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HYDRAULIC FRACTURE THEORY

Part |. — Mechanics of Materials
James M. Cleary

ABSTRACT

This study takes up the problem of hydraulic fracture mechanics,
orientation of fractures, and whether their control is possible.

InPart I, some theories onthe mechanics of materials are adapted
for use in dealing with problems of hydraulic fracture mechanics and
also to help describe conditions of stress in porous sediments.

INTRODUCTION

Parts I and II of this report on hydraulic fracture theory are part of a pro-
ject of the Oil and Gas Section of the Illinois State Geological Survey that has
been carried on in consultation with the Department of Mining and Metallurgical
Engineering, University of Illinois.

Part III will be a thesis in partial fulfillment of the requirements for a
master's degree. It will deal with laboratory experiments suggested by the
theoretical studies presented here.

The use of fracture treatment as a method for stimulating oil production
has had a spectacular growth in the past several years. Results in general
have been successful, but results for individual wells vary widely. An analy-
sis of the mechanics of the pressure parting phenomenon is basic to the under-
standing of these variations in the results of fracture treatment.

One of the earliest references to pressure parting is included in a de-
scription of Dowell Incorporated acidizing services by Grebe and Stoesser
(1935)., They refer to "rock busting" as a common procedure accompanying
acidizing of wells in order to secure greater penetration with the acid.

In a later article Grebe (1943) describes the intentional breakdown of a
waste disposal well in 1930. Grebe assumed that parting took place along the
bedding planes, and that the pressure at the sand face necessary to hold open
the fracture was equal to the pressure caused by the overburden weight, From
this assumption Grebe concluded that the average specific weight of the sed-
iments could be calculated from the critical injection pressure. The critical
injection pressure he defined as the pressure at which the injectivity of the
well is sensitive to small pressure changes which indicate the opening or clos-
ing of a fracture.

Yuster and Calhoun (1945) describe pressure parting as observed in input
wells of waterflood operations. They show that the injectivity increases sud-
denly when the pressure is increased above a certain value. They point out
that the normal injectivity is restored, approximately, to its former value when
the injection pressure is reduced, indicating that the fractures had closed.

Yuster and Calhoun stated that the opening of fissures is resisted by the
tensile strength of the rock and the overburden pressure. Therefore, the frac-
tures should follow planes of minimum tensile strength and paths of least over-
burden pressure. They suggest that the overburden pressure may have abnorm-
ally low values over limited areas due to the partial support and uneven distri-
bution of the overburden load by overlying competent beds, and that an unequal

[1]
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distribution may also result from topographic features. This theory was used to
explain the fact that some wells had critical pressures much lower than would be
predicted by calculating the overburden pressure from the depth and average
density of the sediments. They also suggested that cemented casing might act
as a clamp, restraining the development of horizontal fractures in the vicinity

of the well,

In October 1948, at the AIME meeting in Dallas, Texas, J. B. Clark pre-
sented a paper describing the "Hydrafrac Process " which had been developed
by Stanolind Oil and Gas Company, now Pan American Petroleum. The following
year the treatment was available to the oil industry. The treatment consisted
essentially of the hydraulic breakdown of the producing section with a thickened
sand-carrying fluid; the role of the sand was to prop open resulting fractures.

The purpose of fracture treatment is to increase the conductivity of fluid
into or out of a well bore, or to increase the well's effective drainage area.

The benefits derived from fracturing can be divided into three categories:

1) If one assumes a homogeneous reservoir rock, the effect of fractures
is similar to increasing the size of the hole. After the fractures are produced,
fluids, which formerly had to flow through the restricted section of rock sur-
rounding the well, are able to move into the fracture at some distance from the
well and flow within the fractures to the well bore with little opposition.

2) Production of fractures is one way to overcome the effect of a zone of
abnormally low permeability surrounding the well bore. An impermeable sheath
surrounding the well, sometimes called the skin factor, may result from several
causes, Invasion of the drilling mud emulsions, deposition of paraffin or min-
eral matter, or swelling of clay in the pores may all contribute to the isolation
of the well and thus reduce production markedly.

3) Fractures help connect systems of permeability and porosity that are
otherwise isolated from the well. Any inhomogeneity of the reservoir rock may
cause isolated permeability. Permeable sand lenses, solution cavities, reser-
voirs divided by impermeable shale laminations, and joint systems are all ex-
amples of situations where fractures radiating from the well might act as gath-
ering lines, reaching from the well to isolated zones.

Thus, various beneficial effects might be obtained from the fracture tfreat-
ment of a specific well, In all cases an increase in the mobility of fluids mov-
ing to or from the well is the result, but the fracture configuration which will
best do the job differs for different wells., If bottom water or a gas cap is
present, horizontal fractures seem to be in order. In other situations, where
vertical permeability is interrupted by numerous shale streaks, vertical fractures
might be best. This is pointed out by Clark and Reynolds (1954) who describe
a method for obtaining vertical fractures.

The usefulness in fracturing a given well could be better decided if one
could answer the following related questions: 1) For a given well what will be
the fracture configurations, or,if control is possible, what fracture configura-
tions are available? 2) What effects will various fracture configurations have
on conductivity?

The first question has been treated by Clark and Reynolds (1954),
McGuire et al. (1954), Scott et al, (1953), Zheltov and Kristianovich (1955),
Hubbert and Willis (1957), and van Poollen (1957). This paper, also, deals
with the first question, the problem of fracture orientation.
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It is generally agreed that the compressive stress in the rock at the time
of fracture will tend to control the orientation of the fracture. Although numer-
ous other factors may enter into the problem, the compressive stresses are pro-
ably a dominant influence.

Part T of this paper presents several analytical tools that are useful in de-
scribing the state of stress in sediments around an oil well, then a general dis-
cussion of fracture orientation follows in Part II.

I am indebted to W. D. Rose, Professor of Petroleum Engineering at the
University of Illinois, for numerous discussions of the substance of this paper
and for criticism of the manuscript, to A. H. Bell, head of the Oil and Gas Sec-
tion of the Illinois State Geological Survey, and to L. L. Whiting, Associate
Geologist of the Survey, A. C. Bianchini, Assistant Professor of Theoretical and
Applied Mechanics, H. L. Langhaar, Professor of Theoretical and Applied Me-
chanics of the University of Illinois, and L. R. Kern, Atlantic Refining Company,
who assisted in various ways.

NOTATION

Symbols

a = Linear coefficient of thermal
expansion, 1/T

B = Grain compressibility, in.2/1b.
€ = Normal strain

E = Young's modulus, lb./in.?2

Unit volume dilatation
Poisson's coefficient, 1b./in.2

Shear modulus, 1b./in.?2

il

e
A
G
J = Linear coefficient of pore pres-

sure expansion, in.2/1b.

Poisson's ratio

z
1]

o]
I

Fractional pore area in a random
plane through a porous material,
the porosity

N = Fractional area over which pore
pressure effectively acts to
produce tensile failure

¢ = Angle of internal friction

r = Radial distance from the well
bore, in.

o = Total normal stress, lb./in.2
o.(

1

Solid normal stress, 1b./in.2
& = Effective normal stress, lb./in.2
-

= Shear stress, 1b./in. 2

T = Temperature

u, v, w= Components of displace-
ment, in.

X, Y, Z = Body force per unit volume,
1b./in.3

X, Y, Z = Surface forces, lb./in,?2

Yy = Shear strain
Superscripts

* k% k%% = Components of

- = Effective component

' = Solid component
Subscripts

X, ¥, 2, r, 0 = Coordinate directions
h = Horizontal

xy = In the x plane parallel to the
v axis

i = Internal, of or in the well bore

e = External or a specified external
radius
o = Datum value

n = Normal to

cyclic = Two similar expressions are
obtained by cyclic interchange of
the subscripts
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ELASTIC PROPERTIES OF POROUS MATERIAL
Compressibility

The elastic compressibilities of porous material are of special importance
in this section and something will be said of these properties first.

Compressibility is defined as the unit change in volume over the change
in pressure, AV/VAP,

For porous materials two types of compressibility may be measured, de-
pending on the surface to which the pressure is applied.

If a rock specimen is tested by applying a fluid pressure, not only to the
external surface but also to the surfaces of the communicating pores, and
AV/VAP is measured, the property which is determined is the grain volume
compressibility or the weighted average of the compressibilities of the mineral
grains that make up the rock. The volume compressibility is commonly desig-
nated B, so the linear strain due to penetrating fluid pressure is

€= %P (1)

If, on the other hand, a rock is enclosed in an impermeable jacket of
negligible strength and then tested under hydrostatic pressure, the property
measured is the bulk compressibility. In this discussion the bulk volume com-
pressibility, B', is expressed in terms of the other bulk elastic properties,
Poisson's ratio, and Young's modulus according to the identity

. 3(1-24y)
p'= E
So the linear strain due to hydrostatic pressure applied to external boundaries
is :
L )

The sign convention used here treats compressive stress and compressive
strain as positive.

Hooke's Law

In general, sedimentary rock consists of a lattice work of mineral grains
and connected channels occupied by fluid. The two interpenetrating phases
interact with one another, the fluid delivering a pressure on its pore boundaries.

A form of Hooke's Law, taking into account the action of the fluid on the
pore boundaries, was derived by Lubinski {1954) in order to solve problems in
elasticity for porous sediments. A derivation of this expression follows.

Consider a unit cell of porous sediment, figure 1. We shall define as
the solid stress in terms of gross area; n is the fractional area of a random
slice through the material occupied by pores. .

The force acting on an external boundary of the unit cell in the x direction
is cr'x + nP.

If the fluid pressure is zero, a porous elastic material may be treated as
a conventional elastic material and Hooke's Law may be written

g
€X=—E—x ——I;T[Ug, +0,] (cyclic) (3)

The presence of fluid pressure in the pores introduces an additional

strain which may be visualized as follows. The fluid pressure, P, while
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™|

acting on the total internal boundary

of our unit cube in figure 1, is ex- -
cluded from the solid portions of the

external boundary. The effect of such : \é), e ap
a condition is the same as having the 9 — /;\ ) ,
unit cube entirely immersed in a fluid 0y
at a pressure, P, and then having a

superposed tension on the solid por- —_—

tions of the external surfaces of in-
tensity (1 - n) P, This equivalence 1 t 1
is indicated in figure 2,

The strain due to complete im~
mersion in a fluid under pressure is
the same in all directions and, accord-
ing to (1),is (B/3) P where 8 is com-
pressibility of the grain material that
makes up the rock.

/ I
O—X nP 0-)(

Fig. 1. - Forces acting on an element
of porous material in two principal
directions so as to define total nor-
mal stresses, o, in terms of solid
stresses ¢'. Thus: o-0'+nP

~-(I-n)P
Pty bt
nP P
IR Py dv v b
7 | DI T - =
%/ % =(I-N}P = - % - —=(1-n)P
N .o Tz , zZazT
nP— | ~P > PenP — P ~p | <P
»% %'« — I Al
T B IEEY
nP P

-—
—-
—
-

v.
-

b
-(1-n)P
Fig. 2. - Diagram showing the equivalence of the fluid pressure distribution
on an element of porous material, to the complete immersion of the ele-
ment, together with a superposed tension on the external solid boundaries
of intensity -(1-n)P.

The strain due to a tension of =(1-n)P on the solid portions of the ex-
ternal boundaries of the unit cube according to (2) is

_.( 1 - n) (_]'_é_g.&) P
So the strain due to the presence of fluid pressure is

5 0-052

and the expression for the total strain is the sum of (4) and the right hand term
in (3)

o .
€x=-—}—{—% [o—,}',+ o, ]+

[% - (1-n) (_1_;_&2)}? (cyclic)  (5)

'
E
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Now we shall define the stress term differently and obtain an equivalent
but simpler form of Hooke's Law. Again consider our unit cell of the porous
material and the forces acting on it, indicated in figure 2, oy and Ty which
will be called total normal stresses are defined as total forces per unit gross
area acting on the faces of the cube. Note that this is the summation of the
forces acting across the fluid portions of the boundary. The total stresses in
terms of the solid stresses are then

oy =nP + oy (cyclic) (5)
Now substituting in (5) for oy ., ,We obtain
[arar
[o 0 -
€ = Zx=nbP n [ox+ 0z - 2nP] =1 (1 -n) (L-2w) Q]P
< E E E 3
Rearranging terms this becomes

€ =

[ox -k(oy+ oz)] —[i—l—é——gﬁ—)— - %] P (cyclic) (7)

£ [—

The total stress, o, does not exist as an entity within the porous system.
Tt should be emphasized that the total stress is defined as the summation of the
forces transmitted by the fluid and the solid per unit area. Although this defi-
nition makes the total normal stress seem a little obscure, actually it is the
most useful form with which to work. .

One advantage in using the total stress has already been demonstrated in
the form of Hooke's Law that we have obtained in terms of the total stress, (7).
These equations do not contain the pore area term, n. In Lubinski's equations
(5), which give the strains in terms of the solidstresses, this additional property
of the material must be included.

Another advantage in working in terms of the total stresses arises from the
continuity of the total normal stress across a boundary, whether solid (imperm-
eable) or liquid. Whether the material outside the boundary is solid or liquid,
the normal stresses on either side and normal to the boundary must be equal.

In terms of the solid stresses, o we see from figure 3 that the surface pres-
sure, P, delivered by a solid produces a solid normal stress on the porous side
of the boundary equal to (1 - n) P. If the surface pressure is delivered by a
liquid,the solid normal stress in the porous material will then be equal to P.

Yet another advantage to working in terms of the total stress will appear
later with regard to the force field resulting from the motion of a fluid through
the porous medium.

Readers interested in more detailed treatment of the elastic behavior of
porous materials may wish to refer to Biot (1941), Gassmann (1951), and
Geertsma (1957). Pore volume compressibility, which is not discussed in this
paper, is treated by these authors. Lubinski (1954) outlines a method for the
solution to problems of elastic stress in porous materials.

Thermal Stress Analogy

Lubinski (1954) points out the analogy between the problem of stresses
resulting from thermal gradients in an isotropic material and the determination
of stresses in a porous material that are caused by fluid pressure gradients.
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He then outlines a method of solution following closely the method given by
Timoshenko (1934, p. 204) for thermal stresses.

Hooke's Law for isotropic materials, which includes the strain due to
changes in temperature, is:
1
Ex = —E}S —% (0'.;, + O'é ) —aT (eyclic) (8)
where ¢ is the linear coefficient of thermal expansion and T is the temperature
above some datum at which the material is assumed to be unstressed.

The expression for the shear stresses in terms of the shear strains are un-
changed, when expansion of the elements of the system due to temperature is
considered. So,

Txy Ty T, -
ny: G sz= GZ 'Y:-‘é"'é (9)

G is the shear modulus, v is the shear strain, and T is the shear siress,
When the term T in (8) is compared with

(g2 8]

in (7) we see that their physical significance is nearly the same. The first
represents a strain due to temperature change, the other to a change in pore
pressure.

Tt will condense our formulation if we now define a new elastic constant,

T = [1_‘_2.1_& - @_] (10)
E 3
The physical meaning of J is analogous to « in (8) and we may call it the lin-
ear coeifficient of pore pressure expansion,
Note that in Lubinski's form of Hooke's Law for porous materials (5) the

term 1-2u) ;_3_]

[( 1 -n) s :
has the same physical significance as ¢ and J . So it can be seen that one
effect of changes in pore pressure is a change in volume of the elements that
make up the material,just as temperature produces a volume change..

Body Forces

There are no real body forces associated with a temperature gradient, but
we might well suspect that a body force would be associated with a fluid moving
through a porous medium, and, if this were the case, the analogy between ther-
mal stresses and the stresses due to pore pressure gradients would be incom~
plete, As it turns out, the existence and nature of body forces due to fluid mo-
tion in a porous material is a matter of viewpoint. More specifically it depends
on the definition of the normal stress term used.

For example, working in terms of the solid stress, o', it is readily seen
from figure 4 that .
o4 +n(P+dP) = nP + 0§ +dog
and dog dp (11)

ds =n ds

This gives us a body force in terms of force per unit volume transmitted to the
solid phase from the moving fluid.
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f ds »| .
0y — % @ -~ o+ doy

| f 1
n(PrdP) =1 G : nP
Fig. 3. - Diagram showing the normal Fig. 4. - Diagram showing forces acting
stresses acting on two types of on the external surface of a porous
boundaries - solid and permeable. element normal to direction of fluid
motion.

Now converting this into terms of total stress using relation (6):

dog=dog -ndP

dog~-ndP dp
ds =% 4n
dog
qs =0 (12)

There is no body force due to the motion of the fluid in terms of the total
stress. This seeming paradox is resolved when we realize that in working in
terms of the total stress the fluid is treated as part of the body, so the force
gradient in the liquid is cancelled by that in the solid. Still another view of
the force field developed by the fluid may be taken when working in terms of the
"effective " stress,which will be discussed in the next section.

As no body force exists due to the motion of the fluid when working in
terms of the total stress, the effect of fluid pressure changes on the system may
be assumed as entirely due to volume dilatation as is the case with thermal
stresses, Thus the total stresses in porous systems with pressure gradients
may be treated as completely analogous to thermal stresses.

Timoshenko's Thermal Stress Equations

We will proceed in the manner by which Timoshenko derives equations for
the solution of problems in thermal stresses. Substituting in (7) using (10) we
obtain € =1 [

X7 E

Defining the volume dilatation

Ux—p(0y+az)]—]P {cyclic) (13)

e= €x+ eyt €, (14)

We can obtain by adding equations (13)

" Ee JEP
+
1 -2p 3 1 -2p

Oy +0,+0, = (15)

Y



HYDRAULIC FRACTURE THEORY 9

by rearranging the first of relations (13) we obtain

__Eex 9x JEP
Ty+om=- + el (16)
subtracting (16) from (15) gives the normal stresses in terms of the strains.
Eex p Ee JEP .
= + + 1
Tx T+u (14wl -2p) 1-2p (eyclic) (17)
By making use of the identities (Timoshenko, 1934,p.11)
E
G = 2 (L) (18)
and N :__FL__.. (19)
(1+p)(1 -21)
relations (17) condense to
_ JEP ,
O‘X—ZG‘:EX+>\e+1_2}L (cyclic) (20)
The shear stresses in terms of the strains are as given by equation (9)
Txy =G rxyi Tyz=Gryzi Tzx=Gyzx
The equation of equilibrium (Timoshenko, 1934, p. 195) is
do, ot ot
X2 EE L v -0 (cyclic) (21)

Making use of (9) and (17) and substituting for the stresses in the equa-
tion of equilibrium, (16), assuming the body forces equal to zero,

de [ dex  OVxy _@sz] JE 9P _, o
A 7 T G|2 P + 5y T, T-2n ox ¢ (cyelic) (22)
By using the identities (Timoshenko, 1934, p. 7)
_Op . Q9w . OV o
%= (cyclic) )’XY— 3y + = (cyclic) (23)
and the definition 32 ;3_2__ 2
V=52 Tho2 T 322
ox oy oz
(22) will simplify to
de 2 JE aP _ :
(A+G) ax+G:V Ut IToE ox =0 (cyclic) (24)

If the foregoing manipulations had been performed using the conventional
form of Hooke's Law for isotropic materials,

= gl oyrloy+o,)]  (oyolio) (25)

rather than equations (7) and assuming the existence of body forces X, Y, Z,
the result (Timoshenko, 1934, p. 200) would have been
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(A+ G)g—e—+ GV2u+X=0 (cyclic) (26)
X
When we compare (24) and (26) we see that the term
_JE_ 9P
1-2p dx

in (22) takes the same form mathematically as a body force per unit volume.
The boundary equations (Timoshenko, 1934, p. 195) are
X=ox i+ txym + 755 n (cyclic) (27)

where X, Y, Z are surface forces, and {, m, and n are direction cosines.
After substituting for the stresses by making use of (9) and (17) and as-
suming that the surface forces are zero, we obtain

JEP 5, _ du ou AL
- 2M£—>\e{+G[aX{+ m + n}

1- oy 0z
ou ov ow ] .
+ G [—'—a - i+ ix ™ + ox O (cyclic) (28)

If the same operations had been performed on the boundary force equations
(27) uging the conventional form of Hooke's Law for isotropic materials and as-
suming the existence of surface forces the result would be

- Qu, 0Ou ou ' oy ov ow
X~>\6£+G[ Ox£+ dy m+ 0zn] +G[ dx’t+ dxm+ 0 x n:‘
{cyclic) (29)
Comparing {23) and (24) we see that the term —[—JE—} P{ is analogous
= 1-2p
to the surface force, X.
We have now shown that the existence of fluid pressure and fluid pressure

gradients within the porous system may be accounted for by assuming the ex~
istence of a fictitious body force per unit volume

E oP

(1-20) % {cyclic)
and surface forces of intensity
_ JEP .
(1-21) 4 (cyclic)

thus satisfying the boundary and equilibrium equations.

If real body and surface forces exist, and the latter certainly will exist,
they may be superposed on the components of stress obtained from the solution
of equations (22) and (28).

In part II we will take advantage of the analogy between thermal stresses
and the stresses resulting from pore pressure in obtaining the solution to a
sample problem. ’
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Effective Stress

In the field of soil mechanics a stress term known as "effective stress”
has been defined which is useful because it is a measure of the pressure tend-
ing to compact soils and causing them to resist shear stresses. The effective
stress, & , is defined, & =o~- P. (See Terzaghi and Peck, 1948, p. 52.)

The effective stress is the component of the total stress which tends to
compact and distort the mineral grains.

The meaning of effective stress becomes more clear when we inspect
relations (7). If the fluid pressure remains constant, a change in the total
normal stresses produces strains that are functions of the bulk elastic proper-
ties of the material and that are accompanied by microscopic distortions in the
porous framework.

Considering what happens when the fluid pressure changes and the total
siresses remain constant, we see that the strain due to changes in fluid pres-
sure may be conveniently divided into two components. One component

(1-2w)
- ———-——-—E P
is equivalent to the strain produced in a jacketed specimen of porous material
by an external fluid pressure, P, except that it is opposite in sense. The nature
of this type of strain is the same as that produced by changes in the total normal
stresses and is accompanied by grain distortion.

The other component of strain caused by changes in fluid pressure,

({3/3) P, is equivalent to the strain produced in an unjacketed specimen when im-
mersed in a fluid under pressure. The strain thus produced is hydrostatic micro-
scopically as well as macroscopically and produces a uniform reduction in grain
volume (we are assuming that the grains themselves are isotropic) with no grain
distortion. Thus we have two types of strains, one accompanied by grain dis-
tortion and compaction, the other consisting of a uniform change in volume with
no distortion. Separating these two types of strain we may put equations (7)

in the form

___U"}{____"_P)_&[

€x - E (GY—P)+(UZ—P)]+% P (cyclic)

We now define that component of the normal strain characterized by grain
distortion and compaction as "effective strain',symbolized by €. We see that
this component of the normal strain is entirely due to normal stresses of in-
tensity (o~ P), symbolized by &, the effective stress. So we have the equa=-
tions defining effective siress:

Gy =0x ~ P (cyclic) (30)

These two types of strain and the stresses that produce them are separ-
ated because they have very different effects on the properties of the material.
The completely hydrostatic component of the normal strain,(ﬁ/S) P, does not
change the gross structure of the material, but it does alter slightly the dis-
tances between atoms in the crystal structure. This in turn changes resistance
to shear along crystallographic planes and probably also changes the elastic
constants. However, these effects are so small, as evidenced by the work of
Griggs {1938) and others, as to be negligible within the range of pressures en-
countered in oil field work.
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On the other hand, the properties of the porous material might well be ex-
pected to change with changes in the effective normal stresses. The properties
of a porous material depend on its structure as well as on the properties of its
constituents. Because a change in the effective stress changes slightly the
structure of the porous substance, we might also expect a change in the elastic
properties and strength of the material.

An increase in shear strength of granular materials due to an increase in
the effective stress has been demonstrated experimentally many times. Measure~
ment of strength and deformation of jacketed cylinders of sedimentary rock have
been performed by Handin and Hager (1957) and others. Changes in bulk com-
preésibility with effective confining pressure have also been measured by Zis-
man (1933).

The Coulomb-Mohr criterion of failure, which is developed in a later sec~-
tion, has been found to fit experimental data rather well. The Mohr theory of
failure is based on Coulomb's equation,which states that resistance to shear is
equal to some constant times the compressive stress normal to the plane of
shear plus a constant which is the shear strength at zero stress normal to the
plane of shear. Expressed analytically

T=Tqo +K5‘n (31)

where To is the resistance to shear at zero normal stress, T p is the effective
stress normal to the plane of shear and K is a constant of proportionality, known
as the coefficient of internal friction.

Experimental data for sedimentary rocks has been found to fit this simple
relation rea sonably well, However, Handin and Hager (1957) point out that
resistance to shear seems to depend on stresses other than those normal to the
plane of shear. Although the Coulomb - Mohr theory thus leaves something
to be desired, we shall use it here as the best machinery presently available.
Probably a great deal of experimental work will be required in order to take
better account of shear strength as a function of the stress condition of the
material.

Before the Coulomb-Mohr criterion of failure is discussed, something
should be said of the influence of the effective stress on the elastic constants
of the material,

Experimental Values

An experimental study was undertaken (Cleary, 1958) to test the applica-
bility of the elastic theory of porous materials developed in the previous section
for sandstones and to learn typical values of the elastic constants. These ex-
periments demonstrated that the bulk elastic constants are strongly a function of
the effective stresses in the material, as suggested in the above paragraphs.

E increases markedly with mean effective confining pressure. As the elastic
theory presented here was developed under the classical assumption of constant
elastic properties, it is somewhat inadequate, but may be used for order-of-
magnitude calculations if "average" values of the "constants" are selected
within the range of stress conditions that exist in the problem under considera-
tion. Table 1 shows reasonable values of the elastic constants for two sand-
stones, one of high and one of low porosity, obtained from these tests.

In summary, the effective stress produces approximately the same changes.
in properties of a porous material, such as shear strength and elasticity, in the
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presence of fluid pressure as would a total stress in the absence of fluid pres-

sure.
Table 1. - Elasticity Values Used in Sample Problems

E _JE_

1b./in.2 g 1-p
Porous sand 2 x 106 .1 .7
Hard sand 6 x 106 .2 0

For the sake of completeness we will obtain the force field developed by
the moving fluid in terms of the effective stress, (o - P). In the previous sec-
tion we showed that this body force in terms of the total stress was zero, or

do g
ds

where s is the direction of fluid motion. From the definition of effective stress
given by (30):
dog =d&g + dP
Therefore
dO’s _ Clz

ds = ds
Hence, the effective stress gradient equals the negative gradient of the fluid
pressure, This view of the body force caused by the motion of a fluid is par—
ticularly useful in soil mechanics where the shear strength of soils as a func~-
tion of hydraulic gradients is of concern. (See Terzaghi and Peck, 1948, p. 53.)

Coulomb-Mohr Criterion of Shear Failure

A method for determining the stress condition of impending shear failure
for granular materials is used in the field of soil mechanics (Terzaghi and Peck,
1948, p. 95-97). The same method was used by Hubbert (1951) in a discussion of
the mechanics of faulting, and by Hubbert and Willis (1957) in estimating the
stress condition in a faulted region from which the orientation of hydraulic frac-
tures might be inferred.

This method combines the graphical presentation of normal and shear
stresses, known as the Mohr's circle, with a plot of Coulomb's equation for
the internal friction of granular materials.

The Mohr's circle construction is developed as follows: A two-dimen-
sional stress block (fig. 5) is oriented so that the normal stresses o yand oy
are perpendicular to planes of zero shear. An arbitrary shear plane AA' passes
through the block making an angle g with 0% , the plane of least principal
stress. An elementary wedge of material, ds, dx,and dz, is indicated in the
block and expanded below it. The normal stress on the shear plane is o, and
T is the shear stress,

The equilibrium equation in direction AA' is

-Tds+o0yg dx sin@ - oyxdzcos® =0

=nd sing = dz cos @ = dx
0 ds o ds
So 1
T=17 (dy-0x%) sin 26 (32)
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This gives us the relation be- o,
tween the shear stress, 7 , and the t
principal stresses, and the angle ©,

which the shear plane makes with the _A
least principal stress. - -
The equilibrium equation for the R 454, -—
direction normal to the shear plane is | X
A~
-opds+ 0y, dxcos8+ o;;dz sin® =0
op= 0y cos2 B+ 0y sin2@ ] .
(xt 0z7) (95 _ 0g) Ty //
op = 7 + 7 cos 28 \ -
(33) é/
ds dz <~—0
Now making use of equations X
(31) and (32), if T is plotted against 7
o, for all values of © while holding oy, 7 dx
and oy constant, we obtain a circle A
(fig. 6). The circle intersects the o T
axis at o and v,. Its center lies on T
the axis at point
(oy + oy) Fig. 5. - Stress block showing normal
T stresses in two principal directions.

The shear stress is in a plane that
makes an angle § with o, . The shear
stress is indicated on the wedge

ds, dx, dz.

An arbritrary point, A, on the
circle, satisfies equations (32) and
{33) for a particular angle © such that
20 is the angle which the radius vec~-
tor of A makes with the 7nositive ¢ axis. Once the properties of the circle are
recognized it is possible to construct it directly from o and o,. After the cir-
cle is constructed, the normal and shear stresses for any plane making an angle
B with the lesser of the two principal stresses can be read directly from the

T construction,

Coulomb's equation (31) for
the shear resistance of granular
materials under compression has
already been given. It was also
pointed out that the significant
stress normal to the plane of shear

9 is the effective stress, & , defined
by equation (30) if pore fluid pres-
sure is present. Coulomb's equa-
tion (31) may be written

T=Tg + tan ¢, (34)

in which tan ¢ = K and ¢ is defined
Fig. 6. - Mohr's circle showing the shear as the angle of internal friction.
stress, Tp, in a plane making an angle §
with the least principal stress.
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T:7,+0,tand
(fracture line)

Unstable

Stable Region

Ql

Fig. 7. - Fracture lines showing
regions of stability and instability.

Fracture Line

Mohr's Circle

| . (@] !

— T, min, :
|0

“z

Fig. 8. - Mohr's circle tangent to the fracture line, yielding minimum value of
&, for the given value of 7,, the minimumand maximun~ principal stresses.
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Now, if we plot the shear resistance T against the effective normal stress,
On , we obtain two straight lines defining regions of stability and instability on
the graph (fig. 7).

Combining Mohr's Circle with Coulomb's Equation

Figure 8 shows Mohr's circle diagram and fracture lines plotted from
Coulomb's equation, The diagram has been plotted in terms of the effective
stress. It was therefore necessary to substitute for the total normal stresses
in (32) and (33) their expressions in terms of the effective stress. However,
this does not change the form of (32) and (33).

The dotted circles on the diagram indicate the states of stress for decreas—
ing values of &y. The solid line circle shows the minimum value of oy, for the
given set of conditions, If o4 were smaller the circle would fall partly in the
unstable region. If this were the case the shear stress would exceed the shear
strength along certain planes, an impossible condition. So, given the angle of
internal friction, ¢, for the rock, and the effective vertical compressive stress,
one can construct a Mohr's circle tangent to the fracture line and read directly
Ty min, the minimum value of the effective horizontal principal stress.

Algebraic Expression for 04 Minimum in Terms of Pore Pressure

It is convenient to have an algebraic expression for 0y min. This we can
obtain directly from figure 8,which shows the Mohr's circle tangent to the frac-
ture line. This is the condition of impending failure. In other words, this is
the condition such that the shear strength is equal to the shear stress along a
plane making an angle 8 with the horizontal. Thus, a minimum value of Oy is
defined for given values of ¢, 7o, o5 , and P,

From the figure we note that

PO - AO= 04 min

and G, min + &
PO = L__zw_..z._

and . Oy min + Ty To ]

AQ = sin ¢ 5 + tan ¢
Therefore o (1 - sin ¢ o 2 cos ¢, (35)

Ix (l+sin¢) % 1+ sing
Making use of (35) and (30) we can obtain this expression in terms of total
stresses,

) - Si 2
a‘Xmm—P=H Sme)(Uz—P)—- cos 8 To (36)

(1+ sin 8) 1+ siné

Tensile Strength

There is one further restriction to be placed on the allowed values of oy
based on the assumption that the rocks will not sustain an appreciable tensile
stress over any wide area,
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The following analogy is offered to justify this assumption, If a brick
from an old brick wall were placed in a testing machine and pulled apart, the
measured value of the breaking stress might be about 600 pounds per square
inch. But if by some means a short section of the wall were tested, the value of
the breaking stress would be much lower because of cracks and other imperfec~
tions which would exist in such a section. Finally, if a long section of the old
wall were tested, in all likelihood the tensile strength would be either 0 or
negligible, for probably somewhere in a long section of the wall there would be
a crack that would almost completely sever the wall.

Similarly,a sedimentary bed will ordinarily contain joints or planes of
weakness along which tensile stresses would be relieved. From this assumption
we make the following restriction on the value of the normal stresses

o>P
or . ,
oy min=P (cyclic) (37)

Tensile Failure Due to Pore Fluid Pressure

If forces are being applied over a very limited region within the rock, the
tensile strength of the rock may have to be considered. As noted previously, the
fluid does not act over the total area of a section of cemented porous material.
However, as we are now considering the condition of failure, it is not valid to
use the pore area term used in (6) above as the effective unit area.

The pore area term,n,was defined as the area of pore in any random plane
passed through the material. Tensile failure, whether due to an external tension
or internal fluid pressure, will not occur in a plane. The surface of fracture,
while tending to remain normal to the least compressive siress, will follow a
tortuous path that takes advantage of statistical variations in the strength of the
material and larger scale cracks and weaknesses if present. In spite of these
considerations, the fluid pressure in a consolidated material must act over some-
thing less than the total area in the plane of fracture. Let us designate this
fraction as N. It would be difficult to obtain a value for N but we know that it
must be greater than n, Note that for an unconsolidated sand n would equal
about .35 whereas N would equal 1.

An idealized one-dimensional model of a consolidated porous material sub-
jected to an internal fluid pressure and an external compressive stress is de-
picted in figure 9. The model consists of a plug with a reduced middle section
fitted in a cylinder. The cross section of the annulus represents N as described
above. The bore of the cylinder is unity, so the area of the reduced section of
the plug is (1 - N). This represents the solid area which must be severed along
the plane of fracture.

Suppose that we have obtained the tensile strength, o, in terms of the
gross area by conventional laboratory methods. In terms of the solid area along
the potential surface of fracture the tensile strength is O‘X/ (1-N).

The question is, what "pore " pressure, P, is required to cause the model
to fail in tension? If additional details are not known,there are several possible
answers to this question.

(1) Assume, for example, that the material is ductile so that failure will
occur when the shear stress reaches a certain critical value, 74, per unit solid
area. Then the pressure causing tensile failure will be determined by equating
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P
£ 4 — o,~NP
a_n‘“’(_'{Nl.__ « o, g—f._sj].._gn —_— ,7 ~— TN
T I ] —
NP T
A B ¢ =]

Fig. 9A. - One-dimensional model of porous material loaded by an external
stress, o, normal to the plane of potential fracture, and a pore fluid pres-
sure P. The solid area in the plane of failure is (1~ N).

B. - Free-body diagram showing the forces acting to produce tension
normal to the plane of failure in a one-dimensional model of porous material,
C. - A cubic element in the section of failure with the forces acting on it.

the expression for the shear strength in terms of the tensile strength and solid
area of failure
or/ (1 -N)
s 2

to the shear stress in terms of an external axial load, o, and pore fluid pres-
sure necessary to cause failure (fig. 94),

T :l[M_P]

sT2' (1 -N)

This reduces to
P= o+ op (38)

This tells us that, regardless of the value of N, the material will fail
when the pore pressure, P, exceeds the external pressure, o, by an amount
equal to the tensile strength of the material,

(2) Now suppose that the model is composed of a brittle material. The
material will fail in pure tension when the axial stress exceeds a certain value,
04, per unit gross area or actually 04/ (1 - N) in terms of the solid section of
failure.

The pressure necessary for failure is then determined by o + 0t = NP
(fig. 9B).

P=Tl\7(o-n+ ay) (39)

This indicates that the pressure required to rupture a brittle porous mate-
rial in tension exceeds the external stress needed to rupture it and is inversely
proportional to N.

As it turns out, actual experiments on brittle materials do not indicate that
the above argument will hold.

(3) P, W, Bridgman (1947) performed tensile tests on brittle materials
under confining pressure. The essential features of these tests could be rep-
resented by our figure 10.

The values of pressure necessary to cause failure in these experiments
ranged from what would be predicted by

P=(Tt+(7'n
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on up to much higher values. It was

also found that the type of fluid in T

contact with the specimen greatly af- J7— -
fected the results of the experiment. | ol SRR N "J

If the specimen was jacketed, much
higher values for the "strength" were

obtained. Fig. 10, - "Pinch-off"' apparatus might
In one set of experiments a uni- be used to measure tensile strength
form glass rod was allowed to protrude of rock loaded by pore fluid pressure.

through packed glands at either end of

a pressure chamber. Pressure within

the chamber caused failure of the specimen in tension and the pressure causing
failure was approximately

POy + Oy (40)

where o is a small unknown external stress due to friction in the packing.
Here we note that although the specimen failed in tension it was actually slightly
in compression due to friction in the packing.

Bridgman's explanation for this paradox is roughly as follows. The surface
of the brittle material contains microscopic fractures and imperfections which act
as stress raisers. If the fluid can enter these it can act locally in the axial di-
rection, but in a gross diagram of the experiment it appears to act only radially.
Thus the fluid may propagate a fracture across the section while it is in compres-
_sion. What will really happen depends on the detailed properties of the mate-
rial and must be determined by actual experiment. So it would seem that the
pore pressure necessary to rupture sandstone and other porous rock materials
should lie in the region

o, + UtSPS—lﬁ(o’tq- an)

One is tempted to speculate further than this. Observing that the internal
surface of a porous rock contains, to the nth degree, the microscopic stress
raisers and microscopic fractures encountered by Bridgman for polished speci-
mens (1947), we may well suspect that P, the pore pressure necessary for ten-
sile failure, is simply 0 + ¢ . A straightforward experiment, using an appar-
atus modeled after figure 10, might settle this question. The pressure neces-
sary to rupture successive identical rock specimens would be plotted against
successive values of op, an external stress applied to the ends of the speci-
men. One could then determine whether dP _;or dP_ 1 where N<1

dop dopy N
One difficulty would be that of obtaining identical specimens if natural material
were used.

Summary

As a review of this section we will now plot the change in stress condi-
tion of two buried strata, considering stress a function of the pore fluid pres—
sure, and assuming that it has changed uniformly with time throughout the
strata.

The example in which the vertical stress, oy, is maximum and one of the
horizontal stresses, 0y, is minimum is considered in this and all succeeding
examples.
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Let the vertical stress, o5, equal 5,000 psi. The least horizontal stress
when the pore fluid pressure is zero, will be denoted by Oxge

The assumed elastic properties of a porous sandstone are listed in
table 1.

A restriction on the possible conditions of stress is given by (37). This is
the requirement that for large masses of rock the tensile strength is negligible
and consequently the total stress, oy, cannot be less than the fluid pressure,
P. In figure 11 this requirement is plotted as a straight line through the origin
with a slope of one. This line defines a set of minimum values of oy for any
given pore fluid pressure, P.

- Ibs.
g, - 1000 7in2

o
Pmax.= a,

1 Il i

1 2 3 4 5
P-1000 'PS/, 2

Fig. 11. - The least horizontal stress,
o, as a function of a pore fluid pres-
sure changing with time for the case

O'x < O'z

Another restriction on possible values of Oy is imposed by the limited
shear strength of the material, This restriction is imposed by plotting (36) on
the diagram, Let ¢ equal 45° and 7, equal 200 psi.

The value of ¢ selected is not to be taken too seriously. Published values
cannot be relied upon in this application. In a sense, the value of ¢ which we
seek applies to-the yield strength of the material because if any vielding does
occur the least stress will go immediately to a higher value and vielding will
then cease, Doubtless if the rock is near enough the condition of failure for
shear strength to be considered, shear joints would already exist in the rock
and therefore the coefficient of friction that we seek would be for slippage along
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pre—existing fractures. For this reason a modest value is assumed for7,. Itis
hoped that future studies will make possible a more confident application of this
theory.

We see in figure 11 that for the interval 0 < P < 3300 psi, the shear strength
is the limiting factor whereas the "negligible tensile strength" requirement de-
cides the minimum value of ox for higher values of P.

It now remains to plot the change in oy due to changes in pore fluid pres-
sure using equations (7). The conditions of the problem require that horizontal
expansion be prevented while free expansion is allowed in the vertical direction,
and that there is no change in o,. Letting ex* and ey* be the strain components
and letting o, * , oy*, and oy * be the components of the total stress due to the
change in fluid pressure, these conditions may be expressed o, * = 0; €x*= ey*
= 0 and from symmetry o,* = o’Y*. Substituting in {7) gives

O-X*:[il_—]?— ]P
and B

o= oxot [T 1P (41)

The experimental value of—ll-_g— intable 1 (p. 13)is o.7. This value has been
substituted in (41) and the curves protted for two assumed values of oy on the
diagram in figure 11. °©

Figure 11 gives us the range of possible values of P and oy, the least
horizontal compressive stress, and it also shows how oy will change with fluid
pressure,

Assuming that the virgin pore fluid pressure was 2,000 psi it is evident
from figure 11 that oy is a minimum inasmuch as its curve AB cannot intersect
the yield line below the point B. Therefore, possible values of ox must fall with-
in the region AB CD,.

Figure 12 shows a diagram similar to figure 11. Here we have plotted values
for a hard sandstone. The assumed properties of the material are listed in table 1.

It is not meaningless to consider the change in fluid pressure in a hard
nearly impervious formation if it has some sort of joint system and lies adjacent
to a permeable formation in which the fluid pressure is changing. Suppose that
the rock we are now considering is entirely impervious save for a few widely
spaced closed vertical joints, and that it forms an impermeable cap on a porous
sand.

For an impervious rock, J must be equal to zero. Therefore (40) becomes
oy = 0o = constant. The horizontal stress does not change with fluid pressure.
This is indicated in figure 12 by horizontal lines o‘xo1 and O’xo2 . But, when
the fluid pressure communicating with the joints reaches the value of OTxor ANY
further increase in P must be accompanied by an equal increase in 0y due to re-
quirement (37).

Let the stress condition be that indicated by point A in figure 12. Then
let P be increased from 2,000 psi to 3,000 psi. What will be the horizontal
strains in the rock? Assume that oy is greater than 3,000 psi then it will not
be influenced directly by the change in P,

The conditions of the problem are then ey* =0; 0,%=0; Ox* = 1,000 psi

For impervious rock Hooke's Law is simply

€y = % - % (oy + 0,) (cyclic)
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s

(37)

Pmax.

It 1 1 L

| 2 3 4 5
- Ibs.
P~ 1000 /in2

Fig. 12, - The least horizontal stress, oy, as
a function of pore pressure for a stratum of
very low porosity. The path of changing o,
is indicated by the dotted arrow,

This gives us, when we substitute the boundary conditions,

1,000 »
**.__L____
x =g £ %y

0= oy -1[1,000]
_ u2]
x = “E* [1,000]

Letting p equal .2 and E equal 6 x 106 gives oyx* = .001 in/in,
A joint system perpendicular to the X axis and an average spacing of 100
inches would then have opened about .01 inch per joint.

Some of the basic theory presented here will be used in the solution of
sample problems in Part II.

€
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