!

(Wt

0CT22195

MUscuwmi  Ligh

- NEW YORK sFATE ]

VERA M. BINKS, Director

FLUID FLOW IN
PETROLEUM RESERVOIRS

|. — The Kozeny Paradox

Woalter Rose

DIVISION OF THE

ILLINOIS STATE GEOLOGICAL SURVEY
JOHN C. FRYE, Chief URBANA

CIRCULAR 236 1957




FLUID FLOW IN PETROLEUM RESERVOIRS
. — THE KOZENY PARADOX

Walter Rose

ABSTRACT

This study was undertaken to make an analytical check of the
Kozenyequationas a description of fluid flow in porous media, par-
ticularly as itapplies tothe mixture-flowphenomena in petroleum
reservoirs where the anisotropies of sedimentary rock and thehys-
tereses of capillarity introduce many complications in analysis.

My analysis shows that the Kozeny equation predicts an in-
crease in permeability when a decrease would be expected, as for
example the decrease in permeability that would seem to result
from the consolidation and cementing of an unconcolidated sand.
Perhaps this is an apparent rather than a realparadox; but never-
theless the paradox should be resolved before further use is made
of the Kozeny equation to describe fluid flow in petroleum reser-
voirs.

INTRODUCTION

Numerous authors have stated that for certain situations the Kozeny
equation adequately describes mixture flow in porous media such as petroleum
reservoirs. Although some other authors have doubted the value of these appli-
cations, especially if the pore structure is non-uniform and anisotropic, no one
heretofore has proved there is a gross error in using a Kozeny equation of the
following type to describe relative permeabilities of the wetting and nonwetting
phases for clean, well sorted sands:

2
Kr = (S) (Al/A) (tl/t) (1)

In Equation (1) K, is the fractional relative permeability offered by the
porous media to the flow of a fluid phase that has a fractional saturation of S.
A and t are, respectively, the specific surface area per unit pore volume and
the Kozeny textural parameter descriptive of the boundary conditions of that
part of the pore space filled with the fluid phase of interest; Aj and tj are the
related limiting values when S =unity.

The Kozeny equation also has been proposed as applicable to a descrip-
tion of homogeneous fluid flow through consolidated sandstones, at least when
the pore sizes are uniform and the porous continuum is isotropic. Thus, it is
sometimes stated that

2
K:f/Al tl (Z)

.where f is the fractional porosity and K is the specific permeability.

The pros and cons of the postulates stated above have been adequately
discussed by Wyllie (1952) and by Wyllie and his co-workers {1952, 1955). For
present purposes, it will suffice to note that of all the terms in Equation (1),

[1]
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only S can be determined with accuracy; moreover, there is the serious ques-
tion as to whether or not A and t can be measured independently. Similarly,
there is no wide agreement as to how Aj and t; in Equations (1) and (2) should
be measured, except for special cases such as packings of uniform-sized
spheres., But the use of Equation (1), or Equation (2) for consolidated sand-
stones, can be discredited on more fundamental grounds.

If a random packing of unconsolidated, uniform-sized spheres is taken as
the model, Equation (2) describes the details of homogeneous liquid flow in the
viscous regime. In such a case, t] has the universal value of 5 regardless of
sphere size, and A is simpiy inversely proportional to sphere size so that
permeability is proportional to the square of the sphere radius times the ap-
propriate porosity function.

For simplicity, and without requiring proof, it also can be said that Equa-
tion (2) at least approximately describes fluid flow through regular packings of
uniform-sized spheres. In such a case, values of t; ranging from 4 to 5.7 can
be calculated for cubic and rhombohedral packings, respectively, by using the
data of Pirson (1947) according to the formation factor method discussed by
Wyllie and Spangler (1952).

APPLICATION OF THE KOZENY EQUATION

The consequences of Equation (1) can now be examined for various types
of packings of uniform-sized spheres, at least for the condition of flow of a non-
wetting phase when the wetting phase is distributed uniformly as pendular rings.
Smith et al. (1930) and Rose (1957a) have presented independent but equivalent
expressions for the saturation of pendular wetting phase as a function of por-
osity, such as would be observed.in packings of uniform-~sized spheres, which
have the form

S =vNn/2
v 3
where v = (277 R} (F1 8) = volume of each pendular ring.

N ={(1-f) / £]1[3/ (41rR3)] = number of spheres per unit
: pore volume.
(1 +1.828 x) 6 -
n = T+ 041450~ number of sphere contacts per sphere.
0.476 - £)/ 0.217 = fraction of spheres packed in rhombo-
hedral array [N.B. (l-x)is the number
of spheres packed in cubic array].

X =

(3)
Rose (1957a) also has given the surface area of each pendular ring as

a= (47 r%) (F, 6)

Hence: Nan . . .
A= —— = interfacial surface area between wetting and non-

wetting fluids per unit pore volume.
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A =2m RZN [2-n(l-cos 8)] =specific surface area be-
sn tween nonwetting phase and
pore walls.
(- 4)
A =3
1 (fR)

2
= 47 R N = specific surface area of all pore surfaces.

An = Ai + Asn = specific surface area of all surfaces bounding the
nonwetting phase when the saturation is (1 - SW).

lim A =A .

n 1
—0
W (4)
Similarly: 5
Asw =27 R Nn (l-cos 8) = specific surface area between wetting

phase and pore walls.

A= Ai + A w " specific surface area of all surfaces bounding the
wetting phase when the saturation is SW.

(5)

In the above, 0 is the angle subtending the line joining the sphere center
with the contact point of the pendular ring on the surface of the sphere, and the
line joining the centers of adjacent spheres. Thus F16 ={2 - 2 cos 6 - tan 8
[2 8in 6 - tan 8 + (90° -8) (1 - 1/cos 9)2]} and F,8 =[ (90° - 6) tan 8 -

(1 -cos8)] [(1~cos8)/cos 6]

These functions are plotted in figure 1 for a cubic packing (that is, x = 0),
and in figure 2 for rhombohedral packing (that is, x = 1), Also indicated are the
various specific surface functions for conditions of funicular saturation, which
were calculated by making the slightly incorrect assumption that the nonwetting
phase is uniformly distributed as insular globules.

The discontinuities in the curves of figflres 1 and 2 result from the im-
posed restrictions that: a) the insular globules of nonwetting phase can never
be larger than the largest pore openings (namely, 0.366R and 0.414R for rhom-
bohedral packing and 0.732R for cubic packing), and b) the pendular rings at any
grain contact cannot exceed the volume where coalescence between contiguous
rings will occur (namely, 8 has a maximum value of 30° for rhombohedral
packing and 45° for cubic packing).

Although Scott and Rose (1953) discussed the various specific surface
area functions for a hypothetical capillary tube system, figures 1 and 2 appear
to present the only extant information applicable to real, albeit idealized, por-
ous media. It should be possible, therefore, to calculate the relative perme-
ability function by Equation (1) upon assigning values to (ty/t) versus satura-
tion.

For relative permeabilities of the wetting phase, Wyllie and Rose (1950)
gave the evidently valid approximation:

n -2
(tl/t)w= (SW I)
(6)

where Iis the resistivity index.
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Fig. 1. - Specific surface area functions for cubic packing.
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For relative permeabilities of the nonwetting phase no such simple ex-
pression for (t;/t), is known, but it is likely that this ratio is unity (or slightly
greater than unity) for packings of uniform-sized spheres, at least when the
wetting phase is distributed as pendular rings.

The above postulations and propositions make it possible to examine the
consequences of Equation (1). Assuming (tj/t), is unity and considering only
saturation conditions of the pendular wetting phase, the values shown in table 1
are calculated.

Table 1 - Solution of Equation 1 for Cubical
and Rhombohedral Packings

Cubic packing Rhombohedral packing
6 Sw Kyn 6 Sw Kin
0° 0 1.00 0° 0 1,00
15 0.005 1.14 5 0.001 1.03
20 0.012 1.20 10 0.006 1.12
25 0.032 1.31 15 0,022 1.44
30 0.051 1.36 20 0.059 1.46
35 0.097 1.36 25 0.138 1.48
40 0.131 1.38 30 0.248 1.44
45 0.196 1.32

The tabulation points to a paradoxical situation, for values greater
than unity for relative permeability of the nonwetting phase are neither ex-
pected from theory {Scott and Rose, 1953) nor shown by data obtained on-well
sorted sand packings (Leverett, 1939), nevertheless they are indicated by
Equation (1) which in other respects appears to be a valid relationship. The
disparity is actually worse than that suggested by the values in table 1 because
(t1/t), ratios are probably actually greater than unity. Also, if Yuster's con-
sideration of transfer of viscous forces at fluid-fluid interfaces (Yuster, 1951)
has any meaning, the tabulated relative permeability values should be increased
further in consequence of the finite fluid-fluid interfacial area which partially
bounds the nonwetting phase (and which would result in a slippage).

Continuing the argument, table 1 shows that effective permeabilities are
increased by more than 10 percent even when less than 0.5 parcent of the pore
space has been filled by locating another phase at the points of sphere contact.
If the other phase is thought of as a cementing solid, it would appear that
Equation (2) no longer is a valid expression for fluid flow, even through only
slightly consolidated porous media. The remarkable thing is that this appears
to be true for the uniform particle size systems for reasons which would
assume still greater importance if particle size variations are introduced, and
if degree of cementation is increased.

Hence, it can be concluded that previous workers were wrong when they
tacitly assumed that Kozeny type equations are descriptive of mixture-flow
phenomena and of homogeneous fluid flow through consolidated porous media.
Heretofore, it has been argued only that it is difficult to measure independently
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the various terms of Equations (1) and (2) in order to test and prove their
applicability. Apparently, however, there are even more fundamental objec-
tions. Specifically, it is reasonable to conclude that in the case of certain
heterogeneous and anisotropic porous media {for example, vuggy and frac-
tured limestones, cemented sandstones with cul-de-sac pores), the surface
area boundaries and pore ''tortuosities’ are not related to permeability as
described by the Kozeny equation; and evidently this is also true for more
uniform and homogeneous systems such as consolidated packings of well-
sorted spheres.

One possible explanation, suggested in part by Equation (4), can be based
on analysis of a model system composed of sphere particles of many sizes. In
such a case, the N and n factors would both increase, with the consequence that
Ap [namely, the "A'" term in Equation (1)] would increase rapidly and might
exceed the value of Aj. Also, as small spheres filled the space between large
spheres, the (t]/t), ratio would decrease rapidly as the saturation of the wet-
ting phase increased (Rose, 1957b). Both effects would tend to make values for
relative permeability of the nonwetting phase, as calculated by Equation (1),
more in accord with experimental results and theoretical expectations; but
whether or not the subject paradox would be resolved thereby remains uncer-
tain at the moment.
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