucClosky: Mis Carper: Mis ²⁶ Geneva: Dev | | 20
10
30
130
80 | 50
1,400
10
880
40
500 | 300
100
260
40 | 50
30
20 | 110
70
20
20 | 270
10
240
10
40 | 200
10
200
200
160
330
330
100
60
40
40 | 20
120
20
30
30
50
40 | 10
23,200
23,000
4,000
9,000
50
20
2,800
2,800 | | 0
.5
17
234
x | 2,696
x
x
x | 361
x
x | 37
17
20 | 235
218
.5
.16 | 350
x x x | 369
360
360
377
377
1118
8 x x x | 111
156
73
x | 6
198,579
x
x
x
x
x
x
x
x
x
x | | 00000 | 00000 | 0000 | 000 | 17
17
0
0 | 00000 | 0000000000 | 00000 | 30,950
x
x
x
x
x
0
0
16,213 | | 00 H Ø K | × 1 ×××× | 10 K K K | 0 5 5 | 25
25
0 | 00 x x z x | 10
10
10
10
10
10
11
11
11
12
13
14
15
15
15
16
16
17
16
17
16
17
16
17
16
17
16
17
16
17
17
17
17
17
17
17
17
17
17
17
17
17 | 31
10
× × × | 9,972
x x x x x x x x x | | 00000 | | 0000 | 000 | t Consol.
8
8
0 | | losuo | 00000 | 7,694
x
x
x
x
0
0
495 | | 1953
1943
1941 | 1940 | 1946 | 1944 | tuark wes | 1952 | dengate C
1947
1951
1946
1950
1950 | 1953
1950 | 1955 | | 959 960 Kinmundy North: Marion ⁷⁷ 961 Laclede: Fayette 962 Lakewood: Shelby | 964
965 Lancaster: Wabash, Lawrence
967
967
968 | 71 Lancaster Central: Wabash
72 T3
73 T4
74 | 976 Lancaster East: Wabash
977
978 Sancaster East: Wabash | 980 Lancaster North—Now included in Kuark West 980 Lancaster South: Wabash 1946 981 983 | 9.84 Laurcaster West—Now included in Berryville Co
9.85 Lawrence West: Lawrence
9.87
9.88
9.99
9.90
9.00 | 991 Leech Consol.—Now included in Goldengate Co
992 Lexington: Wabash 1947
993 Lexington: Wabash 1951
995 Lexington North: Wabash 1951
995 Lillyville: Cumberland, Effingham 1946
997 Livingston: Madison 1948
999 Locust Grove: Wayne 1950
000 Locust Grove: Wayne 1950
000 . | 1004 Locust Grove South: Wayne
1005 Long Branch: Saline, Hamilton
1006
1007
1009 | 1011 Long Branch South: Saline
1012 Louden: Fayette, Effingham ⁵
1013
1015
1017
1017
1019
1019 | | 88888 | 888888 | 00000 | 0000 | , ಪ್ರಪ್ರಪ್ರ
ನ | 58888888888 | 000000000000000000000000000000000000000 | 222222 | 200000000000000000000000000000000000000 | | 2,977
3,169
3,983 | 3,385 | 3,358
3,066
2,619
2,560
3,215 | 3,169 | 2,553 | 3,472
3,391
4,915 | 3,032 | |---|---|---|---|--|---|--| |
Mis
Mis
Ord | Mis | Mis
Mis
Ord
Mis
Mis | Mis
Mis | Mis | Mis
Mis
St. Peter | Mis Mis | | ACL IN | PAC APA | A× RCC | AAC
AC
AC
AC | AL
AL
AC
AC | MC
MC
APA
AC
AC | AAC
AAC
AAC
AAC
AAC
AAC | | 7 Z | 47 | 0 N
135 N
111 | 6 6 6 | 10 | 372 | 141 | | 110000 | 800080 | 00000 | 0001000 | 00000 | 00%00%000 | 0+000000000 | | 000000 | 000120 | 00000 | 000000 | 000000 | 00 00 00 00 4 | 11000000111100001111 | | 288
2
2
17
17 | 103
20
2
0
76
5 | 1
2
146
1 | 18
14
14
15
15
15 | 10
7
0
2
0
1 | 3
436
96
96
226
1
1 | 161
161
10
10
10
10
10
10
10
10
10
10
10
10
10 | | 10
8
8
5 | 15
1
6 | 10
15
5
10 | 6
8
7 | 13
18
5 | 6
9
113
115
112
5
10 | 20
20
112
110
113
113
113
113
113 | | 2,755
3,045
1,000
2,240 | 3,145
3,230
3,250
3,260 | 3,250
2,745
1,700
2,385
3,070 | 2,950
3,075
2,905
3,035 | 2,290
2,355
2,390
2,475 | 3,255
3,315
1,750
1,900
1,950
2,910
2,950 | 2, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2 | | Lo Lo | STIT | コココペコ | Lo Lo | SSTI | SCSSS LL | α ααααααηαμη | | 20 Aux Vases: Mis
40 McClosky: Mis
220
70 Bethel: Mis
200 Silurian: Sil | 2, 250
290 Aux Vases; Mis
80 Ohara: Mis
20 Rosiclare: Mis ²⁵
2,040 McClosky: Mis | 20 McClosky: Mis
40 McClosky: Mis
3,100 Devonan & Silurian
760 Ste. Genevieve: Mis | 500
80 Aux Vases: Mis
500 McClosky: Mis
600
320 Aux Vases: Mis
360 McClosky: Mis | 120
100 Bethel: Mis
10 Aux Vases: Mis ²⁵
60 Rosiclare: Mis
20 McClosky: Mis ³⁶ | 120 Ohara: Mis 20 Ohara: Mis 5,200 2,020 Cypress: Mis 2,020 Aux Vases: Mis 3,820 Rosclare: Mis 10 Carper: Mis 10 Carper: Mis | 60 Aux Vases: Mis 1,840 1,00 Pennsylvanian: Pen 100 Waltersburg: Mis 110 Tar Springs: Mis 10 Hardinsburg: Mis 10 Hardinsburg: Mis 10 Hardinsburg: Mis 10 Renault: Mis 100 Renault: Mis 100 Aux Vases: Mis 100 Ohara: | | 210
210
427
x | | 9
13
9,568
1,243 | 974
x
x
1,569
x | 178
x
x
x x | 91
.5
.12,248
.x
.x
.x
.x | 2, 251
,351
x x x x x x x x x x x x x x x x x x x | | 00000 | 93
x x x x | 00001 | 0
0
3
1
x x | 00000 | 0
0
0
0
0
0
0 | | | 0 7 7 × × | 179
x
x
x | 0
0
297
0
26 | 8. × × 7. × × | 20 ×××× | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | isol. ny Consol 337 x x x x x x x x x x x x x | | 00000 | - 53
- 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | g Consol.
0
0
0
0
1 | 0
0
0
17
x x x | 00000 | 332
0
332
x
0
0 | ny Consol. armony Consol. New Harmony Consol. Consol. 0 337 0 x 0 x 0 x 0 0 x | | 1953
1951
1940 | 1943 | Parkersbur
1945
1938
1943
1950
1942 | 1943 | l.
1951 | Consol.
1946
1947
1939 | w Harmony
n New Har
Inded in New
Harmony C
uth
1951
1941 | | 1021
1022 Louisville North: Clay ⁷⁸
1023 Lynchburg: Jefferson
1024 McKinley: Washington
1025 | 1027 Maple Grove Consol.: Edwards, Wayne Wayne 1028 1039 1031 1031 1031 1031 | 1032 Maple Grove East—Now included in Parkersb 1034 Maple Grove South: Edwards' 1945 1035 Marcoe: Jeffersons 1938 1036 Marine: Madison 1943 1037 Marine: Milliamsons 1950 1037 Markham Citv: Jefferson 1940 1034 1035 | 1039 Markham City North: Jefferson, Wayne 1040 1042 1042 Markham City West: Jefferson 1043 | 1046 Mason—Now included in Iola Consol.
1047 Mason North: Bffingham
1048
1049
1050 | 1053 Mason South—Now included in Iola Consol.
1054 Massilon: Wayne, Edwards ²⁸ 1946
1055 Massilon South: Edwards ²⁸ 1947
1056 Mattoon: Coles 1939
1057
1058 1058 | 1062 Maud Central—Now included in New Harmon 1064 Maud Consolidated—Now included in New Ha 1065 Maud Morth Consolidated—Now included in New 1066 Maud Worth Consolidated—Now Harmony (1067 Maunie—Now included in New Harmony (1071 Maunie—Bast: Whites 1041 1072 Maunie Bast: Whites 1041 1073 Maunie North Consol: Whites 1041 1074 Maunie North Consolidated in Maunie South 1077 Maunie North Consolidated in Maunie Maunie North (1077 Maunie Mauni | | 3,160 | 5,377
3,463
878
880 | 3,950 | 4,311 | $\frac{3,010}{3,003}$ | 2,452 | 2,020 | 4,237 | 3,354 | |--|---|---|---|---|------------------------------|--
--|---| | | | | | | | | | | | Mis | Dev
Mis
Pen
Pen | Dev | Mis | $_{\rm Mis}^{\rm Mis}$ | Mis | Sil | Dev | Mis | | AAL
AAL
AAL
ACC | ACxxx | বৰধৰ | $^{\rm AA}_{\rm C}$ | MC | * * * | MU | APL | MC
MC
MC | | 86 | 0.50 | 111 | 162 | 0 | 2 | 95 | 299 | rv | | 41
10
00
00
00
00
00
11 | 0010 | 00000 | 710015 | 700 | 000 | 0 | 1000000000000 | 0000 | | 000004100000 | 0010 | 01000 | mm000 | 000 | 000 | 10 | 4000000011100011 | 0000 | | 141
7
6
39
2
43
23
0
0
10
0 | 719 | 15
6
1
3 | 220
170
2
7
7
28 | 2 1 2 | 711 | 6 | 441
46
46
27
3
3
3
17
17
257
257
45
66
66
67
67
67
67
67
67
67
67 | 11
4
2
5 | | 7
10
17
19
16
10
12
8 | 8
10
7 | 5 7 7 | 111
8
5 | rv rv | 96 | 15 | 20
20
15
10
10
13
25
15
7
7
7
7
6 | 8 9 5 | | 1,400
2,010
2,210
2,210
2,590
2,590
2,900
2,900 | 3,350
3,330
840
865 | 2,140
2,200
2,350 | 3,245
3,320
3,345
3,345
3,375 | 2,925 | 1,330
1,505 | 1,890 | 1,370
1,470
1,520
1,520
1,580
1,790
2,020
2,025
2,110
2,320
2,350
2,350 | ,110
,170
,240 | | LLSSSSSSSSS | JJ00 | Lss | S 3
OL 3
OL 3
OL 3 | L L | SS
11 | 1 | | 3 3
L 2 3 | | | | | 0.10 | | | | 0 0 | | | nn
Ais
Lis
S
S
S | 10 10 | Ø 10 | va vo | | Mis | | Pen
is
Mis ²⁵
Mis
³⁵
Mis
is
Mis | 70 10 | | oort: Penn
a: Mis
he: Mis
burg: Mis
ings: Mis
ings: Mis
ings: Mis
ses: Mis | Mis
Mis | is
Min
Mis | Aux Vases: Mis
Ohara: Mis
Rosiclare: Mis
McClosky: Mis | si si | Mis
g: N | Sil | _ 'A '8''8' AV | Aux Vases: Mis
Ohara: Mis
McClosky: Mis | | port
ina:
ine:
:sbur
oring:
ss:
M: M:
ases:
ases: | sky:
sky:
Pe
Pe | : M
ases:
sky: | ases:
: M
are:
ssky: | Mis
Mis | ia:
sbur | | port: Per | ases:
M
sky: | | Bridgeport: F
Degonia: Mis
Palestine: Mis
Mattersburg:
Tar Springs:
Cypress: Mis
Bethel: Mis
Aux Vases: M
Rosiciare: Mi | McClosky:
McClosky:
Isabel: Per
Isabel: Per | Bethel: Mis
Aux Vases:
McClosky: | Aux Vases:
Ohara: Mis
Rosiclare:
McClosky: | Ohara:
Ohara: | Degonia: Mis
Waltersburg: | Silurian: | Bridgeport: Balehi: Pen Balehi: Pen Palestine: N Waltersburg: Tar Springs: Jackson: Mi Copress: Bethel: Mis Bethel: Mis Olmara: Mis Roscidare: Mis | Aux Vases:
Ohara: Mis
McClosky: | | 500
70 E
70 E
7 | 240 N
20 N
60 Is | 210
90 B
100 A
60 N | 2,630
2,430 A
120 O
200 R
700 N | 20 04 | 20
10
10 D | ,240 S | 200 Page 12 Pa | 180
50 A
40 O
100 M | | Ħ | | • | 99 | | | 2,: | 4, E, H | | | 5,516
x x x x x x x x x x x x x x x x x x x | 315
1
x
0 | 240
x
x | 7,737
x
x
x | 212 | 9 x 9 | 797 | 10,927 x x x x x x x x x x x x x x x x x x x | 366
x
x | | 2, 243
0
0
1, 383
1, 383
0
0
0
0
0
0
0 | 0000 | 0000 | 266
266
0
0 | 00 | 000 | 0 | 742
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0000 | | | | | | | | | | | | 299 | 40 XO | 51
x x x | 300
x x x x | 00 | w K w | 200 | 07
10
10
10
10
10
10
10
10
10
10
10
10
10 | .01.
13
x x x | | 214
0
0
200
14
0
0
0
0 | Consol. | 0000 | 42
42
0
0 | 00 | 000 | Cons | wtrn Consol. 414 414 8 8 8 0 0 0 39 367 0 0 0 0 0 0 | mony Consol 0 0 0 0 | | - | q | ÷ | | | | rapar | urn C | | | 1941 | Vest_Now included in Maunie North
 Wayne | 1947 | 1939 | 1948
1953 | ol.
1955 | 1943 | Auk
1940 | w Ha
consol | | • | laumi | 31 | | | Cons. | ian
ian | n Mt | Ety C | | | | 7 | af. | [S ⁸⁹ | lery | Clude
Thrist | ded i | ded i | | White ⁸⁶ | ne ⁸⁷ | 1 | 29 | lward | 4 .
E | 3:
EO 1 | inclu | inclu
in C | | ::10 | Wayı
Wayı
ark | rion Tion Tion Tion Tion Tion Tion Tion T | , 11g | ards ⁸
Ed | ne ne | date | Now
ISh ⁹⁰ | Now
uded
ayne | | Cons | ayne
h:
k | uo. | ATTI | Edw
orth: | Sali | ntra
nsoli | Wabs | incl. | | uth (| Clar
Nort | Mari | | ie:
Zie:
Zie: | ille: | | Harana Ba | Now
Orth | | ie So | erry:
erry:
erry
se:
se So | aus: | yne | Prair
Prair | ellsv. | ubur | arm¢ | arme
rie—
rie N | | Maunie South Consol.: | Mayberry: Wayne 1941 Mayberry: Wayne 1944 Melrose: Clark Wayne 1948 Melrose: Clark 1953 Merrose South: Clark 1953 | Miletus: Marion | Wayne
Wayne | Mills Prairie: Edwards ⁸⁸ Mills Prairie North: Edwards ⁸⁹ Mischell North: Edwards ⁸⁹ Mischell North: Edwards ⁸⁹ | Mitch | Mr. Auburn Central—Now included in Mr. A. M. Mt. Auburn Consolidated: Ohristian 1943 | At.
At. C | Mt. Carmel West—Now included in New Har
Mt. Erie—Now included in Clay City Consol.
Mt. Erie North: Wayne 1944 | | | 1095 N
1095 N
1097 N
1098 N | 1100 Miletus: M
1101
1103
1103
1104 Mill Shorts | 1100 | 111
112 N | 1114 N | 118 | V 011119
11120
11122
11122
11123
11130
11133
1133 | 1135 N
1136 N
1137 N
1138
1139 | | HHAHHHHHHH | | | | | | | ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜ ਜੋ ਜੋ ਜੋ ਜੋ ਜੋ ਜੋ ਜੋ | | TABLE 12.—(Continued) | - Aban-doned doned doned doned doned doned doned doned of year do A A A A A A A A A A A A A A A A A A | |---| | 0 0 1 1 0 0 | | 00 | | L 2,675 6 1
S 370 16 1
S 2,790 12 1 | | 1 | | | | x 180
5 20
x 10
25 20 | | 2×5 9 | | 0 000 | | 1956
1955
1943 | | Mt. Vernon North: Jefferson
Murdock: Douglas | | 2,980 | 1,571
2,240
2,272 | 2,131
3,040
2,889
3,102 | 3,149 | 3,767 | 2,321
2,691 | 1,560
3,597
2,498
2,221 | 3,289 | 4,910 | 2,941 | 3,000 | |--|--|--|--|---|---|---|---|---|--|---| | Mis | Mis
Sil
Dev | Sil
Mis
Mis
Mis | Mis | Mis | Dev
Dev | Mis
Dev
Sil
Dev | Mis | Dev | Mis | Mis
Mis | | A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A | × k | CCC× | × | * * * | *ZÏ * | Ax RLx . | 4444 | MMK | | NZZZZZZ | | 29 | 36 | 0000 | + | 9 | 41 | 28
28
52
52 | | 34 | 45 | 1 4 V | | 000000 | 000 | 0000 | 0 | 000 | 0000 | 000001 | 40040 | 001 | 000000 | 000000 | | 000000 | 070 | 1000 | 0 | 047 | 25
0
25
25 | 0-04 | 10010 | , 40T | 0-0-0000 | 000000 | | 8 T T T T T T T T T T T T T T
T T T T T | 36 3 | 2418 | - | 947 | 43 | 292 4 292 1 | 81
27
20
31 | 40
15
6 | 15
15
4
24
24
0
0 | 1241451 | | 12
8
15
15
0 | 4 × 5 | 25
6
5 | ∞ | 33. | 5
10
17 | 13 × × 1 | 929 | 4 % | 20
10
11
11
11
20 | x 8 111 | | 2,105
2,245
2,445
2,720
2,820 | 1,555
1,980
2,050 | 2,000
2,950
2,855
3,000 | 3,035 | 2,860 | 2,285
560
1,185 | 2,220
1,190
1,750
2,325
2,235
600 | 3,005
3,050
3,100 | 3,100
3,115 | 385
580
1,335
1,700
1,900
2,570
2,730 | 2,790
2,855
2,535
2,870 | | or so | SLI | בבבב | H | SL | | SLLSSL | 111 | 니니 | თთთთთთ | SS LS | | 360 130 Tar Springs: Mis 10 Hardinsburg: Mis 200 Cypress: Mis 70 Aux Vases: Mis 60 McClosky: Mis | 30 Aux Vases: Mis
760 Silurian: Sil
60 Devonian-Silurian | 40 Silurian: Sil
80 Ste. Genevieve: Mis
20 McClosky: Mis
60 McClosky: Mis | 20 McClosky: Mis | 80
40 Aux Vases: Mis
40 McClosky: Mis | Cedar Valley
Isabel: Pen
Aux Vases: | 20 Carper: Mis 20 Aux Vases: Mis 290 Cypress: Mis 80 Silurian: Sil 40 Silurian: Sil 620 Pennsylvanian: Pen | x Ohara: Mis
x Rosiclare: Mis
x McClosky: Mis | 860
700 Rosiclare: Mis
520 McClosky: Mis | 120 Jake Creek: Pen 30 Pennsylvanian: Pen 60 Biehl: Mis 360 Palestine: Mis 80 Tar Springs: Mis 10 Bethel: Mis² 20 Aux Vases: Mis | 10 Aux Vases; Mis 10 Aux Vases; Mis 20 Ohara: Mis 60 Cypress: Mis 10 Aux Vases: Mis | | | 6 51 X | 1757 | ∞ | | | ć | , | | | 1010#0 | | 1,021 | 1,005
16 | 757 | | | 10
171
0
171 | 1,553
1,553
32
8
8 | 6, 6 | 862
x | 2,607
x x x x x x x x x x x x x x x x x x x | ====== | | 173 17 17 0 0 0 0 0 | 000 | 0000 | 0 | 000 | 0000 | 1,147
0
0
0
0 | 88008 | 000 | 2, 123
0
0
2, 123
0
0
0
0
0 | 00000 | | 108
x x x x x | x
287
4 | 0000 | - | 61
59
2 | 151
0
151 | 25.5.5.5 | # X X X | 47
x x | 113
×××××× | 0 | | 93
9
0
0
0
0 | ast Consol. Consol. 0 | 0000 | 0 | 000 | 0000 | 00 45
00 00
00 00 | 9009 | 000 | 000000000000000000000000000000000000000 | 00000 | | | Эt | 1952
1944
1945
1947
Y Consol, | lay City Consol. 1951 ay City Consol. land Consol. | 1956 | 1954
1952 | 1955
1945
1951
1955 | | ey Consol.
1937 | 1940 | 1946 | | 1189 New Haven Consol.: White ⁹⁰
1191
1192
1193
1194
1195 | 1196 New Haven North—Now included in Concord
1197 New Haven West—Now included in Imman Ea
1198 New Hebron East: Crawford 1954
1199 New Memphis: Clinton 1954
1200 New Memphis: Colinton 1954 | 201 New Arethins South: Chitton, 1952 202 Newton: Jasper 1944 203 Newton North: Jasper 1945 204 Newton West: Jasper 1945 205 Noble—Now included in Clay City Consol. | 200 Noble North—Now included in Cl. 207 Noble West: Clay 208 Noble South—Now included in Cl. 209 North: Gity—Now included in Rol 210 North: Gity—Now included in Rol 210 North Strum—Now included in Rol | 211 Oakdale: Jefferson
212
213 | 1214 Oakley: Macon
1215 Oak Point: Clark
1217
1217 | 219 Oak Point West: Clark 220 Odin: Marion 221 Okawville. Washington 222 Okawville North: Washington 223 Old Ripley: 'Bond' | 225
225
227
227
227 | 229 Olney East—Now included in Olney Consol. 230 Olney South: Richland** 1937 231 232 232 | 234 Omaha: Gallatin ⁵ 235 237 237 238 239 240 | . 24.
24.
24.
24.
24.
24.
24.
24. | | ======= | | - 2222 | 48446 | 444 | HHHH | 422222 | 12222 | 22225 | 122222222 | 222222 | | | | 0 | , × ; | 000 | 171
X | 70
50 Cy1 | Cypress: Mis | ωw | 2,600 | 14 | o 4 c | 000 | | 4
ALA | Mis | 3,016 | |--|----------------------|---------------------------|-------------------|---|-----------------------------|---|--|------------------|--|----------------------------|---|---|--------------------|--|-------------------|-------------------------| | 1255 Omega: Marion ⁹⁶
1256 Orchardville: Wayne
1257 | 1946
1950 | 0000 | x0 076 | 0000 | 88
62
62 | | McClosky: Mis McClosky: Mis Aux Vases: Mis | ы г г. | 2,910
2,490
2,800 | 38 10 89
10 97 | 04-10.00
04-10.00 | 00000 | 00000 | AAC
AAC | Mis
Mis | 2,584
3,000 | | Orchardville North: Wayne
Oskaloosa: Clay
Oskaloosa Bast: Clay ⁹⁷ | 1956
1950
1947 | 0
0
161
0 | 700
007
007 | 625
0
0
0 | 22
22
1,438 | 20 Ohs
40 Mc
10 Pai
360 Bet
40 | Unara: Mis
McClosky: Mis
Paint Creek: Mis
Bethel: Mis | ചചയയ യ | 2,880
2,905
2,655
2,595 | 130 ss | 38121 | | | 34 AC
0 AA X
AL | Mis
Mis
Mis | 3,020
2,961
3,050 | | Oskaloosa South: Clay
Pana: Christian
Panama: Bond, Montgomery ⁶ | 1951
1951
1940 | 00000 | 15430 | 00000 | 28
20
46
15 | 20 Mc
50 Mc
50 Bet
40 Gol | McClosky: Mis
McClosky: Mis
Bethel: Mis | ישלט ל | 2,895
2,770
1,470 | ,448 C | 1 H W 4 4 W | 00000 | 01000 | AC AC AC AC AC AC | Mis
Dev
Dev | 2,883
2,847
2,016 | | 1200
1270 Pankeyville: Saline 195
1271 Pankeyville East: Saline 195
1272 | 1956
1956 | 00000 | 8000 | 00000 | . ss v 0 0 0 | 10 Ber
10 Cy
10 Cy
10 Cy | Bethel: Mis
Cypress: Mis
Cypress: Mis ²⁵
Bethel: Mis ²⁵ | തെ തയ | 865
2,250
2,250
2,360 | 12
x x 13 | -2-00 | 00170 | 01000 | 10
0 X X X X | Mis
Mis | 2,742 | | urker—Now included in Main Consol
urkersburg Consolidated: Richland,
Edwards | l.
1941 | 59
0
0 | 286
x
x | 65 | 9,515
x
x | 6,300
80 Wa
160 Cyr
70 Pai | 1
Waltersburg: Mis
Cypress: Mis
Paint Creek: Mis | ശശശ | 2,430
2,830
2,955 | 10
12
17 | 1
8
8
2
2 | | 0
148
0
0 | | Mis | 3,333 | | , | τ.

 | 59
59
59 | **** | 00000 | **** | 140 Bet
10 Aux
x Ohix
x Ros
5,000 Mc | Bethel: Mis
Aux Vases: Mis
Obhara: Mis
Rosiclare: Mis
McClosky: Mis | OL Lss | 2,930
3,070
3,100
3,150
3,175 | 12
20
10
10
10 | 4
1
22
182
25 | 0-0000 | 01001 | বৰবৰৰ | | | | | rarkersou
1948 | onsol.
0
0
0 | 2 4 1 | 000 | 55
42
13 | 80
60 Per
20 Bet | Pennsylvanian: Pen
Bethel: Mis | တလ | $\frac{1,400}{2,815}$ | 10 | 7 0 8 | 000 | 000 | 9
8
8
8
8 | Mis | 3,187 | | 1290 Parkersburg West: Richland,
Edwards
1291 | 1943 | 000 | | 000 | 186
x
x | 240
40 Ohz
200 Mc | Ohara: Mis
McClosky: Mis | 니니 | 3,220
3,260 | 25 9 | 10
9 | 000 | | AC AC AC | | 3,331 | | 123 Passport: Clay
1294
1295 | 1945 | 000 | 40 49 | 000 | 2,153
x
x | | Rosiclare: Mis
McClosky: Mis | 니니 | 3,005 | 5 | 57
55 | -0-0 | | 39 AC
AC | Mis | 3,140 | | t South: Richland | 1948 | 000 | | 000 | 83
64
19 | 110
70 Cy
20 Ros | Cypress: Mis
Rosiclare: Mis | ω ₁ , | 2,665 | 15 | - 12 15 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 0000 | 00 | s AL
AC | Mis | 3,692 | | Passport West: Clay
Patoka: Marion | 1954
1937 | 0
143
5
91
47 | 231
231
231 | 0
0
7,594
50
6,242
1,302 | 49
11,695
x
x
x | 20 Mc
180 Ste
1,160
60 Cyj
950 Bet
200 Ros | McClosky: Mis Ste. Genevieve: Mis Cypress: Mis* Bethel: Mis Rosiclare: Mis Geneva: Dev | 11 wwwD | 3,030
3,030
1,280
1,410
1,550
2,835 | 5
10
27
9 | $ \begin{array}{ccc} 1 & 9 \\ 9 & 0 \\ 164 & 8 \\ 1 & 1 \end{array} $ | 0 4 7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | o
0 m 0 0 0 0 0 | AC AC DD | Mis
Ord | 3,130 | | 4,178 | 1,728
1,735 | 5,350 | 1,797
1,797
424
424
43,112
1,300
2,779
2,770
2,770
1,513
3,530 | 3,106
3,092
2,049
1,008
2,808
1,932
2,938 | |--|---
---|--|--| | Ord | Mis
Mis | Dev | Mis
Pen
Pord
Oord
Mis
Sil
Sil
Sil
Sil
Sil | Mis
Mis Mis
Mis
Mis | | | X44 | ACCAPARA PARA PARA PARA PARA PARA PARA P | MA A A A A A A A A A A A A A A A A A A | MC WX AAAA WC | | 50 | 27
13 | 376 | 0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1 | 36 | | 1100 | 000 | 800000100000000000000000000000000000000 | 000000000000000000000000000000000000000 | 00000000 | | 0000 | 0 1 0 | 4,000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 00000-0000 | | 54
54
3 | 28
17 | 468
113
113
113
113
114
117
117
117
117 | 11111141182221848
002451 | 36
34
0
0
2
2
7
7
10
10
3 | | 16
10
8 | 30
10
6 | 01001111111111111111111111111111111111 | 10
10
10
10
15
15
15
10
10
10
10 | 20
112
5
116
110
10
6 | | 1,340
1,465
1,635 | 2,950
1,350
1,380 | 11, 350
11, 350
11, 350
11, 350
11, 350
11, 350
12, 350
13, 30
10, 30
10 |
2,345
11,735
11,640
3,900
3,900
3,900
3,900
1,540
2,740
2,740
2,785
2,785
2,785
1,625
1,625
1,930
1,930
1,930
1,930
3,930
3,930
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,940
1,94 | 2,235
2,550
2,905
2,905
2,860
590
595
1,520 | | രമപ | | $\Box_{\mathcal{N}}^{\square}$ \Box | SSTISSIAS SISTA | യയ യയയിയ | | O Cypress: Mis
Bethel: Mis
O McClosky: Mis | a: Dev
ss: Mis
: Mis | Anvil Rock: Pen Clark-Bridgegort: Pen Buchanan: Pen Buchanan: Pen Buchanan: Pen Behl: Pen Degonia: Mis Clore: Mis Clore: Mis Palesthie: Mis Waltersburg: Mis Par Springs: Mis Par Springs: Mis Part Creek: Mis Pant Creek: Mis Pant Creek: Mis Aux Vases: Mis Aux Vases: Mis Rochara: | Tar Springs: Mis Anx Vases: Mis AncClosky: Mis McClosky: Mis McClosky: Mis Pennsylvanian: Pen Trenton: Ord Bethel: Mis Cypress: Mis Pervonian: Dev Pervonian: Dev Cypress: Mis Cypress: Mis Cypress: Mis McClosky: Mis Devonian & Silurian Devonian & Silurian | Tar Springs: Mis*s
Cypress: Mis
Aux Vases: Mis*a
Aux Vases: Mis*
Pottsville: Pen
Penrsyvanian: Pen
McClosky: Mis | | ypres
ethel
fcClo | Geneva:
Cypress:
Bethel: | Anvil Roc
Clark-Bric
Clark-Bric
Clark-Bric
Buchanan
Biehl: P
Degonia:
Clore: M
Paletribu:
Waltersbu:
Cypress:
Paint Cree
Bathel:
Aux Vases:
Ohara: N | Tar Spring Aux Nases McClosky; McClosky; Pennsylva Trenton: Trenton: Trenton: Pennsylva Cypress: Cypress: Cypress: Cypress: McClosky; McClosky | Tar Spring
Cypress:
Aux Vases
Aux Vases
Pottsville:
Pennsylva
McClosky
Cypress: | | 200
200
80
80
80
80 | 40 G
320 C
180 B | 6,000
x x CO
120 C L
120 C L
120 C P
60 P Q
930 T A
50 C P
50 C P
50 C P
50 C P
60 | 200 PA 3 10 | 380
101
380
100
100
100
100
200
30
30
0 | | 4,081
x
x | 272
217 | 01
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 2,50
2,00
2,00
3,00
4,00
5,00
5,00
5,00
5,00
5,00
5,00
5 | 572
x
x
173
173
19
226
13 | | 0000 | 000 | 1,503
0 0
0 23
23
0 0
0 0
0 0
0 0
0 0 | | 0000 000000 | | 92
8 x x x | 73
20 | 0, x x x x x x x x x x x x x x x x x x x | 10055xxxxx | 97
x x x 111
112
1 14 1 1 0 0 | | . 0000 | 000 | 788
788 × × × × 0
733
732 × × × 0
0
0
0
0
0
0
0 | | 0000 000000 | | 1941 | 1953
1950
ndale | 1939 | 1951
1953
1953
1953
1953
1954
1954
1954
1953 | 1953
1955
1940
1951
1950
1946 | | 99 Patoka East: Marion
10
11
12 | 13
14 Patoka South: Marion 19
15 Patoka West: Fayette 19
16 Patton-Now included in Allendale
17 Patton West—Now included in Allendale | | 40 Pinkstaff: Lawrence** 41 Pinkstaff: Lawrence** 42 Pinkstaff Sast: Lawrence 42 Plainview: Macoupin 43 Posen: Washington 44 Posen North: Washington 45 Posen South: Washington 46 Posey: Clinton 47 Posey Sast: Clinton 48 Posey West: Clinton 49 Prentice: Morgan* 50 Raccoon Lake: Marion 51 52 54 55 | S7 Raleigh: Saline 58 60 61 62 Raleigh South: Saline 63 Raymond: Montgomery 64 Raymond Bast: Montgomery 65 Reervoir: Jefferson 66 Richview: Washington 67 Ridgway: Gallatin ¹⁰⁰ | | 1309 H
1310
1311 | 1313
1314
1315
1316
1316 | 1318 1
1319 1
1320 1321
1322 1323 1324
1325 1326 1328
1329 1331
1332 1333
1333 13334 | | 1357
1358
1358
1360
1361
1363
1365
1366 | | _ | |------| | ned) | | ıtin | | Ö | | 12.— | | ABLE | | 1956 The control of | Oil production (M | |--|---| | Total proves Name: Age Name: Age Name: Age Name: Age A | | | 10 Palestine: Mis 2,340 6 1 0 1 ML 10 Rociclare: Mis 1,730 18 1 0 1 ML 10 Rociclare: Mis 1,2,345 5 1 0 0 0 MC 10 Rociclare: Mis 1,2,345 5 1 0 0 0 MC 10 Rociclare: Mis 1,3,145 5 1 0 0 0 MC 10 Rociclare: Mis 1,3,145 5 1 0 0 0 MC 10 Rociclare: Mis 1,3,145 5 1 0 0 0 MC 10 Rociclare: Mis 1,3,145 5 1 0 0 0 MC 10 Rociclare: Mis 1,3,145 5 1 0 0 0 MC 10 Rociclare: Mis 1,2,170 5 2 0 0 0 MC 10 Rociclare: Mis 1,2,170 5 2 0 0 0 MC 10 Rociclare: Mis 1,2,170 5 2 0 0 0 MC 10 Rociclare: Mis 1,2,175 5 3 1 1 MU 10 Rociclare: Mis 1,2,175 5 3 1 1 MU 10 Rociclare: Mis 1,2,175 5 3 1 1 MU 10 Rociclare: Mis 1,2,175 5 3 1 1 MU 10 Rociclare: Mis 1,2,175 5 3 1 1 MU 10 Rociclare: Mis 1,2,175 5 3 1 1 MU 10 Rociclare: Mis 2,2,00 15 112 1 0 0 ML 10 Rociclare: Mis 2,2,00 15 112 1 0 0 ML 10 Rociclare: Mis 2,2,00 15 112 1 0 0 ML 10 Rociclare: Mis 2,2,00 15 112 1 0 0 ML 10 Rociclare: Mis 2,2,00 15 10 0 ML 10 Rociclare: Mis 2,2,00 15 10 0 ML 10 Rociclare: Mis 2,2,00 15 10 0 0 ML 10 Rociclare: Mis 2,2,00 15 10 0 0 ML 10 Rociclare: Mis 2,2,00 10 10 0 0 0 ML 10 Rociclare: Mis 2,2,00 10 10 0 0 0 ML 10 Rociclare: Mis 2,2,00 10 10 0 0 0 ML 10 Rociclare: Mis 1,2,00 10 10 0 0 0 0 ML 10 Rociclare: Mis 2,2,00 10 0 0 0 0 ML 10 Rociclare: Mis 2,2,00 10 0 0 0 0 0 0 10 Rociclare: Mis
2,2,00 10 0 0 0 0 0 10 Rociclare: Mis 2,2,00 10 0 0 0 0 0 10 Rociclare: Mis 2,2,00 10 0 0 0 0 0 10 Rociclare: Mis 2,2,00 10 0 0 0 0 0 10 Rociclare: Mis 2,2,00 0 | Pool: County Year of disc Secondary Tecovery Total | | 188 200 Colored Co | 1368
1369
1370 Riffle: Clay
1371 Rimard: Wayneut
1371 Rinard North: Wayne 1967
1372 Rinard North: Wayne | | 9.95 3.00 4. A. Dev x 50 Bethel: Miss 5.2,000 x 4. A. Dev x 100 Rocklare: Mis L. 2,170 5. 2. 0. 4. A. Dev 326 350 Bethel: Mis L. 2,170 5. 3.4 0. 0. A.C. 3.26 350 Bethel: Mis L. 2,115 8. 1. 0. 0. A.C. 3.27 280 Solutian: Sil L. 2,115 8. 1. 0. 0. A.C. 3.2 2 280 Solutian: Sil L. 2,115 8. 1. 0. A.C. <t< td=""><td>Ritter: Richland 1050 4 Ritter North: Richland 1951 0 4</td></t<> | Ritter: Richland 1050 4 Ritter North: Richland 1951 0 4 | | 320 350 | Koacnes: Jefferson | | Secondary Seco | Roaches North: Jefferson 1944 0 29 x | | 197 8,800 x 50 Pennsylvanian: Pen S 1,410 10 4 0 0 A A A B C 10 Degonia: Mis S 2,065 2 1 0 0 A A A A C 10 Degonia: Mis S 2,085 2 2 0 0 A A A A C 10 Degonia: Mis S 2,200 15 112 0 0 A A A C 10 Degonia: Mis S 2,300 15 20 0 0 A A A C 1,000 Hardinsburg: Mis S 2,550 20 137 0 0 A A A A C 1,000 Hardinsburg: Mis S 2,550 20 137 0 0 A A A A C 1,000 Bethel: Mis S 2,800 12 19 1 4 4 A A A A C 1,000 Bethel: Mis S 2,800 12 19 1 4 4 A A A C 2,330 Aux Vases: Mis S 2,800 12 19 1 4 4 A A A C 2,350 Aux Vases: Mis S 2,800 12 19 1 4 A A A C A C 2,530 Aux Vases: Mis D 1,300 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Rochester: Wabash ⁹⁰ 1948 0 37 0 87 0 87 0 87 0 0 87 0 0 87 0 0 0 0 0 | | x 1400 Cypress; Mis 5 2.700 15 91 4 4 AL | 2,53 | | 22 10 Aux Vases: Mis S 2,935 15 104 | 3399 4400 7 | | ,142 390 | Roland West: Saline | | | 4409 Koundprante—Now included in Johnsonville Consol. 1411 | | 2,633 | 3,468 | 3,133
1,646
1,960 | 2,549
2,600
3,457 | 3,570 | 3,034
3,018
2,968 | 3,128 | 3,460 | 3,168 | 3,126 | 5,655 | |--|---|---|---|--|--|---|--|------------------------------------|--|--| | Mis | Mis | Dev
Mis
Mis | Ord
Ord
Dev | Dev | Mis
Mis
Mis | Mis | Mis | Mis | M18 | St. Peter | | ZZZZZZ
CCCLLL | WK
WC | AL ALL | AA ×AAAA | ₽ 4. | MACAM | MAKE | 44444444 | 999 | CC | AAAA | | 51 | 7 | 1
1
19 | 40
0
134 | 13 | 15
0
12 | 0 | 717 | 0 | | , 181 | | 0000000 | 000 | 0000000 | 0004040 |) | 00000 | 0000 | 10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | K404 | 101 | 18 2
2 0
0 | | 9009000 | 2 0 | 0000000 | 0000000 | 000 | 00000 | ×000 | 45
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2404 | 000 | 8000 | | 56
6
0
0
1
1
1
1
1 | 123 | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 13
53
194
192 | 18
17 | 12
12
0 | 12
23
1 | 862
46
0
460
17
56
56
56
162 | 01
0
2
2 | 5 1 3 | ,764
,599
0
154 | | 10
20
5
3 | 10 8 | 22
22
6
6
15 | 20
17
17
15
16 | 6 | 8
10
25 | 0 94 | 12
12
13
13
8
8
8 | 8 L | 2 2 | 40
x
40 | | 1,780
2,165
2,220
2,350
2,390
2,400 | 2,930
3,325 | 1,560
1,565
1,305
1,300
1,460 | 1,750
2,260
1,840
1,555
1,580
1,860 | | 2,080
2,860
2,685
2,720 | | 2,340
2,340
2,550
2,740
2,900
2,900
2,925 | 2,695
3,020 | 2,985
3,030 | 1,780
x
1,825 | | るののコココ | ИS | SSSSS LL | Lor ores | S | JJJ o | Ls L | or constants | SI | 77 | လလလ | | Waltersburg: Mis
Sypress: Mis ²⁶
Bethel: Mis
Ohara: Mis ²⁶
Rosiclare: Mis
McClosky: Mis | Cypress: Mis
Rosiclare: Mis | McClosky: Mis ²⁵ Rosiclare: Mis Pennsylvanian: Pen Waltersburg: Mis Hardinsburg: Mis Çypress: Mis | Bethel: Mis
Trenton: Ord
Hardin: Mis
Golconda: Mis ⁹⁵
Cypress: Mis
Rosiclare: Mis | Bethel: Mis | Rosiclare: Mis
McClosky: Mis
McClosky: Mis
Aux Vases: Mis²5 | McClosky: Mis
Tar Springs: Mis
Rosiclare: Mis | Tar Springs: Mis
Glen Dean: Mis ²⁵
Cypress: Mis
Berhel: Mis
Aux Vases: Mis
Rosiclare: Mis
McClosky: Mis | t
Cypress: Mis
McClosky: Mis | Rosiclare: Mis
McClosky: Mis | Bethel: Mis
 Renault: Mis ²⁵
 Aux Vases: Mis | | 50
50
10
440
80
80
280 | 40
20
20 | | 220
1,120
20
1,860
1,860
1,860 | 260
240 | 800
800
200
10 | 200
40
20
20
20 | 13,500
700
8,200
340
750
1,600 | 130
90
20 | | 14,400 x x x x | | 0
8
8
8
8
8
8
8
8 | 1001 | 12
310
x
x
x | 2,802
13,743
x | 564
564 | 0
860
1
144
x | ±
×v.v.± | 27, 692
x
x
x
x
x
x
x
x
x | 62
62
0 | 3.5 | 252,419
x
{x
{x
}x | | 000000 | 000 | 000000 | 0008080 | 00 | 139
0
0
0 | 0000 | 415
0
0
335
0
25
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 000 | 000 | 21,906
18,828
508 | | 116
* * * * * * * | 000 | 7 T T T T T T T T T T T T T T T T T T T | x
61
0
406
0
x | 14
14 | 27
0
47
x | x000 | 1,796
x x x x x x x x x x x x x x x x x x x | 000 | 101 | Consol. Consol. $6,595$ x $\begin{cases} x \\ x \end{cases}$ | | 000000 | 000 | | 25
0
0
0
0
0
0 | 00 | 13
0
0
0 | 0000 | 217
0
0
175
0
6
0
0
x
x | 000 | 000 | 225 | | 1947 | onsol.
1949 | Jale Consol.
1937
1955
1941 | 1942
1955
1938 | 1941 | 1941
1949
1949 | 1948 | 1938 | 1944 | 1948 | in Sallor Sp
in Sallor Sp
1938 | | | 1424 Kural Hill—Now included in Dale Consol.
1425 Rural Hill North: Hamilton ¹⁰⁴ 1949
1427 |
1428 Kursell Hill West—Now included in Dale Consol 1429 Russellville Gas: Lawrence 1955 1430 Russellville West: Lawrence 1941 1431 St. Francisville East: Lawrence 1941 1433 1944 | 1436
1437 St. Jacob: Madison
1438 St. James: Fayette
1440
1441 | 1443
1444 St. Paul: Fayette
1445 | 4446
1447 Ste. Marie: Jasper
1448 Ste. Marie East: Jasper ¹⁰³
1449 Ste. Marie West: Jasper
1450 | | 1455 Sailor Springs Consol.: Clay. 1456 1457 1457 1459 1460 1461 | Sailor Springs East: (| 68 Sailor Springs North: Clay ¹⁰³ 69 77 77 77 77 77 77 77 77 77 77 77 77 77 | 1411 Sailor Springs Soutun-Now included in Sailor Sp. 1472 Sailor Springs West—Now included in Sailor Sp. 1473 Salem Consol.: Marion, Jefferson 1938 4474 1476 | | 1416
1417
1418
1419
1420
1421
1422 | 4444 | 4444444 | 4444444 | 444 | 44444 | 4444 | 4 444444444 | 4444 | 444 | 44444 | | | 3,303
3,220
3,248
3,425 | 1,560
2,512
3,130
3,150
3,109
4,688 | | 4,078 | 2,837 | 2,830 | 3,091 | 3,119 | 2,680 | 2,706 | 3,247 | |--|---|---|---|---|--|---|---|--|--|--|---| | | Mis
Mis
Mis
Mis | Mis
Dev
Mis
Mis
Mis
Dev | | Ord | Mis | Mis | Mis | Mis | Ord | Ord
Mis | Mis | | বৰবৰৰৰ | 44×××× | AACCOPA
WAYCO | OCCUPATION APPROVED | AL
AL | ZZZZZZ | *** | MF
MF | A × | 44 | A×A | AL | | | 0504 | 1
0
0
0
0
0
0
0
0 | | | w | 2 | 8 | 3 1 | 38 | 00 | 15 | | 10000000 | 011110 | 00000000 | 00000 | 0000 | 000000 | 0000 | 000 | 0 0 | 00 | 010 | -0 | | 0600000 | 000000 | 000000-0 | 00000 | 0000 | -00000 | -000 | 000 | 3 | 24 | 23
1
0 | 1 2 | | 135
588
588
0
0
541 | 735
16
10
3
3 | 211411882 | 10
10
22
23
27 | 28
12
11
15 | 4001010 | 76 | 464 | 3 6 | 44 | 43
1 | 22
16 | | 3
17
17
17
40
50 | V 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0401
04448 | 10
10
10
x | 7
13
13 | 28
112
14
10 | 10
× × | 20
6 | 15 | 12 | i∞×∞ | 12 | | 2,075
2,100
2,050
2,100
2,100
3,440
4,500 | 2,420
2,900
3,190
3,260
3,275 | | 2,453
2,690
2,700
2,810
4,360 | 1,280
1,420
4,020 | 1,720
1,900
1,960
2,375
2,650 | 1,855 | 2,750
3,045 | 1,860 | 009 | 1,875
1,880
880 | 2,970 | | $r_{\rm S}^{\rm T}$ | LL Lss | rrrQssr | これていい | Lss | လလလလလ | တတ္ | s S | s 1 | ď | SLS | S | | Ohara: Mis Rosiclare: Mis Roclosky: Mis St. Louis: Mis* Salem: Mis* Salem: Devonian: Dev | l Avaltersburg: Mis Paint Creek-Bethel: Mis Ohara: Mis Ohara: Mis Rosiclare: Mis** | : :: :: :: : : : : : : : : : : : : : : | Cypress: Mis
Renault: Mis
Aux Vases: Mis
Rosiclare: Mis
McClosky: Mis
Clear Creek: Dev | Cypress: Mis
Bethel: Mis
Trenton: Ord | Palestine: Mis ³⁵ Waltersburg: Mis ²⁵ Tar Springs: Mis Cypress: Mis ²⁵ Aux Vases: Mis | Waltersburg: Mis
Bethel: Mis | | Aux Vases: Mis
Silurian: Sil | Pennsylvanian: Pen | 5 | 270
170 Aux Vases: Mis | | | | 450 MRMMCCC
450 MRMMCCCC
450 MRMMCCCC | | 340
160 Cy
10 Be
240 Tr | | | 50 At 20 M | | | 520 Eig
20 Dei
10 Cy | 70
70 Au | | x x x x x x x x x x x x x x x x 2,860 2,160 | 7,4 | - 4 | 10 A | ю́ | | | | | Ϋ́ | 70 | 17 | | ***** | 1
220
3
130
x | 25
24
241
.5
.5
.08
986 | ***** | 504
x
x | 11
×××××5. | 11 × 1 C | 34
34
6 | 28 | 639 | **00 | 655
x | | 0
67
2,116
0
387
0 | 00000 | 00000000 | 00000 | 0000 | 00000 | 0000 | 000 | 0 0 | 00 | 000 | onsol.
345
x | | ***** | 13
0
7
7 x x | ×10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | **** | 26
x x | 11
××××0 | 400+ | 116
0 | 1
16 | 419 | 4 × 0 0 | r Springs Consol.
60 34
x | | 0
683
0
0
64
0 | 070000 | 00000000 | 00000 | 0000 | 00000 | 0000 | 000 | 0 0 | sol.
0 | 000 | Sailor Sp
72
x | | | 1942
1945
1955
1951 | 1946
1944
1938
1954
1951
1942 | | 1945 | 1945 | 1952 | 1948 | 1946
Shelbyville
1956 | le Consol.
asonville Cons
1938 | 1956
1949 | tgay Consol.
ity Consol. &
1946 | | 87
11
32 | 4 Samsville: Edwards ¹⁰⁹ 6 Samsville North: Edwards
7 Samsville Northwest: Edwards ¹⁰
8 Samsville West: Edwards ¹⁰ | 2 Sandoval West: Clinton 3 Santa Fe: Clinton 4 Schnell: Richland 5 Schnell Bast: Richland 6 Schnell Bouth: Clay 7 Semirary: Richland 7 Sesser: Franklin | 1499
5500
1501
1502
1503
1504 | S Shattuc: Clinton 7 8 | 1510 Shawneetown: Gallatin ¹¹³
1511
1512
1513
1514
1514 | 6
7 Shawneetown Bast: Gallatin
8
9 | 0
1 Shawneetown North: Gallatin ¹¹⁴
2
3 | 4 Shelbyville Consolidated: Shelby 1946
5 Shelbyville East—Now included in Shelbyville
6 Sicily: Christian | 7 Sims—Now included in Johnsonville Consol.
8 Sims North—Now included in Johnsonville Cor
9 Sorento Consolidated: Bond ¹¹⁵ 1938 | 2 Sorento West: Bond ¹¹⁶ 1956
3 Sparta South: Randolph ¹¹⁷ 1949 | 4 Springerton—Now included in Duni
5 Stanford—Now included in Clay Ci
6 Stanford South: Clay
7 | | 1477
1478
1479
1480
1481
1483 | 1484
1485
1486
1487
1488
1489
1489 | 1492
1493
1494
1494
1495
1497
1497 | 1500
1500
1501
1502
1503
1504 | 1505
1506
1507
1508 | 151
151
151
151
151
151 | 151 | 152 | 152
152
152 | 152
152
152 | 153
153
153 | 153
153
153
153 | | | 2,371
535
2,138 | 3,267 | 3, 401
3, 144
2, 455
2, 365
3, 379 | 3,305 | 3,425
3,430 | 3,336 | 1,630
1,600
3,227
3,660 | 3,455
3,371
3,365
3,093 | 2,965 | |------------------|--
--|---|--|---|------------------------------|--|---|---| | | | | | | | | | | | | | Ord
Pen
Mis | Mis | Mis
Mis
Dev
Mis
Mis | Mis | Mis
Mis | Mis | Mis
Mis
Mis
Mis | Mis
Mis
Mis
Ord | Mis
Mis | | $^{\mathrm{AC}}$ | A x A | $\begin{array}{c} A \\ A \\ A \\ C \\$ | $\begin{array}{c} {\rm AC} \\ {\rm MC} \\ {\rm AF} \\ {\rm Aff} \\ {\rm Aff} \end{array}$ | AL
AC
AC
AC
AC | NL
Af
Af | NL | AL
AC
AC
AC | AL AL RE | MKKKK
CCCC
C | | | 111 | 160 | 22
0
0
0
0
0 | 27 | 10 8 | 1 | 11
1
2
2
55 | 0
8
50
24 | 4 4 | | 1 | 000 | 4001100110 | 0-0-0000 | 000000 | 00000 | 0 | 00000000 | 000000 | 440000 | | 1 | 0 1 1 | 700010000 | -00000000 | 000000 | 00000 | 0 | 040400- | -011010 | 000000 | | 9 | 1 2 2 7 | 222
1 196
1 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 327
11
11
12
13
13
14 | 10
10
10
10
10
10 | 01000 | | 14
63
10
00
11 | 19
72
71
71
74 | R84- | | 3 | 111
10
9 | 7
10
10
10
10
10
5 | 8 4 4 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 115
12
12
14
15 | 3 8 15 | Ŋ | 13
4 4 4
15
10 | 10
8
10
20
60 | 41
0
8 x | | 3,090 | 515
505
1,945 | 1,990
2,035
2,230
2,340
2,700
2,810
2,900
3,055 | 3,025
3,010
985
2,260
2,575
2,655
2,860 | 2,795
3,020
3,115
3,140
3,140 | 3,185
2,580
3,025 | 3,165 | 1,120
1,100
3,055
3,360
3,435
3,500 | 3,120
3,150
2,750
3,100
2,160 | 2,510
2,815
2,840
2,765 | | Ц | လလလ | Lossossos | sss rsr | CLLSS | တ လလ | S | LLSS LSS | Tss ssT | s OF | | 0 McClosky: Mis | 10 Pennsylvanian: Pen
10 Pennsylvanian: Pen
70 Aux Vases: Mis | 0 Degonia: Mis 0 Clore: Mis²a 0 Waltersburg: Mis 1 Ar Springs: Mis 0 Cypress: Mis 0 Bethel: Mis Aux Vases: Mis | 00 Ste. Genevieve: Mis
20 McClosky: Mis
10 Cypress: Mis
20 McClosky: Mis
20 Tar Springs: Mis
80 Tar Springs: Mis
40 Cypress: Mis | 1
000
20 Cypress: Mis
00 Aux Vases: Mis
20 Ohara: Mis
40 Roxiclare: Mis
40 McClosky: Mis | 120 Aux Vases: Mis
120
120 Tar Springs: Mis
10 Bethel: Mis ²⁵ | 10 Aux Vases: Mis | 50 Cypress: Mis
10 Cypress: Mis
60 Ohara: Mis
10 Cypress: Mis
60 Aux Vases: Mis
x Ohara: Mis ²⁵
x Ohara: Mis ²⁶ | 0 McClosky: Mis
0 Aux Vases: Mis
0 Cypress: Mis
0 Aux Vases: Mis
0 Silurian: Sil | 90 Cypress: Mis
20 Rosiclare: Mis
60 McClosky: Mis
10 Aux Vases: Mis | | 110 | 711 | 3,360
30
10
2,130
80
90
100
120 | 800
20
10
40
120
80
80
40
40 | 400
20
200
120
200
40 | 12
12
12
1 | 7 | 150
10
60
680
10
660
x | 240
90
560
20
560
500 | 0176219 | | × | 1
.5
161 | 7,974
x
x
x
x
x
x
x
x
x | 1,376
2
0
16
160
x
x | 551
× × × × × | 204
146
x | 13 | 185
39
2,605
x
x | 285
249
1,599
x
x
1,808 | 210
0
13
197
27
13 | | × | 000 | 00000000 | 44
0 0 0 0 0 0 | 00000 | 0000 | 0 | 0000000 | 45
35
35
0
0
0 | 00000 | | × | ည်လုံ့ဝ | 194
× × × × × × × × × × | 47
0
0
0
18
x
x | 81
××××× | 86
111
x | 2 | 18
x
123
3
x
x | 0
27
22
0
0
22
22 | 4
0
1
1
4 | | 1 | Consol. | Josuo; | 17
0
0
0
0
0
0
0
0 | 00000 | 0000 | 0 | 0000000 | 33
16
10
0 | 00000 | | | ulor Springs
1952
1954
1939 | n Roland Co
1939 | 1941
1948
1955
1944
1945 | 1951 | 1952
1948 | 1952 | Main Consol
1942
1956
1949
1944 | 1940
1949
1944 | | | | 99 Stanford West—Now included in Sailor Springs 1952 11 Staumton: Macoupin 1954 12 Stewardson: Shelby 1939 | 13. Stokes-Brownsville—Now included in
14. Storms Consolidated: Whites
16. The storms Consolidated: Whites
18. Storms Consolidated: Whites
19. Storms Consolidated in Properties (19. Storms 19. Storm | 33 54 Stringtown: Richland 55 Stringtown Bart: Richland ¹¹⁸ 56 Stubblefield South: Bond ¹¹⁹ 57 Sunner: Lawrence 58 Sumpter: White 50 | 552
Sumpter Bast: White
55
56
66
67 | Sumpter North: White Sumpter South: White White | 74
75 Sumpter West: White | 1576 Swearingen Gass—Now included in Main Consol 1577 Tamaroa. Perry ⁵ 1578 Tamaroa. Perry ⁵ 1579 Taylor Hill: Franklin 1949 1580 Thackeray: Hamilton 1944 1581 1582 1583 1583 1583 1583 1583 1583 | 588
586 Thompsonville: Franklin ¹⁹⁰
587 Thompsonville Bast: Franklin
589 Thompsonville North: Franklin
589 Thilden: Randolph | 592 Toliver—Now included in Hord South
593 Toliver East: Clay
594
595
595
596
597 Toliver South: Clay | | 153 | 154
154
154
154 | 1543
1544
1544
1546
1546
1547
1548
1550
1550 | 1555
1555
1555
1555
1555
1555
1555
155 | 1562
1563
1564
1564
1565
1566
1566 | 157
157
157
157 | 157 | 152521552155215521552155 | 155 | 155 | | $\overline{}$ | |---------------| | g | | $\overline{}$ | | | | n | | - | | O | | п | | \sim | | ٠~ | | \cup | | | | | | 2.— | | 12(| | | | | | | | | | | | | | | - | | | - | | | | |---|-------------------------------------|-----------|-------------------|--------------|------------------|--------------------------------------|---|------------|---|--------------------------|----------------------------------|-----------------|--------------------------------------|-------------------------|-------------------|------------------------|-------------------------| | | ٨ | Oil | Oil production (M | on (M bbls.) | ls.) | | Producing formation | formati | uc | | N | Number of wells | f wells | | De | Deepest zone
tested | ne | | | 19700 | During | During 1956 | To end | To end of 1956 | pa
(| | | | | | П | 1956 | | | - | | | Fool: County | Year of dis | Secondary | IstoT | Secondary | IstoT | Total proves | Name: Agea | Characterb | Depth to
top (ft.) | Av. thick-
ness (ft.) | Completed
end of 1956 | Com-
pleted | -nsdA
benob
-onborq
bne gni | of year | Structure o | Name | Depth of
hole (ft.) | | Tonti: Marion | 1938 | 0 26 | 14 | 0.0 | 10.744 | 670 | McClosky: Mis | L | 2,875 | 10 | 6.70 | 80 | 00 | M 07 | 0 | | 000 | | |)
)
)
) | 20000 | 1 X X X X I | 0000 | |)

 | Bethel: Mis
Aux Vases:
Rosiclare: I
McClosky: | s STO | 1,930
2,005
2,125
2,130 | 20
30
112
115 | 73
10
10
10
10
10 | 00000 | 00000 | 2
2
2 | | ব | 4,900 | | Tovey: Christian | 1955 | 000 | х 41 i | 0 00 | , o | 20 8 | Levonian: Dev
1
Silurian: Sil | 1 1 | 2 1 | 10 | 791 | 000 | 000 | 4 | z Sil | - | 1,881 | | oull: w nive | 1944 | 00000 | C | 000000 | 769 | 460
140
110
40
60
220 |
Cypress: Mis
Aux Vases: Mis
Ohara: Mis ²⁶
Rosiclare: Mis
McClosky: Mis | RVLTS | 2,845
3,170
3,230
3,270
3,290 | 10
15
6
5 | 34
13
8
0
1
0 | 000000 | 000000 | 23
AAC
ACC
ACC | | w | , 462 | | Trumbull West: White ¹²¹
Valier: Franklin | 1953
1942 | 00 | 100 | 00 | 4.2 | 10
20 | Aux Vases:
McClosky: | ΩЦ | 3,120 | 12 | ≈ | 000 | 010 | 0 MŁ | | 8.0 | ,330 | | Waggoner: Montgomery Wakefield: Jasper ¹² WWakefield North: Jasper | 1940
1946
1953 | 0000 | X010 | 000 | 11
2
19 | 4468
6408 | | N T T | 3,100 | 10
5
6 | 421 | 000 | | 001 | x Dev
x Mis | 1466 | 1,893
3,207
3,204 | | neld South: Jasper
de: Hamilton | 1941 | >0C | 0
157
x | >00 | 5,803 | 1,740 | McClosky: Tar Springe: | ٦ v | | 4 <u>1</u> | 98 | 000 | 0 | | Mis | 60 | 3,390 | | Wolcolo Couth. Homilton | 100 | 000 | < × → ∨ | 000 | | 1,640 | Aux Vases: N
Rosiclare: M | S C L | 3,070 | 20
7 | 91 | 000 | 100 | | | | | | Warpole South: Hamilton
Waltonville: Jefferson
Wamac East: Marion | 1943
1943
1952 | 000 | 0 67 85 | 000 | 107
103
19 | 02 4 4
0 4 4 | Aux Vases: Mis
Bethel: Mis
Wilson: Pen | w w w | | 0 0 T | O 4 5 | 000 | 000 | 900
442 | Wis.
Wis.
T | w 61 c | 3,362 | | Waverly: Morgan ⁵
Weaver: Clark | 1946 | 00 | 113 | 00 | 1 306 | 202 | Devoniar | Ή | 1,020 | 10 | 30 17 4 | 000 | 000 | | | 7110 | 534 | | | , | 00 | ** | 00 | * * * | 20
80
80 | Cole: Mis
Devonian: Dev | 니니 | $\frac{1,565}{2,030}$ | 10 | 37 | 000 | 000 | | | 4 | , 133 | | West End—Now included in Dale Consol.
West Frankfort: Franklin 19 | Jale Consol.
1941 | 0 | 250 | 00 | 3,032 | 1,150 | č | C | | | 81 | 11 | ₩, | 73 A | Mis | 8 | 3,156 | | | | 000 | * * * | 000 | * * * | 200
480 | Aux Vases:
Ohara: Mi | n w H | 2,000
2,710
2,760 | 20
8
8 | 114.7 | 780 | -00 | AC AC | , <u>,,,,</u> | | | | | | 00 | ×× | 00 | ×× | 60
280 | | 디디 | | 8
14 | 00 | 00 | 000 | ΑĞ | 000 | | | | Frankfort South—Now in | ncluded in West
in Clay City Cor | Frankfor | +2 | | | | 1 | | | | 13 | - | 0 | | | | | | Westfield East: Clark 0
Westfield North: Coles 1949 0 | 1947 | 00 | | 00 | × 4 | 110 | Pennsylvanian: Pen | ß | 400 | 11 | 13 | 00 | 70 | 3 ML | L Pen | | 678 | | | | 00 | 00 | 00 | 4.0 | 100 | Pleasantview: Pen
Pennsylvanian: Pen | တလ | 275
490 | 10 | 1 | 000 | 000 | | | | 110 | | 3,130 | 4,810 | 4,578 | 3,281 | 3,279 | 5,101 | 4,698 | 3,059 | 3,116 | | | |---|--|--|--|---|---|---|---|---|--|----------------------------------| | Mis | Dev
Mis | Dev | Mis | Ord | Ord | Dev
Mis | Mis
Mis | Mis | | | | PACCAPA PAP | AACC AACC AACC AACC AACC | AL
AL
AC | A | APL
APL
ACC
ACC | APAPLAP. | APPA | NNN | $_{ m WC}^{ m WM}$ | 1 | _ | | 31 | 10 | 38 | ∞ | 106 | 120 | 11 | 13 | r. | 22,191 | 31,277 | | | 0000000 | 0011150 | 0 | 000000 | 0000000 | 00440 | 0000 | 0000 | 462 2 | 861 | | 40107000 | 0000000 | 00000 | 0 | 14
0
1
1
1
1
1
1 | 0000000 | 0000 | 00000 | 0000 | 1,412 | 1,694 | | 35
6
10
10
11
11
11
11
11 | 7011
1011
1011
1011 | 41
11
27
3 | 18 | 120
20
34
1
47
16 | 190
0
172
0
4 | 1124 | 13221 | 4 1 1 0 2 2 2 2 | 28,729 1 | 50,905 1 | | 10
10
10
10
9
9 | 10
15
5
4
6 | 10
x | 9 | 10
10
12
12 | 10
10
15
33 | 13 | 0 4 | 7 | 78 | 2(| | 2,310
2,535
2,735
2,835
2,835
3,080 | 2,580
2,615
2,680
2,800
2,780
2,900 | 2,490
2,550
x | 2,645 | 865
1,020
1,025
2,275
3,170 | 1,800
1,960
1,975
2,205 | 3,690
2,785
2,500 | 2,710
2,970
3,080
3,140 | 2,920
2,985 | | | | ろろろしてして | s solly | Lss | H | Lossos | r
F
S
S
S
S
S
S
S | യയ യയ | טר די | 11 | | | | Hardinsburg: Mis
Cypress: Mis
Aux Vases: Mis
Ohara: Mis
McClosky: Mis
St. Louis: Mis | Cypress: Mis Bethel: Mis Aux Vases: Mis Rosiclare: Mis ²⁶ McClosky: Mis ²⁶ | 1
Bethel: Mis
Aux Vases: Mis
McClosky: Mis ²⁵ | 320 McClosky: Mis | Cypress: Mis Bethel: Mis Aux Vases: Mis Lingle: Dev Trenton: Ord | H 99 9 V | Lingle: Dev Aux Vases: Mis Cypress: Mis | ti eti | 1
Ohara: Mis ²⁵
McClosky: Mis
1 | | the management and | | 550
80
40
70 C
220 O
40 N
40 N
40 N | 100 C
250
10 B
150 A
100 O
20 R
40 N | 400
170 E
280 A
20 N | 320 N | ,540
320 C
320 E
40 A
870 I
340 T | | 10 A
10 A
160
150 C | | 280
40 C
280 N | ,780 | ,315 | | 780
x x x x x x x x x x x x x x x x x x x | 295
201
x
x
x x | 675
× × × | 230 | 2,455 1
x x x x x x x x x x x x x x x x x x x | 14,252 1 x x x x x x x x | 32
374
x | 24
741
x | 736
x
x | 71,639 117,859 1,376,940 375,780 | 82,314 148,808 1,918,890 539,315 | | 0000000 | 000000 | 0000 | 2 | 11
0
0
0
0 | 000000 | 0000 | 0000 | 000 | 7,859 | 8,808 1 | | 127
× × × × × × × × × × × × × × × × × × × | 22
6
8
8
8
8
8
8 | 112
* * * * | 9 | 614
x
x
x
x | 85
8 | хт. 2 х | ×-4×× | 0 K K | 71,639 11 | 82,314 148 | | 0000000 | 000000 | 0000 | y Consol. | y Consol.
0
0
0
0
0 | ol.
0
0
0
0
0
0 | 0000 | 2000 | 000 | 24,045 | 30,722 | | 1939 | 1950
1943 | 1948
Williams Con | in Clay City
1946 | in Clay City
1940 | 7oburn Cons
1940 | 1941
1951 | 1948
1951 | 1949 | | | | 1646 Whittington: Franklin
1647
11648
1650
11650
11651
11651
11651
11652 | 1054 Whitington South: Franklin
1656 Whitington West: Franklin
1657 1658
1659 1659 1660 1660 1660 1660 1660 1660 1660 166 | 1002 1063 Williams Consolidated: Jefferson 1064 1065 1066 1066 Williams Court, Now included in W | 1669 Willow Hill Consol.—Now included in Clay City C
1670 Willow Hill East: Jasper 1946 | 1671 Willow Hill North: Now included 1672 Woburn Consolidated: Bond 1674 1674 1676 1676 1677 1677 1677 1677 | 1679 Woburn South—Now included in Woburn Consol
1680 Woodlawn: Jefferson
1681
1682
1683
1684
1685
1686
1686 | 1687
1688 Xenia: Clay
1689 Xenia East: Clay | 1091
1692 Zenith: Wayne ¹²⁴
1693 Zenith North: Wayne
1694 | 1696
1697 Zenith South: Wayne
1698
17690
1700 | 1701 Total of fields discovered after
January 1, 1937 | 1702 Total for Illinois | Table 13.—Gas Production in Illinois, 1956 |]e | pth of
e (ft.) | lod | 4,654 | ,582
,044
603 | 2,373
1,390
2,226
2,070
3,130
2,371 | | ,185 | 3,813
1,970 | ,340 | | 4,217 | 428
, 606 | 3 102 | , 102 | 3,238
813
2,000 | ,094 | 3,107
2,789
3,394 | |-----------------------------------|------------------------------|-----------|--|---|---|-------------------------------------|---|--|--|--|---|--|--|--|---|--------------------------------------|---| | Deepest zone
tested | | | | | | | | | | | | | " | י | m 610 | 7 | 6 4 m | | Deep | Name | | St. Peter | Trenton
Ord
Pen | Dev
Ord
Pre-Cam
Trenton
Trenton
Ord | | Dev
Dev | Trenton
Trenton | M1S
Dev | | Ord
St. Pe | Pen
Mis | Mis | SIMI | Mis
Ord | Ora | Mis
Mis
Mis | | | ncture | 118 | MEL | PAPE | ADDALA | | MF
A | د
کر × ک | YA. | 444 | AL | $_{ m A}^{ m A}$ | AL
AL | AL
AL | Y × × | Z Z Z | A× A | | | year
end
oduc- | gui | × | | 00000 | × | | 000 | | | 000 | 3.0 | - | > | 000 | | ×07 | | of wells | an-
ned 1956 | top | 000 | 0000 | 000000 | 0 | 000 | 000 | 00 | 000 | 000 | 000 | 000 | 000 | 0000 | 000 | 000 | | Number of wells | -m
bət | ьје
Со | 110 | 0000 | 00000 | 1 | 000 | 1000 | 110 | 4040 | 000 | 150 | 0- | -00+ | 40
1 | 000 | ×00 | | z | ot beted to | eno
Co | ××- | 20
21
4 | 45
68
7
18
18 | 210 | #40 | 444 | 15 | ν-Π 4· | 10
2 | T 4 F | 71- | -00 | 11441 | 10+ | 1 x 1 19 | | | . thick- | уА
зэп | × 04 | 0 8 5 x |
10
10
7
7 | l | 20 | 10 | S | 10
8
12 | 10 | 111 | 20
17 | 30 20 | 40
5
30 | ×c | 0 × 6 | | ď | ot fit.) | tor
De | 1,000 | 1,425
780
940
540 | 925
330
265
305
850
460 | | 1,490 | 2,630 | 3,200 | 1,600 $1,800$ $1,765$ | 1,220 | 380
1,920 | $\frac{2,055}{2,225}$ | $\frac{1,900}{2,135}$ | $1,090\\450\\380$ | 400 | 3,0
x
2,085 | | mation | aracter | СР | လလ | ഗഗഗഗ | s
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S | | တတ္ပ | იეთ⊦ | ٦ : | လလလ | တတ | യ യ | လလ | တလ | STS | ω _F | o× t | | Producing formation | Name: Age | | 7 | Cypress:
Cypress:
Bethel: N | Lindley (1st
Gas: Pen,
Niagaran:
Unnamed:
Cypress: N | 5. | O Cypress: Mis | ⁴ 다 ;; . | Rosiclare: | 0 Cypress: Mis
0 Aux Vases: Mis
0 Rosiclare: Mis | S G | Gas: Pen
Palestine: Mi | 80 Waltersburg: Mis
40 Tar Springs: Mis | 40 Palestine: Mis
40 Tar Springs: Mis | 60 Gas: Pen
00 Edgewood: Sil
40 Cypress: Mis | 400
360 Gas: Pen
40 Selem: Mis | | | | Proved
area
(acres) | | | 320
370
325
80 | 46,00,44 | 12,335 | 16 | 32, | 72 | 50 | 4 | | | | 160
6,000
40 | 36 | 160
1,080 | | fuction
cu. ft. | To end
of 1956 | | x x 0 | x
298.7 | 990.0
x
x
14.4
x
1,050.0 | 2,506.5 | 000 | 000 | 00 | 000 | 00 | 0
8 635.8
x | KOC | 000 | | | 76.9
93.2
× | | Gas production
Million cu. ft. | During
1956 | |
 x x 0 | x000 | 000000 | × | 000 | 000 | 00 | 000 | 00 | 0
635.4
× | ×0° | 000 | 000 | K K I | 76.9
0
81.1 | | | Year
of
dis-
covery | | 1906 | | 1910
1910
1886
1915
1888
1916 | | 1940 | 1950
1941
1941 | 1950
1941 | | 1939
1948 | 1953
1941 | 7 | 1933 | 1941
1955
1956 | 1945 | 1954
1952
1939 | | | Pool: County | | Main Consolidated: Crawford ⁶ | Ava-Campbell Hill: Jackson ^{6, 9}
Ayers (Gas): Bondi ¹³
Gillesnie-Benld (Gas): Macounin ¹⁴ | Greenville (Gas): Bondis Jaksonville (Gas): Morgan ⁶ 16 Pittsfield (Gas): Pikel ⁸ Spanish Needle Creek (Gas): Macoupin ¹⁹ Staunton (Gas): Macoupin ¹¹ | Total of fields discovered prior to | January 1, 1937" Albion Consol.: Edwards, White ⁸ Beaver Creek South: Clinton, Bond ⁶ | Beckemeyer Gas: Cinton ^o
Boulder: Clinton ^o
Carlinville North: Macoupin ^{6, 38} | Claremont: Richland ⁴³ Cooks Mills Consol.: Coles, Douglas ⁶ | | Dubois Consol.: Washington ⁶
Dudley: Edgar ⁶ | Dudley West Gas: Edgar
Eldorado Consol.: Saline | | Eldorado East: Saline | Bpworth Consol.: Whitef
Fishhook: Pike, Adams
Freeburg South: St. Clair | Grandview: Edgar ⁶ | Harco: Saline ⁸
Harrisburg: Saline ⁸
Herald Consol.: White, Gallatin ^{6, 63} | | | Line
No. | | 428 | | 8
9
11
12
13 | 14 | | | | | 25
26
27 | 28
30
30 | 32 | 35 | 36
38
39 | 41 | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | 815
815
845
4, 680 | 905
2,941
2,016 | 1,513
450
5,225
3,133 | 3, 267
1, 630
2, 070
678 | | |---|---|---|--|--| | eter . | | 2,1, | ,,,,, | | | Mis
Mis
Mis
St. Pe | Pen
Mis
Dev | Mis
Dev
Dev | Mis
Mis
Ord
Pen | | | AAL | | × × AF | O AL
O AL
O ML | 12
12 | | 000000000 | 00000 | 00000 | 000000 | 0 1 | | 000000000 | 00000 | -00000 | 000000 | 60 | | oεε4∞=14ε0 | v (1 (1) + (v) | 60
118
180
180 | 1 1 2 2 | 245 (| | 255
10
10
10
112
20
10
12 | 2
6
15
30
12 | 15
19
15
15 | 113
113
110
111 | 25. | | | | | | | | -444 | | 2 = | 2,230
1,120
1,000
1,000
400 | | | യയയയയയ യാ | | യയ യയ | യെ യിയ | | | Pen
II. Pen
Mis
Mis
II. Pen
II. Pen | wis
Mis
Pen | : Pen
: Pen
Mis
Mis | Mis
Pen
V Pen | | | | l ar Springs: Mis Pottsville: Pen Tar Springs: Mis Pennsylvanian: P Bethel: Mis | Pennsylvanian: Pennsylvanian: Waltersburg: Mi Bridgeport: Pen Buchanan: Pen | Waltersburg: Mis
Cypress: Mis
Pennsylvanian: Pe
Devonian: Dev
Pennsylvanian: Pe | | | Anvil Rock: F Pennsylvanian: Waltersburg: Tar Springs: I Pennsylvanian: Pennsylvanian: Pennsylvanian: Pennsylvanian: Pennsylvanian: | lar Springs: Pottsville: Per Tar Springs: Pennsylvanian: Bethel: Mis | Pennsylvanis
Pennsylvanis
Waltersburg:
Bridgeport:
Buchanan: | Waltersbur
Cypress:
Pennsylvar
Devonian:
Pennsylvar | | | 360 Ar
120 Wi
120 Wi
480 Ta
40 Pe
40 Pe
1,760 | | 280 Pe
40 Pe
160 W
× × Br
× Br | 280 W
320 C;
860
160 Pe
700 D;
40 Pe | 460 | | ÷. | -i | , | | 16,460 | | 4 | | 00
00
1. × × | 000000 | 5.9 | | x x x x x x 0 0 0 0 x x x x x x x x x x | | 7,08 | | 9,115.9 | | 52.7
0 0
28.4
0 0 | 00000 | 090000 | 000000 | 793.9 | | | | | | | | 1941
1951
1950
1937 | 1942
1940
1940 | 1953
1955
1940
1937 | 1937
1942
1946
1947 | | | | | | | | | | | | | | | ne
me | ery6 | allatin'
e ⁶ | | ifter | | rké
adison
Madiso
Anghe | mery ⁶
ıntgom | gar
hite, G
awrenc | nite ⁶
rk ⁶ | vered a | | ur, Clau
st: M
nth: N | lontgor
atin ⁶
1d, Mo | organ ^e
h: Ed
l.: W]
as: Le | L: Wl
srry ⁶
organ ⁶
:: Cla | s disco [°]
1937
ois | | Edge
on Ease
Faye | ve: M
Gall
: Bor | i: Mc
North
Consol | Consol a: Pe y: Mc d East | r fields
try 1, 1
r Illino | | inclose: Bdgar, Clarke
Civingston Bast: Madison
Livingston South: Madisone
Louden: Fayette, Effingham ^e | Mt. Olive: Montgomery ⁶
Jmaha: Gallatin ⁶
Panama: Bond, Montgomery ⁶ | Prentice: Morgan ⁶
Redmon North: Edgar
Roland Consol.: White, Gallatin ⁶
Russellville Gas: Lawrence ⁶ | Storms Consol.: White [§] Tamaroa: Perry [§] Waverly: Morgan [§] Westfield Bast: Clark [§] | Total for fields discovered after
January 1, 1937
Total for Illinois | | 552 LL | | | | 73 T | ## PART II ## WATERFLOOD OPERATIONS #### ABSTRACT During 1956, waterflooding produced approximately 31,300,000 barrels of oil in Illinois. There were 333 waterfloods reported in operation, and these projects recovered 29,600,000 barrels of oil. An additional 1,700,000 barrels are estimated to have been produced by "dump" flooding. At the end of 1956, the cumulative waterflood recovery was 133,200,000 barrels. Tables of statistics are included. ### INTRODUCTION This report is the result of a joint effort by the Illinois State Geological Survey and the Illinois Secondary Recovery and Pressure Maintenance Study Committee of the Interstate Oil Compact Commission. The following persons were appointed to the Study Committee by Governor William G. Stratton to assist in the compilation of data on the waterflood and pressure maintenance projects that were in operation in Illinois during 1956. A. H. Bell, Chairman, Illinois State Geological Survey, Urbana, Illinois Paul A. Witherspoon, previous Chairman, University of California, Berkeley, Calif. R. N. Ayars, The Ohio Oil Co., Terre Haute, Ind. Hugh S. Barger, Barger Engineering, Evansville, Indiana C. E. Brehm,Box 368,Mt. Vernon, Illinois R. G. Brown, The Texas Co., Salem, Illinois Robert Bulla, Calvan American, Inc., Robinson, Illinois W. H. Davison, Tekoil Corp., Robinson, Illinois James T. Dorland, Calvert Drilling Co., Olney, Illinois R. E. Dunn, Walter Duncan Oil Properties, Mt. Vernon, Illinois T. W. George, George & Wrather, Mt. Carmel, Illinois T. F. Lawry, Mahutska Oil Co., Robinson, Illinois R. W. Love, The Texas Co., Salem, Illinois E. A. Milz, Shell Oil Co., Centralia, Illinois Fred A. Noah, The Noah Petroleum Co., Albion, Illinois Paul Phillippi, Forest Oil Corp., Casey, Illinois Mark Plummer, The Pure Oil Co., Olney, Illinois J. D. Simmons, Carter Oil Co., Mattoon, Illinois C. E. Skiles, Skiles Oil Corp., Mt. Carmel, Illinois W. G. Sole, Magnolia Petroleum Co., Salem, Illinois Harry F. Swannack, Gulf Oil Corp., Evansville, Indiana Carl R. Temple, Sohio Petroleum Co., Centralia. Illinois R. R. Vincent, C. L. McMahon, Inc., Evansville, Indiana R. A. Wilson, Tide Water Associated Oil Co., Robinson, Illinois In order to collect information on water injection and pressure maintenance projects, the Study Committee met in Robinson, Illinois, and set up a questionnaire on January 13, 1955. The Geological Survey sent this questionnaire to all waterflood op- Fig. 25. — Annual crude oil production in Illinois. erators in Illinois and compiled the data returned. This report supplements seven previous summaries of waterflood operations listed below. - (1) "Summary of Water Flooding Operations in Illinois, 1950," which reported operations during 1949. Published by Interstate Oil Compact Commission and reprinted by Illinois State Geological Survey as Circular 165. - (2) "Summary of Water Flooding Operations in Illinois to 1951," which reported operations during 1950. Published by Interstate Oil Compact Commission and reprinted by Illinois State Geological Survey as Circular 176. - (3) "Summary of Water Flooding Operations in Illinois Oil Pools During 1951." Published by Interstate Oil Compact Commission and reprinted by Illinois State Geological Survey as Circular 182. - (4) "Summary of Water Flooding Operations in Illinois Oil Pools During 1952." Published by Interstate Oil Compact Commission and reprinted by Illinois State Geological Survey as Circular 185. - (5) "Summary of Water Flooding Operations in
Illinois Oil Pools During 1953." Published by Interstate Oil Compact Commission and reprinted by Illinois State Geological Survey as Circular 193. - (6) "Summary of Water Flood Operations in Illinois Oil Pools During 1954." Published by Interstate Oil Compact Commission and reprinted by Illinois State Geological Survey as Illinois Petroleum 73. - (7) "Part II. Waterflood Operations," in: Petroleum Industry in Illinois in 1955: Illinois State Geological Survey Bulletin 81. ILLINOIS STATE GEOLOGICAL SURVEY Fig. 26. — Reported development of waterflood projects in Illinois. ## SUMMARY OF RESULTS Continuing the trend of the past few years, oil production in Illinois during 1956 was slightly larger than the production of immediately preceding years. As can be seen in figure 25, this rise in production can be attributed almost entirely to the large increase in oil recovered by means of waterflooding. This method of secondary recovery produced approximately 31,300,000 barrels of oil during 1956, or 38 percent of the state's total recovery of 82,314,000 barrels. Of this waterflood oil, 29,600,000 barrels is reported in table 14, and an additional 1,700,000 barrels is estimated to have been recovered by "dump" flooding. The 1956 waterflood recovery is 18 percent higher than the 1955 recovery of approximately 26,560,000 barrels. Figure 25 shows the effect of waterflood (including "dump" flood) operations on the state's annual oil production since 1936. The cumulative waterflood recovery at the end of 1956 was approximately 133,200,000 barrels, which includes 21,500,000 barrels of "dump" flood oil. Table 14 presents a summary of the information collected on waterflood projects in operation during 1956. The data are arranged alphabetically by fields and include 333 projects. Excluding the "dump" floods, there were approximately 350 waterfloods in operation during 1956. Table 14 provides data on 95 percent of these projects, although in terms of cumulative figures, this summary approaches 100 percent coverage. Based on the reported data in table 14, a total of 271,270,000 barrels of water was injected during 1956 in recovering 29,600,000 barrels of waterflood oil, or a ratio of 9.2 barrels of water for each barrel of oil. A cumulative total of 1,014,900,000 barrels of water had been injected by the end of 1956 in recovering 111,540,000 barrels of oil, or an over-all input water-oil ratio of 9.1. Figure 26 shows the reported development of waterflood projects in Illinois by years since 1942. The rapid increase in the number of projects since 1949 is evident. As a result, the number of projects has increased by a factor of ten in the past seven years from 33 projects at the end of 1949 to 333 projects at the end of 1956. As shown in table 14, these 333 projects had developed 92,350 acres of waterflooding, or 17 percent of the state's total oil-productive acreage. There were 5,307 injection wells and 7,687 producing wells reported operating in these projects in 1956. Table 15 presents data on the waterflood projects that have been reported abandoned by the end of 1956. Several projects previously reported as temporarily abandoned were added to this table along with three projects abandoned during 1956, bringing the total projects reported abandoned to 22. Table 16 includes data on the eight pressure maintenance operations that used water injection during 1956. The oil-production statistics in table 16 include both primary recovery and any additional oil obtained by pressure maintenance operations. Each project listed in tables 14, 15, and 16 has been numbered, and corresponding numbers on figures 27, 28, and 29 show the locations of the waterflood and pressure maintenance operations. Figure 27 shows all reported projects, while figures 28 and 29 show details of portions of the old oil fields and the Wabash Valley fields, respectively. For a generalized geologic column, see figure 3, which indicates the stratigraphic sequence of oil-producing formations in the Illinois basin. Given below is a list of the oil-producing formations with the number of reported waterfloods, as taken from table 14. An index map of counties, townships, and ranges in Illinois is shown in figure 5. | Formation ("S. | AND | Nam | ſE'' | ') | | | | No. of
Reported
Waterfloods
During 1956 | |--|------------|-------|-------|------|---|---|---|--| | (Westfield "Ga | .," S | and | ١ | | | | | 2 | | *(Casey "Gas" | es s | anu, | , | • | • | • | • | ĩ | | (Casey Gas | Sanc | 1) | | | ٠ | ٠ | • | 4 | | (Siggins) (Bellair "500") | | • | • | | • | | ٠ | 2 | | (Bellair "500") |) . | • | | | ٠ | | ٠ | 17 | | | | | | | ٠ | | • | | | (Bridgeport) | | | | | | • | ٠ | 10 | | (Casey) (Claypool) . | | • | • | | | | | 11 | | (Claypool) . | | | | | | | ٠ | 1 | | (Iordon) | _ | | | | | | | 2 | | *(Pennsylvania | n un | class | sifie | ed) | | | | 4 | | (Patro) | | | | | | | | 1 | | (Robinson) .
(U. Partlow) . | | | | | | | | 55 | | (U. Partlow). | | | | | | | | 6 | | Kinkaid | | | | | | | | | | *Degonia | | | | | | | | 1 | | | | | | | | | | 2 | | *Clore *Palestine . | | | | | | | | 2 | | Menard | • | | | | | | | | | *Waltersburg . | | | | | | | | 9 | | Vienna | • | • | • | • | • | • | | | | *Tar Springs | | | | | | | | 14 | | *Glen Dean | • | • | • | ٠ | • | • | • | | | *Uandinghura | | | | | | | | 5 | | *C 1d- (Lec | droon | ١. | • | • | ٠ | • | ٠ | $\tilde{2}$ | | *Golconda (Jac | KSOII | 1 XX | | ريد. | • | • | | 63 | | *Hardinsburg
*Golconda (Jac
*Cypress (Kirk
*Paint Creek (| MOOL
DL | 1, YY | en | E1) | • | • | • | 21 | | *Paint Creek (| Detn | ei) | • | • | • | • | • | 15 | | *Yankeetown (| Beno | oist) | • | | • | • | • | 2 | | *Renault | • | | • | ٠ | • | | • | 37 | | *Aux Vases . | | | ٠ | | | | • | 3/ | | *Ste. Geneviev | e | | | | | | | (| | (Ohara)
(Rosiclare
(McClosk | | | | | | • | • | 6 | | (Rosiclar | e) . | | ٠ | | • | | | 19 | | (McClosk | (y) | | | | | | | 48 | | *St. Louis | | | | | | | | | | *Salem | | | | | | | | | | Osage | | | | | | | | | | * (Carper) | | | | | | | | | | Chouteau | | | | | | | | | | New Albany | | | | | | | | | | *Devonian . | | | | | | | | 2 | | *Silurian | | | | | | | | | | Maquoketa | | | | | | | | | | *(Trenton) | | | | | | | | | | (2200000) | _ | | | c | | | | 2 | ^{*} Oil producing formations. See also figure 3. Fig. 27 — Waterflood and pressure are shown in detail in figures maintenance operations in Illinois during 1956 shown in black. Areas outlined by heavy dashes 28 and 29. Fig. 28. — Detail of waterflood operations in Clark, Crawford and Lawrence counties. Fig. 29. — Detail of waterflood and pressure maintenance operations in Wabash, Edwards, and White counties. TABLE 14.—ILLINOIS WATERFLOOD PROJECTS | | | | | | Genera | |------------------------|--|---|--|--|---| | Map
No. | Field | Operator | Project | Formation Sand(S), Lime(L) | County | | 2
3
4 | Aden Consol.
Aden Consol.
Albion Consol.
Albion Consol.
Albion Consol. | Texas
Texas
Calvert
Carter
Concho | Aden
Aden
South Albion
Albion*
North Crossville | Aux Vases(S) McClosky(L) Upper Biehl(S) Lower Bridgeport(S) Cypress(S) | Wayne
Wayne
Edwards
Edwards
White | | 6
7
8
9
10 | Albion Consol.
Albion Consol.
Albion Consol.
Albion Consol.
Albion Consol. | Concho
Continental
First Nat'l Pet. Trust
Jarvis Bros. & Marcell
Superior | North Crossville
Stafford
Brown
A. C. Wick
South Albion S.R.P. #1 | Tar Springs(S) McClosky(L) Aux Vases(S) McClosky(L) Biehl(S) Waltersburg(S) | White
Edwards
Edwards
Edwards
Edwards | | 12
13
14 | Albion Consol.
Albion Consol.
Albion Consol.
Albion Consol.
Albion Consol. | Superior
Superior
Superior
Tidewater
Yingling | South Albion Unit #2 South Albion Unit #2 South Albion Unit #2* S. W. Albion Biehl Unit #1 | Aux Vases(S) Biehl(S) Bridgeport(S) Biehl(S) Biehl(S) | Edwards
Edwards
Edwards
Edwards
White | | 17
18
19 | Albion Consol.
Allendale
Allendale
Allendale
Allendale | Yingling
Ashland
Bass & Hamman
Bass & Hamman
G. S. Engle | Biehl Unit #2
Allendale
Gilliate
White
Patton | Biehl(S) Biehl(S) Biehl(S) Biehl(S) Cypress(S) | Edwards
Wabash
Wabash
Wabash
Wabash | | 22
23
24 | Allendale
Allendale
Allendale
Allendale
Assumption Consol. | Forest
Indiana Farm Bureau
B. Kidd
F. C. Luecking
Continental | Allendale
Woods
Allendale
Mataliano et al.
Benoist | Biehl & Jordan(S) Biehl(S) Biehl & Jordan(S) Biehl & Jordan(S) Biehl(S) Benoist(S) | Wabash
Wabash
Wabash
Wabash
Christian | | 27
28
29 | Assumption Consol.
Assumption Consol.
Barnhill
Barnhill
Barnhill | Continental
Continental
Ashland
Wausau
Wausau | Devonian* Rosiclare* Barnhill Simpson* Simpson* | Devonian(L) Rosiclare(S) McClosky(L) Aux Vases(S) Ohara(L) | Christian
Christian
Wayne
Wayne
Wayne | | 32
33
34 | Bartelso
Bartelso
Bartelso
Bellair
Bellair | T. R. Kerwin
Robben Oil
H. S. Woodard
Forest
Pure | Belle Oil
Robben Oil Unit
H. S. Woodard
Bellair
Fulton | Cypress(S)
Cypress(S)
Cypress(S)
Bellair "500"(S)
Bellair "500"(S) | Clinton
Clinton
Clinton
Crawford
Crawford | | 36 | Benton | Shell | Benton Unit | Tar Springs(S) | Franklin | | 37 | Boyd | Superior | Boyd Field Unit | Aux Vases(S)
| Jefferson | | 38
39
40 | Boyd
Browns East
Browns East | Superior
T. W. George
Magnolia | Boyd Field Unit
Bellmont
Bellmont | Benoist(S)
Cypress(S)
Cypress(S) | Jefferson
Wabash
Wabash | Reported Operating During 1956 | Information | | | Production and injection statistics (bbls.) | | | | | | | | | |--|--|--|---|--|---|---|--|---|------------|--|--| | Locati | ion | 1 | Secondary recovery | | | | | | | | | | Location | | Date | Water i | njection | Oil proc | luction | Water pr | oduction | Maj
No. | | | | Section | TR. | first
injection | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12-31-56 | Total
1956 | Cumu-
lative
12–31–56 | | | | | 8, 9, 16, 17, 20
8, 9, 16, 17, 20
1, 2
11, 12
26, 27, 34, 35 | 3S- 7E
3S- 7E
3S-10E
3S-10E
3S-10E | Aug. 1946
Aug. 1946
Dec. 1955
Dec. 1947
Oct. 1952 | 599,065
589,840
141,549
28,456†
453,208 | 2,939,793
3,134,259
141,549
456,264†
2,489,722 | 114,542
88,164
32,384
1,864†
45,797 | 646,247
414,860
32,384*
66,305†
258,526 | 754,650
19,431
24,908†
260,245 | 2,048,365*
19,431
363,532†
728,215 | | | | | 26, 27, 34, 35
13
6
24
25, 36
30, 31 | 3S-10E
2S-10E
2S-11E
2S-10E
2S-10E
2S-11E | Oct. 1952
May 1943
Apr. 1952
July 1951
Jan. 1955 | 139,308
151,470
*
*
385,709 | 554,267
625,159
*
913,805 | 8,424
3,490
—
161,932 | 46,055*
37,280*
—
220,116 | 12,482
151,470
—
—
167,308 | 45,385
625,159
—
256,695* | 1 | | | | 1, 2, 11, 12
1, 2, 11, 12
1, 2, 11, 12
2, 11, 14 | 3S-10E
3S-10E
3S-10E
3S-10E
3S-10E | Aug. 1956
Aug. 1956
July 1946
May 1956
Aug. 1949 | 73,803
104,443
171,827
518,265
567,665 | 73,803
104,443
2,103,158
518,265
3,329,487 | * 1,208 † 67,903 96,716 | * 1,208* 430,084‡ 67,903* 761,469 | * 8,637 † 59,470 206,393 | *
8,637*
2,383,302:
59,470
290,016* | 1 1 | | | | 14
13
13
22
28 | 3S-10E
1N-12W
1N-12W
1N-12W
1N-12W | Dec. 1950
Sept. 1955
Nov. 1954
June 1952
— 1953 | 408,102
38,316
119,657
49,376
134,481 | 1,891,386
49,330
180,707
60,325*
385,187 | 37,606
20,378
26,720
3,175
25,495 | 397,330
23,741*
36,809
15,830†
63,610* | 216,865
—
—
—
24,570 | 416,071° — — — — 52,620 | * 1 | | | | 3, 4, 9, 10
20
3
15
3, 4, 9, 10, 15,
16, 21 | 1N-12W
1N-12W
1N-12W
1N-12W
1N-12W | June 1955
Nov. 1953
Sept. 1953
June 1952
July 1950 | 3,838,246
192,373
683,500
—
946,529 | 5,327,845
535,909
1,093,099
45,050*
4,909,882 | 287,877
9,357
80,525
—
126,085 | 388,258*
36,895*
117,647
13,200*
857,625* | 216,000
449,000
—
293,127 | 432,000
490,000
22,800
1,472,082 | * | | | | 9, 10
26, 34, 35
27
27 | 13N- 1E
13N- 1E
2S- 8E
2S- 8E
2S- 8E | May 1955
June 1955
Jan. 1951
Oct. 1956
Oct. 1956 | 271,784
78,438
806,790
8,985
9,553 | 424,808
115,788
3,969 480
8,985
9,553 | 12,321
49,778
177,346
275
535 | 12,321
55,155†
911,926
275
535 | 2,454
32,835
—
370
355 | 3,943
41,472
—
370
355 | | | | | 4
4
5, 8
2, 11, 12
1, 2, 11, 12 | 1N- 3W
1N- 3W
1N- 3W
8N-14W
8N-14W | Apr. 1952
Nov. 1953
Jan. 1954
July 1948
July 1948 | 126,969
399,546
285,041
1,531,553
3,734,878 | 595,519
1,180,426
680,280*
14,215,250
32,515,038 | 12,511
149,004
54,873
50,008
86,094 | 109,156* 420,887* 144,653† 540,844 953,995 | 91,236
147,932
163,914
—
2,046,883 | 303,754
327,993
—
13,049,710 | | | | | 23, 24, 25, 26, 35, 36
18, 30, 31
18, 19, 20, 30
13, 24, 25
18, 19, 20, 30
13, 24, 25 | 6S- 2E
6S- 3E
1S- 2E
1S- 1E
1S- 2E
1S- 1E | Nov. 1949
Aug. 1954
Jan. 1955* | 11,486,277
1,220,617
5,488,949 | 74,128,873
2,475,309
9,005,412† | 733,647
*
353,208 | 9,449,418 * 467,059† | 9,473,019
*
3,545,123 | 35,250,678
*
5,705,906 | | | | | 1, 2, 11, 12
2, 11 | 2S-14W
2S-14W | Jan. 1951
Nov. 1947 | 459,459
52,757 | 3,009,463
768,474 | 41,472
24,249 | 905,190*
551,134* | 325,422
40,800 | 1,122,091
218,827 | | | | | | | | Development | as of 12-3 | 1-56 | | Inje | ection Water | | | |----------------------------|----------------------------|-------------|--|----------------------|--------------------------------------|---|--|---|-------------------------------------|---------------------------------| | Map
No. | No. of | wells | Injection | Spacing acres | Productiv | e acreage | | | Avg.
bbls. | Avg. | | | Inj. | Prod. | pattern | per
input
well | Sub-
jected
to inj. | Total | Source | Type | per day
per well
per ft. | head
press-
ure
PSI | | 1
2
3
4 | 13
12
2
1 | 15
6 | Perimeter
Perimeter
Perimeter
Flank | | 640
560
110
74 | 1,050
920
130
106 | Penn. Sand
Penn. Sand
Shallow Sand & Produced
Produced | Brine
Brine
Brine
Brine | 12.6
37.4
10.8 | 1,245
1,167
— | | 5 | 8 | 21 | Perimeter | 10 | 250 | 300 | River & Produced | Fresh & Brine | 12.9 | 1,340 | | 6
7
8
9
10 | 4
1
1
1
1
5 | 1
1
6 | 5-Spot
—
Spot
—
Flank | 10
10
— | 100
80
30
140
222
325 | $ \begin{array}{c} 100 \\ 80 \\ 20 \\ 140 \\ 222 \\ 325 \end{array} $ | River & Produced
Produced
Hardinsburg
—
Shallow Sand
& Produced | Fresh & Brine Brine Brine Brine Fresh & Brine | 15.9
103.7
—
—
— | 1,340
0
*
*
1,200 | | 11 | 6 | 11 | 5-Spot | 20 | 243 | 243 | Shallow Sand & Gravel | Fresh & Brine | 8.8 | | | 12 | 3 | 5 | _ | | 79.3 | 79.3 | & Produced
Shallow Sand & Gravel
& Produced | Fresh & Brine | 15.7 | 300 | | 13 | 2 | 14 | Modified Flank | | 260 | 260 | Shallow Sand & Gravel
& Produced | Fresh & Brine | | | | 14 | 18 | 18 | 5-Spot | 20 | 710 | 710 | Shallow Sand & Pro- | Fresh & Brine | 7.7 | 305 | | 15 | 3 | 13 | Flank | | 220 | 220 | duced
River & Produced | Fresh & Brine | 30.5 | 1,200 | | 16
17
18 | 1
1
3 | 2 | Flank
Irregular
Perimeter | | 90
20
20 | 90
20
30 | | Brine
Brine
Fresh & Brine | 50.8
7.0
6.4 | 1,200 | | 19 | 2 | 1 | _ | | 30 | 70 | duced
Well 100'-150' & Pro-
duced | Fresh & Brine | 4.0 | | | 20 | 4 | 7 | | 25 | 130 | 130 | | Fresh | 5.8 | 3,273 | | 21 | 25 | 24 | Modified 5-Spot | 25 | 300 | | Gravel Beds & Produced | Fresh & Brine | | 750 | | 22 | 5 | 7 | | 10 | 147 | 147 | Produced | Brine | 7.0 | 50 | | 23
24
25 | 3½
1
14 | 2 | Irregular
—
Perimeter | 20
— | 70
44
450 | 75
44
450 | Shallow Sand
Shallow Sand
Creek & Produced | Fresh
Fresh
Fresh & Brine | 16.7
—
14.6 | 938 | | 26
27
28
29
30 | 1† | 9 | 5-Spot
Line Drive
Irregular
—
— | | 140
80
260
40
40 | 140
100
320
160
70 | Creek & Produced
Creek & Produced
Cypress
Penn. Sand
Penn. Sand | Fresh & Brine
Fresh & Brine
Brine
Brine
Brine | 14.3
17.9
30.7
8.9
16.6 | 127
390
*
None
None | | 31
32
33 | 5
12
5 | 19 | 5-Spot
5-Spot
5-Spot | 5
10
10 | 40
200
80 | 40
200
75 | Tar Springs
Bethel
Bethel & Produced | Brine
Brine
Brine | 4.6
7.6
10.4 | 550
510
550 | | 34
35 | 56
131 | 51
125 | 5-Spot
5-Spot | 4.4
4.4 | 200
443 | 443 | Gravel Bed
Gravel Bed | Fresh
Fresh | 2.0
3.7 | 285
285 | | 36
37 | 107
12 | 119
* | 5-Spot
Peripheral | | 2,200
569 | 2,200
569 | Lake & Produced
Surface & Produced | Fresh & Brine
Fresh & Brine | 8.4
24.1 | 460
400 | | 38 | 8 | 85 | Peripheral | | 1,564 | 1,564 | Surface & Produced | Fresh & Brine | 108.7 | 800 | | 39
40 | | 16
11 | 5-Spot
Line Drive | 20
10 | 290
169 | 330
190 | Shallow Sand
Tar Springs | Fresh & Brine
Brine | 5.4 | 1,450 | | | Reser | voir statis | tics (avera | age values | 3) | | | |--|-----------------------------------|-------------------------------|---------------------------------------|--
--|--|----------------------------| | Depth
feet | Net pay
thick-
ness
feet | Porosity
percent | Perme-
ability
milli-
darcys | Oil
gravity
API | Oil
viscosity
centipoises | Remarks | Map
No. | | 3,200
3,350
2,075
1,900 | 3.6
18 | 22
-
20
20 | 150
—
200
305 | 33.4 | 6.5 @ 100°F.
6.0 @ 111°F. | *Includes Aden McClosky water production. *Water production included with Aden Aux Vases flood. *Includes primary production since start of flood. *Project included in Superior Albion Unit No. 2 after | 1 2 3 4 | | 2,850 | 12 | 18 | | 37 | | June 30, 1956. †As of 6-30-56. | 5 | | 2,460
3,222
3,005
3,150
\$2,025
\$2,400 | 7.1 | | —
807 | $ \begin{array}{c c} 37 \\ 39 \\ \hline 37 \\ 36 \end{array} $ | | *Corrected figure. *Includes primary production since start of flood. *Dump flood. *Dump flood. *Corrected figure. | 6
7
8
9
10 | | 2,550 | 10 | 20.6 | 53 | 37.5 | 4.3 @ 98°F. | *Included in Biehl production. | 11 | | 1,485 | 15.8 | 18.2 | 326 | 37.3 | 4.5 @ 84°F. | *Includes Bridgeport & Aux Vases production since
8-1-56. | 12 | | 1,900 | 12.2 | 20.2 | 323 | 35.7 | 5.5 @ 83°F. | *Previously abandoned—reinstated as an active flood during 1956. †Included in Biehl production. ‡As of 1-1-56. | 13 | | 1,850 | 16 | 18 | 150 | 32.2 | No. of Contract | *Includes primary production since start of flood. | 14 | | 2,000 | 17 | 20.2 | 265 | 37.6 | 5.3 @ 88°F. | *Since 1-1-55. | 15 | | 1,950
1,475
1, 4 90 | 15 | 19.3
— | 303 | 35.8
36
— | 6.0 @ 84°F.
— | *Since 1-1-55. *Includes primary production since start of flood. | 16
17
18 | | 1,450 | 17 | manana | | | | *Since 7-1-55. Does not include dump flood injection. †Since 1-1-54. | 19 | | 2,000 | 16 | · | | 34.8 | No. of Contract | *Includes primary production since 1-1-54. | 20 | | 1,500
1,520 | B-15
J-13
15 | 17.7
14.9 | | 37
28.4 | 12.3 @ 60°F.
8.5 @ 32°F. | *Corrected figure. Includes primary production since acquisition of properties for water flooding. *Includes primary production since start of flood. †Since 1-1-55. | 21 22 | | 1,490
1,385
1,050 | 15 | 16.5
19.4 | | 37
34.5
39.8 | | *As of 1-1-54. *Corrected figure. | 23
24
25 | | 2,280
1,150
3,350
3,253
3,323 | 12
9
14 | 12
22
—
18.7
20.1 | | | 1.8 @ 88°F.
2.6 @ 78°F.
7 @ 85°F. | *Pilot flood. †Due mainly to casing leak in one well. *Pilot flood. †Corrected figure. *Controlled dump flood. *Pilot flood. †Dual injection well. *Pilot flood. †Dual injection well. | 26
27
28
29
30 | | 971
980
970 | | 22.2
20
21 | 165
110
210 | 37
36.9
36 | 6.3 @ 71°F.
6.3 @ 71°F.
— | *Includes primary production since start of flood. *Includes primary production since start of flood. *Corrected figure. †Includes primary production since | 31
32
33 | | 550
560 | | 17.1
18.6 | | 32.4
32 | 16 @ 77°F.
18.7 @ 77°F. | start of flood. Previously subjected to gas injection. | 34
35 | | 2,100
2,130 | | 19
21.4 | 65
240 | | 3.5 @ 86°F.
4.4 @ 90°F. | *Included with Boyd Field Unit Benoist. Previously used for gas storage. | 36
37 | | 2,065 | 17.3 | 17.5 | 173 | 39.5 | 3.2 @ 90°F. | *Pressure maintenance from 6-45 to 1-55.
†Since 1-1-55; includes Aux Vases production. | 38 | | 2,570
2,570 | | | | 36 | 4.6 @ 90°F. | *Includes primary production since start of flood. *Includes primary production since start of flood. | 39
40 | | | | | | | General | |----------------------------|---|--|--|---|--| | Map
No. | Field | Operator | Project | Formation Sand(S), Lime(L) | County | | | Browns East
Bungay Consol. | Magnolia
Texas | South Bellmont Unit
Blairsville Unit | Cypress(S)
Aux Vases(S) | Wabash
Hamilton | | 43
44
45 | Calhoun Consol.
Calhoun Consol.
Casey | Ashland
Phillips
F. A. Bridge | Calhoun
Bohlander Unit
States Oil | McClosky(L)
McClosky(L)
Casey(S) | Richland
Richland
Clark | | 46 | Casey | Forest | Casey | Casey(S) | Clark | | 47
48
49
50 | Casey
Centerville East
Centerville East
Centerville East | Franchot
Sun
Tekoil
Tekoil | North Casey
East Centerville
East Centerville Area
East Centerville Area | Casey(S) Tar Springs(S) Cypress(S) Tar Springs(S) | Clark
White
White
White | | 51
52
53
54
55 | Centralia
Clay City Consol.
Clay City Consol.
Clay City Consol.
Clay City Consol. | Shell
Ashland
Ashland
Calvert
Calvert | Centralia
Boos East
Noble North
East Noble Unit
North Clay City Unit | Benoist & Cypress(S) McClosky(L) McClosky(L) Rosiclare(L) Rosiclare(L) | Clinton
Jasper
Richland
Richland
Clay | | 56
57
58 | Clay City Consol,
Clay City Consol.
Clay City Consol. | Calvert
Demier*
F. & W. | Wilson
Miller-Lambrich | Rosiclare(L) Rosiclare(L) Ohara, Rosiclare, McClosky(L) | Wayne
Wayne
Wayne | | 59 | Clay City Consol. | General American | Covington Unit | Ste. Genevieve Lime | Wayne | | 60 | Clay City Consol. | Gulf | Winona* | Series
McClosky & L. Ohara(L) | Wayne | | 61 | Clay City Consol. | Phillips | Minnie | Rosiclare(S) | Clay | | 62
63 | Clay City Consol.
Clay City Consol. | Pure
Pure | Jordan School Pool Unit
N. E. Jordan School Pool
Unit* | Aux Vases(S)
Aux Vases(S) | Wayne
Wayne | | 64
65 | Clay City Consol.
Clay City Consol. | Pure
Pure | Old Noble Area
Van Fossan Unit | McClosky(L)
McClosky(L) | Richland
Wayne | | 66
67
68
69
70 | Clay City Consol. | Robinson & Puckett
Robinson & Puckett
Robinson & Puckett
Robinson & Puckett
Toklan | North Puckett Unit
N. E. McClosky #1
South Puckett Unit 1
S. W. McClosky Unit 2 | Aux Vases(S)
McClosky (L)
Aux Vases(S)
McClosky(L)
Aux Vases(S) | Wayne
Jasper
Wayne
Jasper
Wayne | | 71
72
73
74
75 | Concord Concord Concord Concord Concord | Great Lakes Carbon
Barron Kidd
Phillips
Phillips
Phillips | McClosky
Kerwin Concord
Dallas Lease
Kerwin Lease
Tuley Lease | Rosiclare & McClosky(L)
McClosky(L)
Rosiclare & McClosky(L)
Rosiclare & McClosky(L)
McClosky(L) | White
White
White
White
White | | 76
77
78
79
80 | Concord North Cordes Dale Consol. Dale Consol. Dale Consol. | C. E. Brehm
Shell
Inland
Phillips
Phillips | Concord N.
Cordes Co-op.*
N. Rural Hill Unit
Cantrell Unit
West End | Aux Vases(S) Benoist(S) Aux Vases(S) Aux Vases(S) Aux Vases(S) Aux Vases(S) | White Washington Hamilton Hamilton Hamilton & Saline | ## (Continued) | Information | | | Production and injection statistics (bbls.) | | | | | | | | | |---|--|---|--|--|--|--|--|---
----------------------------|--|--| | Locat | tion | | | | Secondary | recovery | | | | | | | | | Date | Water | injection | Oil pro | duction | Water production | | Map | | | | Section | TR. | first
injection | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12-31-56 | No. | | | | 11, 14
16, 17, 20, 21 | 2S-14W
4S- 7E
2N- 9E | Apr. 1956
June 1948 | 149,700
1,250,074 | 149,700
4,579,541 | 15,164
201,766 | 15,164
472,533 | 1,956
335,621 | 1,956
724,466 | 41 42 | | | | 7, 18
6, 7
26 | 2N-10E
2N-10E
10N-14W | Sept. 1951
June 1950
Jan. 1954 | 274,500
265,430 | 988,675*
1,702,444
4,910* | 16,341
20,503 | 96,609†
211,328
— | 285,881 | 1,228,458 | 43
44
45 | | | | 14, 15, 23 | 10N-14W | Mar. 1950 | 628,457 | 5,308,174 | 36,772 | 362,028 | | | 46 | | | | 33
4
7
18
18 | 11N-14W)
10N-14W)
4S-10E
4S-10E
4S-10E | Dec. 1953
Oct. 1950
Mar. 1956
May 1956 | 172,403
30,560
232,660
82,635 | 611,178
263,436
232,660
82,635 | None
2,351
61,263* | None
38,203
61,263* | *
26,070
90,614*
* | * 120,800 90,614* | 47
48
49
50 | | | | 35, 36
1, 2, 12
2
35
2, 10, 11
5, 8 | 2N- 1W)
1N- 1W)
6N-10E
4N- 9E
3N- 9E
3N- 8E | May 1956
Sept. 1953
July 1954
May 1955
June 1955 | 2,813,274
66,700
74,803
431,858
217,295 | 2,813,274
168,833*
210,578
552,827
283,725 | 135,554
2,929
666
18,403
26,993 | 135,554
11,142
3,202*
18,716*
30,994* | 161,622
—
—
139,144
66,487 | 161,622
—
143,819
73,167 | 51
52
53
54
55 | | | | 15
22
29 | 1S- 8E
2N- 8E
1N- 8E | Apr. 1955
Feb. 1954
Aug. 1950 | 63,700*
104,400
* | 118,900
171,400† | 1,712
29,865
12,000 | 3,696†
55,431†
112,000 | | _
_
_ | 56
57
58 | | | | 25
32, 33, 19, 20,
28, 30, 31, 29 | 1S- 6E
1S- 7E | June 1955 | 3,871,042 | 5,886,230* | 311,400 | 313,081 | 507,129 | 588,239* | 59 | | | | 12 | 1S- 8E ' | Aug. 1955 | 9,000 | 25,000* | None | None | 178 | 300* | 60 | | | | 24 | 3N- 7E | July 1953 * | 36,600 | 133,548* | 3,737 | 77,217* | 32,100 | 412,498* | 61 | | | | 27, 34, 35
25, 26, 35, 36 | 1N- 7E \
2N- 7E \
2N- 7E | Oct. 1955
Oct. 1956 | 1,768,427
268,672 | 2,216,603
268,672 | 113,757
None | 202,868*
None | 83,770
None | 156,008*
None | 62
63 | | | | 4, 5, 8, 9
32, 33, 34
14, 15, 22, 23 | 3N- 9E
4N- 9E
1N- 8E | Aug. 1954
Jan. 1953 | 4,484,259*
1,432,445 | 13,154,006†
6,969,052 | 432,398*
100,534 | 718,190†
241,655 | 1,483,339*
629,639 | 1,926,635†
1,172,747 | 64
65 | | | | 9
13, 14, 24
16
23, 26
16, 17 | 2S- 8E
7N-10E
2S- 8E
7N-10E
1N- 7E | Jan. 1956
May 1953
Aug. 1954
May 1953
Feb. 1955 | 221,566
210,313
584,178
354,856
551,731 | 221,566
675,799
1,531,144
1,668,581
551,731* | 4,073
29,350
104,090
94,017
4,530 | 4,073
111,426
161,828
255,494
4,530* | 2,082
43,236
248,554
103,849 | 2,082
75,334
286,623
283,791 | 66
67
68
69
70 | | | | 28
21
28
21
21 | 6S-10E
6S-10E
6S-10E
6S-10E
6S-10E | June 1953
Jan. 1955
Aug. 1953
Feb. 1953
July 1951 | 108,450
55,935
103,800
94,943 | 233,490*
161,863
247,168
477,352
1,230,569 | 5,695
481
5,146
9,790 | 5,132*
7,463
2,961
14,932
73,830 | 25,500
18,333
30,438
50,973 | 44,366* 38,850 42,228 115,221 1,019,481 | 71
72
73
74
75 | | | | 10
14, 15, 22, 23
5, 6, 7, 8
5, 6, 7
17, 19, 20 | 6S-10E
3S- 3W
6S- 6E
7S- 5E
7S- 5E | Dec. 1952
Aug. 1950
Feb. 1952
Aug. 1955
Jan. 1956 | 30,500
1,028,033
556,637
309,879
223,652 | 212,421
7,742,287
3,202,191
441,913
223,652 | 9,306
154,688
23,555
34,875
14,000 | 35,013
2,139,456†
281,425*
34,875
14,000 | 1,028,794
460,735
26,298
11,639 | 5,143,696
1,419,676*
26,298
11,639 | 76
77
78
79
80 | | | | -112 | | | Development | as of 12-3 | 31-56 | | Injection Water | | | | | |----------------------|--------------------|------------------|--|----------------------|-----------------------------------|--------------------|---|--|--------------------------------|------------------------------|--| | Map
No. | No. o | f wells | | Spacing | Producti | ve acreage | | | Avg. | Avg. | | | 140. | Inj. | Prod. | Injection
pattern | per
input
well | Sub-
jected
to inj. | Total | Source | Type | per day
per well
per ft. | head
press-
ure
PSI | | | 41
42
43 | 5
10
3 | 12 | 5-Spot
—
Irregular | 20
20
— | 75
640
140 | 130
640
195 | Shallow Sand
Penn. Sand
Cypress | Fresh
Brine
Brine | 22.1
41.8 | 1,409 | | | 44
45 | 3
2 | 7 | Irregular | 4.4 | 160 | 280 | Upper Sand & Produced
Shallow Sand | Brine
Fresh | 24.2 | 1,258 | | | 46
47
48
49 | 76
15
1
5 | 10
5 | 5-Spot
5-Spot
Flank
5-Spot | 4.4
4.4
- | 280
40
80
130 | 560
—
280 | Gravel Bed
Gravel Bed & River
Gravel Bed & Produced
Palestine Sand | Fresh
Fresh
Fresh & Brine
Brine | 2.3
1.6
—
10.3 | | | | 50 | 4 | 22 | 5-Spot | 10 | 130 | 280 | Palestine Sand | Brine | 10.5 | 850 | | | 51 | 97 | 109 | 5-Spot | 20 | (B. 1,500
(U.C.700 | | Devonian & Produced | Brine | | 255 | | | 52
53
54
55 | 2
1
3
2 | 1
19 | Flank
—
Peripheral
Peripheral | | L.C.200
40
20
280
460 | | | Fresh & Brine
Brine
Brine
Brine |
41.0
35.9
59.5 | | | | 56 | 1 | 1 | Peripheral | 20 | 40 | 40 | Cypress Sand | Brine | | | | | 57 | 1 | 2 | | 20 | 60 | | | Brine | | None | | | 58
59
60 | 4
28
1 | 24 | Irregular
5-Spot
None | 10
40
20 | 120
1,967
12.5 | 180
2,100
50 | Cypress & Produced
Cypress & Penn. Sand
Tar Springs | Brine
Brine
Brine | | | | | 61 | 1 | 1 | | | 20 | 20 | Produced | Brine | 3.3 | None | | | 62
63 | 34
22 | | 5-Spot
5-Spot | 17.6
20 | 695
380 | 695
540 | Penn. Sand
Penn. Sand | Brine
Brine | 9.8
9.3 | 700
700 | | | 64 | 13 | 49 | Line Drive | 100 | 1,350* | 1,350* | Cypress | Brine | 94.5 | 0 | | | 65 | 16 | 29 | Line Drive | 113 | 1,810 | 1,810 | Chester Sands | Brine | 24.5 | 0-500 | | | 66 | 5 | 6 | Altered
Peripheral | | 172 | 172 | Sewage Effluent &
Produced | Fresh & Brine | 15.2 | 600 | | | 67
68 | 2
7 | | Modified Line
Altered
Peripheral | _ | 235
243 | 235
243 | Shallow Sand & Produced | Fresh & Brine
Fresh & Brine | 46.5
15.4 | 1,600
742 | | | 69
70 | 5
5 | 15
27 | Modified Line | _ | 415
680 | 415
777 | Shallow Sand & Produced | Fresh & Brine
Fresh & Brine | 23.7
50.4 | 1,600
880 | | | 71 | 3 | 8 | Modified
Peripheral | | 140 | 150 | Gravel Bed | Fresh | _ | | | | 72
73
74
75 | 1
1
1
1 | 3
3
3
5 | — — — — — — | 10
—
— | 30
40
50
65 | 100 | Cypress & Shallow Sand
Shallow Sand & Produced
Shallow Sand & Produced
Upper Sand & Produced | Fresh & Brine | *
5.1
9.5
8.7 | *
35
0
0 | | | 76
77 | 1
36 | | Irregular
5-Spot | | 40
640 | 40
640 | Gravel Bed
Pottsville | Fresh
Brine | 7.0
5.6 | 90 4
381 | | | 78
79
80 | 7
3
2 | 7 | 5-Spot
5-Spot
Irregular | 20
10
10 | 310
50
40 | | Cypress
Penn. 1700'
Penn. 1700' | Brine
Brine
Brine | 18.9
21.1 | 1,122
393
222 | | # (Continued) | | Reser | voir statis | tics (avera | ige values | 3) | _ | | | |---|-----------------------------------|----------------------------------|---------------------------------------
---|---------------------------------|---|----------------------|--| | Depth
feet | Net pay
thick-
ness
feet | Porosity
percent | Perme-
ability
milli-
darcys | Oil
gravity
API | Oil
viscosity
centipoises | Remarks | | | | 2,560
3,330
3,150 | | | | 37.5
37 | 1.8 @ 99°F. | *Dump flood. †Includes primary production since | 41
42
43 | | | 3,130
444 | 10
20 | 11.2 | 67.5
— | | _ | *As of 1-1-55. | 44 | | | 450
290 | 10
20 | 17.4
21.5 | 173
400 | 26.6 | 16.6 @ 70°F.
50 @ 60°F. | Previously subjected to gas injection. *Negligible. | 46
47 | | | 2,530
2,845 | 15
8 | 15.4
15.9 | 12.2
97.8 | | 3.4 @ 110°F.
4.1 @ 105°F. | *Includes primary production from both Cypress and
Tar Springs since 3-1-56.
*Included in Cypress production figures. | 48 49 50 | | | 2,460
(B.1,350 | B. 17 | 19.6 | 186) | 38 | | included in Cypress production figures. | 51 | | | C.1,200
2,645
3,000
2,950
3,010 | L.C.10
8
5
11 | 19.3
21.1
—
—
—
— | 80}
225
—
—
—
— | 40
38
38
36.4 | 3.2 @ 75°F.
—
— | *Injection shut down from 12-55 to 6-56. *Includes primary production since start of flood. *Includes primary production during 1956. *Includes primary production during 1956. | 52
53
54
55 | | | 3,159 | 10 | | | | | *Estimated injection. †Includes primary production from 4-55 to 1-56. | 56 | | | 3,033 | 10 | | | /MINISTRAL PARTY AND ADDRESS OF THE | | *Previously operated by Slagter Prod. Co. †Since 1-1-55, Nov. & Dec., 1955 not included. Includes | 57 | | | 3,060
3,200
3,115 | 5
14
8 | _
 | | 39
40.1 | | primary production. *Dump flood. *Corrected figures. *Abandoned October, 1956. | 58
59
60 | | | 2,990 | 30 | | | 38.5 | | *Previously affected by dump flood. Surface injection began 7-53. | 61 | | | 2,950
2,950 | 14.6
15.5 | 19
19 | 73
106 | 35
37 | | *Corrected figure. Previously subjected to gas injection. *Includes dump flood previously operated by I. J. Neal. Previously subjected to gas injection. | | | | 2,930 | 10 | | | 36 | | *Includes data of adjacent Ohio flood. †Corrected figure. | 64 | | | 3,070 | 10 | 13 | 1-300 | 36 | | | 65 | | | 3,150 | 8 | 19 | 115 | 39 | 3.7 @ 100°F. | | 66 | | | 2,530
3,200 | 6.2
14.8 | 14
20 | 80 | | 3.7 @ 100°F.
3.7 @ 100°F. | | 67 68 | | | 2,580
3,000 | 8.2
6 | 14
19 |
 | 39.8
38 | 2.9 @ 92°F.
— | *Since 1-1-56. | 69
70 | | | 2,980 | 22 | | | 37.5 | _ | *As of 1-1-55. | 71 | | | 3,003
2,960
2,960
2,960 | 30
30 | | | —
36
36.5
36.5 | | *Dump flood. | 72
73
74
75 | | | 2,950
1,230 | 12
14 | 21.1
20 | 218
250 | 35.1
37 | 5 @ 103°F. | *Cooperative: Shell, Magnolia, McBride, Horton. | 7 <i>6</i> | | | 3,125
3,200
3,150 | 14.7
15
15 | 23.9
— | | | | †Čorrected figure.
*Cumulative since 1-1-53. | 78
79
80 | | | | AND DESCRIPTION OF THE PROPERTY PROPERT | | | | General | |---------------------------------|--|---|---|--|---| | Map
No. | Field | Operator | Project | Formation Sand(S), Lime(L) | County | | 82
83
84 | Dale Consol.
Divide East
Dundas East
Dundas East
Dundas East | Texas
Gulf
Gulf
Gulf
Sohio | West Dale Unit
Holloway
Bessie Lease*
East Dundas Unit
Dundas East | Aux Vases(S) McClosky(L) McClosky(L) McClosky(L) Ohara(L) | Hamilton
Jefferson
Jasper
Richland
Jasper | | 86
87
88
89
90 | Enfield South
Friendsville North
Goldengate Consol.
Goldengate Consol.
Herald Consol. | Ryan
Magnolia
Cities Service
Cities Service
C. E. Brehm | S. Enfield Unit #2
J. L. Litherland
Goldengate
Goldengate
Herald West | McClosky(L) Biehl(S) McClosky(L) Ohara & Rosiclare(L) Waltersburg(S) | White
Wabash
Wayne
Wayne
White | | 93 | Herald Consol.
Ingraham
Inman East Consol.
Inman East Consol. | Mabee & Allen
Carter
Carter
Carter | Ackerman Unit
Ingraham
Big Barn
Kerwin-Crawford | Aux Vases(S) Rosiclare(L) Upper Cypress(S) Clore, Cypress, Hardinsburg, Palestine, Tar | White
Clay
Gallatin | | 95 | Inman East Consol. | Carter | West Unit | Springs, Waltersburg(S) Waltersburg, Cypress, Hardinsburg(S) | Gallatin
Gallatin | | 96 | Inman East Consol. | Natural Resources | Big Barn* | Cypress(S) | Gallatin | | 97
98
99
100 | Inman East Consol.
Inman East Consol.
Inman West Consol.
Johnson North | Natural Resources
Sun
Gulf
Bass & Hamman | Big Barn*
Inman East
West Inman Unit
North Johnson | Tar Springs(S) Tar Springs(S) Cypress(S) Casey(S) | Gallatin
Gallatin
Gallatin
Clark | | 101
102
103
104
105 | Johnson North
Johnson North
Johnson North
Johnson North
Johnson South | C. L. McMahon
C. L. McMahon
Oldfield*
Tidewater
Forest | Block "A" Block "B" V. Jones Clark County #1 South Johnson | Casey(S) Casey(S) Casey(S) Casey(S) Upper Partlow(S) | Clark
Clark
Clark
Clark
Clark
Clark | | 106 | Johnson South | Pure | Johnson Flood Extension | Upper Partlow(S) | Clark | | 107
108
109 | Johnson South
Johnson South
Johnson South | Pure
Pure
Pure | Johnson Flood Extension # 2 Pure-Kewanee Weaver-Bennett | Clay Pool, Casey,
Upper Partlow(S)
Upper Partlow(S)
Upper Partlow(S) | Clark
Clark
Clark | | 110 |
Johnsonville Consol. | Texas | Johnsonville Unit | Aux Vases(S) | Wayne | | 111 | Johnsonville Consol. | Texas | Johnsonville Unit | McClosky(L) | Wayne | | 12
13
14
15 | Junction
Keensburg South
Keenville
Keenville | Alco*
White & Vickery
Calvert
W. Duncan | Junction
A. P. Garst
Keenville Unit
Keenville Unit | Waltersburg(S) Cypress(S) McClosky(L) Aux Vases(S) | Gallatin
Wabash
Wayne
Wayne | | 16
17 | Kenner West
Lancaster South | Phillips
Ashland | West Kenner
Lancaster South | Benoist & Cypress(S) Bethel(S) | Clay
Wabash | | | Lawrence | Bradley | C. M. Perkins | Bridgeport & Kirkwood (S) | Lawrence | | 119
120 | Lawrence
Lawrence | Calvan American
Dearborn | Piper
Applegate | Cypress(S) Jackson & Cypress(S) | Lawrence
Lawrence | | Information | | | | Producti | on and inject | ion statistics | (bbls.) | | | |---|---|---|---|---|---|---|---|---|----------------------------| | | | | | | Secondary | recovery | | | | | Locati | ion | Date | Water | injection | Oil pro | duction | Water pr | oduction | Map
No. | | Section | TR. | first | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12–31–56 | | | 11 21 23 25, 26, 35, 36 14 | 6S- 6E
1S- 4E
5N-10E
5N-10E
5N-10E | July 1951
May 1955
May 1954
Oct. 1956
Apr. 1955 | 413,758
109,743
115,310
40,230
316,900 | 2,205,415
160,834
273,500
40,230
616,200 | 84,093
2,754
14,126
None
53,656 | 263,394
2,754
15,744
None
64,883 | 222,811
5,316
40,395
None
303,710 | 668,711
5,316
40,781
None
346,431 | 81
82
83
84
85 | | 28, 29
1, 12
28, 32, 33
28, 33
28, 33 | 5S- 8E
1N-13W
2S- 9E
2S- 9E
6S- 9E | Sept. 1956
July 1947
Oct. 1953
Aug. 1956
Jan. 1955 | 46,387
75,907
231,995
54,265
40,067 | 46,387
603,023
642,805
54,265
96,426 | None
1,741
1,320
413
28,610* | None
141,832*
9,246
413
28,610* | 31,997
119,023
1,193 | 278,439
230,646
1,193 | 86
87
88
89
90 | | 4
4, 9
11
11, 14 | 7S-10E
4N- 8E
8S-10E
8S-10E | Feb. 1956
Dec. 1956
Apr. 1954
June 1955 | 29,978
1,859
13,818
1,164,483 | 29,978
1,859
63,084*
1,375,535 | None
None
24,367
92,541 | None
None
49,606
92,541 | | 2,843
894
92,927 | 91
92
93
94 | | 15 | 8S-10E | July 1956 | 541,135 | 541,135 | 31,715* | 31,715 | 24,351 | 24,351 | 95 | | 34
2, 3, 4, 10, 11
34
2, 3, 4, 10, 11
3
15, 16
2, 11
2
35, 36
1, 3 | 7S-10E \\ 8S-10E \\ 8S-10E \\ 8S-10E \\ 8S-10E \\ 8S-10E \\ 8S-14W \\ 9N-14W | Mar. 1954
Mar. 1954
Mar. 1955
June 1953
Apr. 1949
May 1951
Sept. 1951 | 467,338
2,225,268
203,959
490,710
186,691
281,413
182,619 | 1,461,836
6,300,100
612,737
862,706
915,604*
5,707,903
1,078,587
75,475† | 248,253 713,745 87,003 93,691 6,462 5,792 8,838 | 583,141† 1,230,583† 138,852 93,691 34,314 246,114 56,829 1,235† | 69,702
741,772
42,610
12,760
—
137,060 | 101,027
1,195,042
64,236
13,290
—
2,713,041*
337,925*
2,438† | 102 | | 2
27, 34, 35 | 9N-14W
9N-14W | Feb. 1950
Mar. 1949 | 317,272
4,090,146 | 1,772,789
23,469,704 | 15,876
138,374 | 110,409
799,756 | 163,800 | 1,051,347 | 104 | | 23, 26 | 9N-14W | Jan. 1954 | 2,091,977 | 4,900,170 | 163,158 | 367,448 | 1,711,219 | 2,804,706 | 106 | | 23, 26 | 9N-14W | Nov. 1955 | 1,300,195 | 1,428,793* | 16,764 | 16,862* | 23,349 | 24,573* | 107 | | 22, 27
27
21, 26, 27, 28, | 9N-14W
9N-14W | Jan. 1954
Jan. 1953 | 642,920
1,209,568 | 1,444,931
5,900,425 | 47,666
53,839 | 100,939
407,704 | 485,784
1,228,261 | 642,244
3,648,323 | 108
109 | | 33, 34, 35
3, 4 | 1N- 6E
1S- 6E | Oct. 1956 | 283,388 | 283,388 | None | None | None | None | 110 | | 21, 26, 27, 28, 33, 34, 35, 3, 4 | 1N- 6E
1S- 6E | Nov. 1954 | 3,554,256 | 6,893,778 | 300,634 | 533,782 | 1,479,203 | 2,474,152 | 111 | | 16
27
27, 28, 33, 34
28, 29 | 9S- 9E
2S-13W
1S- 5E
1S- 5E | May 1951
Nov. 1954
Nov. 1956*
Apr. 1954 | 191,113
74,384
19,037
375,798 | 935,024
99,040
19,037
887,237 | 39,195
5,899
2,697†
114,594 | 193,504†
14,400
2,697
214,241* | 118,908
—
10,460
97,348 | 308,686
—
10,460
132,948 | 112
113
114
115 | | 23
21 | 3N- 5E
1N-13W | Feb. 1952
Jan. 1955 | 1,908,953
26,570 | 5,456,165
50,014 | 120,048
8,384 | 218,631
16,998* | 376,515 | 555,289 | 11 <i>e</i>
117 | | 32 | 4N-12W | Feb. 1955 | £ 201,502 | 343,128* | 94,817 | 102,499† | 265,287 | 395,287 | 118 | | 2, 11 | 4N-13W
4N-12W | Dec. 1953
Sept. 1952 | 397,595
16,403*
280,275 | 671,128
146,380*
442,770* | 512†
6,862 | 5,816†
9,870* | | 3,600† | 119
120 | TABLE 14.— | | | | Development | as of 12-3 | 31-56 | | Inj | ection Water | | | |----------------------------|-------------------------|-------------|---|--|--------------------------------|--------------------------------|---|--|---|---| | Map
No. | No. o | f wells | Injection
pattern | Spacing
acres
per
input
well | Sub-
jected
to inj. | ve acreage | Source | Туре | Avg.
bbls.
per day
per well
per ft. | Avg.
well-
head
press-
ure
PSI | | 81
82
83
84
85 | 3
1
1
3
4 | 2
2
6 | Perimeter
Edge Well
—
None
Perimeter | 10
20
-
40
10 | 295
20
20
220
102 | 295
150
20
360
180 | Shallow Sand & Produced Produced Cypress Penn. Sand | Fresh & Brine
Brine
Brine
Brine
Brine
Brine | 27.0
43.5
—
27.1 | 739
0
0
380
0 | | 86
87
88
89
90 | 1
2
2
1
1 | 3
8
3 | None
5-Spot
Irregular
Irregular
Pilot | 10
105
50 | 60
13
159
50
40 | 90
40
210
80
250 | 150' Sand
Shallow Sand
Gravel Bed
Gravel Bed
Penn. Sand | Fresh
Fresh
Fresh
Fresh
Brine | 98.7
-
39.7
-
5.5 | 1,620
 | | 91
92
93
94
95 | 1
8
2
37
32 | 1
36 | 5-Spot
5-Spot
5-Spot
5-Spot | 40
10
20
20 | 146
282
15
358
508 | 146
498
30
435
930 | Cypress
Penn. Sand
River
Gravel Bed
Gravel Bed | Brine
Brine
Fresh
Fresh
Fresh | -4.1
-3.2
- | 881
80
1,105
670
166 | | 96 | 50 | 50 | Modified 5-Spot | 20 | 664 | 664 | Gravel Bed | Fresh | 2.7 | 1,097 | | 97 | 50 | 50 | Modified 5-Spot | 20 | 750 | 796 | Gravel Bed | Fresh | 8.1 | 1,017 | | 98
99
100 | 2
10
14 | 7 | 5-Spot
5-Spot
5-Spot | 10
20
4.5 | 40
110
36 | 40
170
87 | Gravel Bed
Penn. Sand
Gravel Bed & Produced | Fresh
Brine
Fresh & Brine | 9.6
8.1
1.7 | 750
1,390 | | 101
102 | 13
18 | | 5-Spot
5-Spot | 4.4
4.4 | | | Shallow Sand & Produced
Shallow Sand & Produced | | | 400
400 | | 103 | 3† | 2 | 5-Spot | 4.4 | 15 | 65 | Shallow Sand | Fresh | _ | | | 104
105 | 17
86 | | 5-Spot
5-Spot | 4.4
4.4 | | 102
— | Shallow Sand & Produced
Produced | Fresh & Brine
Brine | 3.0
2.7 | 356
288 | | 106 | 66 | 60 | 5-Spot | 5 | 243 | 243 | Produced | Brine | 2.5 | 250 | | 107 | 69 | 56 | 5-Spot | 4.5 | 234 | 234 | Produced | Brine | | 250 | | 108
109
110 | 20
38
19 | | 5-Spot
5-Spot
— | 4.4
4.4
10 | | 67
151
2,110 | Produced
Produced
Penn. Sand | Brine
Brine
Brine | 2.7
2.5
24.9 | 250
250
208 | | 111
112 | 18
11 | 80
7 | Perimeter
Irregular 5-Spot | 20
10 | 3,400
263 | 3,400
263 | Weiler Sand
Shallow Sand | Brine
Fresh | 53.3
3.4 | —
933 | | 113
114 | 1 3 | | None
Peripheral | 60
10 | 60
180 | 60
220 | Surface Gravel
Cypress & Produced | Fresh
Brine | 13.6
— | 43 | | 115 | 3 | 9 | Perimeter | | 120 | 120 | Shallow Sand | Fresh | 26.4 | 1,350 | | 116
117 | 12
1 | | Irregular 5-Spot
Irregular | 10 | 329
30 | 329
30 | Penn. Sand & Produced
Lower Tar Springs | Brine
Brine | 16.8
7.3 | 608
673 | | 118 | 17 | 15 | 5-Spot | 10 | 80 | 100 | Buchanan & Produced | Brine | 1.7
2.8 | 400 | | 119
120 | 4
4 | | 5-Spot
5-Spot | 10
10 | 12.5 | 144
225 | Shallow Sand
Gravel Bed | Brine
Fresh | 8.5 |
500 | | | Reser | voir statis | tics (aver | age value: | s) | | | |---|--|--|---------------------------------------|----------------------------|---
--|----------------------------| | Depth
feet | Net pay
thick-
ness
feet | Porosity
percent | Perme-
ability
milli-
darcys | Oil
gravity
API | Oil
viscosity
centipoises | Remarks | Map
No. | | 3,050
2,805
2,941
2,985
2,900 | 6.9
14
6 | 17
18
16.6
12.5 | | 38
36.6
37.8
41.4 | | Previously subjected to gas injection. *Previously reported as Dundas East project. *Dump flood using Cypress water. | 81
82
83
84
85 | | 3,385
1,620
3,308
3,280
1,866 | | 10.5
—
—
—
—
19.5 | 22
—
—
—
200 | 35.6
34
—
38 | 2.5 @ 103°F.
7.5 @ 86°F.
—
3.5 @ 60°F. | *Includes primary production since start of flood. *Includes primary production since 1-1-56. | 86
87
88
89 | | 2,913
3,000
2,400
1,670
2,000 | 5.1
5.9 | 14.2
16.5
15.5–19.6
16.5–19.6 | 58
75–959 | 34

36.4
 | 4.2 @ 92°F.
— | *Corrected figure. *Includes 20,920 barrels accumulated at start of flood. | 91
92
93
94
95 | | 2,400 | 9.6 | 16.8 | 50 | 38 | 3.6 @ 63°F. | *Also includes J. L. Crawford, Sohio, Sun, Carter leases.
†Includes primary production since start of flood. | | | 2,100
2,100 | 29 | 17.5
17.9 | 133 | 35.5 | | *Also includes J. L. Crawford, Sohio, Sun, Carter leases.
†Includes primary production since start of flood. | 98 | | 2,500
400 | 16.5
22 | 13.5
19.2 | 40
225 | 38.6
33 | 13.6 | *Corrected figure. | 100 | | 450
480
440 | 22 | 20.8
18.3 | | | 19
10 @ 70°F.
17 @ 67°F. | *As of April, 1955. Previously subjected to gas injection.
*Does not include water production from 4-55 through
12-55. Previously subjected to gas injection.
*Formerly operated by H. V. Sherrill. | 101
102
103 | | 425
490 | 17 | 20.6
16.6 | 415 | 33.9 | 10.7 @ 70°F.
14.7 @ 77°F. | †Project temporarily shut down since 2-15-54.
Subjected to gas injection 1946-47.
Previously subjected to gas injection. | 104
105 | | 465 | 35
(19) | 18.9 | 312 | 29.7 | 21 @ 65°F. | | 106 | | 420–500
507
467
3,000 | $ \left\{ \begin{array}{c} 15 \\ 30 \\ 33 \\ 35.5 \\ 7.5 \end{array} \right. $ | | 294
277
285
187 | | 25.5 @ 65°F.
25.5 @ 65°F.
— | *Corrected figures. Previously subjected to air injection. | 107
108
109
110 | | 3,100
1,750 | 10
14 | 15.5
13.4 | 850
21.9 | 38.5
34.7 | 6.7 @ 81°F. | *Former operator J. A. Lewis. †Corrected figure, includes primary production since start of flood. | 111
112 | | 2,403
3,100 | 15
9 | 20.6
— | 134 | 37.5
— | 4.6 @ 91°F.
— | *Date of unitization 6-1-56. †Includes primary pro- | 113
114 | | 2,950 | 13 | 20 | 155 | 39 | 3.5 @ 97°F. | *Includes primary production since start of flood. | 115 | | 2,600
2,520 | 10 | 18 | $\frac{125}{125}$ | 37.5
— | _ | *Includes primary production since start of flood. | 116
117 | | { 900
{ 1,375 | | 18
14.2 | 125)
28) | 36 | 6.1 @ 60°F. | *Includes six line wells with Ohio. †Includes primary production since start of flood. | 118 | | 1,520
1,320 | | 20.8
20.1 | 33
62 | | 3.5 @ 86°F.
4.3 @ 81°F. | *As of 5-18-56. †As of 8-15-56.
Formerly operated by H. V. Sherrill. *Data for 1955 is not included. †As of 1-1-55. | 119
120 | | eld | W. Duncan T. W. George W. W. Holden W. C. McBride W. C. McBride Murphy Murphy Ohio Ohio Ohio W. H. Krohn Neary & Cahill J. P. Babcock W. L. Belden | Project L. C. David Klondike Gray Crump "40" Neal Stoltz Stoltz Gillespie 6 Projects 3 Projects* 2 Projects* — C. & O. Henke Rhodes & McCloy Hinton | Formation Sand(S), Lime(L) Paint Creek(S) Bethel(S) Jackson, Bethel, Renault(S) Kirkwood(S) Paint Creek, Kirkwood (S) Main (Second) Bridgeport(S) Kirkwood(S) McClosky(L) Bridgeport(S) Kirkwood(S) Kirkwood(S) Kirkwood(S) Kirkwood & Paint Creek(S) Pennsylvanian(S) Pennsylvanian(S) Paint Creek & Bethel(S) Cypress(S) | County Lawrence Fayette Lawrence | |----------------------|---|---|---|--| | eld | W. Duncan T. W. George W. W. Holden W. C. McBride W. C. McBride Murphy Murphy Ohio Ohio Ohio Ohio W. H. Krohn Neary & Cahill J. P. Babcock W. L. Belden | L. C. David Klondike Gray Crump "40" Neal Stoltz Stoltz Gillespie 6 Projects 3 Projects* 2 Projects* — C. & O. Henke Rhodes & McCloy | Paint Creek(S) Bethel(S) Jackson, Bethel, Renault(S) Kirkwood(S) Paint Creek, Kirkwood (S) Main (Second) Bridgeport(S) Kirkwood(S) McClosky(L) Bridgeport(S) Kirkwood(S) Kirkwood(S) Kirkwood(S) | Lawrence Madison Madison Fayette | | | T. W. George W. W. Holden W. C. McBride W. C. McBride Murphy Murphy Ohio Ohio Ohio W. H. Krohn Neary & Cahill J. P. Babcock W. L. Belden | Klondike Gray Crump "40" Neal Stoltz Stoltz Gillespie 6 Projects 3 Projects* 2 Projects* — C. & O. Henke Rhodes & McCloy | Bethel(S) Jackson, Bethel, Renault(S) Kirkwood(S) Paint Creek, Kirkwood (S) Main (Second) Bridgeport(S) Kirkwood(S) McClosky(L) Bridgeport(S) Kirkwood(S) Kirkwood(S) Kirkwood(S) | Lawrence Madison Madison Fayette | | | W. C. McBride Murphy Murphy Ohio Ohio Ohio W. H. Krohn Neary & Cahill J. P. Babcock W. L. Belden | Neal Stoltz Stoltz Gillespie 6 Projects 3 Projects* 2 Projects* — C. & O. Henke Rhodes & McCloy | Kirkwood(S) Paint Creek, Kirkwood (S) Main (Second) Bridgeport(S) Kirkwood(S) McClosky(L) Bridgeport(S) Kirkwood(S) Kirkwood(S) Kirkwood & Paint Creek(S) Pennsylvanian(S) Pennsylvanian(S) Paint Creek & Bethel(S) | Lawrence Lawrence Lawrence Lawrence Lawrence Lawrence Lawrence Madison Madison Fayette | | | Murphy Ohio Ohio Ohio W. H. Krohn Neary & Cahill J. P. Babcock W. L. Belden | Stoltz Gillespie 6 Projects 3 Projects* 2 Projects* — C. & O. Henke Rhodes & McCloy | Bridgeport(S) Kirkwood(S) McClosky(L) Bridgeport(S) Kirkwood(S) Kirkwood & Paint Creek(S) Pennsylvanian(S) Pennsylvanian(S) Paint Creek & Bethel(S) | Lawrence Lawrence Lawrence Lawrence Lawrence Madison Madison Fayette | | | Ohio Ohio Ohio W. H. Krohn Neary & Cahill J. P. Babcock W. L. Belden | Gillespie 6 Projects 3 Projects* 2 Projects* — C. & O. Henke Rhodes & McCloy | Kirkwood(S) McClosky(L) Bridgeport(S) Kirkwood(S) Kirkwood & Paint Creek(S) Pennsylvanian(S) Pennsylvanian(S) Paint Creek & Bethel(S) | Lawrence Lawrence Lawrence Lawrence Madison Madison Fayette | | | Ohio W. H. Krohn Neary & Cahill J. P. Babcock W. L. Belden | 3 Projects* 2 Projects* C. & O. Henke Rhodes & McCloy | Kirkwood & Paint
Creek(S)
Pennsylvanian(S)
Pennsylvanian(S)
Paint Creek & Bethel(S) | Lawrence Lawrence Madison Madison Fayette | | | Ohio
W. H. Krohn
Neary & Cahill
J. P. Babcock
W. L. Belden | 2 Projects* C. & O. Henke Rhodes & McCloy | Kirkwood & Paint
Creek(S)
Pennsylvanian(S)
Pennsylvanian(S)
Paint Creek & Bethel(S) | Lawrence
Madison
Madison
Fayette | | | W. H. Krohn
Neary & Cahill
J. P. Babcock
W. L. Belden | C. & O. Henke
Rhodes & McCloy | Creek(S) Pennsylvanian(S) Pennsylvanian(S) Paint Creek & Bethel(S) | Madison
Madison
Fayette | | | J. P. Babcock
W. L. Belden | Rhodes & McCloy |
Paint Creek & Bethel(S) | Fayette | | | n 1: | | 1.7 (-) | 1 | | | Burtschi
Carter
Jarvis Bros. & Marcell
B. Kidd | D. L. Burtschi
Louden
Homan
Louden | Cypress (Stein)(S)
Chester Sands(S)
Cypress(S)
Weiler(S) | Fayette
Fayette
Fayette
Fayette | | | J. A. Lewis | Louden Extension | Cypress(S) | Fayette | | | Mabee
W. C. McBride
Shell
Shell
R. H. Troop | Louden
Stokes Weiler
Louden North Unit
Louden South Unit
Durbin Area* | Cypress(S) Weiler (Cypress)(S) Cypress(S) Cypress(S) Cypress(S) | Fayette
Fayette
Fayette
Fayette
Fayette | | l.
l.
l. | R. H. Troop
Arkansas Fuel*
Ashland
Bell Bros.
Calvan American | Hiatt Unit
North Morris
Birds #1
Barrick
Bishop | Cypress(S) Robinson(S) Robinson(S) Robinson(S) Robinson(S) | Fayette
Crawford
Crawford
Crawford
Crawford | | l.
l.
l. | Calvan American
Calvan American
E. Constantin | Grogan
Mitchell
J. S. Kirk | Robinson(S)
Robinson(S)
Robinson(S) | Crawford
Crawford
Crawford | | l. | E. Constantin | Sanders | Robinson(S) | Crawford | | 1. | E. Constantin* | Short* | Robinson(S) | Crawford | | 1.
1.
1. | E. Constantin E. Constantin* Forest D. W. Franchot | Smith
Wood*
Oblong
Birds | Robinson(S) Robinson(S) Robinson(S) Robinson(S) | Crawford
Crawford
Crawford
Crawford
Crawford | | 1.
1.
1.
1. | | Arkansas Fuel* Ashland Bell Bros. Calvan American Calvan American E. Constantin E. Constantin* E. Constantin E. Constantin F. | Arkansas Fuel* Ashland Bell Bros. Calvan American Mitchell J. S. Kirk E. Constantin Sanders E. Constantin* Short* E. Constantin Smith E. Constantin Forest Oblong | Arkansas Fuel* Ashland Birds #1 Robinson(S) Bell Bros. Calvan American Mitchell Robinson(S) Robinson(S) Calvan American Mitchell Robinson(S) Calvan American Mitchell Robinson(S) Calvan American Am | | Information | | | | Producti | on and inject | tion statistics | (bbls.) | | | |--|---|---|--|--|---|---|----------------------------------|-----------------------------------|---------------------------------| | Locat | ion | | | | Secondary | recovery | | | 1 | | Locat | | Date | Water | injection | Oil pro | duction | Water pr | oduction | Map
No. | | Section | TR. | first
injection | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12–31–56 | 110. | | 8
25, 26, 35, 36
13 | 3N-11W
5N-13W
4N-13W | Aug. 1956
June 1952
May 1953 | 9,221
1,601,849
229,473 | 9,221
4,402,125
651,951 | None
190,642
46,681 | None
564,864
84,502* | 17,700
134,897 | | 121
122
123 | | 19
29 | 4N-12W
4N-12W | Apr. 1956
June 1956 | 150,468
163,189 | 150,468
163,189 | 20,081
3,614 | 20,081
3,614 | | | 124
125 | | 32 | 4N-12W | Jan. 1955 | 247,711 | 438,450 | * | * | * | * | 126 | | 32
23 | 4N-12W
3N-12W | Jan. 1955
Nov. 1956 | 439,460
122,989 | 687,141
122,989 | 151,348*
None | 223,503*
None | 182,276*
None | 212,000*
None | 128 | | | 3, 4N-12W | Aug. 1948 | 8,650,859 | 36,545,635 | 932,829 | 5,282,995* | 5,104,818 | 15,969,197 | 129-
134
135- | | | 4N-12W | Mar. 1955 | 1,128,607 | 1,432,910 | 63,209 | 63,209 | 29,819 | 29,819 | 137 | | | 3, 4N-12W | Jan. 1952 | 3,975,528 | 11,633,862 | 1,013,966 | 2,248,898† | 1,305,867 | 2,395,675 | 138-
139 | | 17
17, 20
27 | 6N- 6W
6N- 6W
8N- 3E | July 1954
— 1952
Jan. 1954 | 26,116
-
356,456 | 43,321
-
1,189,806 | $\frac{2,540}{150,990}$ | 3,375
-
255,974* |
122,561 | -
163,619 | 140
141
142 | | 32 | 7N- 3E | Sept. 1956 | 12,039 | 12,039 | 540 | 540 | 900 | 900 | 143 | | 18
29, 32
8 | 7N- 3E
7, 8N-3E
7N- 3E
7N- 3E | Oct. 1953
Oct. 1950
Mar. 1954
Sept. 1954 | 56,401
39,728,562
248,000
53,023 | 224,766
103,650,154
356,128
174,233 | 18,751
6,219,335
10,200
21,553 | 90,974
13,481,678
10,200
34,463 | 5,856,154
58,200
67,540 | 10,067,731
-
92,960 | 144
145
146
147 | | 2, 3
34, 35, 36 | 7N- 3E \ | Dec. 1955 | 2,234,436 | 2,259,639 | 417,445 | 418,326* | 290,855 | 293,316 | 148 | | 28
14
20, 21
21, 28, 29
24 | 7N- 3E
8N- 3E
7N- 3E
7N- 3E
8N- 3E | Aug. 1955
Mar. 1956
Nov. 1956
Mar. 1955
Oct. 1956 | 114,511
127,848
141,176
1,170,155
25,080 | 170,973
127,848
141,176
2,048,771
25,080 | 72
None
—
359,708 | 1,072
None
—
444,761 | 1,924
338
3,054
348,506 | 11,030
338
3,054
547,892 | 149
150
151
152
153 | | 29
2
9, 10, 15, 16
13
20 | 7N- 3E
7N-13W
5N-11W
7N-13W
8N-12W | Sept. 1956
Apr. 1951
May 1954
Oct. 1954
Nov. 1953 | 47,800
 | 47,800
664,551†
7,926,170
108,456*
1,021,220 | None

94,950
None
6,884 | None
26,276†
210,184
None
11,492* |

 | 417,283†
1,210,048*
— | | | 4, 9
24, 25
29, 30, 31, 32 | 7N-13W
7N-13W
7N-12W | Nov. 1953
June 1953
Aug. 1951 | 109,480
191,820
190,837 | 302,993
459,950
657,359 | 439
18,357
11,854 | 1,537
41,160*
34,884 | —
75,240 | 31,127†
223,470* | 159
160
161 | | 1, 2, 3
26, 34, 35, 36
5, 6
31, 32 | 5N-13W (
6N-13W)
6N-13W)
7N-13W) | Aug. 1952
Feb. 1952 | 1,167,523 | 5,193,973 | 18,991
† | 75,964
† | 470,520
† | 1,419,920*
† | 162
163 | | 7
12
31, 32
5, 8, 9
21, 22
25, 36 | 7N-12W \\ 7N-13W \\ 8N-12W \\ 7N-13W \\ 5N-11W \\ 8N-13W \\ | Mar. 1954
Aug. 1952
Aug. 1956
June 1951
May 1954 | 60,810
† 280,574
2,818,090
340,436 | 337,332
†
280,574
9,946,125*
608,155 | 677
†
9,479
140,243
8,357 | 1,474
†
17,195*
534,175*
12,236* | 360
†
200,000
36,000 | 1,025
†
600,000 | 164
165
166
167
168 | | | | | Development | as of 12-3 | 1-56 | | Inj | ection Water | | | |---------------------------------|-------------------------|----------|--------------------------------------|----------------------------|------------------------------|------------------------|---|---|----------------------------------|---| | Map
No. | No. o | fwells | Injection | Spacing acres | Producti | ve acreage | | | Avg.
bbls. | Avg.
well- | | | Inj. | Prod. | pattern | input
well | Sub-
jected
to inj. | Total | Source | Туре | per day
per well
per ft. | head
press-
ure
PSI | | 121
122 | 1
37 | 1
34 |
5-Spot | 10
13.5 | 20
750 | 10
900 | River Gravel Bed
Shallow Sand | Fresh
Fresh | | 1,050
1,050 | | 123 | - 6 | 8 | 5-Spot | 10 | 60 | 160 | Penn. Sand | Brine | | 697 | | 124
125 | 5
3 | | 5-Spot
5-Spot | 10
10 | 40
20 | 40
80 | Gravel Pits
Gravel Pits | Fresh
Fresh | 4.4
6.2 | Pankings | | 126
127
128
129– | 9
10
4 | | 5-Spot
5-Spot | 3 3 | 25
25
80 | 25
25
— | Gravel Beds & Produced
Gravel Beds & Produced
Gravel Bed | Fresh & Brine
Fresh & Brine
Fresh | 3.0
6.5
— | 338
296
— | | 134
135- | 127 | 248 | 5-Spot | 10 | 1,552 | | Gravel Beds & Produced | Fresh & Brine | _ | *************************************** | | 137 | 57 | 24 | | | 404 | - | Gravel Beds | Fresh | | . | | 139
140 | 119
2 | 136
5 | 5-Spot | 10 | 1,160
— | 80 | Gravel Beds & Produced
Benoist & Aux Vases
Sands | Fresh & Brine
Fresh & Brine |
2.4 | —
680 | | 141
142 | . 5
7 | 10
8 | | 20 | 40
140 | 40
140 | Salem | Brine
Brine | 5.6 | 500
600 | | 143
144 | 1
1 | 1 3 | 5-Spot | 20
10 | 20
20 | | * | Brine
Brine | 5.2 | 100
350 | | 145 | 395 | 778 | 5-Spot &
Sunflower | | 11,131 | 13,637 | Tar Springs & Produced | Fresh & Brine | 9.2 | 336 | | 146
147
148 | 10
1
46 | 4 | 5-Spot
5-Spot
5-Spot | 20
40
20 | 160
40
1,000 | 400
50
1,000 | Tar Springs & Produced
Tar Springs
Tar Springs | Brine
Brine
Brine |
5.4
8.3 | 563
33 | | 149
150
151
152
153 | 3
3
20
20
1 | 3
21 | 5-Spot
5-Spot
5-Spot
5-Spot | 20
20
10
20
40 | 80
60
250
350
30 | 80
60
250
590 | Tar Springs
Tar Springs
Tar Springs
Tar Springs
Tar Springs | Brine
Brine
Brine
Brine
Brine | 3.5
6.5
9.9
8.7
10.5 | None
3
129
38
58 | | 154
155 | 2
5 | 3
7 | —
Modified 5-Spot | 20
4.4 | 40
44 | 40
100 | Tar Springs
Buchanan | Brine
Brine | | None
— | | 156
157
158 | 67
1
26 | 6 | 5-Spot
5-Spot
5-Spot | 10
20
10 | 530
20
207 | 580
40
474 | Penn. Sand
Cypress & Produced
Penn. Sand | Brine
Fresh & Brine
Brine | 3.9
1.6
— | 595
197
— | | 159
160 | 8
13 | 5
18 | 5-Spot
5-Spot | 10
10 | 28
62 | 231
240 | Penn. Sand
Penn. Sand | Brine
Brine | 1.7
1.8 | | | 161
162
163 | 14
72
26 | 101 | 5-Spot
5-Spot
5-Spot | 10
10
10 | 80
650
160 | 540
1,640
533 | City Water
Lower Penn.
Lower Penn. | Fresh
Brine
Brine | 0.7
2.2
— | 389
322 | | 164
165 | . 6
25 | 5
30 | 5-Spot
5-Spot | 10
10 | 50
210 | 280
425 | Surface
Lower Penn. | Fresh
Brine | |
280
— | | 166 | . 24 | , 2 | 5-Spot | 10 | 140 | 230 | Gravel Beds & Produced | Fresh & Brine | 4.6 | 350 | | 167 | 69 | | 5-Spot | 10 | 580 | 1,600 | Wabash River Gravel
Bed | Fresh | 4.7 | | | 168 | 3 | 13 | 5-Spot | | 40 | 550 | Produced & Lake | Fresh & Brine | 10.4 | 550 | | | Reser | voir statis | tics (aver | age values |) | | | |---|--|--|---|------------------------------|------------------------------------|--|---| | Depth
feet | Net pay
thick-
ness
feet | Porosity
percent | Perme-
ability
milli-
darcys | Oil
gravity
API | Oil
viscosity
centipoises | Remarks | Map
No. | | 1,600
1,625
J.1,428
B.1,611
R.1,632
1,280
1,390 | 6
18
J.8
B.14.5
R.15
25
45 | 17.2
J.18.4
B.14.6
R.18.5
21
16.5 |
J.95
B.13
R.17.2
90
60 | | 5.2 @ 80°F.
5 @ 85°F.
— | *Includes primary production since start of flood. | 121
122
123
124
125 | | 860
1,400
1,750 | 25
18.5
10 | 22.3
17.3
20
20 | 148
17.5
1,500 | 37
37
— |

 | *Included in production from Kirkwood formation. *Includes production from Bridgeport formation. *Pilot not affected. *Includes primary production since start of floods. Previously subjected to gas injection. *Boyd, Sutton, Kimmel. | 126
127
128
129-
134
135-
137 | | -
520 |
15 | 20 | *************************************** | 33.5 | | *Westall & Middagh. †Includes primary production since start of floods. | 138-
139
140 | | 550
1,558 | 15
25
20 |

17.4 | _
_
126 | 38
34 | | *Includes primary production since start of flood. Previously subjected to gas injection. | 141
142
143 | | 1,584
1,492
1,500 | 30
30 | 20 | 105 | _ | | *Water supplied by Carter. Previously subjected to gas
injection.
Previously subjected to gas injection. | 144 | | 1,560
1,450
1,550 | 27 | 18
—
20 | $\frac{200}{200}$ | 36
38
38 |
5.0 @ 60°F. | *Includes small amount of primary production since start of flood. | 146
147
148 | | 1,550
1,480
1,550
1,550
1,493 | 30
23
21
18.4
30 | 19.4
21
20.4 | 93
180
164.2 | 36.6
36.6
36.6
34.6 |
4.7 @ 60°F.
4.7 @ 60°F.
 | *Not in Louden field main flood area. | 149
150
151
152
153 | | 1,536
983 | 30
12 | <u></u> | | 34.6
32 | ********* | *Operated by Mahutska since 2-15-56. †All data as of | 154
155 | | 950
960
950 | 30
56
22.4 | 21
19.2
22.1 | 136
126
156 | | 15 @ 75°F.
—
10 @ 78°F. | *As of 1-1-56. Previously subjected to gas injection. *As of 1-1-56. *Corrected figure. *Includes primary production since 1-1-54. | 156
157
158 | | 950
880 | | 22.1
23.8 | 156
94 | 35
33.2 | 10 @ 78°F.
10 @ 78°F. | *Includes primary production since 1-1-53. †As of | 159
160 | | 900
880
850 | 20 | 17
21
22 | 170
205
130 | 34
32
32 | _
_
_ | 1-1-56. Previously subjected to gas injection. *Since 1-1-54. Previously subjected to gas injection. *Since 1-1-54. *Sold to Ohio Oil Co. during 1956. †Injection and production figures included in Ohio data. | 161
162
163 | | 900
850 | 30 | 18
21 | 70
105
77 | 34
32
33 | | Previously subjected to gas injection. *Sold to Ohio Oil Co. during 1956. †Injection and production figures included in Ohio data. *Includes production due to adjacent floods prior to | 164
165
166 | | 950
950 | | 19.5 | 162 | | 21 @ 60°F. | start of flood. *Corrected figures include cumulative injection and | 167 | | 930 | | 17.2 | 45 | 38.6 | | secondary production of former Yingling flood. *Includes primary production since start of flood. | 168 | | | | | | | Gener | |-----|------------------------------|---------------------------|-----------------------------|-------------------------------|----------------------| | | | 4.15 | - | | | | Iap | | | 1.141 A.T | Formation | | | lo. | Field | Operator | Project | Formation | County | | | Fred | operator | Troject | Sand(S), Lime(L) | County | | | W. G. I | T. | XX - 1 | D 1: (0) | | | | Main Consol. Main Consol. | Kewanee
A. J. Leverton | Wright
Stanfield | Robinson(S)
Robinson(S) | Crawford
Crawford | | | Main Consol. | Logan | Aléxander-Reynolds | Robinson(S) | Crawford | | | Main Consol. | Mahutska | Oil Center | Robinson(S) | Crawford | | 3- | | | | | | | - | Main Consol. | Ohio | 12 Projects* | Robinson(S) | Crawford | | | Main Consol. | Partlow & Cochonour | Rich | Robinson(S) | Crawford | | | Main Consol. | Petroleum Producing | | Robinson(S) | Crawford | | | Main Consol. | Pickens* | Tohill & Hughes-Robinson | | Crawford | | | Main Consol. | Red Head | "DIM" | Robinson*(S) | Crawford | |) | Main Consol. | Ree | Culver | Robinson(S) | Crawford | |) | Main Consol. | Ree | Culver Extension | Robinson(S) | Crawford | | | Main Consol. | Ree | Little John | Robinson(S) | Crawford | | 2 | Main Consol. | E. C. Reeves | Billingsley | Robinson(S) | Crawford | | 3 | Main Consol. | Shakespeare | McIntosh Unit | Robinson(S) | Crawford | | + | Main Consol. | Shakespeare | Montgomery Unit | Robinson(S) | Crawford | | | Main Canal | C1-:1 | XX7 * | D. L | C () | | | Main Consol. | Skiles | Weger* | Robinson(S) | Crawford | | | Main Consol.
Main Consol. | Tidewater
Tidewater | Barrick-Walters
Birch #1 | Robinson(S) | Crawford | | - 1 | Main Consol. | Tidewater | Birds Area | Robinson(S) Robinson(S) | Crawford
Crawford | | | Main Consol. | Tidewater | Clark-Hulse | Robinson(S) | Crawford | | , | Main Consol. | Tidewater | Dennis-Hardin | Robinson(S) | Crawford | | | Main Consol. | Tidewater | Henry-Ikemire | Robinson(S) | Crawford | | | Main Consol. | Tidewater | | Robinson(S) | Crawford | | | Main Consol. | Tidewater | | Robinson(S) | Crawford | | | Main Consol. | Tidewater | Montgomery-Seitzinger | Robinson(S) | Crawford | | | Main Consol. | Tidewater | Stahl-Walters | Robinson(S) | Crawford | | | Main Consol. | Tidewater | Stifle-Drake | Robinson(S) | Crawford | | | Main Consol. | Tidewater | G. L. Thompson | Robinson(S) | Crawford | | 3 | Main Consol. | Wilson | Hughes-Walker | Robinson(S) | Crawford | | 7 | Main Consol. | Wiser | H. J. Musgrave | Robinson(S) | Crawford | |) | Maple Grove Consol. | Ashland | Bennington | McClosky(L) | Edwards | | | Maple Grove Consol. | Investment Oil | _ | McClosky(L) | Edwards | | | Markham City | Tidewater | Newton | McClosky(L) | Jefferson | | 3 | Markham City West | Gulf | Markham City, West | Aux Vases(S)
& McClosky(L) | Jefferson | | 1 | Martinsville | Froderman & Connelly | Froderman & Connelly | Casey, Partlow(S) | Clark | | 5 | Mattoon | Carter | Mattoon | Cypress & Rosiclare(S) | Coles | | | Mattoon | Noknil | Mattoon | Rosiclare(S) | Coles | | | Maunie South | Magnolia | Maunie Coop.* | Tar Springs(S) | White | | 3 | Maunie South | Magnolia | Palestine Sand Unit | Palestine(S) | White | | 9 | Maunie South | Magnolia | Tar Springs Unit | Tar Springs(S) | White | | Information | | | | Production | on and inject | tion statistics | (bbls.) | | 200 | |---|--|--|---|--|---|--|--|---|----------------------------| | T 32. | | | | | Secondary | recovery | * : | | | | Locat | tion | Date | Water | injection | Oil pro | duction | Water p | roduction | Ma
No. | | Section | T.–R. | first
injection | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12-31-56 | 110. | | 23, 26
17
20
10, 14, 15 | 6N-13W
8N-12W
7N-12W
6N-13W | Jan. 1953
June 1952
Dec. 1951
May 1954 | 462,251
11,000
541,625
1,227,619 | 1,466,892
76,000
1,615,424
2,758,519 | 1,835
600
48,477
132,679 | 3,596
1,630
182,310
232,586 | 84,790
5,400
128,100 | 272,768
16,100
345,060 | 16
17
17
17
17 | | woman. | _ | — 1948 | 6,440,979 | 47,395,499* | 959,453 | 3,904,886* | 5,099,731 | 17,910,110* | | | 35, 36
29, 32
28
25, 26
5, 6, 7 | 6N-12W
8N-12W
6N-13W
6N-13W
7N-12W | Oct. 1954
Sept. 1951
June 1951
July 1953
Feb. 1953 | 228,510
90,000
110,281†
534,911
466,120 | 306,510
444,855
2,312,569
1,620,046
1,148,796* | 9,561
None
7,563†
16,524
172 | 14,561
None
139,218
36,698†
2,669* | 114,250
None
—
—
— | 116,830
None
412,743‡
—
65,707† | 18 | | 18
20
34, 35
17, 18, 19, 20
(32, 33) | 7N-12W
6N-12W
7N-13W
6N-12W
6N-12W
5N-12W | Mar. 1954
Oct. 1952
Dec. 1953
July 1954
May 1954 | * 116,836 602,834 70,214 151,068 | 72,206
116,836*
1,411,986
163,179
272,932 | * 3,415 12,054 5,850 7,878 | None
9,782†
35,441
8,731 | * 11,220 7,400 53,655 48,169 | None
11,220*
14,285
76,330
65,619 | 19
19
19
19
19 | | \$18, 19
\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\ | 5N-11W)
5N-12W)
7N-12W
6N-13W
5N-11W
7N-13W | Nov.
1952
Mar. 1954
Aug. 1954
Feb. 1952
Jan. 1952 | 51,895
256,575
199,779
568,771
476,039 | 776,693*
704,410
400,781
1,323,966
1,386,318 | 2,263
23,356
31,940
55,045
38,294 | 8,545*
48,524
59,722
144,505
161,118 | 11,810
21,500
15,700
174,300
256,280 | 108,610*
59,940
26,155
962,745
537,047 | 19
19
19
19
19 | | 27, 34
10, 15
11
13
15, 16 | 6N-13W
7N-13W
7N-13W
7N-14W
5N-11W | Aug. 1950
Feb. 1948
Dec. 1952
Feb. 1954
May 1954 | 442,637
335,261
101,511
149,823
146,117 | 2,557,115
2,980,724
392,463
417,685
231,710 | 75,046
22,935
7,040
58,909
5,389 | 451,921
389,739
30,534
93,248
8,843 | 425,260
231,900
43,250
16,610
12,570 | 1,423,447
1,417,211
166,675
34,965
50,025 | 20
20
20
20
20 | | 13, 14
10
26, 27
26 | 7N-13W
7N-13W
6N-13W
6N-13W
7N-12W | Nov. 1954
June 1952
Sept. 1952
Aug. 1950
Oct. 1955 | 60,403
224,150
159,965
—
174,152 | 115,945
878,537
758,879
—
192,535 | 16,013
12,992
21,633
-
2,652 | 18,969
35,132
58,551
39,604*
2,652* | 50,700
95,270
76,700
—
10,300 | 59,790
247,976
150,822
56,290*
10,300 | 20
20
20
20
20 | | 7
8, 9
1
3, 4, 9, 10 | 1N-10E
1N-10E
3S- 4E
3S- 4E | Sept. 1952
July 1955
Aug. 1955
Apr. 1954 | 65,880
*
281,106 | 281,660
*
*
608,966 | 17,273
6,060
806
17,498 | 85,346*
7,560†
806†
30,895* | | -
6,570
725,558 | 21
21
21
21
21 | | {18
13 | 9N-13W)
9N-14W) | _ | 1,440,000 | 1,440,000* | 26,344 | 33,880† | | | 21 | | 35
22
24 | 12N- 7E
12N- 7E
6S-10E | May 1952
Nov. 1950
Nov. 1955 | 1,536,689 | 4,314,185
248,682*
168,261 | $\frac{331,660}{7,605}$ | 547,059
3,571*
9,126 | 647,384
—
116,484 | 1,089,747
86,926*
136,057 | 21
21
21 | | (13, 24
)18
}24, 25 | 6S-10E
6S-11E
6S-10E | Feb. 1953 | 1,806,514 | 6,028,699 | 200,167 | 1,382,724* | 1,647,218 | 3,353,745 | 21 | | (19 | 6S-11E | Aug. 1947 | 224,851 | 4,729,680 | 6,675 | 791,238* | 55,350 | 2,036,509 | 21 | | | | | Development | as of 12-3 | 1-56 | | Injo | ection Water | | | |---------------------------------|--------------------------|----------------|--|---------------------------|------------------------------|-------------------------------|--|---|--------------------------------|---------------------------------| | Map
No. | No. of | wells | | Spacing acres | Productiv | e acreage | | | Avg.
bbls. | Avg.
well- | | 110. | Inj. | Prod. | Injection
pattern | per
input
well | Sub-
jected
to inj. | Total | Source | Туре | per day
per well
per ft. | head
press-
ure
PSI | | 169 | 15 | 34 | 5-Spot | 10 | 113 | 210 | Penn. Sand, Produced
& Lake | Fresh & Brine | 5.6 | 474 | | 170
171
172
173– | 3
22
53 | 25 | 5-Spot
5-Spot
5-Spot | 4.4

4.5 | 20
90
240 | 140
330
650 | Shallow Sand & Produced
Cypress
Surface & Produced | Brine
Fresh & Brine | 3.1
3.2 | 450
420
— | | 184 | 342 | 406 | 5-Spot | 10 | 2,210 | | Gravel Beds & Produced | Fresh & Brine | | _ | | 185
186
187 | 5
4
14 | 2 | Line
5-Spot
5-Spot | 5
10
10 | 60
10
87 | 120
700
298 | Penn. Sand
Shallow Sand & Pond
Shallow Sand | Brine
Fresh
Fresh | 4.1
 | 250
300
— | | 188 | 18 | 14 | 5-Spot | 10 | 103 | | 230' Sand & Surface | Fresh & Brine | | 400 | | 189 | 8 | 8 | 5-Spot | 10 | | 710 | Lake | Fresh | 3.2 | | | 190
191 | 2 3 | | 5-Spot
Irregular | 4.5
4.5 | 6
13.5 | 114
100 | Lake
Penn. Sand | Fresh
Fresh & Brine | | | | 192
193
194 | 6
4
6 | 8 | 5-Spot
Peripheral
Modified 5-Spot | 10
4.7
6–10 | 115
39
52 | 350
88
85 | Penn. Sand
Penn. Sand 400'-450'
Lower Robinson | Brine
Brine
Brine | 13.8
4.0
2.7 | 237
227
522 | | 195
196
197
198
199 | 9
9
9
24
13 | 32
13
41 | 5-Spot
5-Spot
5-Spot
5-Spot
5-Spot | 10
10
10
10
7 | 90
110
58
220
80 | 110
300
60
277
98 | Creek & Produced
Mississippian
Gravel Bed
Tar Springs
Gravel Bed | Fresh & Brine
Brine
Fresh
Brine
Fresh | 4.1
4.3
3.6
5.0 | 450
331
282
550
415 | | 200
201
202
203
204 | 10
24
7
10
5 | 40
16 | 5-Spot
5-Spot
5-Spot
5-Spot
— | 10
4.4
10
10 | 94
91
35
55
40 | 94
115
90
110
40 | Gravel Bed & Penn. Sand
Gravel Bed & Penn. Sand
—
Tar Springs | | 3.6
2.7
3.1
2.1 | 350
450
431
473
550 | | 205
206
207
208 | 4
6
4 | 7 | 5-Spot
5-Spot
Line Wells | 10
10 | 37
33
40
40 | 80
160
40
40 | Gravel Bed
Penn. Sand
Gravel Bed
Gravel Bed & Produced | Fresh
Brine
Fresh
Fresh & Brine | 2.2
6.8
5.2 | 452
392
381 | | 209 | 2 | 7 | 5-Spot | 10 | 40 | 160 | Gravel Bed | Fresh | 8.0 | 340 | | 210
211 | 1 | 6 2 | Flank
— | | 110
20 | 110
118 | Produced
540'-600' Sand | Brine
Fresh | 36.1 | <u> </u> | | 212
213 | 1
5† | 1
19 | —
Flank | 40 | 40
{A.V. 25
(Mc. 30 | 40
210
150 | Cypress
Cypress | Brine
Brine | | 644 | | 214 | 46 | 39 | · <u> </u> | | 230 | 500 | Pond | Fresh | _ | 300 | | 215 | 29 | 34 | 5-Spot | 20 | 461 | 610 | Sewage Effluent &
Produced | Fresh & Brine | 11.2 | 768 | | 216
217
218
219 | 2*
1
31
2 | 3
26 | Irregular
Irregular
5-Spot
5-Spot | | 30
18
448
138 | 60
80
570
230 | Produced
Gravel Bed
Gravel Bed
Gravel Bed & Produced | Brine
Fresh
Fresh & Brine | | | | | Reser | voir statis | tics (aver | age values | 3) | <u> </u> | | |---|-----------------------------------|----------------------------------|---------------------------------------|--------------------------------|---------------------------------|---|----------------------------------| | Depth
feet | Net pay
thick-
ness
feet | Porosity
percent | Perme-
ability
milli-
darcys | Oil
gravity
API | Oil
viscosity
centipoises | Remarks | Map
No. | | 900 | 15 | 20 | 245 | | | Previously subjected to gas injection. | 169 | | 977
940
925 | 30
22
20 | 23
20.5
19 | 57
167
175 | 36
36
33 | 7 @ 80°F.
— | Previously subjected to gas injection. *Former Constantin projects, Short and Wood, included. | 170
171
172
173–
184 | | | - | 20 | _ | | | cluded. | | | 1,006
1,000
850 | 12
15
30 | 24.3
20
19.5 | 240
75
125 | | 7.3 @ 76°F.
10 @ 80°F. | *Hardinville Production Co. operated this flood after 10-1-56. †Figures for 1-1-56 to 10-1-56 not included. ‡As of 1-1-56. | 185
186
187 | | 830 | 10 | _ | | 31 | | *Upper and Lower Robinson sands flooded. †Since | 188 | | 950 | 50 | 22.7 | 101 | | 10 @ 78°F. | 1-1-54. Previously subjected to gas injection. *Data for July through Nov., 1955, not included. †As of 7-1-55. | 189 | | 945
850 | . 14
24 | 20.8
20 | 154
50 | 32.4 | | *Temporarily shut down during 1955. *Since 1-1-56. New injection system completed August, 1956. †Corrected figure. Previously subjected to gas injection. | 190
191 | | 925
925
975 | 20
12
25.8 | $\frac{30}{22.6}$ | 45
150 | 35
32.6
28.3 | —
11 @ 75°F.
23 @ 71°F. | Previously subjected to gas injection. | 192
193
194 | | 900
950
881
950
910 | 20
19
14
18
20 | 17
20
19.1
19.4
19.9 | 37
152
108
197
278 | 35
32
30.1
34 | 7 @ 60°F.
—
— | *Project abandoned July, 1956. Subjected to gas injection 1946–1952. Subjected to gas injection since 1941. | 195
196
197
198
199 | | 875
935
950
910
979 | 34
14
13
20
14 | 19.8
21
19.6
20
19 | 178
175
184
250
144 | 32.7
35
35.3
34
32 | 7 @ 60°F.
—
—
— | Subjected to gas injection 1932–1950. Subjected to gas injection 1934–1948. Subjected to gas injection 1935–1953. | 200
201
202
203
204 | | 987
980
860
880 | 19
15
21
25 | —
18.2
19.8
19 | 221
108
83 | -
33.5
33
32 | ; | Subjected to gas injection since 1934. *As of 1-1-55, due to Ohio line input wells. | 205
206
207
208 | | 1,010 | 30 | 21.1 | 334 | 32.6 | <u> </u> | Previously subjected to gas injection. *Includes primary production since 1-1-56. Production prior to water injection 30 barrels per month. | 209 | | 3,100
3,275 | 5
5 | <u>-</u> | | 38
36 | <u> </u> | *Includes primary production since start of flood. *Dump flood. †Includes primary production since start of flood. | 210
211 | | 3,080 | 6 | | | | | *Dump flood. †Total production since 1-1-56. | 212 | | $\begin{bmatrix} A.V. \\ 2,900 \end{bmatrix}$ | 11.8 | 22.1 | 269 | 38 | A.V.
3.2 @ 99°F. | *Corrected figure. †Dual injection wells. | 213 | | Mc.
3,000
{C.415
P.511 | | 15.4
24 | 230 }
42.5 | 32 | Mc.
2.8 @ 104°F.
— | *Since 1-1-56. †Includes primary production since 7-1-55. | 214 | | Cyp.
1,750
Ros. | | 16 | 84 | 39 | 1.7 @ 85°F. | | 215 | | 1,950
1,952
2,275
2,010
2,270 | 10
—
— | 15
—
—
— | 990
—
—
— | 37
—
37.3 | | *As of 1-1-55. *Cooperative flood with Skelly. *Includes primary production since start
of flood. *Includes primary production since start of flood. | 216
217
218
219 | | 221
2222
2223
2224
2225
2226
2227
2228
2229
231
232
233
233
234
235
237
238
239 | | | | | | | | | |--|---|---|--|---|--|--|--|--| | | Field | Operator | Project | Formation Sand(S), Lime(L) | County | | | | | 221
222
223 | Mill Shoals
Mill Shoals
Mt. Carmel
Mt. Carmel
Mt. Carmel | Barron Kidd
Sohio
G. S. Engle
First Nat'l Pet. Trust
First Nat'l Pet. Trust | Gardner B. R. Gray, Trustee G. Dunkel Shaw Courter Shaw Courter | Aux Vases(S)
Aux Vases(S)
Biehl(S)
Biehl(S)
Cypress(S) | Hamilton
Hamilton
Wabash
Wabash
Wabash | | | | | 226
227
228 | Mt. Carmel
Mt. Carmel
Mt. Carmel
Mt. Carmel
Mt. Carmel
Mt. Carmel | T. W. George
O'Meara Brothers
Shell
Skiles
Skiles | North Mt. Carmel
Mt. Carmel
Mt. Carmel
Chapman-Courter
W. Mt. Carmel | Cypress(S) Cypress(S) Cypress(S) Cypress(S) Tar Springs(S) | Wabash
Wabash
Wabash
Wabash
Wabash | | | | | 231 | Mt. Carmel
New Harmony Consol.
New Harmony Consol. | Texas
Ashland
Arrow | Stein
Maud North
* | Tar Springs(S) Benoist(S) Benoist(S) | Wabash
Wabash
White | | | | | | New Harmony Consol.
New Harmony Consol. | Arrow
Arrow | * | Aux Vases(S)
Lower Cypress(S) | White
White | | | | | 236
237
238 | New Harmony Consol.
New Harmony Consol.
New Harmony Consol.
New Harmony Consol.
New Harmony Consol. | Arrow
Calstar
Calstar
Cities Service
T. W. George | Ford
Ford "B"*
Brines
East Maud | Middle McClosky(L)
Aux Vases(S)
Bethel(S)
Benoist(S)
Bethel(S) | White
White
White
Wabash
Wabash | | | | | 40
41
42
43
44 | New Harmony Consol.
New Harmony Consol.
New Harmony Consol.
New Harmony Consol.
New Harmony Consol. | T. W. George
Herndon & Ashland
Herndon
Inland
Luboil | East Maud
Calvin
Calvin
Bowman's Bend Unit
Helm* | Cypress(S)
Aux Vases(S)
Benoist(S)
Tar Springs(S)
Aux Vases(S) | Wabash
White
White
White
Wabash | | | | | .45
.46
.47
.48
.49 | New Harmony Consol.
New Harmony Consol.
New Harmony Consol.
New Harmony Consol.
New Harmony Consol. | Luboil
Luboil
Phillips
Phillips
Sinclair | Helm*
Helm*
Schultz
Schultz
M. S. Donald | Bethel(S)
Waltersburg(S)
Upper Cypress(S)
Lower Cypress(S)
Aux Vases(S) | Wabash
Wabash
Wabash
Wabash
White | | | | | 50 | New Harmony Consol. | Skiles | East Maud | Bethel(S) | Wabash | | | | | .51 | New Harmony Consol. | Skiles | East Maud | Cypress(S) | Wabash | | | | | .52 | New Harmony Consol. | Skiles | Siegert Bottoms | Bethel(S) | Wabash,
Edwards | | | | | 53 | New Harmony Consol. | Skiles | Smith-Davenport | Cypress(S) | White | | | | | 54 | New Harmony Consol. | Skiles | West Maud | Bethel(S) | Wabash | | | | | 55
56 | New Harmony Consol.
New Harmony Consol. | Sun
Sun | Ford "B"*
Ford "B"* | Aux Vases(S)
Bethel(S) | White
White | | | | | 57
58 | New Harmony Consol.
New Harmony Consol. | Sun
Sun | Greathouse*
Greathouse* | Bethel(S)
Cypress(S) | White
White | | | | | 59 | New Harmony Consol. | Sun | Greathouse | McClosky(L) | White | | | | | Information | | | | Production | on and inject | tion statistics (| bbls.) | | | |---|--|--|---|---|--|--|-------------------------------------|---|---------------------------------| | Locat | ian | | | | Secondary | recovery | | | | | Locat | 1011 | Date - | Water i | njection | Oil pro | duction | Water pr | oduction | Map
No. | | Section | TR. | first
injection | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12–31–56 | | | 24
1
5
7
7 | 3S- 7E
4S- 7E
1S-12W
1S-12W
1S-12W | Sept. 1956
May 1952
June 1952
Feb. 1950
Apr. 1953 | * 311,170 65,485 38,573 46,279 | * 1,187,694 198,039* 345,059 259,021 | None
41,959
5,286
3,000
2,160 | None
265,740*
28,386†
68,602
28,431 | 190,884
10,660 | 341,965
31,610*
148,325*
9,463* | 223 | | 4, 5
17
17, 18
7, 18 | 1S-12W
1S-12W
1S-12W
1S-12W
1S-12W | Aug. 1955
July 1954
July 1954
Jan. 1955
Oct. 1955 | 130,730
335,072
702,500
133,904
115,776 | 176,262
882,475
2,033,797
342,040
129,719 | 2,155
38,436
255,316
69,946
26,500 | 2,155
58,255
345,356
105,124*
32,500 | 3,481
211,526
38,562
2,370 | 3,481
73,652*
274,544
46,388*
2,370 | 227 | | 5, 8
5, 6, 7, 8
32 | 1S-12W
2S-13W
3S-14W
3S-14W | Feb. 1952
Apr. 1956
Sept. 1956 | 104,470
88,099
59,391 | 443,610
88,099
59,391 | 12,035
7,081
None | 73,868
7,081*
None | 80,681
None
— | 251,254
None
— | 230
231
232 | | {32, 33
\5
33 | 4S-14W
3S-14W | Sept. 1956
Sept. 1956 | 85,668
45,658 | 85,668
45,658 | None
None | None
None | | | 233
234 | | \$\\ \begin{aligned} \{32, 33\\ 5\\ 21, 22\\ 21\\ 20, 21\\ 32, 33\\ \end{aligned}\$\\ \end{aligned}\$ | 3S-14W
4S-14W
4S-14W
4S-14W
1S-13W
1S-13W | Sept. 1956
Jan. 1956
Mar. 1953
Aug. 1956
July 1952 | 62,617
388,866
—
141,752
27,141 | 62,617
540,886*
273,014†
141,752
97,858* | None
4,050
—
None
12,180 | None
12,894*
52,853†
None
54,848† | |
67,939†
5,661
_ | 235
236
237
238
239 | | 32, 33
5, 8
8
15, 16, 21, 22
22 | 1S-13W
4S-14W
4S-14W
5S-14W
3S-14W | Jan. 1955
Nov. 1952
—
Dec. 1953
Dec. 1951 | 25,011
862,282
301,615
687,544 | 30,856
2,049,756
301,615
1,927,601 | 12,180
149,917
231,213 | 54,844*
239,050*
564,711* | 347,060 | | 240
241
242
243
244 | | 22
22
7
7
21, 28 | 3S-14W
3S-14W
3S-13W
3S-13W
4S-14W | Dec. 1951
Dec. 1950
May 1952
July 1951
Oct. 1956 | 92,054
477,079
41,670 | 710,846
2,257,420
41,670 | | | 72,290
472,293
3,650 | 314,178
1,642,510
3,650 | 245
246
247
248
249 | | \$32, 33
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1S-13W
2S-13W
1S-13W | Apr. 1952 | 120,044 | 582,268* | 43,022 | 143,035* | 25,901 | 86,601 | 250 | | \\ 4, 5
\\ 34 | 2S-13W
2S-14W | Nov. 1952 | 102,792 | 442,657* | 18,441 | 55,673* | 54,620 | 194,920 | 251 | | (2, 3, 10 | 1 | Oct. 1951 | 265,417 | 1,660,684 | 67,704 | 377,602 | 60,757 | | 252 | | 15
{32
5 | 4S-14W
1S-13W
2S-13W | May 1955
Oct. 1950 | 44,381
279,194 | 135,138
1,544,764 | 1,566
14,294 | 1,566
299,146* | 608 | 260,340 | 253 | | 21
21 | 4S-14W
4S-14W | Mar. 1953
Mar. 1953 | 31,068
107,469 | 142,064
330,603 | 2,622
17,186 | 5,374
45,927 | 3,535 | 3,719
121,096 | 255
256 | | {33433∫33 | 4S-14W
5S-14W
4S-14W
4S-14W | Jan. 1949
Jan. 1953 | 261,479
131,448 | 2,484,605*
461,894 | 70,243
None | 247,536*
None | 136,100
17,800 | 1,781,185*
31,780 | 257
258 | | 4 | 5S-14W | Aug. 1947 | 107,340 | 1,086,865* | 3,743 | 128,681 | 27,840 | 225,963 | 259 | | | | | Development | as of 12-3 | 31-56 | | Inj | ection Water | | | |---------------------------------|-------------------------|---------------|---|---------------------------|-------------------------------|--------------------------------|--|--|-----------------------------------
--| | Map
No. | No.o | fwells | Injection | Spacing acres | Productiv | ve acreage | | | Avg. | Avg. | | No. | Inj. | Prod. | pattern | per
input
well | Sub-
jected
to inj. | Total | Source | Туре | per day
per well
per ft. | head
press-
ure
PSI | | 221 | 1
8
2 | 7 | Irregular
5-Spot
Modified | 10
20
29 | 30
170
87 | 30
170
68 | Hardinsburg
Gravel Bed
Shallow Sand | Brine
Fresh
Fresh | 9.7
13.4 | | | 223 | 1† | 2 | Spot | 10 | 30 | 30 | Water Well & Produced | Fresh & Brine | 6.6 | | | 224 | 1† | 4 | Spot | 10 | 50 | 50 | Water Well | Fresh | 11.2 | _ | | 226
227
228 | 3
6
20
4
3 | 15
27 | 5-Spot
Peripheral | 20
20
-
10 | 70
234
325
100
70 | 70

570
100
40 | Penn. Sand, 800'
Water Well
Gravel Bed
River & Produced
Produced | Brine
Fresh
Fresh & Brine
Brine | 8.5
11.8
7.1
4.8
17.6 | 514
673
455
650
950 | | 231 | 2
5
4 | 10 | Flank
—
5-Spot | 20
20 | 30
137
50 | 73
150
131 | Shallow Sand & Produced
(Purchased Water)
Wabash River & Gravel
Bed | Brine | 12.3
10.6
12.3 | 966
1,381
— | | | . 9
3 | | 5-Spot
5-Spot | 20
20 | 162.5
45 | 323
165 | River & Gravel Bed
River & Gravel Bed | Fresh
Fresh | 5.9
15.3 | | | | 4
5 | 7
7 | 5-Spot
5-Spot | 20
10 | 85
95 | 302
215 | River & Gravel Bed
Gravel Bed | Fresh
Fresh | 14.9
11.6 | None
923 | | 238 | 1
10
2 | 3
50
7 | 5-Spot
5-Spot | 20
20
20 | 20
200
90 | 35
600
70 | Gravel Bed
Penn. Sand
Surface | Fresh
Brine
Fresh | _
 | 10
1,500 | | 240 | 1 | 3 | 5-Spot | 20 | 40 | 50 | Surface | Fresh | _ | 1,500 | | 241 | 14 | 18 | Line Wells | 10 | 200 | 250 | _ | Fresh | 5.6 | 613 | | 242
243
244 | 8
3
8 | | —
Peripheral
Irregular &
5-Spot | 10
12 | 90
200
50 | 90
200
150 | —
Gravel Bed & Produced
Shallow Sand | —
Fresh & Brine
Fresh | 6.9
32.2
— | 716
335
— | | 245 | 15 | 17 | 5-Spot | 12 | 180 | 300 | Shallow Sand | Fresh | | and the same of th | | 246 | 3 | 4 | Irregular | 3.3 | 10 | 15 | Shallow Sand | Fresh | _ | | | 247
248
249 | 1
2
2 | | —
Irregular
Peripheral | | 9
21
105 | 70 | Shallow Sand & Produced
Shallow Sand & Produced
Supply Well | Fresh & Brine
Fresh & Brine
Fresh | 25.2
32.7
— | 812
827
— | | 250
251
252
253
254 | 8
2
19
1
20 | 12
24
2 | 5-Spot
5-Spot
5-Spot
Irregular
5-Spot | 20
20
20
-
20 | 250
20
380
30
340 | 280
100
430
30
430 | Tar Springs | Fresh
Fresh & Brine
Brine
Fresh | 4.8
17.6
2.1
12.2
3.2 | 1,500
1,500
1,500
None
1,500 | | 255
256
257 | 1
1
6 | 5
4
18 | | _
 | 20
40
180 | 80
20 | Gravel Bed | Fresh
Fresh
Fresh | 8.5
24.5
5.6 | 1,387
681
1,405 | | 258 | 1 | - | | 10 | 10 | _ | Gravel Bed | Fresh | 39.4 | 1,235 | | 259 | 1 | 2 | | | 100 | _ | Gravel Bed | Fresh | 58.8 | 1,530 | | 3,243
3,245
1,500
1,375
2,050
2,000
2,140
2,075 | Jet pay
thick-
ness
feet 11 11 6.7 16 | Porosity percent | Perme-
ability
milli-
darcys | Oil
gravity
API | Oil
viscosity
centipoises | Remarks | Map
No. | |--|---|----------------------------------|---------------------------------------|--|---|---|---------------------------------| | 3,245
1,500
1,375
2,050
2,000
2,140
2,075 | 11
6.7
16 | | | | 1 | *Dump flood. *Includes primary production since start of flood. *Does not include 1954 data. †Includes primary production since start of flood. *As of 1-1-56. †During 1956, injection well used as a straight disposal well. *As of 1-1-56. †Injection well shut down 12-11-56. *Includes water production during 1955 only. *Corrected figures. *Includes primary production since start of flood. *Arrow-McBride, Hon-Bump-Crawford water flood. *Arrow-McBride, Hon-Bump-Crawford water flood. *Arrow-McBride, Hon-Bump-Crawford water flood. *Includes injection and production from original pilot flood started in March of 1953. *Cooperative pilot flood with Sun. †As of 1-1-56. | | | 2,000
2,140
2,075 | 12 | | 310 | | | *Includes primary production since start of flood. *Does not include 1954 data. †Includes primary production since start of flood. *As of 1-1-56. †During 1956, injection well used as a straight disposal well. | 220
221
222
223 | | $\frac{2,140}{2,075}$ | | | - | | | *As of 1-1-56. †Injection well shut down 12-11-56. | 224 | | 2,230
1,729 | 14
13
13.6
19
6 |
19
18.2
 | 182
147 | 33
38.8
— | | | 225
226
227
228
229 | | 2,040
2,650
2,650 | 11.6
6.5
10.8 | 18.9
16
12.7 | 221
60
— | $\begin{array}{c c} 36 \\ \hline 35.5 \end{array}$ | 4.0
4.5 @ 95°F. | | 230
231
232 | | 2,800
2,600 | 14.3
8.9 | 13.3
15.6 | _ | | 4.7 @ 97°F.
6.0 @ 96°F. | | 233
234 | | 2,900
2,840 | 9.4
18.3 | <u> </u> | | | 4.2 @ 98°F.
4.8 @ 70°F. | *Includes injection and production from original pilot | 235
236 | | 2,695
2,600
2,500 | 12
12
15 | | —
35
57 | | 3.7 @ 96°F.
5.1 @ 94°F. | | 237
238
239 | | 2,400
2,800 | 12
30 | —
14 | 10 | 41 | | *Total production including 27,684 bbls. due to injection since 1952 on adjacent leases. *Production from Jan. to Nov. 1954 is not included. Includes production from flooded Benoist formation. | 240
241 | | 2,700
2,260
2,750 | 15
19.5
12 |
17.9
16 | 120
20 | 35.5
— | | *Included in production from Aux Vases formations. *Includes primary production since 1-1-54. *The status of this flood has not been reported since 1952. | 242
243
244 | | 2,640 | 14 | 17.1 | 44 | | | *The status of this flood has not been reported since | 245 | | 2,115 | 25 | 20.1 | 171 | | - | *The status of this flood has not been reported since 1952. | 246 | | 2,500
2,500
2,811 | 10
20
28 | 18 | | 37.5
37.5
36 | _

 | 1932. | 247
248
249 | | 2,520
2,400
2,680
2,630
2,620 | 8.5
8
18
10
12 | 17
18.5
17
17.7
17.2 | 57
75
75
145
57 | 36.2 | 5.1 @ 94°F.
5 @ 90°F.
3.8 @ 81°F.
—
4.6 | *Corrected figures. *Corrected figures. *Corrected figure. | 250
251
252
253
254 | | 2,855
2,696
2,750 | 10
12
23.2 | 13
-
18 | $\frac{30}{20}$ | 32.5
32.5
36.9 | _ | *Cooperative pilot flood with Calstar. *Cooperative pilot flood with Calstar. *Included in Superior's New Harmony field unit after | 255
256
257 | | 2,650
2,900 | 10 | | _ | 36.9
36.9 | | Nov. 1956. Previously subjected to gas injection. *Included in Superior's New Harmony field unit after Nov. 1956. Previously subjected to gas injection. *Corrected figure. | 258
259 | | | 1 | | | *** | Table 14.— |
---------------------------------|--|--|--|---|---| | | | | | | General | | Map
No. | Field | Operator | Project | Formation Sand(S), Lime(L) | County | | 260
261 | New Harmony Consol.
New Harmony Consol. | Superior
Superior | Kern-Hon Unit
New Harmony Field Unit | Upper Tar Springs(S)
Aux Vases(S) | White
White (Ill.)
Posey (Ind. | | 262 | New Harmony Consol. | Superior | New Harmony Field Unit | Bethel(S) | White (Ill.) Posey (Ind.) | | 263 | New Harmony Consol. | Superior | Waltersburg Sand Unit | Waltersburg (S) | White (Ill.) | | 264 | New Harmony Consol. | Tidewater | E. S. Dennis "A" | Bethel(S) | Posey (Ind.)
White | | 265
266 | New Harmony Consol.
New Harmony Consol. | Tidewater
Tidewater | O. R. Evans
O. R. Evans | Aux Vases(S)
Biehl(S) | White
White | | 267
268
269 | New Harmony Consol.
New Haven Consol.
New Haven Consol. | West Drilling
Hiawatha
Hiawatha | C. W. Raber
New Haven
New Haven | Biehl(S)
Cypress(S)
Tar Springs(S) | Wabash
White
White | | 271
272 | Odin
Olney Consol.
Oskaloosa
Parkersburg Consol.
Parkersburg Consol. | Ashland
Texas
Texas
Calvert
Ohio | Odin East Olney Oskaloosa Parkersburg* Parkersburg Unit* | Cypress(S) McClosky(L) Benoist(S) McClosky(L) McClosky(L) | Marion
Richland
Clay
Richland
Richland | | 275
276
277 | Patoka
Patoka
Patoka | Sohio
Sohio
Sohio | Patoka Benoist
Patoka Rosiclare
Stein Unit | Benoist(S)
Rosiclare(S)
Cypress(S) | Marion
Marion
Marion | | 278
279 | Phillipstown Consol.
Phillipstown Consol. | C. E. Brehm
C. E. Brehm | Phillipstown Unit "A"
Phillipstown Unit "B" | Penn.(S)
Cypress(S) | White
White | | 282
283 | Phillipstown Consol. Phillipstown Consol. Phillipstown Consol. Phillipstown Consol. Phillipstown Consol. | British American
Magnolia
Phillips
Phillips
Skiles | N. Calvin
Schmidt-Seifried Unit
Flora
Laura
L. O. Cleveland | Penn. #7(S) Biehl(S) Degonia(S) Bethel(S) Tar Springs(S) | White
White
White
White
White | | 285
286
287
288
289 | Phillipstown Consol. Phillipstown Consol. Phillipstown Consol. Roland Consol. Roland Consol. | Sun
Sun
S. C. Yingling
Carter
Carter | Phillipstown Phillipstown Grayville S. W. Roland Stokes Unit | Clore(S) Tar Springs(S) L. Cypress(S) Waltersburg(S) Hardinsburg(S) | White
White
White
White
White | | 290 | Roland Consol. | T. W. George | Pankey-Morehead Unit | Cypress(S) | Gallatin & | | 291 | Roland Consol. | Indiana Farm Bureau | Omaha | Waltersburg(S) | White
Gallatin | | 292 | Roland Consol. | Pure | Stokes-Brownsville Unit | Hardinsburg(S) | White | | 293
294 | Roland Consol.
St. James | Shell
H. Rosenthal | Iron Unit
Washburn Lease | Hardinsburg(S)
Cypress(S) | White
Fayette | | 295
296
297
298
299 | Ste. Marie Sailor Springs Consol. Sailor Springs Consol. Sailor Springs Consol. Sailor Springs Consol. | J. R. Randolph
Ashland
Ashland
Ashland
Ashland | Ste. Marie
Bible Grove (Stortzum)
Bible Grove (Weibking)
Bible Grove (Wood)
East Flora | McClosky(L) Rosiclare(L) McClosky(L) McClosky(L) McClosky(L) | Jasper
Effingham
Effingham
Effingham
Clay | | Information | | | | Production | on and inject | ion statistics | (bbls.) | | | |---|--|---|--|--|---|--|--|--|---------------------------------| | т. | • | | | | Secondary | recovery | | | | | Locat | 10n | Date | Water | injection | Oil pro | duction | Water pi | oduction | Map
No. | | Section | TR. | first
injection | Total
1956 | Cumu-
lative
12-31-56 | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12–31–56 | 110. | | 32, 33
27, 33, 34 | 4S-14W
4S-14W | Feb. 1954
Nov. 1956 | 192,974
39,903 | 539,128
39,903 | 81,822
None | 264,296
None | 83,565 | 132,592 | 260
261 | | 27, 33, 34 | 4S-14W | Nov. 1956* | 295,267 | 3,664,808† | | 652,211† | and the same of th | 4,232,171‡ | 262 | | 4, 5, 9, 10 | 5S-14W | Aug. 1946 | 2,538,344 | 15,823,438* | 841,951 | 3,101,079* | 942,178 | 2,549,526* | 263 | | 28, 33 | 4S-14W | July 1951 | 1,472,334 | 7,555,163 | 32,155 | 418,441 | 428,318 | 1,338,739 | 264 | | 4, 5
4, 5
∫19 | 4S-14W
4S-14W
2S-13W | Oct. 1949
Jan. 1956 | 94,342
73,243 | 911,750
73,243 | 21,708
27,086 | 117,183
27,086 | 19,939
7,891 | 194,991
7,891 | 265
266 | | 19
(24
17
17 | 2S-14W)
7S-11E
7S-11E | Oct. 1956
July 1954
July 1954 | 3,220
124,389
40,451 | 3,220
400,978
57,261 | 90
83,708
8,670 | 90
155,553*
16,545* | 240
3,650
1,825 | 240
7,181
3,079 | 267
268
269 | | {1, 12, 13
{6, 7, 18
23, 24, 25, 26
26, 27, 34, 35
16, 21
29 | 2N- 1E)
2N- 2E)
4N-10E
4N- 5E
2N-14W
2N-14W | Oct. 1949
Mar. 1951
Jan. 1953
Jan. 1955
Mar. 1955 | 551,159
216,959
781,682
—
396,500 | 3,158,404
1,223,912
2,962,383
107,440†
1,100,590 | 53,947
29,849
160,760
None
59,135 | 1,146,838
88,066
625,228
None
64,858 | 82,787
305,243
—
194,952 | 198,809
658,971
43,025†
201,194 | 270
271
272
273
274 | | 20, 21, 28, 29
21, 28, 29
28 | 4N- 1E
4N- 1E
4N- 1E | Sept. 1943
1948
Aug. 1951 | 3,799,392
646,029
123,897 | 42,968,499
4,971,170
522,498 | 91,221
47,002
4,656 | 6,242,118
1,301,571*
50,384* | 1,583,377
270,519
111,426 | 29,828,856
1,530,492
345,438 | 275
276
277 | | {30
19, 30
19 | 4S-11E
4S-14W
4S-14W | June 1952
Jan. 1954 | 54,638
19,382* | 289,993
99,430 | 7,122
10,499 | 58,212*
35,584† | | | 278
279 | | 31
30, 31
24
19
36 | 3S-14W
3S-11E
4S-10E
4S-11E
4S-10E | June 1951
May 1951
Sept. 1953
Mar. 1952
Nov. 1955 | 117,230
150,662
15,355
41,177 | 1,586,644*
947,751
419,443
45,905*
47,704 | | 917,774*
390,835*
59,449
None
85 | 73,051
63,056
None
None | 566,284*
318,039
184,401
None
None | 280
281
282
283
284 | | 6
6
20
14, 15, 16 | 5S-11E
5S-11E
3S-14W
7S- 8E
6S- 9E | Dec. 1955
Feb. 1956
Aug. 1954
June 1955
July 1954 | 48,608
18,331
94,673
1,411,476
452,422 | 52,797
18,331
263,521*
2,114,825
1,127,172 | 23,155
 | 23,155
—
18,284
20,252
251,734 | 520
70,886
53,123 | 1,020
113,502
58,834 | 285
286
287
288
289 | | 17, 20 | 7S- 8E | Oct. 1956 | 10,600 | 10,600 | None | None | None | None | 290 | | 20, 21, 28, 29
(31, 32 | 7S- 8E
5S- 9E | Mar. 1953 | 1,174,798 | 3,689,292 | 275,711 | 582,379* | 334,152 | 635,652 | 291 | | \ \ \ 36 \ \ \ 12 | 6S- 9E
5S- 8E | Apr. 1956 | 1,413,326 | 1,413,326 | 28,621 | 28,621 | 5,355 | 5,355 | 292 | | 1, 12
23, 24, 25
30 | 6S- 8E
6S- 8E
6N- 3E | Dec. 1950
Mar. 1954 | 1,090,952
66,000 | 6,728,893
202,000* | 251,583
24,600 | 1,352,078
80,000* |
818,361
66,000 | 2,061,727
202,000* | 293
294 | | 5, 6, 7, 8
28
29
28
16, 21 | 5N-14W
6N- 7E
6N- 7E
6N- 7E
3N- 7E | Oct. 1948
June 1955
July 1954
June 1955
Nov. 1956 | 140,000
98,820
58,560
47,580
15,565 | 1,651,500*
152,080
171,340
74,500
15,565 | 12,708
4,186
9,482
87
2,554 | 138,683
5,342*
21,022*
136*
2,554* | 30,000 |

 | 295
296
297
298
299 | TABLE 14.— | | | | Development | as of 12-3 | 31-56 | | Inj | ection Water | | | |---------------------------------|-------------------------|--------------|---|------------------------|------------------------------|---------------------------------|---|---|------------------------------------|------------------------------------| | Map
No. | No. o | fwells | 1 | Spacing | Productiv | e acreage | | | Avg.
bbls. | Avg. | | 110. | Inj. | Prod. | Injection
pattern | per
input
well | Sub-
jected
to inj. | Total | Source | Туре | per day
per well
per ft. | head
press-
ure
PSI | | 260
261 | 3
13 | 773 | Split Line
5-Spot | | 121
2,029 | 121
2,029 | Gravel Bed
Shallow Gravel &
Produced | Fresh
Fresh & Brine | 13.3 | 1,200
406 | | 262 | 29 | 120 | 5-Spot | 20 | 2,576 | 2,576 | Shallow Gravel &
Produced | Fresh & Brine | | | | 263 | 6 | 17 | Split Line | _ | 725 | 725 | Shallow Sand & Produced | Fresh & Brine | 23.1 | 900 | | 264 | 18 | 18 | 5-Spot | 10 | 160 | 185 | Gravel Bed & Produced | Fresh & Brine* | 7.5 | 1,500 | | 265
266
267
268
269 | 6
2
1
6
3 | 4
4
7 | | 20
20
10
— | 140
40
120
— | 160
110
120
— | Shallow Sand
Shallow Sand
Water Well
Water Well | Fresh
Fresh
Fresh
Fresh
Fresh | 1.8
6.3
3.6
5.7
3.4 | 1,333
913
615
— | | 270
271
272
273 | 10
3
10
2* | 13
22 | Perimeter
Flank
Perimeter
Random | 10
20 | 230
460
407
160 | 290
515
407
160 | Tar Springs
Weiler Sand & Produced
Penn. Sand
McClosky | Brine
Brine
Brine
Brine | 10.1
37.4
15.1 | 635
974
1,266 | | 274 | 4† | 6 | Line | _ | 200 | _ | | Brine | 54.3 | † | | 275
276
277
278
279 | 65
16
5
1
2 | 11
5
5 | 5-Spot
Perimeter
Peripheral
Irregular
Irregular | 10
—
—
—
— | 527
445
61
90
80 | 445
61
90
80 | Tar Springs Tar Springs Tar Springs Penn. Sand Penn. Sand | Brine
Brine
Brine
Brine
Brine | 5.9
12.3
5.7
6.5 | 395
590
530
— | | 280
281
282
283
284 | 9
5
2
1*
1 | 5 2 | 5-Spot
5-Spot
5-Spot

Irregular | 10
20
10
— | 130
53
25
16
30 | 130
130
70
40
30 | Produced & 1,300' Sand
Shallow Sand
Shallow Sand & Produced
Produced
Penn. Sand | Brine
Fresh
Fresh & Brine
Brine
Brine | | 1,234
1,266
None | | 285
286
287
288
289 | 1
1
3
7
7 | 4
6
22 | | 10
-
20 | 40
40
128
556
94 | 135
135
128
577
209 | Produced
Produced
City Water
Penn. Sand
Bridgeport Sand | Brine
Brine
Fresh
Brine
Brine | 13.3
7.9
9.0
42.5
15.3 | 400
1,300
1,200
83
492 | | 290
291 | 2
9 | 22 | 5-Spot
Flank | 20
10 | 40
336 | 40
336 | Tar Springs Sand
Produced | Brine
Brine | 4.2
25.5 | None
— | | 292
293
294 | 37
20
3 | 24 | 5-Spot
5-Spot
— | 20
20
— | 590
390
95 | 770
430
95 | Penn. Sand
Tar Springs
Produced | Brine
Brine
Fresh & Brine | 9.5
6.0
3.0 | 550
508
200 | | 295
296 | | 14 | Spot
Irregular | | 400
60 | 500
60 | Cypress
Cypress | Brine
Brine | <u>-</u>
67.7 | | | 297 | 1† | 3 | <u> </u> | _ | 30 | 55 | Cypress | Brine | 32.1 | | | 298
299 | | | | 40 | 20
160 | 20
160 | Tar Springs
Produced | Brine
Brine | 26.1
16.6 | _
None | | | Reser | voir statis | tics (aver | age values | s) | | | |---|-----------------------------------|------------------------|---------------------------------------|-----------------------|---|--|---------------------------------| | Depth
feet | Net pay
thick-
ness
feet | Porosity
percent | Perme-
ability
milli-
darcys | Oil
gravity
API | Oil
viscosity
centipoises | Remarks | Maŋ
No. | | 2,250
2,460 | 13.3
8.9 | | | 38
36.4 | 5.5 @ 85°F.
3.7 @ 96°F. | *Included with Bethel formation's produced water. | 260 | | 2,340 | 12.4 | 15.4 | 32 | 36.8 | 4.3 @ 94°F. | *Effective date of unit operation. †Figures include cumulative injection and secondary production prior to unit operation. ‡Cumulative water production from all zones within unit area. | 263 | | 2,200 | 43 | 19.2 | 475 | 36.8 | 2.9 @ 86°F. | *Includes Indiana data. Previously subjected to gas | 263 | | 2,700 | 30 | 16 | 50 | 39 | 2.2 @ 92°F. | *Two separate injection systems. Previously subjected to gas injection. | 264 | | 2,800
1,800
1,740 | 24
16
15 | 14.5
12.8
20.6 | 17.1 | 39
32
37 | | Previously subjected to gas injection. *Includes primary production since start of flood. | 265
266
267
268 | | 2,445
2,110 | 10
11 | | _ | | - | *Includes primary production since start of flood. | 269 | | 1,700
3,100
2,600
3,062 | 15
5.3
14.2
10 | | | 38
36
37.8 | 8.3 @ 69°F.
2.6 @ 99°F.
6.4 @ 60°F. | *Abandoned during 1956 because of large decrease in | 270
271
272
273 | | 3,150 | 5 | 20 | | _ | *************************************** | oil production. †As of 1-1-56.
*In cooperation with Sinclair. †Dump flood. | 274 | | 1,410
1,550
1,280
1,912
2,750 | 23 | 19
18.8
21
13 | 110
223
32
36
— | 39
40
39
38 | 4.1
5.5 @ 60°F.
4.5 @ 84°F. | *Includes primary production since start of flood. *Includes primary production since start of flood. *Includes primary production since start of flood. *Injection shut down June through December 1956. †Includes primary production since start of flood. | 275
276
277
278
279 | | 1,550
1,830 | | 17.6 | 86
— | | 20 @ Res. Tp.
11.2 @ 78°F. | *As of 1-1-56. *Includes primary production since start of flood. | 280
281 | | 2,000
2,800
2,300 | 15
10
12 | 15 | 46 | 37 37 — | | *Input well shut down between 8-16-54 and 9-13-56. | 282
283
284 | | 2,000
2,300
2,800
2,175
2,530 | 10
7
9.6
13
11.6 | 19.5 | 292 | 34.5
30
38.5 | | *Corrected figure. | 285
286
287
288
289 | | 2,620
1,695 | 20
14 | 14
19 | 16
225 | 29.2 | 8 @ 32°F. | *Includes primary production since start of flood. Previously subjected to gas injection. | 290
291 | | 2,628
2,500
1,595 | 15.5
25
20 | 17.3
17.6 | | 38.6
38.5
34 | | *Estimated figures. | 292
293
294 | | 2,860
2,870 | 7
4 | | | 37 | | *Dump flood, estimated injection. *Includes primary production since start of flood. | 295
296 | | 2,850 | 5 | | _ | 37 | | †Controlled dump flood.
*Includes primary production since start of flood. | 297 | | 2,850
2,950 | . 5
6 |
15 | 800 | 37 | | †Controlled dump flood. *Includes primary production since start of flood. *Includes primary production since start of flood. | 298
299 | | | | | | | General | |---------------------------------|---|--|--|---|---| | Map
No. | Field | Operator | Project | Formation Sand(S), Lime(L) | County | | 301
302
303 | Sailor Springs Consol. | Cities Service
Kingwood
Magnolia
W. C. McBride
W. C. McBride | Wyatt
Nadler*
Sailor Springs Unit
Goldsby-Dickey
Duff Cypress* | Aux Vases(S) Rosiclare & McClosky(L) Cypress(S) Cypress(S) Cypress(S) | Clay
Effingham
Clay
Clay
Clay | | 305
306
307
308
309 | Sailor Springs Consol. Salem Consol. Salem Consol. Salem Consol. Salem Consol. Salem Consol. | Phillips
Texas
Texas
Texas
Texas | Bothwell
Rosiclare Sand Unit
Salem Unit
Salem Unit
Salem Unit | Cypress(S) Rosiclare(S) Benoist(S) Devonian(L) McClosky(L) | Clay
Marion
Marion
Marion
Marion | | 311
312
313 | Salem Consol. Samsville North Seminary Siggins Siggins | Texas
Ashland
Pure
Bell Brothers
Leland Fikes | Salem Unit
West Salem
Seminary
Flood ≸1
Vevay Park | Renault & AuxVases (S) Bethel(S) McClosky(L) U. Siggins(S) Siggins(S) | Marion
Edwards
Richland
Cumberland
Cumberland | | 315 | Siggins | Forest | Siggins | 1st Siggins(S) | Cumberland | | 316 | Siggins | Pure | Union Group | 1st & 2nd Siggins(S) | Clark &
Cumberland | | 317 | Siggins | Ree | Siggins | Casey(S) | Clark &
Cumberland | | 318 | Stanford South | Gulf | South Stanford Unit | Aux Vases(S) | Clay | | 319 | Storms Consol. | Sinclair | Storms Pool Unit | Waltersburg(S) | White | | 320
321
322
323
324 |
Stringtown
Stringtown
Stringtown
Thompsonville East
Thompsonville North | N. C. Davies
Helmerich & Payne
Skelly
Carter
Carter | Stringtown
Stringtown
Stringtown
E. Thompsonville
N. Thompsonville | McClosky(L)
McClosky(L)
McClosky(L)
Aux Vases(S)
Aux Vases(S) | Richland
Richland
Richland
Franklin
Franklin | | 325
326 | Thompsonville North
Thompsonville North | J. & W. Production
J. & W. Production | Thompsonville Unit
North Thompsonville | Aux Vases(S)
Aux Vases(S) | Franklin
Franklin | | 327
328
329 | Tonti South
Wamac
Westfield | Slagter
D. Stinson
Forest | Unit
Wamac
Parker* | Benoist(S)
Petro(S)
Gas Sand | Marion
Marion
Clark | | 330
331
332
333 | Westfield
Willow Hill East
Woburn Consol.
York | Ree
M. M. Spickler
Arrow Drilling
Trans-Southern | Johnson — Spindler York | Gas Sand
McClosky(L)
Benoist(S)
Casey(S) | Coles & Clark
Jasper
Bond
Cumberland | | Information | | | | Product | ion and injec | tion statistics | (bbls.) | | | |---|--|---|--|--|---|--|--|--|---------------------------------| | т. | • | | | | Secondary | recovery | | | | | Locat | :10n | Date | Water | injection | Oil pro | duction | Water p | roduction | Mar
No. | | Section | TR. | first
injection | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12-31-56 | INO. | | 13
28
14, 15, 23
34
35 | 5N- 7E
6N- 7E
4N- 7E
4N- 7E
4N- 7E | Sept. 1953
June 1955
Mar. 1955
Sept. 1955
July 1953 | 116,300
109,500*
576,947
66,864
60,092 | 284,080
202,250
1,062,732
81,087
165,618 | 5,667
20,358
159,757
1,918
12,784 | 25,474
25,454†
290,881
1,918
42,046 | 65,851
34,102
162,600
2,374
15,294 | 159,355*
37,882
370,439
2,374*
27,720† | +302 | | 14
15
—
— | 3N- 7E
1N- 2E
1, 2N-2E
1, 2N-2E
1, 2N-2E | Aug. 1956
Apr. 1950
Oct. 1950
Oct. 1950
Apr. 1951 | 14,535
159,270
35,344,340
6,511,270
12,177,705 | 14,535
1,194,354
110,521,404
38,665,170
44,426,510 | None
4,819
3,928,865
63,640
683,434 | None
66,704
10,834,556
386,924
2,115,999 | None
35,192
18,694,147
1,247,287
4,597,797 | None
155,575
31,099,068*
11,091,317*
12,944,199* | 1 308 | | 30
17, 20
13
25 | 1, 2N-2E
1N-14W
2N-10E
10N-10E
10N-14W | Oct. 1950
Sept. 1954
Feb. 1954
Sept. 1950
Dec. 1950 | 8,488,202
68,857
244,122
34,957
14,353 | 15,148,218
152,072
828,729
314,926*
255,285 | 224,941
1,931
5,773
21,490
201 | 508,316
5,416*
20,128
103,967
1,760 | 1,047,933
 | 4,499,294*

260,661
110,000
103,295 | 310
311
312
313
314 | | {11, 12, 13, 14
7 | 10N-10E
10N-11E | June 1942 | 3,790,290 | 42,395,427 | 734,726 | 7,285,332 | | | 315 | | \(18 \) \(13 \) | 10N-11E
10N-14W | Dec. 1946 | 1,168,520 | 13,001,686 | 116,923 | 2,198,198 | 1,117,691 | 9,473,646 | 316 | | { 7 | 10N-11E
10N-14W | Dec. 1951 | 277,789 | 1,481,959 | 58,213 | 107,114 | _ | 109,608* | 317 | | 8, 9, 16, 17
{2, 10, 11, 12,
{13, 14
{15, 22, 23, 24} | 2N- 7E
6S- 9E | May 1954
Mar. 1956 | 690,414 | 1,781,524
1,608,850 | 71,504
— | 346,985 | 370,220
235,019 | 483,834 235,019 | 318 | | 31
31
31
12
3, 9, 10 | 5N-14W
5N-14W
5N-14W
7S- 4E
7S- 4E | Dec. 1953
Oct. 1954
Dec. 1953
July 1954
Oct. 1955 | 64,419
57,533
57,027
133,305
484,123 | 149,570
111,071
115,180
314,774
575,447 | 4,857
2,630
9,133
33,602
13,580 | 8,806*
4,380
31,237
45,015
13,580 | 69,100
15,400
47,278
31,061
52,742 | 151,851
19,500
155,597
49,306
55,056 | 320
321
322
323
324 | | 10, 15
9 | 7S- 4E
7S- 4E | Mar. 1954
Jan. 1956 | 108,466
313,370 | 548,297*
313,370 | 1,264
1,357 | 20,476
1,357 | 22,226
1,483 | 38,410
1,483 | 325
326 | | 4
30
30 | 2N- 2E
1N- 1E
11N-14W | Dec. 1953
May 1954
June 1950 | $\frac{72,000}{42,383}$ | 144,000*
31,731*
662,675* | $\frac{25,568}{3,097}$ | 61,223
2,828*
32,853 | 99,000
—
— | 189,000*
None* | 327
328
329 | | \$\begin{aligned} \chi_1, 18 \\ 18 \\ 36 \\ 10 \\ 6 \end{aligned}\$\] | 11N-11E
11N-14W }
7N-10E
6N- 2W
9N-11E | June 1951
June 1952
Sept. 1951
Oct. 1950 | 138,079
—
39,389 | 924,545
* 194,247*
540,684 | 2,582

1,488 | 8,586
2,121†
10,507†
12,798* |

38,696 | 23,750*
—
194,247*
169,803 | 331 | | Totals of repor |
rted figures: | L | | 1,014,931,653 | 29,593,838 | 111,543,038 | | | | TABLE 14.— | | | | Development | as of 12-3 | 31-56 | | Inje | ection Water | | | |--------------------------|---------------|-------------|-------------------------------------|----------------------------------|-----------------------------|-----------------------|--|--|--------------------------------------|--| | Map
No. | No. o | f wells | Injection
pattern | Spacing
acres
per
input | Productiv
Sub-
jected | e acreage | Source | Туре | Avg.
bbls.
per day
per well | Avg.
well-
head
press-
ure | | | ing. | r rou. | | well | to inj. | Total | | | per ft. | PSI | | 300
301 | 1
2 | | Irregular
Perimeter | 30
20 | 9.4
120 | 30
120 | Penn. Sand
Cypress | Brine
Brine | 34.6 | 525 | | 302
303
304 | 11
1
1 | 4 | Irregular
5-Spot
5-Spot | 10
20 | 202
10
20 | 350
40
50 | Penn. Sand
Cypress & Produced
Tar Springs & Cypress | Brine
Brine
Brine | 12.2
13.7 | 162
842 | | 305
306
307 | 1
3
174 | | Flank
Peripheral &
25% 5-Spot | 10
10
20 | 10
100
7,975 | 20
100
7,975 | Penn. Sand | Brine
Brine
Fresh & Brine | 9.7
10.4
20.0 | Non-
765
314 | | 308 | 26 | 29 | Peripheral | | 5,414 | 5,414 | Gravel Bed, Upper Sand | Fresh & Brine | 36.1 | _ | | 309 | 122 | 348 | Peripheral | | 7,712 | 7,712 | & Produced
Gravel Bed & Produced | Fresh & Brine | 13.7 | 362 | | 310 | 84 | 65 | Peripheral | | 4,881 | 4,881 | Gravel Bed & Produced | Fresh & Brine | | 319 | | 311
312
313 | 1
2
9 | 1
4
7 |
5-Spot | | 20
173
80 | 35
173
80 | Produced
Cypress
Surface & Produced | Brine
Brine
Fresh & Brine | 37.7
41.8
0.7 | 523
—
210 | | 314 | 2 | 4 | 5-Spot | 4.4 | 10 | _ | Surface & Produced | Fresh & Brine | 1.2 | Non | | 315
316 | | | 5-Spot
5-Spot | 4.4
4.4 | |
575 | Gravel Bed & Produced
Surface & Produced | Fresh & Brine
Fresh & Brine | 0.66 | 240
245 | | 317
318
319 | 9 | 8 | 5-Spot
5-Spot
5-Spot | 4.4
20
20 | 135
125
180 | 227
170
1,796 | Lake & Produced
Penn. Sand
River | Fresh & Brine
Brine
Fresh | 0.4
1.8
25.5 | 1,420 | | 320
321
322
323 | 1
1 | 2 | | 10
-
20 | 80
91.5
80
30 | 80
50
80
117 | Tar Springs
Cypress
Tar Springs & McClosky
Cypress Sand & | Brine
Brine
Brine
Fresh & Brine | 8.8
22.5
13.0
6.8 | —
Non-
189 | | 324 | 5 | 5 | 5-Spot | 20 | 80 | 164 | Produced
Cypress Sand & | Fresh & Brine | 10.6 | 692 | | 325 | 4* | 8 | Modified | 10 | 175 | 190 | Produced
Lake & Produced | Fresh & Brine | | 1,200 | | 326 | . 6 | 10 | Peripheral 5-Spot & Modi- | 10 | 232 | 261 | Lake & Produced | Fresh & Brine | 10.7 | 200 | | 327
328 | | 3 | fied Split Line 5-Spot | 10 | 25 | 200 | City Water | Brine | 21.9 | | | 329 | | 12 | 5-Spot | 10 2.5 | 10 20 | 200 | City Water
Gravel Bed | Fresh
Fresh | 0.6 | 125 | | 330
331
332 | 1 | 1 | | 4.4 | 70
20
20 | 467
20
20 | Lake & Produced
Produced
Produced | Fresh & Brine
Brine
Brine | 0.4
 | - | | 333 | 3 | 7 | Line Drive | 4.4 | 15 | 125 | Shallow Sand & Produced | Fresh & Brine | 3.6 | 46 | | | 5,307 | 7,687 | | | 92,350 | ‡ | | | | | [‡] Includes only 8,800 acres for the Salem Unit. | | Reser | voir statis | tics (avera | age values | s) | | | |----------------------------------|-----------------------------------|----------------------|---------------------------------------|-----------------------|---------------------------------|---|--------------------------| | Depth
feet | Net pay
thick-
ness
feet | Porosity
percent | Perme-
ability
milli-
darcys | Oil
gravity
API | Oil
viscosity
centipoises | Remarks | Map
No. | | 2,771
2,863 | 9.2 | 21.9
— | <u>164</u> | 34.2
37 | <u> </u> | *Corrected figure. *Dump flood, estimated injection. †Includes primary production since start of flood. | 300
301 | | 2,600
2,580
2,600 |
15
12 |
15.4
19 | 17.3
60 | 38
38 | | *Since 3-1-56.
*Pilot flood. †Since 1-1-55. | 302
303
304 | | 2,650
2,093
1,770 | 10
14
28 | —
11.5
17.9 |
43
150 | 36
36.5
37 | |
*Since 1-1-52. | 305
306
307 | | 3,400 | 19 | 16.8 | 300 | 36.5 | | *Since 1-1-52. | 308 | | 1,950 | 20 | 15.8 | 700 | 37 | Performance | *Since 1-1-52. | 309 | | 1,825 | (Ren. 7 | 16.5 | 18 | 37 | Ren. 4.8 @ | *Since 1-1-52. | 310 | | | A.V.26 | 16.3 | 28 | 37 | 93°F.
A.V.4.4 @ | | | | 2,930
3,000
320 | 5
8
16 | _
_
 |
 | | 93°F. /
—
—
12 @ 63°F. | *Includes primary production since start of flood. *1954, 1955 & 1956 injection in joint-operated wells not | 311
312
313 | | 600 | 16 | 20.3 | 349 | 30.1 | | included. Previously subjected to gas injection. | 314 | | 400
1. 404
2. 464 | 32
25
6 | 17.5
18.5
18.3 | 56
45
66 | | 8 @ 60°F.
8.8 @ 68°F. | Previously subjected to gas injection. | 315
316 | | 2,975
2,975
2,214 | 56
11.8
25 | 21.5
19.8 | 40.2
97
— | | 10.5 @ 68°F.
3.7 | *As of 1-1-56. Previously subjected to gas injection. | 317
318
319 | | 3,000
3,026
3,002
3,200 | 10
7
12
18 | 18
-
21.1 | 98 | 38
36
38 |

 | *Includes primary production since start of flood. | 320
321
322
323 | | 3,075 | 25 | 22 | 170 | | | | 324 | | 3,120 | 16 | 19.5 | 50 | 38.6 | 3.5 @ 90°F. | *Injection shut down August through December 1956. | 325 | | 3,060 | 14 | 21 | 115 | 39 | 3.2 @ 90°F. | | 326 | | 1,940
750
270 | 9
20
25 | 21.3
17.9 | 220
153 | | 18.7 @ 60°F.
54 @ 60°F. | *Estimated since 1-1-55. *As of 1-1-56. *Injection temporarily discontinued for experimental purposes since Nov. 1956. Previously subjected to gas injection. | 327
328
329 | | 320
2,615
1,006 | 35
10
14 | 21.5
 | 86
 | 29
 | | *As of 1-1-56. *Dump flood not in operation during 1956. †As of 1-1-55. *As of 1-1-56. †Includes primary production from start | 330
331
332 | | 590 | 10 | 21.9 | 231.2 | 30.3 | 10 @ 75°F. | of flood to 1-1-56. *Includes primary production since start of flood. | 333 | TABLE 15.—ILLINOIS WATERFLOOD | | Genera | | | | | | | | | | |-------------------|---|--|---|---|---|--|--|--|--|--| | Map
No. | Field | Operator | Project | Formation Sand(S), Lime(L) | County | | | | | | | 334
335
336 | Albion Consol. Barnhill Consol. Berryville Consol. Berryville Consol. Casey | Superior
Wayne Development
Phillips
Phillips
Calvan American | South Albion* Walter Tarply Townsend Shawver | Bridgeport(S) McClosky(L) McClosky(L) McClosky(L) Casey(S) | Edwards
Wayne
Wabash
Wabash
Clark | | | | | | | 339
60
340 | Centerville East
Centralia
Clay City Consol.
Lawrence
Lawrence | Lesh Drilling
Sohio
Gulf
Calvan American
Ree | Centerville East
Copple Town
Winona
Waller
Snyder | Rosiclare(L)
Trenton(L)
McClosky(L)
Cypress(S)
Cypress(S) | White
Clinton
Wayne
Lawrence
Lawrence | | | | | | | | Main Consol.
Main Consol. | Ree
Skiles | Meserve
Correll-Curley | Robinson(S)
Robinson #4(S) | Crawford
Crawford | | | | | | | 344 | Main Consol. | Skiles | Walter Comm. | Robinson #1 & #3(S) | Crawford | | | | | | | | Main Consol.
Martinsville | Skiles
J. B. Buchman | Weger | Robinson(S)
Carper(S) | Crawford
Clark | | | | | | | | Martinsville
Martinsville | Magnolia
Magnolia | Carper
Casey | Carper(S)
Casey(S) | Clark
Clark | | | | | | | 349 | Maunie South
New Harmony Consol.
Parkersburg Consol. | Magnolia
Sun
Calvert | Tar Springs Unit #2
Ford "A"
Parkersburg | Tar Springs(S)
McClosky(L)
McClosky(L) | White
White
Richland | | | | | | | 351 | Phillipstown Consol.
Storms Consol.
Westfield | Sun
Mabee
Ree | Phillipstown Hawkins | Tar Springs(S)
Waltersburg(S)
Gas Sand(S) | White
White
Clark | | | | | | PROJECTS REPORTED ABANDONED | Information | | | | Production and injection statistics (bbls.) | | | | |---|---|---|--|---|---|---|--| | Location | | Date
first
injection | Date
abandoned | Cumulative
water
injection | Cumulative
secondary
recovery
oil | Cumulative
water
production | Map
No. | | Section | TR. | | | | production | - | | | 1, 11, 12
26
2
35
23, 24 | 3S-10E
2S-8E
1N-14W
2N-14W
10N-14W | Aug. 1946
Dec. 1950
Sept. 1952
Feb. 1952
Aug. 1953 | * Jan. 1955 Feb. 1953 July 1953 July 1954 | * 143,565 34,688 49,834 48,586 | *
None
None
1,814 | * 118,901 102,551 86,354 | 13
334
335
336
337 | | 12
35
12
5, 6
30 | 4S-9E
2N-1W
1S-8E
2N-11W
3N-11W | June 1954
Nov. 1951
Aug. 1955
Mar. 1953
Oct. 1952 | Dec. 1955
*
Oct. 1956
Nov. 1955
— 1955 | * 236,134 25,000 827,519 15,796* | 4,437
34,025†
None
12,299
567* | 3,650†
20,779
300
—
69,350* | 338
339
60
340
341 | | 11
10
{1
\36
{18, 19
\13, 24 | 6N-13W
7N-12W
6N-13W \
7N-13W \
5N-11W \
5N-12W | Nov. 1953
July 1951
Dec. 1951
Nov. 1952 | May 1955
Sept. 1955
Dec. 1952
July 1956 | 250,500
1,207,325
25,821
776,693 | 1,183
29,756
None
8,545 | 39,083
226,810
29,000
108,610 | 342
343
344
195 | | 31
30
19
524
19
18
16, 21 | 10W-13W
10N-13W
10N-13W
6S-10E
6S-11E
5S-14W
2N-14W | Oct. 1952
Jan. 1951
Aug. 1950
Nov. 1949
May 1948
Jan. 1955 | — 1954 Feb. 1955 Feb. 1955 — 1955 July 1952 — 1956 | 282,697*
1,110,949
872,185
639,215
57,823
107,440* | None
10,376
2,345
60,344
13,076
None | 4,800* 9,605 33,505 208,636 626 43,025* | 345
346
347
348
349
273 | | 6
22
20, 21 | 5S-11E
6S-9E
11N-14W | Jan. 1953
July 1951
Aug. 1951 | May 1954 June 1953 — 1954 | 57,598
90,110
265,199* | None
None
None
1,982* | 251,333
44,000* | 350
351
352 | | Totals of | reported figures | : | | 7,124,677 | 180,749 | 1,400,918 | | TABLE 15.— | | | | | | | | | 1 A | BLE 13. | |---------------------------------|-----------------------|------------------|------------------------------------|---------------------------|-----------------------------|------------------------------|---|--|---| | | | Maxi | mum developr | nent durir | ng operati | on | Injection water | | | | Map
No. | No. wells | | | Spacing acres | Prod
acre | uctive
age | | | | | NO. | Inj. | Prod. | Injection
pattern | per
input
well | Sub-
jected
to inj. | Total | Source | Type | Depth
feet | | 13 | * | * | | | 203 | | Produced | Brine | 1,900 | | 334
335
336
337 | 1
1
1
9 | 2
2
2
4 | | 10 - 4.4 | 40
14
27
13 | 40
30
30
215 | Cypress
Produced & Tar Springs
Produced & Tar Springs
Shallow Sand | Brine
Brine
Brine
Fresh | 3,450
2,890
2,890
450 | | 338
339 | 1*
2 | 1 12 | <u> </u> | 20 | 20
160 | $\frac{20}{200}$ | Tar Springs
Devonian | Brine
Brine | 3,366
3,950 | | 60
340
341 | 1
8
1 | 1
8
2 | 5-Spot | 12.5
10 | 12.5
35
10 | 50
625
230 | Tar Springs
Gravel Bed
Tar Springs | Brine
Brine
Brine | 3,115
1,535
1,580 | | 342
343 | 4
18 | | 5-Spot
5-Spot | 10
10 | | 525
— | Penn. Sand
Creek & Penn. Sand | Brine
Fresh & Brine | 950
1,035 | | 344 | 5 | 6 | 5-Spot | 10 | 40 | | Upper Penn. Sand | Brine | { 950} | | 195
345 | 9
2 | | 5-Spot
5-Spot | 10
20 | 90
40 | 110
40 | Creek & Produced
Shallow Sand | Fresh & Brine
Fresh | 1,010
900
1,346 | | 346
347
348
349
273 | 4
8
3
1
2 | 3 2 | 5-Spot
5-Spot
5-Spot
Spot | 10
10
20
—
20 | 10
23
50
40
160 | 50
110
50
40
160 | Gravel Bed
Gravel Bed
Gravel Bed
Gravel Bed
McClosky | Fresh
Fresh & Brine
Fresh
Brine | 1,334
464
2,275
2,900
3,062 | | 350 | 1* | 9 | Names district | | 10 | _ | Produced | Brine | 2,248 | | 351
352 | 1
15 | 2
8 | 5-Spot | 4.4 | 40
40 | 40
360 | Penn. Sand
Devonian & Produced | Brine
Fresh & Brine | 2,241
290 | | | Reservoir s | tatistics (Av | verage value | es) | | | |-----------------------------------|---------------------|---------------------------------------|-----------------------|---------------------------------|--|---------------------------------| | Net pay
thick-
ness
feet | Porosity
percent | Perme-
ability
milli-
darcys | Oil
gravity
API | Oil
viscosity
centipoises | Remarks | Map
No. | | 20 | 19.7 | 304 | 32.5 | 6.3 @ 95°F. | *Abandoned & converted to disposal project in 1952,
but reinstated as an active flood during 1956. See
Table 14. | 13 | | 18
10
10
21.5 | |

108 | | | Table 11. | 334
335
336
337 | | 7
22 | 10 | | 43
39.8 | 2.7 | *Dump flood, †From 1-1-55 to 12-4-55. *Pilot flood, reported as abandoned in March, 1953. †Includes primary
production from 11-51 to 3-53. | 338
339 | | 8
50
25 | 12
18.5
21.2 |
70
125 | 40.1
39.5
38.6 | 5 @ 85°F.
4.1 @ 85°F. | *As of 1-1-55. | 340
341 | | 22.7
20 | 21.9
22.2 | 89
100 | 33 | 10 @ 79°F.
13.5 | | 342
343 | | ${10 \brace 15}$ | 20.1 | 93 | 36 | 12.5 @ reservoir temp. | | 344 | | 20
40 | 17
16 | 37
11 | 30 | | *As of 1-1-54. | 195
345 | | | |

 | 38 | | *As of 1-1-56. | 346
347
348
349
273 | | 10 | | | 34.5 | _ | *Abandoned after unsuccessful input well fracture | 350 | | 15
30 | 22 | 120 | 30 | 28 @ 62°F. | *As of 1-1-54. | 351
352 | TABLE 16.—ILLINOIS PRESSURE MAINTENANCE PROJECTS | | General Information | | | | | | | | | | |------------|----------------------------------|------------------------------------|--|------------------------------------|----------------------------|--|--|--|--|--| | Map
No. | Field | Operator | Project | Formation Sand(S), Lime(L) | County | | | | | | | 353 | Albion Consol. | Calvert | South Albion | B: 11(G) | El | | | | | | | | Beaver Creek
Bone Gap Consol. | Conrey & Conrey
V. R. Gallagher | Lower Biehl
Wrone | Biehl(S) Benoist(S) Waltersburg(S) | Edwards
Bond
Edwards | | | | | | | | Boyd
Enfield South | Superior
Ryan | Boyd Repressure*
S. Enfield Unit #1 | Benoist(S)
Aux Vases(S) | Jefferson
White | | | | | | | 357 | Louden | Carter | Louden Devonian | Devonian(L) | Fayette | | | | | | | | Omaha
Phillipstown Consol. | Carter
National Assoc. Pet. | Omaha
Stokes "B" #3 | Palestine(S)
Benoist(S) | Gallatin
White | | | | | | | 360 | Salem Consol. | Carter | Dix (R. & P. M.) | Bethel(S) | Jefferson | | | | | | | | | | | | | | | | | | [‡] Includes both primary and any additional oil obtained by pressure maintenance. Table 16.— | | . I | Developm | ent as of 12-31-56 | 5 | | Injection water | | | | |--------------------------|------------------|---------------------|--|-----------------------------|-----------|--|--|-----------------------------|--| | Map | No. of wells | | _ Injection | Productive acres | | | | Av. | | | No. | Inj. | Prod. | pattern | Sub-
jected
to inj. | Total | Source | Type | wellhead
pressure
PSI | | | 353
354
355
38 | 2
1
1
4 | 7
4
11
85 | Peripheral Peripheral | 60
40
40
1,564 | 50
120 | Produced
Produced
Produced
Surface & Produced | Brine
Brine
Brine
Fresh & Brine |
450
 | | | 356 | 2 | 5 | | 150 | 300 | Subsurface & Produced | Fresh & Brine | 700 | | | 357
358
359
360 | 7
1
1
4 | 57
16
8
63 | Peripheral
Flank
—
Peripheral | 2,600
280
80
1,200 | 280
80 | Produced
Produced
Produced
Tar Springs & Produced | Brine
Brine
Brine
Brine | 135
150
1,175
237 | | Using Water Injection During 1956 | | | | Production and injection statistics (bbls.) | | | | | | | |--|---------------------------|----------------------------|---|-----------------------------|------------------------|-----------------------------|-------------------|-----------------------------|------------| | Location | | Data | Water | injection | Oil prod | duction‡ | Water p | Мар | | | Section | TR. | Date
first
injection | Total
1956 | Cumu-
lative
12–31–56 | Total
1956 | Cumu-
lative
12-31-56 | Total
1956 | Cumu-
lative
12-31-56 | No. | | <i>[</i> 35, 36 | 2S-10E) | Apr. 1951 | 209,254 | 803,575* | 59,443 | 545,994 | 26,632 | 544,051* | 353 | | \\1
36
18 | 3S-10E
4N-3W
1S-14W | July 1953
June 1952 | | 26,609*
648,123 | -
31,666 | 14,477*
290,358 | | 648,123 | 354
355 | | {13, 24, 25
18, 19, 20, 30
29, 32 | 1S-1E
1S-2E
5S-8E | June 1945
Jan. 1955 | *
82,699 | 9,714,450*
183,080 | *
25,604 | 9,776,513†
126,889 | * | 10,865,715* | 38
356 | | | 8N-3E | Sept. 1943 | 12,006,245 | 122,248,861 | 494,909 | 16,213,170* | 10,095,459 | 113,811,951* | 357 | | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 7S-8E
8S-8E
4S-10E | Oct. 1944
June 1956 | 172,955
64,421 | 1,225,732
64,421 | 79,672
— | 2,123,497*
— | 138,523
64,421 | 1,257,928
64,421 | 358
359 | | $\begin{cases} 3, 4, 9, 10, 15, \\ 16 \end{cases}$ | 1S-2E | Jan. 1948 | 900,398 | 4,625,289 | 436,709 | 7,993,264 | 520,352 | 4,006,540 | 360 | | Totals of repor | l
ted figures: | | 13,541,306 | 139,540,140 | 1,128,003 | 37,084,162 | 10,950,721 | 131,198,729 | | | | Reservoir s | statistics (A | Average va | | | | | |---|-----------------------------------|--|---------------------------------------|------------------------------|--|---|---------------------------------| | Depth
feet | Net pay
thick-
ness
feet | Porosity
percent | Perme-
ability
milli-
darcys | Oil
Gravity
API | Oil
viscosity
centipoises | Remarks | | | 2,080
1,140
2,310
2,065 | 9.2
8
20
17.3 | 16.8
20.7
18
17.5 | 384
208
120
173 | 32.3
32.4
34.6
39.5 | 10.4 @ 85°F.
5.6 @ 85°F.
3.2 @ 90°F. | *Since May 1952. *As of 1-1-56. *Converted to water flood status 1-1-55. All figures as of 1-1-55. †Includes Aux Vases production up to 1-1-55. | 353
354
355
38 | | 3,260
3,100
1,700
2,858
1,950 | 8

17
8
12 | 21.5
———————————————————————————————————— | 142
 | 29
27
38
39 | 3.5 @ 101°F.
6.5 @ 96°F.
17 @ 76°F.
2.5 @ 87°F. | *Corrected figures. *Corrected figure. | 356
357
358
359
360 | Illinois State Geological Survey Bulletin 83 173 p., 29 figs., 16 tables, 1958