# GEOLOGIC INVESTIGATION OF ROOF AND FLOOR STRATA: LONGWALL DEMONSTRATION, OLD BEN MINE NO. 24. PREDICTION OF COAL BALLS IN THE HERRIN COAL

FINAL TECHNICAL REPORT: PART 2

by

Philip J. DeMaris, Robert A. Bauer, Richard A. Cahill, and Heinz H. Damberger

Principal Investigators:
Heinz H. Damberger
Harold J. Gluskoter (to 6/78)

Illinois State Geological Survey Natural Resources Building 615 East Peabody Drive Champaign, Illinois 61820

Date Published, April 1983

Contract No. U.S.D.O.E. DE-FG01-78ET12177 (Formerly U.S.B.M. G0166207)

This report represents work on a program that was originated by the Interior Department's Bureau of Mines and was transferred to the Department of Energy on October 1, 1977.

U.S. DEPARTMENT OF ENERGY
Assistant Secretary for Energy Technology
Division of Fossil Fuel Extraction
Mining Research and Development

# CONTENTS

| ABSTRACT                                                              | . V |
|-----------------------------------------------------------------------|-----|
| ACKNOWLEDGMENTS                                                       | vi  |
| EXECUTIVE SUMMARYINTRODUCTION                                         |     |
|                                                                       |     |
| GENERAL CHARACTERISTICS OF THE HERRIN COAL AND ASSOCIATED ROOF STRATA | ١.  |
| Herrin Coal and Interbedded "Blue Band"                               | . 3 |
| Channel-Fill Lithologies                                              | .7  |
| Anna Shale                                                            | .9  |
| Brereton Limestone                                                    | 10  |
|                                                                       |     |
| COAL BALLS                                                            | 12  |
| Permineralization of Peat                                             | 12  |
| Relationship to Roof Strata                                           | 19  |
| Early Mineralization                                                  | 20  |
| Physical Appearance of Coal Balls                                     | 22  |
| Compaction of Peat Before Mineralization                              | 23  |
|                                                                       |     |
| GEOCHEMISTRY OF COAL BALLS                                            | 25  |
| Sample SetsPrevious Work                                              |     |
| Analytical Methods                                                    | 26  |
| Mineral Composition                                                   | 27  |
| Major Elements                                                        |     |
| Elemental Associations: Correlation and Factor Analysis               | 32  |
| Coal-Ball Formation: Implications of Geochemical Data                 | 36  |
| Carbon and Oxygen Isotopes                                            | 38  |
| MODELS FOR THE FORMATION OF COAL BALLS AND THEIR PREDICTIVE VALUE     | 39  |
| Predictive Value of Old Ben 24 Model                                  | 41  |
| Review of Literature on Coal Balls                                    | 44  |
|                                                                       |     |
| CONCLUSIONS                                                           |     |
| RECOMMENDATIONS                                                       | 47  |
| APPENDIX A Geochemistry Sample Reference List                         | 52  |
| APPENDIX B Analyses of Coal Balls and Similar Materials               | 56  |
| APPENDIX C Analyses of Associated Rocks                               | 63  |
| TABLES                                                                |     |
|                                                                       | _   |
| Major Depositional Periods and Events                                 | L   |
| 3 Characteristics of Coal-Ball Areas at Old Ben Mine No. 24           | .18 |
| 4 Relative Heights: X-ray Diffraction                                 | 28  |
| 5 Predicted Mineral Composition Based on Chemical Analysis            |     |
| 6 Mean Concentrations of Rocks Associated with Coal Balls             |     |
| 8 Statistical Test of Sr/Ca Molar Ratio                               |     |
| 9 Carbon and Ovygon Isotope Data                                      | 40  |

# **FIGURES**

| I  | Composite stratigraphic section of the roof of the longwall panelsviii                                                       |
|----|------------------------------------------------------------------------------------------------------------------------------|
| 2  | Thickness of Energy Shale and distribution of transitional roof3                                                             |
| 3  | Index to mapped areas in the Old Ben Company Mine No. 244                                                                    |
| 4  | The rare earth element (REE) distribution in ash samples5                                                                    |
| 5  | Sedimentary features of an idealized erosional channel ("roll")6                                                             |
| 6  | Structural features of an idealized erosional channel ("roll")7                                                              |
| 7  | Center of an erosional channel showing "V" scoured into the peat8                                                            |
| 8  | Transported vitrain fragments in a claystone matrix; contact between fossiliferous shale and impure allochthonous coal9      |
| 9  | Typical disc-shaped Anna Shale concretion                                                                                    |
| 10 | Anna Shale concretion formed on a segment of a bioturbation trace; pyritized bioturbation trace without concretion formation |
| П  | Round coal ball showing slickensides and bending of coal laminae due to compaction                                           |
| 12 | Long coal ball formed on a single plant axis13                                                                               |
| 13 | Concentrated coal balls near the center of coal-ball area L                                                                  |
| 14 | Exterior and cut faces of two transported coal balls14                                                                       |
| 15 | Mixed coal ball from Old Ben Mine No. 27                                                                                     |
| 16 | Permineralized plant fragments in a clastic matrix                                                                           |
| 17 | Concretion formed on channel-fill materials                                                                                  |
| 18 | Coal balls, coal-ball areas, and roof lithologies in the northern half of mapped area A                                      |
| 19 | Coal balls, roof lithologies, and erosional channels in the southwest part of mapped area A19                                |
| 20 | Coal balls, roof lithologies, and erosional channels in Old Ben Mine No. 2720                                                |
| 21 | Diagram of generalized coal-ball distribution within coal-ball areas21                                                       |
| 22 | Adjustments made to the second longwall panel during mining21                                                                |
| 23 | Relationship of type II coal balls to an erosional channel                                                                   |
| 24 | Detail of several coal-ball zones from vertical section 3 within area L23                                                    |
| 25 | Coal-ball area L and selected sample sites. Detail from mapped area A24                                                      |
| 26 | Elements reported in this study and those of some potential environmental concern27                                          |
| 27 | Relationship between percentage of MgO and relative peak height of dolomite30                                                |
| 28 | Relationship between percent sulfur and relative peak height of pyrite32                                                     |
| 29 | Relationship between pyrite and relative peak heights of dolomite                                                            |
| 30 | Frequency distribution of the La/Lu ratio for coal balls and associated materials35                                          |
| 31 | Stable carbon and oxygen isotope values for coal balls and associated units39                                                |
| 32 | Schematic block diagrams showing events leading to the formation of coal balls42                                             |
| 3  | Transitional roof areas near Franklin County43                                                                               |
| 4  | Distribution of coal balls in the Upper Foot and Gannister Coals in England44                                                |
| 5  | Coal-ball locations in Clarkson Mine45                                                                                       |
| 6  | Bioturbation trace surrounded by coal from the top of the Herrin Coal                                                        |

#### **ABSTRACT**

Coal-ball areas, large deposits of mineralized peat in the coal seam, obstructed longwall mining in the Herrin Coal at Old Ben Mine No. 24. In-mine mapping located coal balls under transitional roof-areas where the roof lithology alternates between the Energy Shale and the Anna Shale/Brereton Limestone. Specifically, coal balls occur under eroded exposures or "windows" of the marine Anna Shale/Brereton Limestone in the Energy Shale.

Two types of coal-ball areas have been identified, based on stratigraphic position in the coal seam: type I is restricted to the top of the seam, and type II occurs at midseam and below. Type II occurrences are major mining problems. Although single and clustered coal balls also occur in the coal seam, they present no major difficulties for mining.

To predict the distribution of coal balls, as well as explain their formation, a depositional model was developed: First, freshwater sediments buried the Herrin peat. Decomposition of the sealed peat continued, producing high  $CO_2$  partial pressures; then selective erosion took place as a river removed the cover along sinuous paths, cutting through to the peat in some places. With the seal broken,  $CO_2$  was released, and freshwaters that contained Ca and the equilibrium toward carbonate precipitation. Later, marine mud buried both the freshwater sediments and the exposed peat, which accounts for the transitional roof over the Herrin Ca and the coal balls under the marine shale "windows" in the Energy Shale.

The depositional model was supported by the first comprehensive set of geochemical data for coal balls. Coal balls generally contained less than 4 percent organic carbon and very low levels of detrital minerals. Distributions of minor elements generally showed no clear imprint of the original peat composition, with the possible exception of the rare earth elements. Carbon isotope data suggested a terrestrial source for the carbonate in type II coal balls from one area, and a marine source for samples of type I (top-of-seam) coal balls.

Although individual sites of concentrated coal balls cannot be predicted, the specific linear roof exposures associated with these coal-ball areas can be identified by mapping. Based on previously mapped areas, the trends of these linear exposures can be projected.

KEYWORDS: coal balls, Herrin Coal, depositional model, transitional roof, geochemistry, sedimentary rocks, trace elements, C-13/C-12, longwall mining, Illinois Basin, Pennsylvanian

#### **ACKNOWLEDGMENTS**

This work was supported by U.S. Bureau of Mines Grant G0166207 from September 1976 to March 1978, by Department of Energy Grant ET-76-G-01-9007, from April 1978 to December 1979, and by Department of Energy Grant DE-FG01-78ET12177 from February 1981 to July 1982.

The work was administered under the technical direction of the Pittsburgh Mining Technology Center with James R. White, Mary Ann Gross, and Jasinder Jaspal as Technical Project Officers.

We wish to thank the officials and employees of the Old Ben Coal Company for valuable information and assistance. We also wish to thank the following Illinois State Geological Survey staff members for their assistance: W. John Nelson and Steven K. Danner for assistance in underground mapping; Suzanne Costanza, Wesley Dillon and Mary H. Barrows for coal and organic petrography; Chen-Lin Chou for geochemical interpretations; James B. Risatti for geochemical interpretations of swamp conditions; and Randall E. Hughes for clay mineralogy. We are grateful to Thomas F. Anderson (University of Illinois) for providing stable isotope data, and T. L. Phillips (University of Illinois) and William A. DiMichele (University of Washington) for information and assistance during the project. We also wish to thank Harold J. Gluskoter, who was principal investigator during the first phase of the contract.

Geochemical analysts include John D. Steele (atomic absorption), Raymond S. Vogel (optical emission), L. R. Henderson (energy dispersive x-ray, optical emission, x-ray fluorescence), Josephus Thomas (ion-selective electrode), Joan K. Bartz (rock analysis), Lawrence B. Kohlenberger, Larry R. Camp and Chaven Chusak (coal analysis), Elisabeth I. Fruth (atomic absorption, x-ray fluorescence), Richard A. Cahill (instrumental neutron activation analysis), Herbert D. Glass (x-ray diffraction), and Jeanne Dunn (data analyst).

## **EXECUTIVE SUMMARY**

This study documents the local geologic conditions at and near the longwall demonstration site, with special attention to coal balls: concretions of mineralized peat in the coal seam. To predict their locations was a principal goal, since massive coal balls disrupted mining operations. A better understanding of their depositional and formative environments was developed to achieve this goal. Our project involved mapping, sampling, and chemical analyses of coal balls, coal seams, and roof and floor strata – a continuation of the work presented in the U.S. Department of Energy Contract Report, Geologic Investigation of Roof and Floor Strata: Longwall Demonstration of Old Ben Mine No. 24 (NTIS No. DOE/ET/12177-1), Part 1.

Coal balls in the Herrin (No. 6) Coal are predictable at two levels: In general, they are associated with most Anna Shale/Brereton Limestone roof in transitional roof areas; transitional roof can be identified from typical drill hole densities (I to 2 holes/mi²) used during exploration. Specifically, the type II coal ball areas which cause mining problems are located under a specific linear exposure of Anna Shale/Brereton Limestone roof at Old Ben Mine No. 24; preliminary evidence suggests other such linear exposures may be linked to type II coal ball occurrences found elsewhere. These linear exposures can be mapped in mine without difficulty.

A depositional model is proposed which explains the distribution of coal balls at Old Ben Mine No. 24. The model is based on detailed geological observations and mapping, together with geochemical data on major, minor and trace element distributions from coal, coal balls, roof and floor lithologies, as well as carbon and oxygen isotope data for selected coal balls and other materials. The model has the peat covered with fresh or brackish water sediments, sealing the top of the peat. Continued decomposition of the peat produces high partial CO<sub>2</sub> pressures in the sealed peat. Erosion of the cover in selected areas by fresh waters from a river containing Ca and Mg ions flushes out the organic acids, increases the pH, and along with the CO<sub>2</sub> degassing, shifts the equilibrium toward carbonate precipitation. Later a marine mud was deposited on the fresh water sediments and on the peat exposed by the removal of the fresh water sediments, producing the association of coal balls and marine shale roof.

Further work suggested by our results includes investigations to evaluate the model at other coal-ball sites in the Herrin and other seams, and refinement of the model through further geochemical investigations.



Figure 1
Composite stratigraphic section of the roof of the longwall panels, representing a portion of the Carbondale Formation, Kewanee Group, Pennsylvanian System.

#### INTRODUCTION

This study documents the local geologic conditions at and near the longwall demonstration site, with special attention to coal balls: concretions of mineralized peat in the coal seam. To predict their occurrence was a principal goal, since massive coal balls disrupt mining operations. A better understanding of their depositional and formative environments was developed to help achieve this goal. This involved mapping, sampling, and chemical analyses of coal balls, coal seams, and roof and floor strata—a continuation of the work presented in the U.S. Department of Energy Contract Report, Geologic Investigation of Roof and Floor Strata: Longwall Demonstration of Old Ben Mine No. 24 (NTIS No. DOE/ET/12177-1), Part 1.

The continued effort to investigate and explain coal balls in the Herrin (No. 6) Coal Member involved more mapping and sampling in Old Ben Mine No. 24 and in nearby mines. We reconnaissance-mapped in two nearby mines to compare previous findings with additional areas of transitional roof and coal-ball occurrences. At the same time we took samples of coal and associated lithologies to supplement those from Old Ben Mine No. 24, which was closed and inaccessible during much of the final phase of our work.

Samples of floor, roof, coal, shale partings, and coal balls were chemically analyzed to help define their environments of formation. The analyses included major, minor and trace elements. Selected samples were also analyzed for carbon and oxygen isotopes and clay mineral composition (<  $2\mu$ ). We reviewed previously published coal-ball models and compared them to our own findings at Old Ben Mine No. 24 and nearby mines.

# GENERAL CHARACTERISTICS OF THE HERRIN COAL AND ASSOCIATED ROOF STRATA

This section expands the discussion that began in <u>Part I</u> on of the possible origins of various rock units associated with the Herrin Coal. Our main focus is the stratigraphic section consisting of four members: the Herrin Coal, the Energy Shale, the Anna Shale, and the Brereton Limestone Members of the Carbondale Formation, Kewanee Group, Pennsylvanian System (fig. I). The following information on these and related lithologies and their depositional environments (table I) provides a useful background for interpretation of our depositional model, which is discussed later.

Table I. Major Depositional Periods and Events, and Spatial distribution of Units at Old Ben Mine No. 24.

| Deposition of                      | Facies, events                                                                                       | Areal extent of rock units                                                                                               |  |  |  |
|------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
| E. Brereton<br>Limestone<br>Member | argillaceous, dark gray<br>marine limestone (facies<br>not studied)                                  | 100% coverage                                                                                                            |  |  |  |
|                                    | environment is host to<br>several types of<br>burrowing organisms                                    |                                                                                                                          |  |  |  |
| D/E RESTRICTE                      | D MARINE ENVIRONMENT EN                                                                              | NDS                                                                                                                      |  |  |  |
| D. Anna Shale<br>Member            | upper portion of the Anna is highly bioturbated                                                      | ca. 98% coverage                                                                                                         |  |  |  |
| ,                                  | transported plant frag-<br>ments are common compo-<br>nents of lower portion                         | ca. 90% coverage                                                                                                         |  |  |  |
|                                    | very thin coal<br>deposited as wave<br>base erosion ceases                                           | commonly seen on the<br>Energy/Anna contact                                                                              |  |  |  |
| C/D TOPS OF ROREDEPOSITION         | OLLS AND PEAT ARE FURTHEN OF ENERGY SHALE                                                            | ER ERODED; SOME OFF-SLOPE                                                                                                |  |  |  |
| C. Channel-fill<br>Materials       | as the transgression continues, tidal channels re-use the previous channels and develop new channels | fossiliferous shale and impure limestone, reworked peat fragments and coal balls are locally deposited in many channels. |  |  |  |
|                                    | channels are cut into<br>peat and filled with<br>reworked Energy Shale                               | channels common in<br>areas where Energy<br>Shale was eroded                                                             |  |  |  |
| B/C ENERGY SHA                     | ALE DEPOSITION CEASES; WII                                                                           | DESPREAD EROSION BEGINS                                                                                                  |  |  |  |
| B. Energy Shale<br>Member          | light gray, weakly<br>laminated facies                                                               | thick; 100% coverage                                                                                                     |  |  |  |
|                                    | dark gray, carbonaceous<br>facies                                                                    | thin; ca. 20% coverage                                                                                                   |  |  |  |
| A/B PEAT ACCU                      | MULATION ENDS AS SHALE D                                                                             | DEPOSITION BEGINS                                                                                                        |  |  |  |
| A. Herrin Peat                     | occasional flooding of<br>peat swamp from<br>Walshville channel to<br>form partings                  | 100% coverage by<br>thick peat                                                                                           |  |  |  |



Figure 2

Distribution of transitional roof in a portion of Franklin County. All known coal-ball sites are also plotted.

# Herrin Coal and Interbedded "Blue Band"

As discussed in Part 1, the depositional environment of the Herrin Coal was a peat swamp in a broad, level coastal plain drained by a major river. The river flowed in a channel named the Walshville (D. O. Johnson, 1972), now represented primarily by shales, siltstones, and sandstones (fig. 2). Old Ben Mine No. 24 is located 6 to 10 miles east of the former riverbed.



Index to mapped areas in the Old Ben Coal Company Mine No. 24. Numbers on the map are section numbers, located at the center of each square mile.

The origin of the "blue band," a prominent claystone parting in the lower part of the seam, appears to be closely related to the Walshville channel. Previous work by Survey geologists and a regional study by D. O. Johnson (1972) suggested the "blue band" thickened toward the channel. We checked this relationship on the west side of Old Ben Mine No. 21. Along a continuous exposure about I mile long, the "blue band" did thicken toward the channel from a normal 0.12 feet to nearly 2 feet. Approaching the channel, the "blue band" remained a claystone and retained its typically pelletoidal structure, first described by P. R. Johnson (1979). As the "blue band" probably originated during a major flood of the lowlands surrounding the river, it represents a useful time marker.

At numerous sites in study area A (fig. 3), the thickness of coal was measured between the underclay and the "blue band"; maximum variation was found to be about 0.6 feet. A peat-to-coal compaction ratio of 5:1 suggests that the original topographic relief of the underclay was 3 feet in the study area. The variation was unrelated to coal-ball occurrences, indicating that coal-ball formation was unrelated to local topography as suggested by Phillips, Kunz, and Mickish (1977) for sites in Saline County.



The rare earth element (REE) distributions in high-temperature ash (HTA) samples of the "blue band" and other claystone partings and in low-temperature ash (LTA) samples of the Herrin Coal from Old Ben Mine No. 24. The Herrin Coal values are averages of weighted bench composites (Harvey et al., 1983).

The "blue band" and other shale partings within the Herrin Coal are chemically similar to the finely disseminated mineral matter within the coal. Rare earth element (REE) distribution patterns (fig. 4) are similar for samples of the "blue band," other shale partings and low temperature ash of the Herrin Coal, suggesting a common source for these clay-rich materials.

#### **Energy Shale**

The Energy shale, which forms the immediate roof of the Herrin Coal over much of southern Illinois, is closely related to the Walshville channel. Since this shale consists of lobes or clastic wedges that thicken and coarsen toward the channel, D. O. Johnson (1972) interpreted the Energy Shale as crevasse-splay deposits, produced when the Walshville river repeatedly breached its levees and carried vast amounts of mud in suspension. We mapped these deposits as far as the eastern edge of Franklin County (fig. 2). He also noted abrupt truncation of isopach lines at the margins of the clastic wedges, probably caused by postdepositional erosion. When the river shifted and sea level rose, the edges of the clastic wedges were eroded.

Table 2. Flora of the carbonaceous facies of the Energy Shale Member

| Taxa                                                   | Abundance      | Occurrence                                                           |
|--------------------------------------------------------|----------------|----------------------------------------------------------------------|
| Lepidodendron dicentricum<br>Lepidodendron scleroticum | common<br>rare | full trunks to 30 cm wide and crown branches scattered leaf cushions |
| Stigmaria ficoides                                     | common         | with rootlets attached, in situ                                      |
| Pteridosperm petioles                                  | average        | in poor condition                                                    |
| Trigonocarpus                                          | rare           | only one found                                                       |
| Neuropteris ovata                                      | rare           | leaflets only                                                        |
| Pecopteris(?)                                          | rare           | leaflets only                                                        |
| Sphenophyllum emarginatum                              | rare           | leaflets only                                                        |

Interpretation This flora represents the final swamp forest; L. dicentricum is a typical swamp tree, and its roots (Stigmaria) are in situ in the peat (now coal). Other elements show poor preservation and may have been transported a short distance. The larger tree trunk fragments show no preferred orientation, suggesting slow drowning of the peat forest. Data gathered and interpreted by William A. DiMichele from 12 sites within mapped area A.

The end of the Herrin swamp and the beginning of Energy Shale deposition appear to be continuous in isolated areas. This transition is represented by a fossiliferous mud deposited over the Herrin Peat. It appears as a carbonaceous facies of the Energy Shale, forming about one-fifth of the immediate roof at Old Ben Mine No. 24; it contains a flora reflecting the end of forest vegetation (table 2).

Then the lighter gray facies of the Energy Shale was deposited over the carbonaceous facies. The sharp contact between them suggests either an interruption in deposition or possible erosion.

During the early distribution of the light gray facies, there was some rip-up of the underlying peat along small, shallow channels. The light gray facies is poorly bedded, indicating rapid deposition to some; however, at Old Ben Mine No. 27, a thin coal representing a short-lived swamp is locally found 0.4 feet from the base of the light gray facies. Thus, there were interruptions in its deposition. Fossils found in the light gray facies (including <u>Dunbarella</u>) indicate brackish water was present by this time.



Sedimentary features of an idealized erosional channel ("roll") in the Herrin Coal. The contact between the medium gray shale and the fossiliferous dark gray shale is usually sharp, but may be gradational.

Four samples of Energy Shale from different localities in the Illinois Basin were chemically analyzed (Appendix C). Although they represent different lithologic facies, they are chemically similar, which suggests a common source. They vary primarily in organic carbon content, total sulfur, and chalcophile (sulfide-related) trace elements.

# Channel-Fill Lithologies

After the Energy Shale mud was deposited, substantial erosion took place. Apparently the river that flowed in the Walshville channel (west of the mine; fig. 2) was diverted from its normal course. The Energy Shale was locally eroded—cut completely through to the top of the peat in a wide area of Franklin County, producing erosional "windows" in the Energy Shale. After the blanket deposition of marine units over both the Energy Shale and the Herrin peat, the formation of a transitional roof type was complete. In this case, the transitional roof is characterized by lateral variation between Energy Shale and Anna Shale/Brereton Limestone roof over short distances (Part I, p. 6).

Features that miners broadly call "rolls" are common to the areas where the Energy Shale has been removed. In Old Ben Mine No. 24, a few rolls were found that had been formed by soft-sediment deformation (Krausse et al., 1979); but most were erosional channels filled with sediments (DeMaris, 1982). Typically, the channels are sublinear, ranging from 10 to 20 feet wide and 1 to 4 feet thick. Many can be followed as far as the intermittent exposures permit; some are over 1000 feet in length. Smaller erosional channels were formed later by tidal action (table 1).

The channel-fill lithologies (fig. 5) include an older, light to medium gray shale interbedded with fine coal stringers, and a younger, medium to dark gray, carbonaceous shale locally grading into both an impure coal and a medium gray, calcareous shale (or impure, fossiliferous limestone) with shells of marine fossils and fragments of mineralized plants. The channel fill usually contains many compactional faults (fig. 6). In some places, soft-sediment deformation and plastic flow of fill material along bedding planes into adjacent coal has also occurred.



Figure 6 \_\_\_\_\_\_\_Structural features of an idealized erosional channel ("roll") in the Herrin Coal. Compactional faults may be numerous; they commonly affect the Anna Shale roof.



Figure 7
Detail of the center of an erosional channel in Old Ben Mine No. 27, showing "V" scoured into the peat.
Vertical scale is a 2½ ft ruler.

Evidence for the erosional origin of these channels also distinguishes channel fill from the Energy Shale:

- I. the light gray shale in the channels has a mineralogical composition distinct from that of the adjacent Energy Shale; coal stringers, representing peat fragments, frequently occur;
- 2. the channel-fill lithologies are found nowhere else and occur in predictable sequences;
- 3. the coal balls (with a normal peat matrix) occur as transported pebbles and cobbles in the fill materials;
- 4. a V-shape is occasionally found scoured into the seam below the fill material (fig. 7).

Five samples of channel-fill materials were chemically analyzed: 2 samples of light gray shale (C21634 and C21763), I sample of the impure coal (C21768), and 2 samples of the fossiliferous calcareous shale (C21627 and C21760). Results are given in Appendix C.

Since the 2 samples of light gray channel fill are very similar in composition to samples of the Energy Shale (Appendix C), but only slightly dissimilar in clay mineralogy (Part I, fig. 11a), these findings suggest this is slightly reworked Energy Shale. An analysis of dispersed organic matter in similar samples of light gray shale revealed two size populations of the organic fragments: a fine fraction from the original shale (Energy) and a coarser fraction from the organic material incorporated during transport. The impure coal sample





Figure 8
(Left) Transported vitrain fragments (black, cleated) in a gray claystone matrix, grading to an allochthonous coal, at top. (3 x, in air)
(Right) Contact between the fossiliferous shale at base and the impure allochthonous coal. (3 x, in air)

is composed of well preserved fragments of coal, largely vitrain, interbedded with thin clay partings (fig. 8). Although a coal in this setting could be interpreted as rafted peat redeposited in the channel fill, on closer examination it proved to be an allochthonous (transported) type of coal, composed of individual peat fragments mostly less than .03 feet long. The fossiliferous calcareous shale samples are similar to the other channel-fill materials in their clastic components but have higher calcium (12% to 25% more CaO) and total sulfur contents (3% to 6% more).

## Anna Shale

The black Anna Shale (Part 1, p. 9) was deposited in a marine environment with restricted circulation. There is disagreement over the depth of water: Zangerl and Richardson (1963) have argued that similar Pennsylvanian black shale originated in shallow marine waters where a floating algal mat reduced disturbances from waves and currents. Heckel (1977), on the other hand, thinks that such black shales were laid down in water as deep as 330 feet, well below the wave base.

Compressions of terrestrial plants are often seen near the base of the Anna Shale. Although organic material in the shale lacks diagnostic characteristics for visual identification, preliminary chemical analyses of the dispersed organic matter suggest it is primarily derived from terrestrial plants. Since animal fossils establish that the shale is marine, the terrestrial plant material must have been introduced from the land, probably as the sea advanced over the peat.

Eight samples of Anna Shale and 3 Anna Shale concretions were chemically analyzed and the results are given in Appendix C. Two of the samples (C21654 and C21759) contain portions of calcite/apatite bands typical of the base of the unit; this is the source of high levels of phosphorus in these samples.

On the average, the Anna Shale contains the highest levels of P, As, Cr, Cu, Se, Ni, Cd, and Zn (fig. 26 names these elements) of the rocks associated with the coal. The ranges of concentrations for the Anna Shale are comparable to those reported in Gluskoter et al. (1977); high levels of many elements relate to fluorapatite, pyrite, and other sulfide minerals in the shale. The uniform distribution of rare earth elements (REE) (fig. 26) in the 8 samples suggests a common sediment source.

In the Anna Shale of Franklin County, the concretions formed after deposition, often nucleating around plant material. Some plant fragments became mineralized, while others were transformed into coal. The findings of Woodland and Richardson (1975) are similar: in their discussion of the duration and timing of several processes involved in forming black-shale concretions, they found that mineralization of plant materials occurred late.

Two types of concretions, usually with a nucleus of plant material, are most common (fig. 9). A slice from each of 2 disc-shaped examples, representing the first type, were chemically analyzed (C21628 and C21629); they are quite variable in composition, especially in carbonate levels. A second type of concretion formed around in-filled bioturbation traces that passed into and sometimes through the Anna Shale (fig. 10). Only one of these (C21761) was analyzed, and it showed the lowest carbonate level. Despite their differences, the distribution of the rare earth elements in these two types of concretions is similar (Appendix C), suggesting that the REE distribution was unaffected during the concretion process.

## **Brereton Limestone**

Analyses of 3 samples of Brereton Limestone (C21537, C21626, and C21767) show a highly argillaceous limestone, compatible with the shallow, near-shore marine environment suggested by Givens (1968). This environment was the habitat of the burrowing organism that produced the widely distributed trace fossils mentioned in the previous section.

#### Effects of Seawater on the Herrin Peat

Understanding the sequence of depositional events that produced coal balls (table I) is important for predicting and locating them. Erosion occurred periodically after the Energy Shale sediments were deposited (B/C and C/D in table I). These events closely relate to the introduction of large amounts of sulfur into the peat as well as the precipitation of carbonates that permineralized peat, forming coal balls.

Sulfur was introduced wherever seawater could penetrate the peat: (1) areas never covered by a thick, continuous layer of Energy Shale, (2) areas covered only by relatively thin, lenticular Energy Shale, or (3) areas where a thick layer of Energy Shale had been partially or completely removed by erosion. Coal lying under continuous Energy Shale, more than 20 feet thick, generally has less than 2.5 percent sulfur and often less than 1.5 percent. Without the Energy Shale cover, coal generally contains 3 to 5 percent sulfur or more.



Figure 9

Typical disc-shaped Anna Shale concretion (C21628). (Left) top view; (right) view parallel to bedding showing calcite-filled fissures and the pyrite concentration around the rim and bottom of the concretion.



a. Anna Shale concretion formed on a segment of a bioturbation trace (at center). Bioturbation trace and portion of the rim have become strongly pyritized. (1 x)

b. A pyritized bioturbation trace without concretion formation.

To assess the short-range variation of total sulfur in the Herrin Coal, samples were taken at two different sites. We found an unusual site: an isolated area of Anna Shale/Brereton Limestone roof surrounded by thick Energy Shale roof. Channel samples taken 660 feet apart showed a drop of 1.8 percent total sulfur from the marine roof (3.2% total sulfur) to the thick Energy Shale roof (1.4% total sulfur). At a second site, representing the transitional roof (multiple windows in the Energy Shale roof) at Old Ben Mine No. 26, channel samples taken 400 feet apart showed a drop of 0.5 percent total sulfur from the Anna Shale/Brereton Limestone roof (C21721; 3.3% total sulfur) to the variable thickness Energy Shale roof (C21722; 2.8% total sulfur).

#### COAL BALLS

#### Permineralization of Peat

Coal balls are concretions of permineralized peat formed in place soon after peat deposition, but before significant alteration and compaction. Permineralization is a form of mineralization where plant cell lumens are often filled by the mineral while more resistant tissues such as cell walls are surrounded by the mineral. These resistant tissues are ultimately carbonized; and although they are prominent on a cut face of a coal ball, they generally represent less than 4 percent by weight of a carbonate coal ball (Appendix B). Because they form from peat in situ, coal balls generally contain very little detrital clay and quartz (Stopes and Watson, 1909). Our data set is composed of primarily carbonate coal balls and related materials; 2 silicate coal balls (C21591 and C21765) were included for comparison.

The fresh, broken surface of the carbonate coal balls has a light brown color that darkens only slightly with oxidation. Size and shape vary considerably. In general, coal balls range from less than 2 inches to more than 3 feet in width. Often they are elongated horizontally. Small coal balls (fist-sized and smaller) are usually spherical (fig. 11) or slightly ellipsoidal in shape. Medium-sized coal balls (up to 1.5 ft long) typically have height-to-width ratios from 1:3 to 1:6 (fig. 12). Where coal balls fill up 60 to 70 percent of the seam, they can have several different shapes and range from 1 to 4 feet thick (fig. 13).

The mineralization of the peat apparently began with the erosion of the Energy Shale (B/C in table 2). Field evidence shows that some coal balls had already formed by the time the fossiliferous channel-fill materials were deposited, and perhaps earlier. It is unclear when coal ball formation ended; bioturbation formed the last known coal balls after the deposition of the Brereton Limestone began.

During our studies of the Herrin Coal, we observed permineralized plant materials in a wide range of associations and locations. In the channel fill, coal balls the size of pebbles or cobbles were found deposited together with fossiliferous shale (fig. 14). They had no "rind" of bright coal typical of coal balls; but they could be confirmed as coal balls when cut open to show a peat matrix. We found over 60 transported coal balls in the channel fill. In other locations, plants and animal fossils were mixed within the same nodules (fig. 15) when carbonate mud intruded into peat deposits, combining plant parts with a fossiliferous, marine matrix. These are mixed coal balls (Mamay and Yochelson, 1962); further details are presented later.



Figure 12 Long coal ball formed on a single plant axis. Scale bar: 3 cm.





Figure 13
Concentrated coal balls near the center of coal-ball area L. This view overlaps that of figure 16, Part 1. Strings form a box 0.5 m on a side.



Figure 14
Exteriors (top) and cut faces (bottom) of two transported coal balls. Note the absence of a vitrain "rind" on these coal balls. (1.1 x)



Mixed coal ball from Old Ben Mine No. 27 composed of a bioturbation trace surrounded by large and small pieces of permineralized plant material (including fusain fragments), coal traces, and fossiliferous marine limestone. Coal is out of view at both top and bottom; sample orientation is unknown. (1.1 x)



Figure 16
Permineralized plant fragments in a clastic matrix, obtained from a split in the Herrin Coal. The slab is about 6 cm wide.



Figure 17

Concretion formed on channel-fill materials containing permineralized plant fragments in a clastic matrix.

Outside the concretion (to the top and left), plant materials were coalified. Coin for scale. (1 x)

Permineralized plants were associated with a clastic matrix in two other cases; they were not considered coal balls. In the first case, the nodules represent an uncompacted precursor of a shale split in the seam, which was discovered by tracing the unit laterally to where it was not mineralized (fig. 16). The other case represents concretions formed around nuclei of redeposited plant material within channel-fill materials (fig. 17). Permineralization followed transport in both cases. Where unmineralized, both these types of plant materials are carbonaceous shale with coal stringers.

In summary, the eroded coal balls and mixed coal balls are representative of in situ peat, though of unusual genesis; the last two cases represent permineralized plants which are no longer representative of the peat due to selective transport and destruction of fragile plant parts. Transported and permineralized plants each represent a coal-seam flora, but as a group a transport-biased assemblage. In this paper our use of "coal ball" reflects the view that permineralized plants found in roof shale, seam splits, and channel-fills are not "coal balls" unless they can be established as indigenous to the coal seam.

# Distribution of Coal Balls Within the Herrin Coal

Coal balls occur preferentially under Anna Shale or Brereton Limestone roof strata, which are of marine origin (figs. 18, 19, and 20). In study area A (fig. 3), only coal-ball areas B, H, I, and N straddle the boundary between black, Anna Shale and gray, Energy Shale roof (fig. 18). Otherwise, less than I dozen coal balls were seen under Energy Shale roof, while hundreds of thousands were present within the 18 mapped coal-ball areas under "windows" in the Energy Shale cover, with Anna Shale and Brereton Limestone immediately above the Herrin Coal.

Coal balls occur individually, in clusters, or in concentrated groups called "coal-ball areas," ranging from about 15 feet to more than 150 feet across. The distinction between a cluster and a coal-ball area depends on both the size of the accumulation and concentration of coal balls. Clusters, usually four or more balls within a few feet of each other, and individual coal balls have only been found near the top of the seam; only coal-ball areas have been found 2 or more feet below the top of the seam.

In large coal-ball areas with many, tightly packed coal balls, both size and number of coal balls tend to increase toward the core (fig. 21). If we observed no natural boundary, coal balls more than 5 feet apart were considered outside an area. The most highly permineralized exposure was found in coal-ball area L (fig. 25). In a measured section here, the seam with coal balls exceeded 12.5 feet thick where it normally would be 7.6 feet thick. The distance from the edge of a coal-ball area to the edge of its core ranged between 40 feet and 80 feet. In some coal-ball areas, such as area N, the core was not dense enough to severely hamper mining. On the other hand, the extremely dense core of area L was mined deeply because it was necessary to the layout of the longwall panel (fig. 22). Most coalball areas interfered with mining, both in the support entries (Part 1, fig. 17) and along the longwall face (Part 1, p. 25).



Figure 18\_\_\_\_\_\_
Coal balls, coal-ball areas, and roof lithologies identified in the northern half of mapped area A.

Coal-ball areas can be separated by stratigraphic location:

Type I areas have coal balls restricted roughly to the top 2 feet of the seam;

Type II areas have coal balls (a) below the top 2 feet of the seam; and (b) from the top to the floor of the seam.

At type I sites, coal balls occur right at the top of the seam; most are found within the top I to  $1\frac{1}{2}$  feet of the seam. Density may or may not increase toward the center of the area.

Type II sites generally become more tightly packed toward the center, but some have a low or moderate density throughout. Partial exposures of type II coal balls may only catch the edge of an area, exhibiting coal balls at the top of the seam, at midseam, below the "blue band," or any combination of these positions. Coal balls at one particular position may extend laterally for some distance, suggesting a pattern of mineralization based on the characteristics of various peat layers. In other places coal balls at a given stratigraphic positon may continue for only 6 to 10 feet.

The characteristics of the coal-ball areas within mapped area A (fig. 18) are recorded in table 3. The position of permineralized zones within the seam

Table 3. Some Characteristics of Coal-Ball Areas at Old Ben Mine No. 24

| Coal-<br>ball<br>area | Size<br>(ft x ft) | Туре    | Roof<br>(Member)         | Vertical<br>development<br>in seam | Zone of<br>maximum<br>development<br>in seam |
|-----------------------|-------------------|---------|--------------------------|------------------------------------|----------------------------------------------|
| A                     | 150 x 130         | 11      | Anna Shale               | middle-to-low seam                 | middle                                       |
| В                     | 200 x 140         | 11      | Anna and<br>Energy Shale | middle-seam                        | middle                                       |
| С                     | 50 x 60           | 11      | Anna Shale               | middle-to-low seam                 | middle                                       |
| D                     | 95 x 150          | 11      | Anna Shale               | top-to-low seam                    | middle                                       |
| E                     | 135 x 110         | 11      | Anna Shale               | top-to-low seam                    | middle                                       |
| F                     | 45 x 50           | 11      | Anna Shale               | top-to-low seam                    | low                                          |
| G                     | 30 x 10           | 900     | Anna Shale               | top-seam                           | top                                          |
| Н                     | 15 x 10           | i       | Anna and<br>Energy Shale | top-seam                           | top                                          |
| 1                     | 90 x 125          | 11      | Anna and<br>Energy Shale | top-to-low seam                    | middle                                       |
| K                     | 50 x 100          | 11      | Anna Shale               | top-to-middle seam                 | middle                                       |
| L                     | 230 x 180         | 11      | Anna Shale               | top-to-low seam                    | middle                                       |
| Μ                     | 130 x 120         | 11      | Anna Shale               | top-to-low seam                    | middle                                       |
| N                     | 80 x 130          | 11      | Anna and<br>Energy Shale | top-to-middle seam                 | middle                                       |
| 0                     | 35 x 55           | l       | Anna Shale               | top-seam                           | top                                          |
| Р                     | 15 x 15           | ì       | Anna Shale               | top-seam                           | top                                          |
| Q                     | 110 × 70          | 11      | Anna Shale               | top-to-low seam                    | middle                                       |
| R                     | 35 x 35           | COMPANY | Anna Shale               | top-seam                           | top                                          |
| S                     | 80 x 90           | II      | Anna Shale               | top-to-middle seam                 | middle .                                     |



Figure 19 Coal balls, roof lithologies, and erosional channels in the southwest part of mapped area A.

varies substantially from site to site; for high concentrations of coal balls the most common stratigraphic position is midseam. Only in area F were coal balls best developed in the lower part of the seam.

## Relationship to Roof Strata

As stated before, coal balls occur almost exclusively under Anna Shale/Brereton Limestone windows in the Energy Shale cover. Within the areas of Anna Shale/Brereton Limestone roof, there are often centrally located areas where Brereton Limestone alone forms the immediate roof. In several mapped areas we checked for spatial correlations of coal balls with these purely limestone areas. At Old Ben Mine No. 24, where there is little Brereton roof, the correlation was poor, with only an occasional isolated coal ball under limestone roof. At Old Ben Mine No. 27, the relationship is clearer: there is proportionally more Brereton Limestone roof, yet more coal balls are linked with the Anna Shale (fig. 20). Although there are some coal balls under Brereton roof, the general pattern of coal balls is largely independent of those areas. Evidently, coal-ball formation largely predates Brereton Limestone deposition.

Only a few mixed coal balls (Mamay and Yochelson (1962) were encountered during our study (fig. 15). As expected, they occurred only under Brereton Limestone and thin Anna Shale roof. The mixed coal balls were primarily mixed-heterogeneous with evidence of physical mixing only; no good examples were found where the burrow trace offered a clear nucleus for



Figure 20
Coal balls, roof lithologies, and erosional channels in the mapped area in Old Ben Mine No. 27.

permineralization of the surrounding peat, as is the case for many Berryville, Illinois, coal balls. Two possible reasons for this scarcity are (1) the peat here may not have been as geochemically suitable for mineralization as in other regions, and (2) the burrowing organism may have been less common in the local facies of the Brereton Limestone in this area. Coal balls formed from marine bioturbation were rare, but caused a mining problem locally in Old Ben Mine No. 27. Despite their distinct origin, these coal balls are generally found in the same areas as normal coal balls.

# **Early Mineralization**

As mentioned earlier, we found more than 60 coal-ball pebbles and cobbles in the younger of the channel-fill materials ("rolls"), all in the dark gray, fossiliferous shale (fig. 14). Quantities of coal balls had already formed in situ



**Figure 21**Diagram of generalized coal-ball distribution within coal-ball areas, based on observations of many such areas.



Figure 22
Adjustments made to the layout of the second longwall panel during mining as coal-ball area L was encountered.



Figure 23 Relationship of type II coal balls to an erosional channel at one site.

before the tidal channels developed (before deposition of the Anna Shale), and the coal balls in the coal seam were redeposited in those channels. Clusters of coal balls were locally observed under and near the erosional channels filled only with the dark gray, fossiliferous, carbonaceous shale or impure limestone; this suggests a genetic link.

While coal balls were definitely present by the time the younger channel fill (fossiliferous or dark carbonaceous shale) was deposited, they may have also been present earlier during deposition of the older channel fill. For instance, in coal-ball areas L and Q the channel appeared to cut through preexisting coal-ball accumulations; where the coal balls protrude into the older light gray channel-fill, they have no rinds (fig. 23). Thus, evidence exists that permineralization of coal balls began soon after the Energy Shale mud was stripped from the peat.

# Physical Appearance of Coal Balls

Coal-ball shapes vary considerably between stratigraphic zones in the seam. Some zones can be characterized by certain shapes, possibly reflecting the type of peat and its degree of degradation when permineralized. Round and oval coal balls are widely distributed, but many larger coal balls are preferentially mineralized in the horizontal plane along large pieces of lycopod periderm or the vascular portion of small stems (fig. 12).

Condition of peat in coal balls is not evaluated on a routine basis. William A. DiMichele (personal communication, 1979), who qualitatively evaluated the coal balls at vertical section 3 within coal-ball area L (figs. 24 and 25), found much interzonal variation but no stratigraphic trend in peat quality. The variation in quality of peat preserved in the coal balls records variations in local depositional environments of peat and alterations prior to mineralization. Some coal balls near the top of the seam exhibit shrinkage of plant tissue, suggesting tissue dehydration due to osmotic pressure during exposure to sea water.

## **Compaction of Peat Before Mineralization**

Coal balls also record the degree of peat compaction. Fresh peat has as much as 90 percent moisture, much of it in the spaces between parts of



Figure 24

Detail of several coal-ball zones from vertical section 3 within area L. Coal balls were color coded by zone prior to sampling.

plants. The inter-tissue water must be largely removed before compaction of tissues can take place. The degree of dewatering can be estimated from the volume of voids that filled with minerals. In coal balls from the Herrin Coal in the Clarkson Mine, Washington County, Schopf (1938) found that mineral-filled voids represented 6.7 percent of the surface studied. A few such voids were seen in coal balls from Old Ben Mine No. 24.

The peat at vertical section 3 (fig. 24) showed only slight compaction from top to bottom (DiMichele, personal communication, 1979). In the case of the Clarkson Mine coal balls, which are from a depositional environment similar to that of Old Ben Mine No. 24, Schopf (Cady et al., 1940) noted "a general flattening ... but little cell distortion" of the peat, judged qualitatively.

#### Peat-to-Coal Compaction Ratios

Individual coal balls preserve peat in a largely uncompacted state and serve as a good indicator of the original thickness of the peat deposit at the time of mineralization. Peat-to-coal compaction ratios can be derived by comparing the thickness of coal next to a single coal ball to the corresponding thickness of permineralized peat in the coal ball (Teichmueller, 1955; Zaritsky, 1975). This is the only method that produces a valid measure of peat-to-coal compaction.



Figure 25
Coal-ball area L and selected sample sites. Detail from mapped area A.

During our investigations we made over a dozen such measurements; the peat-to-coal ratios ranged from roughly 3:1 to 7:1. Because of the lateral variation of coal lithotypes, the variation in coal-ball shapes, and the difficulty in following banding around the coal balls, multiple measurements were necessary to obtain reliable estimates. The average peat-to-coal compaction ratio for coal balls of Old Ben Mine No. 24 is 5:1, which is similar to values found by Zaritsky (1975) for coal balls of similar age and type in the Donets Basin (USSR).

Another set of measurements between stratigraphic markers in the seam in an area of many coal balls gave a value of about 2:1 (Part 1, fig. 19a). The coal immediately above and below coal balls often displays extra compaction; slippage of coal is commonly indicated by slickensides (Part 1, fig. 19b). Such factors result in lower compaction ratios in sections with many coal balls. Because of compaction and deformation within the coal, a seam with large lenticular coal balls may be only  $2\frac{1}{2}$  to 3 times thicker than the seam nearby without coal balls.

#### GEOCHEMISTRY OF COAL BALLS

The geochemical investigations constituted a significant part of the last phase of our investigations of coal balls at Old Ben Mine No. 24 and nearby mines. We hoped the geochemical investigations would assist in developing a number of parameters that any model of the origin of these coal balls would have to account for.

Our major interest was in the conditions locally favoring the precipitation of carbonate minerals and preserving delicate plant structures. The precipitation of carbonate minerals depends upon specific pH, pCO<sub>2</sub> and Ca boundary conditions. The interstitial water in the peat would have contained dissolved CO<sub>2</sub> from two sources. A certain amount of dissolved CO<sub>2</sub> would have been present in any water percolating through the peat; the amount would be controlled by temperature, pH, and the type of rock and minerals that the water had been in contact with. A second source of CO2 would have been from bacterial degradation of the organic matter in the peat under anaerobic conditions. The amount of pCO<sub>2</sub> (partial pressure) could be quite high, and if so, produce conditions of supersaturation; supersaturation would result in a low pH and increase the solubility of carbonate minerals. There would be little calcite formation until the pH rose, for instance, after the removal of CO<sub>2</sub> from the system. Reduction in the amount of CO<sub>2</sub> would raise the pH with the same effect as a reduction in the confining pressure. Also an influx of alkaline water could raise the pH above 8 and promote rapid calcite precipitation. If sufficient magnesium were present, dolomite could form.

During deposition, the sulfate content in the peat and pore waters would be much lower in freshwater than in marine water; and thus the bacterial reduction of sulfate to sulfide would not be significant. As marine water intruded into the freshwater system, the sulfate levels would increase and the bacterial reduction of sulfate would result in pyrite formation. Thorough discussions of carbonate and pyrite equilibria are provided in Garrels and Christ (1965) and Berner (1971). Schopf (1980) cites useful criteria for determining paleosalinity with chemical data.

The following sections present the geochemical data on the coal balls and associated rocks and their interpretation in detail: this is the first comprehensive set of chemical analyses of coal balls to be reported in the literature.

#### Sample Sets

The 36 samples of coal balls selected for chemical study are described in Appendix A: 31 of the samples were analyzed for up to 53 major, minor, and trace elements as well as loss on ignition, moisture, and percent of insoluble residue on selected samples; 5 samples of limited quantity were analyzed for major chemical constituents only. Appendix B lists the results of the coal-ball analyses. Also analyzed for the same major and minor elements (Appendix C) were 41 samples of materials associated with the coal balls, such as the underclay and roof lithologies.

Examined for mineral composition by x-ray diffraction were 18 coal balls and 7 associated carbonate rock materials.

A suite of coal balls and carbonate roof materials were evaluated for their  $\delta C^{1\,3}$  and  $\delta O^{18}$  values (table 9) by T. F. Anderson of the University of Illinois. Coal balls from vertical sections 3 and 5, selected by T. L. Phillips, were supplemented by other coal balls and roof material selected by the authors. There is some overlap between these samples selected for carbon and oxygen isotopes and those selected for full chemical analysis.

#### **Previous Work**

Little published data exist on the trace element content of coal balls. Phillips, Kunz, and Mickish (1977) report data for 32 elements in 7 composite coalball samples. For most of the trace elements the values are at or below detection limits. For their zones I to 6, the values for composite samples of coal balls generally agree with our data, with much of the elemental distribution controlled by the pyrite content. For the uppermost zone 8, their values for composite samples of coal balls have much higher levels of Sr and Mn. The high Mn concentration is particularly questionable and may reflect a major bias in how the composite sample for each zone of coal balls was prepared and selected. A reporting of results on individual coal balls would have been more informative.

Results reported here agree with other published results on the major chemical constituents for coal balls. The absence of siderite in this study is the main exception and reflects the local formative conditions in the study area.

Mamay and Yochelson (1962) published the major chemical composition as well as semiquantitative spectroscopic results for 8 midwestern coal balls. The ranges are comparable to those in our study including excess iron, which remains after it is balanced with the sulfur to form pyrite. There is no sample in this study comparable to the faunal coal ball from Kansas with 61 percent pyrite.

#### **Analytical Methods**

The elements reported in this study are listed in figure 26. Included are elements of potential environmental concern (Harvey et al., 1983). All samples for geochemical analysis were ground to minus 60 mesh. Moisture was determined on each sample and the values reported are on a moisture-free basis. The methods used are as follows:

X-RAY FLUORESCENCE (XRF): Si, Al, Ca, Fe, Ti, Mg, P GRAVIMETRIC PROCEDURES: total C, S, moisture, CO<sub>2</sub>, loss on ignition (LOI); insoluble residue (In Res)
INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS (INAA): K, Na, Mn, As, Br, Ce, Co, Cr, Cs, Dy, Eu, Ga, Hf, In, La, Lu, Mo, Rb, Sb, Sc, Se, Sm, Ta, Tb, Th, U, W, Yb
OPTICAL EMISSION (OE): Ag, B, Be, Ge, TI, V
ATOMIC ABSORPTION (AA): Cd, Cu, Hg, Li, Ni, Pb, Zn
ENERGY DISPERSIVE X-RAY (EDX): Ba, Sr, Zr
ION SELECTIVE ELECTRODE (ISE): F
Details of the procedures are contained in Gluskoter et al. (1977).

The isotopic determinations were provided by T. F. Anderson using standard methodology (Anderson, Brownlee and Phillips, 1980) the  $\delta C^{13}$  and  $\delta O^{18}$  results for selected samples are reported in table 9.



Figure 26
Elements reported in this study and those of some potential environmental concern.

# **Mineral Composition**

The dominant minerals observed were calcite, dolomite, ferroan dolomite, and pyrite. Minerals of minor abundance included marcasite, gypsum, quartz, illite, kaolinite, and lepidocrocite. No siderite or barite was detected. No quantitative analysis was made for the minerals detected; however, the relative peak heights of the x-ray diffraction intensities are listed in table 4.

# **Major Elements**

The major constituents in coal balls are CaO, MgO,  $Fe_2O_3$ , S, MnO, CO<sub>2</sub>, and organic carbon. The major constituents reflect variations of the major minerals observed by x-ray diffraction: calcite (CaCO<sub>3</sub>), dolomite (CaMg(CO<sub>3</sub>)<sub>2</sub>), ferroan dolomite Ca(Mg,Fe,Mn) (CO<sub>3</sub>)<sub>2</sub>, pyrite (FeS<sub>2</sub>), and quartz (SiO<sub>2</sub>).

The mineral composition of the 25 samples for which x-ray diffraction results had been obtained (table 4) were calculated using the chemical results (table 5). The calculation was based on these assumptions: (1) all of the Mg occurred in dolomite, (2) the Ca value was obtained from the Ca determination after the amount needed to produce dolomite had been subtracted, and (3) pyrite was calculated from the S determination. Included is a summation that approaches 100 percent, which provided a useful check on the mineralogy and the major elemental analyses. Figure 27 (dolomite relative to MgO) and Figure 28 (pyrite relative to total S) illustrate the correlation of these two data sets.

The amount of detrital minerals incorporated into the coal balls can be estimated from the concentrations of  $Al_2O_3$  or  $K_2O$ , which were in most cases very low or undetectable. This observation was confirmed by x-ray diffraction results that indicated very weak or no reflections from the clay minerals, illite or

Table 4. Relative Heights: X-Ray Diffraction of Selected Coal Balls, Limestones, and Anna Shale Concretions

|                                                | Calcite<br>29.4*                     | Mg-<br>Dolomite<br>30.9*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fe-<br>Dolomite<br>30.7*           | Pyrite<br>40.8*                    | Marcasite<br>25.9*     | Gypsum<br>11.6*                 | Quartz<br>26.6*                    | Illite<br>8.8*                   | Kaolinite<br>12.4*              |
|------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|------------------------|---------------------------------|------------------------------------|----------------------------------|---------------------------------|
| COAL B                                         | ALLS                                 | And the second s |                                    |                                    |                        |                                 |                                    |                                  |                                 |
| C21568<br>C21569<br>C21570<br>C21571<br>C21581 | 120.<br>135.<br>150.<br>150.         | <br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.5<br>11.8<br>14.7<br>20.5<br>5.7 | 9.3<br>5.2<br>4.6<br>0.5<br>5.0    | 1.1<br><br><br><br>1.5 | <br>2.0<br>1.4<br>2.0           | <br>6.0<br>1.5<br>2.0<br>2.0       | <br><br>2.0<br>2.5               | <br><br>2.0<br>2.0              |
| C21582<br>C21583<br>C21584<br>C21585<br>C21586 | 140.<br>130.<br>120.<br>130.<br>9.6  | <br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.6<br>23.3<br>7.6<br>45.0<br>130. | 10.2<br>7.0<br>21.8<br>4.0<br>14.0 | 4.0<br>2.5<br>         | 3.5<br>4.0<br>4.3<br>3.0<br>2.6 | 13.2<br>10.6<br>40.5<br>2.8        | 3.0<br><br>2.4                   | 2.5<br><br>3.3<br><br>2.2       |
| C21587<br>C21588<br>C21589<br>C21590<br>C21591 | 130.<br>140.<br><br>130.<br>34.0     | <br><br>120<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78.0<br>26.0<br><br>14.3           | 2.4<br>1.7<br>2.2<br>3.0<br>10.2   | <br>1.7<br><br>        | 7.2<br>15.3<br>                 | 1.5<br>15.0<br>25.5<br><br>150.    | 2.5<br>4.2<br>                   | <br><br>6.5<br><br>             |
| C21758<br>C21765<br>C21766                     | 150.<br>2.9<br>150.                  | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.8<br><br>                       | 3.7<br>4.<br>2.0                   | <br><br>               | 2.2<br><br>                     | 8.0<br>170.<br>17.0                | <br><br>4.0                      | 2.2<br><br>5.4                  |
| ASSOCIA                                        | TED ROC                              | KS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                                    |                        |                                 |                                    |                                  |                                 |
| C21626<br>C21627<br>C21628<br>C21629<br>C21760 | 22.4<br>120.<br>93.5<br>120.<br>120. | <br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 150.<br>9.0<br>11.1<br><br>4.2     | 3.5<br>6.1<br>8.2<br>2.2<br>8.6    | 6.5<br>1.5<br>2.5      | <br>4.3<br>9.5<br><br>19.0      | 37.0<br>83.5<br>115<br>18.8<br>120 | 4.0<br>4.8<br>4.0<br>1.5<br>12.5 | 5.5<br>3.5<br>4.5<br>2.0<br>9.8 |
| C21761<br>C21767                               | 15.0<br>115.                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.2<br>12.5                        | 7.6<br>5.2                         | 6.7<br>                | <br>4.2                         | 150<br>120                         | 6 <b>.</b> 8<br>4 <b>.</b> 5     | 4.0<br>5.5                      |

<sup>\*</sup>Degrees 2 0 Lepidocrocite found in C21587. Plagioclase feldspar found in C21760.

Table 5. Predicted Mineral Composition Based on Chemical Analysis

|                                                          | Calcite<br>(%)                   | Dolomite<br>(%)          | Pyrite<br>(%)             | Quartz<br>(%)                   | Organic<br>carbon<br>(%) | Al <sub>2</sub> O <sub>3</sub> (%) | Total<br>(%)                    |  |  |  |
|----------------------------------------------------------|----------------------------------|--------------------------|---------------------------|---------------------------------|--------------------------|------------------------------------|---------------------------------|--|--|--|
| COAL B                                                   | COAL BALLS AND SIMILAR MATERIALS |                          |                           |                                 |                          |                                    |                                 |  |  |  |
| C21568<br>C21569<br>C21570<br>C21571<br>C21581           | 65<br>81<br>74<br>84<br>81       | 7<br>12<br>14<br>17<br>6 | 26<br>6<br>12<br>2<br>12  | <.1<br>1.5<br><.1<br>0.8<br>0.4 | 3<br>3<br>4<br>2<br>3    | <.l<br><.l<br><.l<br><.l           | 101<br>103<br>104<br>106<br>102 |  |  |  |
| C21582<br>C21583<br>C21584<br>C21585<br>C21586           | 64<br>70<br>38<br>66<br>18       | 6<br>12<br>5<br>20<br>39 | 25<br>16<br>39<br>8<br>33 | 2<br>2<br>12<br>0.9<br><.1      | 3<br>1<br>2<br>6         | <.1<br>0.8<br>2<br><.1<br><.1      | 100<br>102<br>98<br>101<br>91   |  |  |  |
| C21587<br>C21588<br>C21589<br>C21590<br>C21591           | 69<br>77<br>9<br>83<br>I         | 26<br>14<br>55<br>7<br>1 | 0.3<br>2<br>2<br>4<br>5   | 0.4<br>2<br>7<br>0.2<br>70      | 1<br>4<br>15<br>7<br>22  | < .1<br>< .1<br>2<br>< .1<br>< .1  | 97<br>99<br>90<br>101<br>99     |  |  |  |
| C21758<br>C21765<br>C21766                               | 82<br>0.5<br>5                   | 5<br>  <  <br>  43       | 4<br>2<br>5               | 2<br>89<br>2                    | 5<br>13<br>31            | < .2<br>0.2<br>0.6                 | 108<br>105<br>87                |  |  |  |
| ASSOCIATED ROCKS                                         |                                  |                          |                           |                                 |                          |                                    |                                 |  |  |  |
| C21626<br>C21627<br>C21628<br>C21629<br>C21760<br>C21761 | 21<br>40<br>31<br>83<br>20       | 61<br>7<br>7<br>7<br>2   | 1<br>18<br>14<br>3<br>13  | 11<br>26<br>34<br>6<br>40       | 1<br>2<br>4<br>3<br>6    | 3<br>5<br>5<br>1<br>10<br>6        | 99<br>98<br>95<br>103<br>91     |  |  |  |
| C21767                                                   | 35                               | 11,                      | 8                         | 38                              | 3                        | 3                                  | 98                              |  |  |  |



Figure 27
Relationship between percentage of MgO (XRF) and relative peak height of dolomite (XRD) in coal balls.

kaolinite. Plots of  $K_2O$  relative to intensities of illite or kaolinite, however, did not show a strong correlation; whereas plots of  $Al_2O_3$  relative to peak heights of illite and kaolinite did, although only 6 samples had detectable  $Al_2O_3$ . This indicates that K may occur in other minerals present.

Based on major elemental analysis and x-ray diffraction, coal balls fell into four groups: the first contained 10 samples predominantly composed of calcite with less than 2 percent pyrite; the second contained 17 samples with pyrite levels ranging from 2 to 39 percent and lesser amounts of carbonate minerals than the first group; the third contained 2 samples (C21589 and C21766) with greater then 40 percent dolomite; and the fourth contained 2 samples (C21591 and C21765) with 70 and 89 percent quartz, respectively. Coal balls examined by Rao (1979) are mineralogically similar to our first two groups. Based on x-ray diffraction analysis, he reported ranges of calcite (31% to 98%), dolomite (0% to 21%), pyrite (1% to 54%), and quartz (0% to 4%) in 52 coal balls from North America and Europe.

#### Minor and Trace Elements

Concentration of many minor and trace elements are very low in our coal balls. This is reflected by the great number of "less than" values reported. The trace elements B, Be, Cd, Cs, Ga, Ge, Hf, In, Mo, Ni, Rb, Ta, Th, TI, U, V, W and Zr are not included in table 6 or in the statistical treatment of the data because most of the values were below the upper detection limits. Mean values for the coal balls are listed in table 6. Also included are statistics based on

Table 6. Comparison of Mean Concentrations of Rock Materials Associated with Coal Ball Occurrences

|                                             | Nonpyritic<br>coal balls<br>(10)            | 1.0 % 51.6 % 1.3 % 4.2 % 67.8 ppm .07 % .07 % 2.1 % 0.5 ppm 1.7 ppm 10.2 ppm 1.3 ppm 10.2 ppm 1.3 ppm 10.5 ppm 6.5 ppm                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| oal Ball Occurrences                        | Pyritic<br>coal balls<br>(21)               | 9.3 % 35.2 % 10.3 % 3.2 % 0.04 % 0.08 % 29.4 % 7.2 % 7.3 % 1.6 ppm 1.2 ppm 1.3 ppm 1.4 ppm 1.5 ppm 1.5 ppm 1.6 ppm 1.7 ppm 1.7 ppm 1.7 ppm 1.8 ppm 1.9 ppm                                                                                        |
|                                             | Total<br>coal balls<br>(31)                 | 6.6 % 41.1 % 3.5 % 0.03 % 0.09 % 0.08 % 32.9 % 5.4 % 5.4 % 1.6 ppm 1.5 ppm 1.2 ppm 1.2 ppm 0.3 ppm 0.3 ppm 0.3 ppm 1.2 ppm 0.3 ppm 0.4 ppm 0.5 ppm 0.5 ppm 0.5 ppm 0.5 ppm 0.6 ppm 0.5 ppm 0.7 ppm 0.8 ppm 0.9 ppm 0.9 ppm 0.9 ppm 0.9 ppm 0.5 ppm 0.9 ppm 0.9 ppm 0.5 ppm 0.5 ppm 0.6 ppm                                                                                                                                                                                                                                                                                                |
| ociated with (                              | Limestone<br>(6)                            | 21.7 % 27.3 % 7.6 % 0.1 % 0.1 % 0.1 % 0.1 % 25.6 % 24 % 4.3 % 10.0 ppm 1902. ppm 46. ppm 7. ppm 36. ppm 1.2 ppm 1.2 ppm 1.3 ppm 1.3 ppm 1.3 ppm 1.3 ppm 1.3 ppm 1.2 ppm 1.3 ppm                                                                                                                                                                           |
| of Rock Materials Associated with Coal Ball | Underclay<br>(3)                            | 61.7 % 0.9 % 2.7 % 1.3 % 0.9 % 0.07 % 0.01 % 0.09 % 3.0 % 0.5 % 6.0 ppm 3.1 ppm 47. ppm 47. ppm 47. ppm 115. ppm 47. ppm 1500. ppm 46. ppm 26.3 ppm 160. ppm 160. ppm 160. ppm 160. ppm 160. ppm 25.3 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ations of Rock                              | Blue<br>Band<br>(6)                         | 48.2 % 0.4 % 1.4 % 0.1 % 0.1 % 0.1 % 0.1 % 0.2 % 1.8 % 4.9 ppm 2.4 ppm 2.4 ppm 30. ppm 30. ppm 30. ppm 10 ppm 50. ppm 0.4 ppm 0.7 ppm 6.8 ppm 164.7 ppm 0.7 ppm 0.8 ppm 17.3 ppm 17.3 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| an Concentrations                           | Energy<br>Shale<br>(4)                      | 55.1 % 6.9 % 1.6 % 3.5 % 1.2 % 0.05 % 0.07 % 3.6 % 2.7 % 12.3 ppm 72. ppm 72. ppm 69. ppm 69. ppm 69. ppm 1.5 ppm 1.7 ppm 1.8 ppm 1.9 ppm |
| Comparison of Me                            | Anna<br>Shale<br>(8)*                       | 46.3 % 4.2 % 4.8 % 1.4 % 3.0 % 0.03 % 0.03 % 0.9 % 14.3 % 2.5 % 15.9 ppm 1472. ppm 2.5 ppm 1472. ppm 1487. ppm 169. ppm 487. ppm 1714 ppm 487. ppm 1714 ppm 4.6 ppm 1714 ppm 4.1 ppm 33.3 ppm 4.1 ppm 164. ppm 164. ppm 164. ppm 164. ppm 164. ppm                                                                                                                                                                                                                                                                                 |
| Table 6. Con                                | Victoria<br>Victoria<br>Herrica<br>Victoria | SSS SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

\*(N) = Number of samples in each group.



Figure 28
Relationship between percent sulfur (ASTM) and relative peak height of pyrite (XRD) in coal balls.

separating coal balls into those with greater than 2 percent and those with less than 2 percent pyrite. The choice of 2 percent for a cut-off was based on a histogram plot of frequency by pyrite percentage. Also included in table 6 are mean concentrations observed in the associated rock materials.

#### **Elemental Associations**

Inter-elemental associations in the coal balls were determined by simple correlation and clustering programs as well as R-mode factor analysis. These approaches gave comparable insights into controlling factors for the observed variations.

### Correlation and factor analysis

Factor analysis is a statistical technique summarizing the relationships between variables in a matrix of factors. In general, enough factors are chosen to account for 90 percent of the system variance, with no prior assumptions made concerning the resulting factors (Cahill, 1981).

We chose 20 elements, which had sufficient analytical accuracy, for R-mode factor analysis. The elements, Si, Mg, Mn, and Ba, were excluded since their distribution was controlled by I or 2 samples with anomalously high levels, for example, from coal balls with high levels of quartz or dolomite. The Ba variance was controlled by C21561, which had a concentration of 1.1 percent compared to a range of 19 to 2000 ppm Ba in the other samples.

The results of factor analysis are shown in table 7; 4 factors have been extracted. Factor I shows high loadings of Sc and rare earth elements (REE). As discussed later, we think that the REE are associated with carbonate minerals.



Figure 29
Relationship between pyrite in coall balls (XRD) and relative peak heights of dolomite (XRD).

Elements with high loadings in Factor 2 are Fe, S, Co, Cu, As, Se, and Pb; this factor is related to the pyrite formation. Factor 3 shows high loadings of Na, Al, K, and Cr, indicating the control of clay minerals. Elements with high loadings in Factor 4 are Ca, Sr, and  $CO_2$ , obviously due to carbonate minerals.

The results of the correlation and cluster program placed 34 elements into the following 8 clusters:

```
Si, organic carbon, total carbon, Mg and Mn
Na, Br
Ca, inorganic carbon, Sr
F
Ba, Co, Pb
Fe, S, As, Se
K, Cr, Cu, Li, Sb, P, Zn
Ce, La, Dy, Eu, Sm, Tb, Lu, Yb (rare earth elements), and Sc
```

Based on the statistical techniques the following geochemical associatons are apparent:

Pyritic Association. Iron and S have a high positive correlation (0.95) and in most samples the Fe/S ratio is close to the pyrite stoichiometric ratio of 0.87. This relationship confirms the observation in figure 28. The incorporation of iron into ferroan dolomite gives an indication of the secondary nature of pyrite formation. Figure 29 is a plot of the relationship of relative peak height of pyrite to peak height of ferroan dolomite. The relation is an inverse one indicating two things: when dolomite was forming iron was sufficiently available to substitute in the structure; conditions did not favor the formation of pyrite.

Table 7. R-Mode Factor Analysis Results for Selected Elements in Coal Balls\*

|                                                                                                  | Factor I                                                                                                                                                                | Factor 2                                                                                                        | Factor 3                                                                                                                                                          | Factor 4                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AI<br>Ca<br>Fe<br>K<br>Na<br>CO<br>S<br>As<br>Cc<br>Cr<br>Cu<br>La<br>Pb<br>Sc<br>Sr<br>Tb<br>Yb | 0.18<br>0.13<br>0.12<br>0.15<br>0.08<br>0.20<br>-0.07<br>0.09<br>0.82<br>0.07<br>0.31<br>0.01<br>0.93<br>0.74<br>-0.06<br>0.78<br>0.06<br>0.99<br>-0.19<br>0.93<br>0.99 | 0.27 -0.16 0.92 0.08 -0.13 -0.28 0.89 0.90 -0.04 0.56 0.35 0.51 -0.07 0.11 0.56 0.09 0.53 -0.02 -0.24 0.10 0.18 | 0.84<br>-0.21<br>-0.03<br>0.96<br>0.50<br>-0.18<br>0.00<br>0.20<br>-0.01<br>0.08<br>0.79<br>0.52<br>0.12<br>0.05<br>-0.14<br>0.40<br>0.12<br>0.07<br>0.15<br>0.17 | -0.17<br>0.80<br>-0.32<br>-0.10<br>0.03<br>0.89<br>-0.24<br>-0.23<br>0.08<br>0.09<br>-0.35<br>0.15<br>-0.01<br>0.22<br>0.58<br>-0.04<br>-0.24<br>-0.03<br>0.58<br>-0.08<br>-0.08 |
|                                                                                                  |                                                                                                                                                                         |                                                                                                                 |                                                                                                                                                                   |                                                                                                                                                                                  |

<sup>\*</sup>Significant loadings are underscored.

The trace elements As and Se show expected high correlation with pyrite, so they are probably substituted into the pyrite structure.

Sulfur is also positively correlated with a few other chalcophile elements including Co, Cu, Mo, Pb and Sb. These relationships are to be expected if the chalcophile elements co-precipitated with iron during pyrite formation.

Lithophile Elements. Lithophile elements considered here are only those concentrated in silicate minerals; they are not the rare earth elements that have high loadings on a single factor but no high correlation with either the other lithophiles or the carbonate minerals. They will be considered separately.

As pointed out early in the previous section, the coal-ball samples generally contained less than a few percent silicate minerals. Among the major oxides,  $K_2O$  and  $Al_2O_3$  are strongly correlated (0.97). Alumina and  $SiO_2$  are not correlated due in part to some samples with very high levels of quartz.

Rare Earth Elements. The rare earth elements (REE) as a group had high loadings on Factor 1, high mutual correlations, and formed a distinct cluster. The lack of strong correlation between REE and other lithophile elements was not expected. Previous work on the Herrin Coal (Chou et al., 1982) indicated that REE distribution was controlled by clay minerals. Cahill (1981) also found that the REE were associated with other lithophilic elements and the clay-sized sediments in recent Lake Michigan sediments.



Figure 30
Frequency distribution of the La/Lu ratio for coal balls and associated materials.

The REE contents in the 31 coal-ball samples are variable in concentration (La 0.3 to 20 ppm, for example) and also in relative abundance patterns when normalized to the REE content of chondrites. One means of comparing the relative distribution patterns is to calculate a lanthanum/lutetium (La/Lu) ratio, which approximates the general slope of the REE normalized distribution pattern.

The range of La/Lu ratios is from 1.3 to 25.6. The distribution is plotted in terms of a frequency histogram (fig. 30) along with associated rock materials. The coal-ball La/Lu ratio distribution is much wider than that of the other rock types. Some coal balls have patterns similar to limestones or Anna Shale concretions while others have patterns more similar to shale partings in coal seams.

The wide range of La/Lu ratios and the statistically distinct grouping of REE indicates that their abundances are controlled by at least two factors. If the distribution is influenced partly by the clay minerals present in the coal balls, then in samples with no detectable Al and K, the REE abundances may reflect the REE composition of the original peat incorporated into carbonate minerals.

More work is needed to understand the significance of these REE distribution patterns. The analysis of the carbonate-free fraction (insoluble residue) may be one means of explaining the observed patterns.

Strontium and Carbonate Associations. The carbonate minerals—calcite, dolomite and ferroan dolomite—constitute the predominant portion of carbonate coal balls. The substitution of Sr into carbonate minerals will depend on the form of calcium carbonate precipitated as well as the temperature and composition of water. The correlation between strontium and calcium is high, showing that substitution has occurred.

## Coal-Ball Formation: Implications of Geochemical Data

Geochemical data has seldom been used to interpret the formation of coal balls. Specifically, the application of Sr/Ca molar ratios has seldom been attempted. In most applications, biochemical effects associated with the coprecipitation of aragonite and calcite are more important than inorganic precipitation alone.

Excluding the coal balls with high dolomite content, the Sr/Ca molar ratios are 4 to 10.5 (x  $10^{-4}$ ). The ratios in the limestones from this work, range from 4.5 to 12.3 (x  $10^{-4}$ ) while that in the average limestone is 7 (x  $10^{-4}$ ) and in marine carbonate ooze is 15 (x  $10^{-4}$ ) (Wedepohl, 1978). From previous, unpublished results the Sr/Ca molar ratios for a series of cleat calcites from the Herrin Coal ranged from 1.4 to 3.6 (x  $10^{-4}$ ). The overlap in ratios for limestones and coal balls indicate a similar mineralizing solution distinct from that which formed the cleat fillings.

Statistical tests were performed to test whether the Sr/Ca ratios could be used to distinguish two types of coal balls. Table 8 is a compilation of the Sr/Ca molar ratios and means of each group. It was found that at the 95 percent confidence level the two groups were statistically different. Despite the difficulty of having multiple mineral phases present in the samples analyzed, the Sr/Ca molar ratio indicates a marine source based on a comparison to the limestones in the area and that the top coal balls have probably undergone recrystallization, which explains their lower ratios. This supports the Old Ben 24 Model of coal-ball formation.

Kinsman (1969) provides a good summary of the interpretation of the Sr record in carbonate minerals and highlights the potential shortcomings. In applications to this study he notes that the Sr/Ca molar ratio can range as much as 0.6 to 1.3  $\times$  10<sup>-2</sup> in marine waters, although the Sr/Ca molar ratio is normally 0.9  $\times$  10<sup>-2</sup> in sea water. The median value for freshwater is much lower at 0.3  $\times$  10<sup>-2</sup>.

Treese et al. (1981) evaluated the Sr/Ca molar ratios in carbonate sediments in a freshwater marl lake as indicators of different depositional environments and/or the extent of subsequent diagenetic alterations. They noted that the biochemical effect is the major control of the Sr/Ca molar ratio in the various groups of freshwater carbonates. They reported a range of Sr/Ca molar ratios of 5.9 to 8.8 (x  $10^{-4}$ ).

Elderfield et al. (1982) measured the concentrations of Sr<sup>+2</sup>, Mg<sup>+2</sup>, and Ca<sup>+2</sup> ions in interstitial solutions associated with deeply buried marine

Table 8. Statistical Test of Sr/Ca Molar Ratio for the Separation of two Coal Ball Groups

|                                                                                                                      | *                                                                                                 |                                                                                   |                               |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|
| A. Top of Sear                                                                                                       | n Coal Balls                                                                                      | Sr/Ca (10 <sup>-4</sup> )                                                         |                               |
| C21533<br>C21568<br>C21569<br>C21571<br>C21581<br>C21758                                                             | LW-H-5<br>LW-C-4B<br>22600 E<br>LW-K-1<br>LW-H-7<br>OB26-A-5                                      | 7.1<br>4.8<br>4.8<br>6.2<br>4.9<br>5.2                                            | Mean = 5.5<br>Std. Dev. = 1.0 |
| B. Coal Balls f                                                                                                      | rom Vertical Sec                                                                                  | ction #3                                                                          |                               |
| C21557<br>C21558<br>C21559<br>C21560<br>C21561<br>C21562<br>C21563<br>C21564<br>C21565<br>C21566<br>C21567<br>C21567 | Zone BB3 Zone 2 Zone 3 Zone 4 Zone 4 Zone BB4 Zone 9A Zone 17/18 Zone 20 Zone 12 Zone 16 Zone BB2 | 5.3<br>8.5<br>5.9<br>6.1<br>9.3<br>7.4<br>6.7<br>8.7<br>10.3<br>7.5<br>7.2<br>4.9 | Mean = 7.3<br>Std. Dev. = 1.6 |
| Analysis of var<br>Calculated crit<br>Critical F at 99<br>Critical F at 99                                           | 9% F = 8.53                                                                                       | Degrees of Freedom                                                                | n = 16                        |

Means are significantly different at 95% level.

sediments. They noted that as recrystallization of CaCO3 occurred, a considerable increase in Sr<sup>+2</sup> was found in the interstitial solution with depth. Lorens (1981) found that by increasing calcite precipitation rates the distribution coefficient for strontium also increased.

Boron has been used by many investigators as an indicator of paleosalinity (Schopf, 1980). However, B is predominately associated with clay minerals. The B content was below the detection limit in 23 of 31 coal balls studied here. The highest B content, 85 ppm, occurred in a transported coal ball (C21584) with the highest amount of clay present.

The fluorine distribution in coal balls is interesting because it formed a distinct cluster and in factor analysis (not shown) a high loading on a single factor. The concentration in the coal balls ranged from 10 to 260 ppm, which barely overlaps with the range of 250 to 476 ppm found in the limestones. Fluorine would be expected to substitute easily for hydroxyl groups and be present in fluorite, apatite, or clay minerals. Fluorine, however, has a weak correlation with Sr. Cu and Pb but not with P. Further work is needed to understand F importance as an environmental indicator element.

Manganese is a minor constituent in coal balls and ranges from 113 to 2100 ppm in the normal coal balls, and only about 20 ppm in two siliceous coal balls. The chemistry of Mn is complex because of its three oxidation states and hence its occurrence will be greatly affected by changing eH, pH and pCO<sub>2</sub> conditions. Manganese minerals, therefore, could be indicators of equilibrium conditions during coal-ball formation. There is a weak correlation between Ma and Mn (0.38) and Mn would be expected to substitute into dolomite over calcite. Rhodochrosite, MnCO<sub>3</sub>, was not detected by x-ray diffraction, but its presence would indicate high pH and pCO<sub>2</sub> conditions. These conditions would also be favorable for siderite formation, but FeCO<sub>3</sub> was not detected. If a sharp eH gradient existed between the pore waters of the peat and the overlying solutions. a Fe, Mn oxide layer would form. This is particularly true where anaerobic sediments come in contact with water with a high pO2. Such a layer was not observed, but it may not have been preserved. Under conditions where pyrite was being formed, manganese sulfides would be much more soluble. This is reflected by Fe/Mn ratios which range from 5 to 46 for coal balls with less than 2 percent pyrite to ratios of 17 to 600 in coal balls with pyrite levels of 2 to 39 percent.

## Carbon and Oxygen Isotopes

Carbon and oxygen isotopes are often used in geochemical studies to determine the original environment of deposition. Limestones of marine origin normally have  $\delta C^{13}$  values near zero, while high negative  $\delta C^{13}$  values are typically found in terrestrial plants. The whole range of our samples is skewed toward the terrestrial end of the scale; even the open-marine Brereton Limestone has a negative  $\delta C^{13}$  value of -6.1 permil (fig. 31). Coal balls from mid- and low-seam in area L (vertical sections 3 and 5) have  $\delta C^{13}$  values from -15.7 permil -29.5 permil suggesting little or no marine influence. Coal balls from near the top of the seam range between -11.3 and -12.6 permil in their  $\delta C^{13}$  values. This would seem to support a different origin for these two types of coal balls, consistent with our model of coal-ball formation presented in the next chapter.

Another interesting relationship is that between samples B-5 and V-3 (table 9). The parent material filling the bioturbation trace in the Herrin Coal (LW-B-5) is the Brereton Limestone. The typical Brereton Limestone is represented here by LW-V-3. During the burrowing and infilling, bits of  $\delta C^{13}$  depleted peat were mixed with the Brereton Limestone. The  $\delta C^{13}$  value of B-5 was apparently lowered to -I2.0 permil through recrystallization; its  $\delta O^{18}$  value of -8.9 permil was also the most terrestrial value of this data set.

In comparing these values to previous work, several parallels are obvious. The normal coal balls selected by Mamay for Weber and Keith (1962) fall in the same range as the full-seam coal balls at Old Ben Mine No. 24. Their Berryville coal ball with its marine core is similar ( $\delta C^{13}$  of -13.9 permil) to our sample B-5, which is a burrow filled with marine sediment ( $\delta C^{13}$  of -12.0 permil). However, adjacent normal coal balls have a  $\delta C^{13}$  of -20.7 permil suggesting a different carbon source. The values from the Amax Delta mine (Anderson, Brownlee, and Phillips, 1980) are similar to Old Ben Mine No. 24, although they are generally not as negative. Zone 8 from the Amax Delta mine is anomalous both chemically and isotopically. The  $\delta C^{13}$  and  $\delta O^{18}$  values for composite samples from Zone 8 are most similar to the values for the marine Anna Shale concretion and to the Brereton Limestone sample from Old Ben Mine No. 24; no coal ball from Franklin County has a  $\delta C^{13}$  value higher than -II.3 permil.



Coal balls LW-H-5, 22600E and OB26-A-5. Mean and range bar shown.

Coal balls from Old Ben No. 24 ranging from below the "blue band" to near the top of the seam. These values show no significant change from top to bottom (type II occurrence). Mean and range bar shown.

Figure 31 \_\_\_\_\_\_Stable carbon and oxygen isotope values ( $\delta C^{13}$  and  $\delta O^{18}$ ) for coal balls and associated units from transitional roof areas. Carbon and oxygen isotope data provided by T. F. Anderson, University of Illinois (1982).

# MODELS FOR THE FORMATION OF COAL BALLS AND THEIR PREDICTIVE VALUE

## The Old Ben 24 Coal-Ball Model

Earlier explanations for coal-ball formation were limited. Until this investigation at Old Ben Mine No. 24, not enough data was available on coal balls and their geological settings to work out a comprehensive model—one that covers the development of several periods of coal-ball formation. In this section, we bring together the results of our field and laboratory work, and set out all the conditions and processes that produced coal balls. Later, we discuss models developed by others.

In the vast peat swamp of the Herrin Coal, the water table was generally high. There were some fluctuations; several relatively "dry" periods are recognizable by greater concentrations of fusain and certain plants occurring in distinct layers within the seam. Periods of flooding are marked by shale partings that originated from a major river to the west. Although there is no evidence of marine ingression during peat accumulation, the swamps were set in an extremely flat coastal plain and brackish conditions may have existed at times. Peat swamps and bogs are often characterized by acidic conditions with pH values of 4 to 6. Under these conditions Ca, Fe, Mg and other metals may be chelated into organic matter or dissolved as ionic compounds.

Probably as a result of a general rise in the base level of water as the sea transgressed, the Walshville river deposited mud that became the Energy Shale on adjacent flood plains where peat had accumulated. At Old Ben Mine No. 24 fossil remains of the last swamp forest are found in the carbonaceous facies of the

Table 9.  $\delta\,C^{1\,3}$  and  $\,\delta\,O^{18}\,$  Isotope Data from Coal Balls and Associated Lithologies

| Caranta Niverbar | δC <sup>13</sup>                                                                                                                                                                                | δO <sup>18</sup> |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Sample Number    | ( <sup>0</sup> / <sub>00</sub> )                                                                                                                                                                | (°/oo)           |
| V-3              | - 6.1                                                                                                                                                                                           | - 8.2            |
| T-16B            | - 5.9                                                                                                                                                                                           | - 8.8            |
| T-3B             | - 7.8                                                                                                                                                                                           | - 7.6            |
| N-2              | -15.6                                                                                                                                                                                           | - 6.3            |
| B-5              | -12.0                                                                                                                                                                                           | - 8.9            |
| H-5              | -11.3                                                                                                                                                                                           | - 7.3            |
| 22600E           | -12.6                                                                                                                                                                                           | - 7.8            |
| A-5              | -11.7                                                                                                                                                                                           | - 6.1            |
| A-4              | -15.9                                                                                                                                                                                           | - 7.5            |
| 22362B (V.S. 3)  | -29.5                                                                                                                                                                                           | - 6.5            |
| 22347A "         | -15.7                                                                                                                                                                                           | - 5.8            |
| 19541C "         | -26.6                                                                                                                                                                                           | - 6.5            |
| 19526C "         | -24.7                                                                                                                                                                                           | - 6.8            |
| 19478C "         | -22.5                                                                                                                                                                                           | - 8.1            |
| 22453B "         | -24.9                                                                                                                                                                                           | - 7.4            |
| 22403D "         | -23.5                                                                                                                                                                                           | - 7.7            |
| 22388B "         | -21.4                                                                                                                                                                                           | - 7.6            |
| 22379B "         | -22.3                                                                                                                                                                                           | - 7.7            |
| 19602A (V.S. 5)  | -22.7                                                                                                                                                                                           | - 7.0            |
| 19602B "         | -28.5                                                                                                                                                                                           | - 6.4            |
| 19602E "         | -17.9                                                                                                                                                                                           | - 8.6            |
| 19582B "         | -26.2                                                                                                                                                                                           | - 7.0            |
| 19576B "         | -22.7                                                                                                                                                                                           | - 6.4            |
| 19470C "         | -17.2                                                                                                                                                                                           | - 7.7            |
| 19557B "         | -25.0                                                                                                                                                                                           | - 6.5            |
|                  | V-3 T-16B T-3B N-2 B-5 H-5 22600E  A-5 A-4 22362B (V.S. 3) 22347A " 19541C " 19526C " 19478C " 22453B " 22403D " 22388B " 22379B " 19602A (V.S. 5) 19602B " 19602E " 19582B " 19576B " 19470C " | V-3              |

Data furnished by Dr. T. F. Anderson, Department of Geology, University of Illinois. Data is reported relative to the PDB standard.

Units are in rough stratigraphic order. All samples except A-4 and A-5 are from Old Ben No. 24 mine.

Samples have either a Coal Section field number or a five-digit petrifaction number from the Paleoherbarium, Botany Department, University of Illinois.

Energy Shale, deposited under freshwater conditions. A rapidly thickening layer of mud buried the peat, effectively sealing it and forming a closed system (fig. 32a). As the oxygen level dropped, anaerobic decomposition became dominant and the  $CO_2$  generated became enriched in the  $\delta C^{13}$  isotope, due to microbial methanogenesis. The partial pressure of  $CO_2$  may have increased substantially due to the relatively impermeable cover, perhaps reaching supersaturation, which would lead to low pH values and high carbonate solubility. Methane-producing bacteria could have used a significant amount of  $CO_2$ . Since they would preferentially use light  $CO_2$ , the remaining  $CO_2$  might have a wide range of  $\delta C^{13}$  values, locally depending on the relative degree of methanogenesis.

Soon after the Energy Shale muds had been deposited, large-scale erosion occurred, apparently from the diversion of the Walshville river (fig. 32b). The peat was eroded and oxidized as it became exposed along a gradually widening path. The pH increased as freshwaters entering the peat increased Ca and Mg ion concentrations and removed organic acids, while CO<sub>2</sub> was released simultaneously. The shift in equilibrium resulted in precipitation of Ca and Ca/Mg carbonates within the peat: this was probably the main phase of coal-ball formation. Massive coal balls of type II probably developed at this time; but it is uncertain whether some coal balls of type I were also forming.

As the sea invaded the area, tidal channels developed, often re-using old channels (rolls), although new ones were also cut into the peat (fig. 32c). Coal balls, eroded from the peat, were redeposited in these tidal channels along with the carbonaceous, fossiliferous sediments that hardened into shale. Coal balls continued to form during this period; some type I coal balls exhibit collapsed cell structures, suggesting dehydration of the peat due to marine conditions. Also, some type I coal balls occur near the tidal channels (fig. 32c).

Widespread deposition of Anna Shale and Brereton Limestone followed as the water deepened (fig. 32d). Conditions in peat sealed by the Anna Shale mud probably were less conducive to carbonate permineralization. There is no preference for coal-ball formation under a limestone roof; coal balls seem to be randomly distributed under Anna Shale/Brereton Limestone roof. The only coal balls that definitely formed during the deposition of Brereton Limestone mud are the rare, mixed coal balls associated with an unknown burrowing animal (fig. 32d).

## Predictive Value of Old Ben 24 Model

The Old Ben 24 model requires first sealing a peat deposit, then selectively eroding the protective sediment cover. Whether the initial seal has to be a nonmarine, rapidly accumulating mud is uncertain; and the subsequent erosion could probably have been accomplished by either fluvial channeling or by marine erosion. Although marine conditions occurring sometime after seam formation have been connected with most coal-ball finds around the world, marine sediments above the coal do not suffice for coal-ball formation—certainly not for the massive coal-ball aggregates of type II. In Illinois, more than 90 percent of the rocks overlying the Herrin Coal have a marine origin (Krausse et al., 1979); yet coal balls are only local phenomena.

At present, in-mine mapping distinguishes areas likely to have coal balls, especially type 11, which are the more serious mining problem. In Old Ben Mine No. 24, in-mine mapping showed a strong relationship between type II coal ball occurrences and Anna Shale/Brereton Limestone roof (figs. 18, 19, 20; Part I, figs. 7, 9, 10). To predict the location of these type



Figure 32
Schematic block diagrams showing geologic events leading to the formation of coal balls.

a. Peat was buried under a thick layer of mud (Energy Shale), which sealed it. Partial CO<sub>2</sub> pressure increased in the peat due to the mud seal.



b. The Walshville river selectively eroded the sediments overlying the peat. Peat was oxidized and also partly eroded. CO<sub>2</sub> was released, and freshwaters containing Ca and Mg ions flushed organic acids out of the peat: the pH increased.



c. As the sea invaded, tidal channels were cut into both old channel fill and peat. Some coal balls were dislodged by erosion and redeposited in carbonaceous fossiliferous shale in tidal channels. Also some top-ofseam coal balls formed.



d. Sediments that became marine black shale and limestone were deposited. During the limestone environment, organisms burrowed into and through the Anna Shale sediments into the coal-forming peat. Mineralization around a burrow could form a mixed coal ball.



Figure 33
Transition roof areas near Franklin County (modified from Damberger, Nelson, and Krausse, 1980).

Il coal balls, in-mine mapping was integrated with the developing depositional model. In Old Ben Mine No. 24, 16 of the 17 type Il coal-ball areas were found along a continuous, sinuous, channel exposure of Anna Shale/Brereton Limestone roof; the one other exposure was in a new section of the mine. As mining advances, however, we expect to identify a second subparallel sinuous exposure of Anna Shale/Brereton Limestone roof. At Old Ben Mine No. 27, a short segment of a similar linear exposure was mapped; it contained two type Il occurrences (fig. 20). Orientation may also be characteristic of these linear exposures. The exposure at No. 24 mine trends WNW-ESE; the short segment at No. 27 mine trends roughly NW-SE. In fact, several sub-parallel erosional channels, which are likely sites of coal-ball mineralization, may be found in the Energy Shale of Franklin County.

Exploratory drilling will normally permit the identification of transitional roof lithology; however, the small size of the channel-shaped windows in the gray shale associated with massive coal balls at Old Ben Mine No. 24 (fig. 18; Part 1, fig. 9) makes it prohibitively expensive to delineate them by exploratory drilling.

Most vulnerable to massive coal balls is the longwall mining system: the face must advance no matter what obstacles are present in the panel. In Illinois, support entries are first developed around longwall panels for mining on retreat, so ample time exists to map the roof of the future panel. As data are accumulated and evaluated by means of the Old Ben 24 model, mine plans may be altered to avoid probable coal-ball areas as well as identify potential roof control problems.

The model may also be extended to other areas of Herrin Coal with transitional roof (fig. 33). As noted previously, the Clarkson Mine (Washington County) has a roof similar to that of the Old Ben Mine No. 24, but perhaps with a

different distribution of the dark gray, fossiliferous shale. In areas of transitional roof south and east of the Old Ben sites, a number of type II coal-ball sites have been found, particularly in the Sahara Mine No. 6 and the Amax Delta mine. In these mines the ratio of Anna Shale/Brereton Limestone roof to Energy Shale roof is higher than at the Old Ben mines. Although the Old Ben 24 model may still apply, the more extensive erosion of the Energy Shale may make it more difficult to identify linear, eroded areas. Also, the model may not apply to areas never completely covered by Energy Shale.

Fluvial mud deposits on the Herrin Coal, like those at Old Ben Mine No. 24, are known to exist at several locations along the Walshville channel (fig. 33) and channels of similar origin associated with other coals in the Illinois Basin (Treworgy and Jacobson, in press). These are potential sites for transitional roof and thus coal balls.

Our model for formation of type II coal balls does not depend on marine conditions; the windows in the original cover might be filled with nonmarine sediments. Massive coal balls, which may be similar to type II areas, have been reported from nonmarine rock sequences in both the USSR and Australia.

#### Review of Literature on Coal Balls

Paleobotanists and geologists have studied coal balls for a long time. Stopes and Watson (1909) in England and Kukuk (1909) in Germany recognized that these concretions preserved peat at an early stage of coal seam formation. Both studies found that roots of succeeding plants penetrated previously deposited peat composed predominantly of aerial plant material. Coal balls formed in place of autochthonous peat; they were not formed elsewhere and subsequently deposited in the peat.

A definite association of coal balls with marine roof shales was noted by early researchers. Stopes and Watson (1909) found coal balls under marine shale roof and not under freshwater sediments (fig. 34). They thought the carbonate



Figure 34
Distribution of coal balls in the Upper Foot and Gannister Coals in Lancashire, England (Watson, 1907; Stopes and Watson, 1909). Coal balls formed only in areas below marine roof.

was primarily derived from decaying plants and became fixed as a result of sulfate reduction. Seawater provided a large pool of Ca and Mg and permitted the formation of coal balls over a long time. Kukuk (1909) noted that while two seams with a marine roof had coal balls, other seams with a marine roof had none. He suggested coal balls may have been associated with a particular facies of marine roof, since he found certain fossils and roof concretions together with coal balls.

Cady and Schopf performed the earliest detailed examination of coal balls in the Herrin Coal during research at the Clarkson Mine in Nashville, Illinois. Cady (1936b) described the coal and roof units and Schopf (1938) studied the coal balls. Schopf (1938) believed the Stopes and Watson model was applicable to the Nashville sites and also that coal balls were formed in situ during the peat stage.

Cady and other investigators (1936a, 1940) noted that coal balls were associated with neither the gray Energy Shale nor the black Anna Shale, but a roof of dark gray, very argillaceous limestone or calcareous shale of marine origin (fig. 35). The original notes from the Clarkson Mine show this material also occurred as channel fill, just at Old Ben Mine No. 24. Photos and descriptions in a paper by Cady et al. (1940) show depositional sequences in the roof similar to those as at Old Ben Mine No. 24. Both mines have Anna Shale deposited on the eroded Energy Shale surface or directly on the coal where the Energy Shale is absent. Specifically, the coal balls in the Clarkson Mine were all found in the top 3 feet of the coal seam, probably a type I occurrence.

Evans and Amos (1961) visited three coal-ball sites in the Sahara Coal Company Mine No. 6 in the Herrin Coal in southern Illinois. Because of the bowl or funnel shape of some massive coal-balls deposits, they speculated that blow wells—hydrologically connected to the sea through the sandstone unit below the underclay—had excavated (eroded) funnel-shaped areas of peat 9.5 to 171 feet across. The carbonate—laden waters of the blow well rotated the eroded peat, forming the coal balls. Also, the coal balls were supposed to be supported and rotated by water pressure, so that a humic coating, which later turned to coal, could be deposited around the coal balls. Yet the authors show that even under these great water pressures, the 2- to 3-foot thick underclay between the sandstone and coal seam remained intact. Although Evans and Amos state that the coal-ball sites had a marine shale roof, no detailed descriptions of the geologic settings were given.



Figure 35
Coal-ball locations in Clarkson Mine (Cady, 1936a; Cady et al., 1940). Coal balls are found only under dark gray, fossiliferous shale.



Figure 36
Bioturbation trace surrounded by coal from the top of the Herrin Coal (sample LW-B-5). Original orientation unknown. (1.3 x)

Many coal-ball studies have been conducted by individuals primarily interested in the plant assemblages preserved in the coal balls and the swamp ecology they reflect (Phillips, Kunz, and Mickish, 1977; Phillips and DiMichele, 1981). Phillips, Kunz, and Mickish (1977) developed a coal-ball model based on four study sites in the Herrin Coal, including both the Sahara Coal Company Mine No. 6 and the Amax Delta Mine. Their model assumes coal-ball sites were relative lows within the swamp, so that permineralization occurred whenever carbonate was introduced into the swamp, either from freshwater or marine sources. Unfortunately, the majority of coal ball sites used in these studies were in strip mines, where it is very difficult to relate the spatial association of coal balls to roof type. It is difficult, therefore, to compare this model with the model developed at Old Ben Mine No. 24.

# **Mixed Coal Balls**

Mamay and Yochelson (1962) differentiated four types of coal balls: normal (plants only), mixed heterogeneous (plants and animals, segregated), mixed homogeneous (plants and animals, mixed), and faunal (animal fossils only). They recognized mixed coal balls for the first time, identifying the marine components in detail. After considering and rejecting a burrowing mechanism, they offered a "mud roller" hypothesis for the origin of mixed coal balls. They speculated that during storms marine mud might have been carried onshore and deposited in recesses in the peat. Even within the context of their paleoenvironmental scenario, however, it is difficult to picture a marine mud ball entering a slightly compacted peat, and the limestone mud remaining undissolved in the acidic environment of the living swamp.

We believe bioturbation produced the mixed coals and "faunal" coal balls observed in Franklin County. Burrowing traces produced by a marine

organism begin at the base of the Brereton Limestone, extend into and through the Anna Shale, and occasionally into the top of the Herrin Coal (fig. 36). These traces of I to 2 inches in diameter were found up to I.5 feet below the Brereton, extending as much as 5 feet horizontally. In Tazewell County, Smith et al. (1970) illustrated similar traces at the base of the Oak Grove Limestone. If these burrows were filled with marine mud and found in a coal seam, they would be considered "faunal" coal balls by Mamay and Yochelson. However, we do not consider these "faunal" coal balls to be legitimate because they contain no permineralized peat. In contrast, mixed coal balls contain permineralized peat, although the nucleation for peat permineralization is clearly different than for normal coal balls, which have no obvious core.

#### CONCLUSIONS

Coal balls in the Herrin Coal are predictable at two distinct levels: Generally; they are associated with Anna Shale/Brereton Limestone roof in transitional roof areas; transitional roof can be identified from typical drill-hole densities used (1 to 2 holes/mi²) during exploration. Specifically, the type II coalball areas that cause mining problems are located under a linear exposure of Anna Shale/Brereton Limestone roof at Old Ben Mine No. 24. Preliminary evidence suggests similar linear exposures may be linked to type II coal-ball areas found elsewhere. These linear exposures can be mapped in mine without difficulty.

A depositional model explains the distribution of coal balls at Old Ben Mine No. 24. In this model, freshwater sediments covered the top of the peat, sealing it. Continued decomposition of the peat produced high partial CO<sub>2</sub> pressures in the sealed peat. Selective erosion of the cover by river waters containing Ca and Mg ions flushed out the organic acids and increased the pH; as the CO<sub>2</sub> outgassed, the equilibrium shifted toward carbonate precipitation, which created coal balls. Later, marine mud was deposited on both freshwater sediments and exposed peat, producing the association of coal balls and marine shale roof. This model may apply to other coal-ball sites.

## **RECOMMENDATIONS**

In-mine mapping located type II coal balls under specific linear exposures of Anna Shale/Brereton Limestone roof. Ideally, these linear exposures could be identified during the development of main entries, so that panel layout (especially longwall panels) could avoid areas of maximum risk. Further mapping around coal-ball areas is needed to broaden the data base.

Further geochemical work may lead to advances in prediction of coal balls; their stratigraphic setting is now largely known. To refine the depositional model, the critical ranges of partial CO<sub>2</sub> pressures and pH values as well as the availability of calcium for carbonate precipitation should be determined. The timing of coal-ball formation relative to pyrite generation needs to be examined, as does the problem of when dolomite formed in the coal balls. Further analysis of coal-ball mineralogy by petrography is also needed. Finally, the association of type II coal-ball areas with certain segments of the linear exposures should be investigated. Under marine roof in coal-ball locations, the peat at the top of the seam may show distinct geochemical differences; samples from adjacent sites should be checked. Analysis of top benches instead of full channel samples may accentuate these differences and aid in evaluating the utility of this information for predicting coal-ball areas.

At other coal-ball sites in Illinois, some geochemical, isotopic, and/or paleobotanical work has been performed. No detailed geological evaluations have been made. Geologic mapping in these areas and other areas of known transitional roof is needed to test the capability of the model to predict coal balls.

### REFERENCES

- Anderson, T., M. E. Brownlee, and T. L. Phillips, 1980, A Stable isotope study on the origin of permineralized peat zones in the Herrin Coal: Journal of Geology, v. 88, p. 713–722.
- Berner, R. A., 1971, Principles of Chemical Sedimentology, McGraw-Hill, New York, 240 p.
- Cady, G. H., 1936a, The occurrence of coal balls in No. 6 coal bed of Nashville, Illinois Draft versions: Illinois State Geological Survey unpublished manuscript no. 48.
- Cady, G. H., 1936b, The occurrence of coal balls in No. 6 coal bed at Nashville, Illinois: Transactions, Illinois Academy of Science, v. 29, no. 2, p. 157-158.
- Cady, G. H., L. C. McCabe, J. M. Schopf, and C. C. Ball, 1940, Report on the Herrin (No. 6) Coal at Nashville, Washington County, Illinois: Illinois Geological Survey unpublished manuscript no. 49, copy 2, p. 83.
- Cahill, R. A., 1981, Geochemistry of Recent Lake Michigan Sediments, Illinois State Geological Survey Circular 517, 94 p.
- Chou, C.-L., R. A. Cahill, R. R. Ruch and R. D. Harvey, 1982, Geochemistry of a Bituminous Coal Seam in Illinois (Abstract): Transactions American Nuclear Society, v. 41, p. 187-188.
- Damberger, H. H., W. J. Nelson and H.-F. Krausse, 1980, Effects of geology on roof stability in room-and-pillar mines in the Herrin (No. 6) Coal of Illinois, in Proceedings: First Conference on Ground Control problems in the Illinois Coal Basin, Southern Illinois University, Carbondale, Illinois, June 1980, Yoginder P. Chugh and A. Van Besien (eds.) p. 14-32; also Illinois State Geological Survey Reprint 1980P.
- DeMaris, P. J., 1982, Erosional channels in the Herrin (No. 6) Coal at Old Ben No. 24 Mine, Franklin County, Illinois: Abstracts with Programs North-Central Section of the Geological Society of America, April 1982, p. 258.
- Elderfield, H., J. M. Gieskes, P. A. Baker, R. K. Oldfield, C. J. Hawkesworth, and R. Miller, 1982, <sup>87</sup>Sr/<sup>86</sup>Sr and <sup>18</sup>O/<sup>16</sup>O ratios, interstitial water chemistry and diagenesis in deep-sea carbonate sediments of the Ontong Java Plateau, Geochimica et Cosmochimica Acta, v. 46, p. 2259–2268.
- Evans, W. D., and D. H. Amos, 1961, An example of the origin of coal balls, Proceedings of Geologist's Association, London, v. 72, part 4, p. 445-454.
- Garrels, R. M., and C. L. Christ, 1965, Solutions, Minerals, and Equilibria, Freeman, Cooper and Company, San Francisco, 450 p.
- Givens, T. J., 1968, Paleoecology and environment of deposition of part of the Brereton and Jamestown Cyclothems (Middle Pennsylvanian) of Williamson County, Illinois: Southern Illinois University Master's thesis, Carbondale, 184 p.

- Gluskoter, H. J., R. R. Ruch, W. G. Miller, R. A. Cahill, G. B. Dreher, and J. K. Kuhn, 1977, Trace elements in coal: Occurrence and distribution: Illinois State Geological Survey Circular 499, 154 p.
- Harvey R. D., R. A. Cahill, C.-L. Chou and J. D. Steele, 1983, Mineral matter and trace elements in the Herrin and Springfield Coals, Illinois Basin Coal Field: Final Report to U.S. Environmental Protection Agency, Grant R806654, Illinois State Geological Survey Contract/Grant Report 1983-4, 162 p.
- Heckel, P. H., 1977, Origin of phosphatic black shale facies in Pennsylvanian cyclothems of mid-continent North America: AAPG Bulletin, v. 61, p. 1045–1068.
- Johnson, P. R., 1979, Petrology and environments of deposition of the Herrin (No. 6) Coal Member, Carbondale Formation, at the Old Ben Coal Company Mine No. 24, Franklin County, Illinois: University of Illinois Master's thesis, Urbana-Champaign, 169 p.
- Johnson, D. O., 1972, Stratigraphic analysis of the interval between the Herrin (No. 6) Coal and the Piasa Limestone in southwestern Illinois: University of Illinois Ph.D. dissertation, Urbana-Champaign, 105 p.
- Kinsman, D. J., 1969, Interpretation of Sr<sup>+2</sup> concentrations in carbonate minerals and rocks: Journal of Sedimentary Petrology, v. 39, no. 2, p. 486-508.
- Krausse, H.-K., H. H. Damberger, W. J. Nelson, S. R. Hunt, C. T. Ledvina, C. G. Treworgy, and W. A. White, 1979, Engineering study of structural geologic features of the Herrin (No. 6) Coal and associated rock in Illinois: Contract Report for U.S. Bureau of Mines, Contract No. H0242017, p. 205.
- Kukuk, P., 1909, Concerning peat dolomites in the seams of the lower Rhine-Westphalian bituminous coal deposit: Glueckauf, Berg-und Huettenmaennische Zeitschrift, Nr. 32, p. 1137-1150. (German).
- Lorens, R. B. 1981, Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate: Geochemica et Cosmochimica Acta, v. 45, p. 553-561.
- Mamay, S. S., and E. L. Yochelson, 1962, Occurrence and significance of marine animal remains in american coal balls: U.S. Geological Society Professional Paper 354-1.
- Phillips, T. L., and W. A. DiMichele, 1981, Paleoecology of Middle Pennsylvanian age coal swamps in southern Illinois Herrin Coal Member at Sahara Mine No. 6, in Paleobotany, Paleoecology, and Evolution, Karl J. Niklas (ed.), Praeger, New York, 297 p.
- Phillips, T. L., A. B. Kunz, and D. J. Mickish, 1977, Paleobotany of permineralized peat (coal balls) from the Herrin (No. 6) Coal member of the Illinois Basin, in P. H. Given and A. D. Cohen (eds.), Interdisciplinary Studies of Peat and Coal Origins: Geological Society of America Microform Publication 7, p. 18–49.
- Rao, C. Prasada, 1979, Origin of coal balls of the Illinois Basin: Illinois State Geological Survey unpublished manuscript no. 2.

- Schopf, J. M., 1938, Coal balls as an index to the constituion of coal: Transactions, Illinois Academy of Science, v. 31, p. 187–189; reprinted as Illinois State Geological Survey Circular 51, 1939.
- Schopf, T. J. M., 1980, Paleoceanography, Harvard University Press, Cambridge, Massachusetts, 341 p.
- Smith, W. H., R. B. Nance, M. E. Hopkins, R. G. Johnson and C. W. Shabica, 1970, Depositional environments in parts of the Carbondale Formation western and northern Illinois: Illinois State Geological Survey Guidebook Series No. 8, p. 10–11.
- Stopes, M. C., and D. M. S. Watson, 1909, On the present distribution and origin of the calcareous concretions in coal seams, known as "coal balls": Philosophical Transaction of the Royal Society of London, Series B, v. 200, London, p. 167-218.
- Teichmuller, R., 1955, Sedimentation und Setzung im Ruhrkarbon: Neues Jahrbuch fur Geologie und Palaeontologie Mh. 4., p. 145–168.
- Treese, T. N., R. M. Owen, and B. H. Wilkinson, 1981, Sr/Ca and Mg/Ca ratios in polygenetic carbonate allochems from a Michigan marl lake: Geochemica et Cosmochimica Acta, v. 45, p. 439–445.
- Treworgy, C. G., and R. J. Jacobson (in press), Paleoenvironments and distribution of low-sulfur coal in Illinois: Compte Rendu, IX-ICC.
- Watson, D. M. S., 1907, The formation of coal-balls in the coal measures:

  Manchester Geological and Mining Society, Transactions v. 30, p. 135-137.
- Weber, J. N., and M. L. Keith, 1962, Carbon-isotope composition and the origin of calcareous coal balls: Science, v. 138, p. 900-902.
- Wedepohl, K. H., 1978, Handbook of Geochemistry, Vol. II/2 and II/4, Springer Verlag, Berlin, West Germany.
- Woodland, B. G., and C. K. Richardson, 1975, Time factors of differentially preserved wood in two calcitic concretions in Pennsylvanian black shale from Indiana: Fieldiana, Geology, v. 33, No. 10, p. 179-192.
- Zangerl, R., and E. S. Richardson, Jr., 1963, The paleoecological history of two Pennsylvanian black shales: Fieldiana, Geology Memoirs Volume, v. 4, Chicago Natural History Museum, 352 p.
- Zaritsky, P. V., 1975, On thickness decrease of parent substance of coal: Seventh International Congress of Carboniferous Stratigraphy and Geology, Compte Rendu, v. 4, p. 393–397.

APPENDIX A. Geochemistry Sample Reference List

| C#               | Sample #           | Description                                                                                                                      |
|------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------|
| C21533           | LW-H-5             | Coal ball, pyritic; near top of Herrin Coal                                                                                      |
| C21634           | LW-B-2C            | Coal ball; upper of 2 from midseam block                                                                                         |
| C21535<br>C21536 | LW-J-10<br>LM-S-32 | Energy Shale; light gray near contract with Herrin Coal<br>Anna Shale; 0.2' above contact and just above<br>calcite/apatite band |
| C21537           | LW-V-3             | Brereton Limestone - roughly middle of unit                                                                                      |
| C21538           | LM-C-01            | Herrin Coal; top 0.65' under Brereton roof                                                                                       |
| C21539           | LM-W-13            | "Blue band," rather carbonaceous, under Anna roof                                                                                |
| C21540           | LM-Z-09            | Underclay, top 0.151, under Anna roof                                                                                            |
| C21557           | 19582B             | Coal ball, composite section <sup>1</sup> , tissue specific; partial anal. – see C21572 (Zone BB4)                               |
| C21558           | 22379B             | Coal ball, composite section, tissue specific; partial anal. – see C21573 (Zone 3)                                               |
| C21559           | 22388D             | Coal ball, composite section, tissue specific; partial anal. only (Zone 3)                                                       |
| C21560           | 22403D             | Coal ball, composite section, tissue specific, middle c.b.; partial anal. – see C21574 (Zone 4)                                  |
| C21561           | 22403D             | Coal ball, composite section, tissue specific, bottom c.b.; partial anal. only (Zone 4)                                          |
| C21562           | 19576B             | Coal ball, composite section, tissue specific; partial anal see C21575 (Zone BB4)                                                |
| C21563           | 22453B             | Coal ball, composite section, tissue specific; partial anal. only (Zone 9A)                                                      |
| C21564           | 19541C             | Coal ball, composite section, tissue specific; partial anal. only (Zone 17/18)                                                   |
| C21565           | 22362B             | Coal ball, composite section, tissue specific; partial anal. only (Zone 20)                                                      |
| C21566           | 19478C             | Coal ball, composite section, tissue specific; partial anal. only (Zone 12)                                                      |
| C21567           | 19526C             | Coal ball, composite section, tissue specific; partial anal see C21576 (Zone 16)                                                 |
| C21568           | LW-C-4B            | Coal ball, upper third of seam, tissue specific                                                                                  |

| C#     | Sample # | Description                                                                               |  |  |
|--------|----------|-------------------------------------------------------------------------------------------|--|--|
| C21569 | 22600E   | Coal ball from top coal over mid-seam c.b.'s                                              |  |  |
| C21570 | LW-A-I   | Coal ball from mid-seam, pyritic at base; coal traces present in sample                   |  |  |
| C21571 | LW-K-I   | Coal ball from top coal, isolated                                                         |  |  |
| C21572 | 19582B   | Coal ball, composite section, tissue specific (Zone BB4)                                  |  |  |
| C21573 | 22379B   | Coal ball, composite section, tissue specific (Zone 2)                                    |  |  |
| C21574 | 22403D   | Coal ball, composite section, tissue specific (Zone 4)                                    |  |  |
| C21575 | 19576B   | Coal ball, composite section, tissue specific (Zone BB4)                                  |  |  |
| C21576 | 19526C   | Coal ball, composite section, tissue specific (Zone 16)                                   |  |  |
| C21581 | LW-H-7   | Coal ball under erosional channel tissue specific, coal traces present in sample          |  |  |
| C21582 | 19557    | Coal ball below blue band, very pyritic, composite section (Zone BB2)                     |  |  |
| C21583 | LW-N-2   | Coal ball in erosional channel (also C.B. 22928)                                          |  |  |
| C21584 | LW-Z-7   | Coal ball in erosional channel, trace of exterior clastics in sample                      |  |  |
| C21585 | 22067F   | Coal ball in top coal, fusainized, tissue specific, probably sub-adjacent to C21690       |  |  |
| C21586 | 22062B   | Coal ball in top coal, pyritic and small, isolated                                        |  |  |
| C21587 | OR3-C-3  | Coal ball from upper part of deposit, traces only of coal and secondary calcite in sample |  |  |
| C21588 | OR3-C-2  | Coal ball from lower part of deposit, traces only of coal and secondary calcite in sample |  |  |
| C21589 | OR6-C-5  | Dolomitic material in coal, some coal in sample                                           |  |  |
| C21590 | 22067F   | Dolomitic material in coal, some coal in sample. Probably super adjacent to C21585        |  |  |
| C21591 | LW-E-3   | Coal ball, silicate permineralization of fusain                                           |  |  |
| C21626 | C2-M-12  | Limestone (Brereton)                                                                      |  |  |
| C21627 | LW-T-3A  | Argillaceous limestone from an erosional channel                                          |  |  |

| C#     | Sample # | Description                                       |
|--------|----------|---------------------------------------------------|
| C21628 | LW-H-5   | Concretion from Anna Shale                        |
| C21629 | LW-T-16  | Concretion from Anna Shale                        |
| C21630 | LW-S-7   | Black (Anna) shale, upper portion                 |
| C21631 | OR-6-D-2 | Dark gray shale; carb. facies of Energy Shale     |
| C21632 | C2-N-10  | "Blue band," coaly, from Herrin Coal              |
| C21633 | C2-N-12  | Shale parting in Herrin Coal                      |
| C21634 | OB27-A-2 | Channel-fill material; medium gray shale          |
| C21635 | LW-T-11  | Black (Anna) shale, basal portion                 |
| C21652 | C2-M-IIB | Black (Anna) shale, top                           |
| C21653 | C2-M-IIC | Black (Anna) shale, middle                        |
| C21654 | C2-M-IID | Black (Anna) shale, bottom                        |
| C21655 | C2-M-13  | Light gray (Energy) shale                         |
| C21656 | LW-T-12  | Black (Anna) shale, top (partial anal. only)      |
| C21657 | C2-L-12A | Coal from Anvil Rock channel (partial anal. only) |
| C21658 | C2-F-6   | Coal from Anvil Rock channel                      |
| C21659 | 26524C   | Argillaceous Limestone with permin. plants        |
| C21660 | LM-W-2   | "Blue band" of Herrin Coal under coal balls       |
| C21661 | LM-PW-I  | "Blue band" of Herrin Coal under Energy roof      |
| C21662 | LM-PZ-1A | Underclay, 2-4" deep (under Energy roof)          |
| C21663 | LM-PZ-IB | Underclay, 10-12" deep (under Energy roof)        |
| C21664 | C2-0-1   | "Blue band" from Herrin Coal (under Energy roof)  |
| C21665 | C2-0-2   | Shale parting from Herrin Coal, mid-seam          |
| C21666 | C2-0-3   | Shale parting from Herrin Coal, B2/B3 marker      |
| C21721 |          | Face channel coal, Anna roof (Site F)             |

| C#     | Sample #   | Description                                              |
|--------|------------|----------------------------------------------------------|
| C21722 |            | Face channel coal, Energy roof (Site S)                  |
| C21758 | OB26-A-5   | Coal-ball from top coal                                  |
| C21759 | OB26-A-8   | Black (Anna) shale; roof over C21721                     |
| C21760 | OB26-A-12  | Argillaceous limestone from an erosional channel         |
| C21761 | OB26-A-16B | Anna Shale concretion formed on limestone filled trace   |
| C21762 | OB26-A-20  | "Blue band" of Herrin Coal                               |
| C21763 | OB26-A021  | Channel-fill material (shale)                            |
| C21764 | OB26-A-26  | Energy Shale; roof over C21722                           |
| C21765 | 1893       | Silicate "coal ball" (apparently of late mineralization) |
| C21766 | C2-K-11    | Dolomitic material in coal, some coal in sample          |
| C21767 | LW-S-5     | Brereton limestone                                       |
| C21768 | LW-W-2     | Channel-fill material (impure coal)                      |
|        |            |                                                          |

<sup>&</sup>lt;sup>1</sup>Composite Section means the combination of coal-ball vertical sections 3 and 5 (which do not overlap), and thus extends from slightly below the blue band to near the top of the seam.

APPENDIX B. Analyses of Coal Balls and Similar Materials

| P205      | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000000000000000000000000000000000000                                                                                              |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| NA20      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                     |
| ž         | 44-N1990NWUNWUNBW0<br>0001123904WUNWUNBW0<br>00040N000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000011111<br>0000000000000000000000000000                                                                                           |
| K20       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                     |
| <b>¥</b>  | 00844070404020014446<br>008640707070700004446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2000<br>4000<br>4000<br>4000<br>4000<br>4000<br>4000<br>4000                                                                        |
| Мбо       | ○ひらろろろうようなするようろろろ<br>○ひらうららすっちらいらいらいらい<br>スススススススススススススス                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                     |
| T102      | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | **************************************                                                                                              |
| FE203     | びしょうしゅうしょう です 8000000 で 200000 で 200000 で 20000 で 200000 で 20000 で 20 |                                                                                                                                     |
| CAO       | onnonnadannnuaaannanan<br>oa-onnuaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1// 04 00 00 00 00 00 00 00 00 00 00 00 00                                                                                          |
| AL203     | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 000-0000000000000000000000000000000000                                                                                              |
| 2015      | 00-000000<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00000000000000000000000000000000000000                                                                                              |
| GEOL, NO. | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LW-H-7<br>1955-H-7<br>1955-H-7<br>22062B<br>0R3-C-3<br>0R3-C-3<br>0R3-C-3<br>12067F<br>1893-C-5<br>1893-C-5<br>1893-C-5<br>1893-C-1 |
| LAB.NO.   | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CC21127<br>CC21128<br>CC21128<br>CC211288<br>CC211288<br>CC211288<br>CC211288<br>CC211288<br>CC211288<br>CC211288<br>CC211288       |

| AG        | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | * *                                    |        |                  |              |                  | S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | Č.               | cic<br>Cic | ici<br>ru | GC<br>O | Ä.<br>У    | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 | ري.<br>م           | i⊸i<br>rer        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------|--------|------------------|--------------|------------------|---------------------------------------------------------------------------------------------|------------------|------------|-----------|---------|------------|---------------------------------|--------------------|-------------------|
| IN RES    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 143<br>143        |                                        | 57     | 4 <b>4</b>       | W. 4         | (P)              |                                                                                             |                  |            |           | Q. r    | 10.64%     |                                 |                    |                   |
| 101       | 22.89%<br>44.88%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.06%            | 38.96%<br>37.24%                       | 42,40% | 43,21%           | 43,77%       | 42,69%           | 36,77%                                                                                      | 33.62%           | 24:48%     | 27:23%    | 45.09%  | 49.78%     | 44.39%                          | 39.55%             | 18:23%<br>65:40%  |
| H20       | 00<br>00<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L.J               | %0%<br>0°30%                           |        |                  | ه ژما        | rer              | ر ما وست                                                                                    | . 4              | ٠          | alad.     | S.      | A 14.      | A A                             | ) ( '41            |                   |
| TOT S     | 18.33%<br>0.03%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | œ                 | ひく<br>よい<br>ない<br>ない                   | ,∞     | ું દ્વ           | מליח<br>מליח | مَن              | Ú4                                                                                          | 3.0              | Č          | JO        | المسا   | m C        | 1-1-R                           | 300                | ~~ <u>`</u>       |
| ORG C     | 2.12%<br>0.93%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 2,5<br>2,5<br>2,5<br>2,5<br>2,5<br>2,5 |        |                  |              |                  |                                                                                             |                  |            |           |         |            | , Q.                            | - T                |                   |
| T0T C     | 6.39%<br>12.83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                        |        |                  |              |                  |                                                                                             |                  |            |           |         |            |                                 |                    | 13.02%            |
| C02       | 15.65%<br>43.62%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | 39.27%                                 |        |                  |              |                  |                                                                                             |                  |            |           |         |            |                                 | 0.97               | <0.1 % 22.45%     |
| 0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e e<br>l a<br>l a | . a. 6                                 |        |                  |              |                  | ## (A. (                                                                                    | e e<br>l a       | · 在        | 600       | E GE    | <b>e</b> ( | をはなり                            | 5 6<br>0 0<br>0 0  | 6 &<br>0 0<br>0 0 |
| WNO       | 0.0044<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0.0054<br>0. | 1040              | 1020                                   | 1343   |                  |              |                  | 556                                                                                         | A 000            | 564        | 2760      | 1500    | 1250       | 960                             | 1930               | 27<br>1610        |
| GEOL, NO. | LW-H-5<br>1958B1-2C<br>22359B-2C<br>22368B1<br>22463B<br>195403B<br>19541C<br>19541C<br>19541C<br>19541C<br>19541C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17020C            | 22600E                                 |        | 19582B<br>22170B | 22403D       | 195/6K           |                                                                                             | 1700/            | LW-Z-7     | 22067F    | 0R3-C-3 | 0R3-C-2    | 22067F                          | LW-E-3<br>OB26-A-5 | 1893<br>C2-K-11   |
| LAB.NO.   | C211521553<br>C211551553<br>C211551553<br>C211556<br>C211566<br>C211566<br>C211566<br>C211566<br>C211566<br>C211566<br>C211566<br>C211566<br>C211566<br>C211566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CZ136/<br>C215/8  | C21569                                 | 521571 | C21572           | C21574       | C215/5<br>r21574 | C21581                                                                                      | 521382<br>521582 | C21584     | C21585    | C21587  | C21588     | C21599                          | C21758             | C21765<br>C21766  |

| 문 <sup>호</sup> 선                        |                                        |                                                              |
|-----------------------------------------|----------------------------------------|--------------------------------------------------------------|
| S & 64.64                               |                                        |                                                              |
| CE 23.0                                 |                                        |                                                              |
| E Unite                                 |                                        | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                       |
| ಈ ತಯಣಿ≺                                 |                                        |                                                              |
| ñ óç                                    |                                        |                                                              |
| <b>≪</b>                                | .00                                    | 20,242,242,242,242,242,242,242,242,242,2                     |
| # @moc                                  |                                        | MNW 00                                                       |
| တို ထိုင္းထ                             |                                        | 00000000000000000000000000000000000000                       |
| GEOL.NO.<br>LW-H-5<br>LW-B-2C<br>195828 | 42222222222222222222222222222222222222 | 1945<br>1945<br>1945<br>1945<br>1945<br>1945<br>1945<br>1945 |
|                                         | 00000000000000000000000000000000000000 |                                                              |

| 노         | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GE        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GA        | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L.        | 10111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |
| E         | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ρλ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 277727<br>87777<br>87777<br>8777<br>8777<br>8777<br>8777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SJ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GEOL .NO. | LW-H-11<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>1222358<br>122235 | 19526C<br>19536C<br>19541-7<br>19541-7<br>19541-7<br>220677<br>220628<br>083-C-3<br>083-C-5<br>0856-C-5<br>1893-A-5<br>1893-A-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LAB.NO.   | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 22        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S         | 000000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ŭ.<br>Ki  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2022422424<br>2022422442444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <u>a</u>  | A 2000 000 000 000 000 000 000 000 000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| e line    | 2 <u>%,111,112,112,112,112,112,112,112,112,11</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| œ.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3         | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | พสสทสพพสทพพณิสพ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LA        | O MONDO O 4 M M M M M M M M M M M M M M M M M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| N         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| H         | 898#899984\4555898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$25000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| GEOL .NO. | LW-H-5<br>19523788<br>22237828<br>22237828<br>22240333<br>2224033<br>195245<br>195245<br>19526<br>19526<br>19536<br>1953798<br>1953798<br>195376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LW-W-C<br>19557<br>19557<br>LW-N-2<br>CW-N-2<br>0R3-C-3<br>0R3-C-3<br>0R3-C-3<br>0R5-C-5<br>18-E-3<br>1893<br>C2-K-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LAB.NO.   | CC2115554<br>CC2115554<br>CC21155554<br>CC2115555<br>CC2115555<br>CC2115555<br>CC2115555<br>CC2115555<br>CC2115555<br>CC2115555<br>CC2115555<br>CC2115555<br>CC2115555<br>CC2115555<br>CC2115555<br>CC2115555<br>CC211555<br>CC211555<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC21155<br>CC2 | CC215588<br>CC2155884<br>CC2155884<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC21558887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC2155887<br>CC215588<br>CC2155887<br>CC2155887<br>CC215588<br>CC2155887<br>CC215588<br>CC215588<br>C |

| 3          |                                                                                                                                                                                                                             | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | L. + C.                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                                             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 王          |                                                                                                                                                                                                                             | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ħ          | 00000000000000000000000000000000000000                                                                                                                                                                                      | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TA         |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| R<br>R     | 24404000000000040000000000000000000000                                                                                                                                                                                      | 884428684444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SW         | 4 W C D D D D D D D D D D D D D D D D D D                                                                                                                                                                                   | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SE         | CO04-10-10-10-10-00-00-00-00-00-00-00-00-00-                                                                                                                                                                                | ω υιν<br>ω ω φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 25         | 11110110000000000000000000000000000000                                                                                                                                                                                      | 0-000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| GEOL . NO. | LLW-H-1<br>222378B-2<br>222378B-2<br>222478B-2<br>222478B-2<br>222478B-2<br>222478B-2<br>222378B-2<br>222378B-2<br>22238B-2<br>22238B-2<br>22238B-1<br>22238B-1<br>22238B-1<br>22338B-1<br>22338B-1<br>22338B-1<br>22338B-1 | 18.20<br>18.20<br>18.20<br>18.20<br>18.20<br>18.20<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30<br>18.30 |
| B.NO.      | ######################################                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|           | ۵           | ë<br>a  | 9<br>2       | E<br>a<br>a | ã<br>a | a<br>a               | E a a  |        | E a    | a<br>a | Œ<br>ù<br>ù | E<br>d<br>d     | i<br>E        | E<br>a<br>a | <b>₩</b>    | Edd    | 9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |        |        |                      |         | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | . a    | ā      | <u>ا</u>     | <b>E</b> a.   | <b>3</b> 00 | E<br>L<br>L | <b>≘</b> aa | <b>三</b><br>ひ<br>ひ | E 6         |            |                                         |
|-----------|-------------|---------|--------------|-------------|--------|----------------------|--------|--------|--------|--------|-------------|-----------------|---------------|-------------|-------------|--------|---------------------------------------------------------------------------------|--------|--------|----------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------|--------------|---------------|-------------|-------------|-------------|--------------------|-------------|------------|-----------------------------------------|
| ZR        | ស           | ប       | ស            | i<br>V      | ń      | Ŕ                    | ς,     | ,<br>P |        | Ą      | ស           | ŝ               | ç             | ņ           | ņ           | Ŕ      | Ç                                                                               |        |        |                      |         | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25    | Š      | 5      | ٨.           | Ç             | Ç           | ្ត          | ه.<br>ان    | Q.                 | ?K          | در         | ,                                       |
| 7         | <b>a</b> aa | ě       | <b>=</b> 0.0 | Ea.         | e a    | <b>≅</b><br>0.<br>0. | e a.   | 20     | a<br>a | E a a  | E O.        | <b>≅</b> a      | Ead           | Ear         | <b>■</b> aa | 100    | ā.                                                                              |        |        |                      |         | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 E   | . a.   | a<br>a | E A          | <b>≡</b><br>a | E<br>Q      | E a         | <b>E</b>    | # 1<br>0. 1        | ii é        | # 6<br>L 0 | i ii                                    |
| ZN        | ខ           | Ç.      | ಼            | œ           | ្ព     | O.                   | •0     | ^      | ^      | L)     | 40          | œ               | <b>~</b> 0    |             | ^           | î      | ^                                                                               |        |        |                      |         | ñ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.    | 17     | L)     | 12           | <b></b> -l    | 16          | 7.          | <b>4</b>    | 20                 | ۰ م         | 14         | 4                                       |
| ΥB        | $\sim$      | 0.4 PPE | ` -          | Ţ           | `.     | . 4                  |        | ···    | -      | ٧      | •           | ヾ               | ∹             | ຈ           | ٦,          |        |                                                                                 |        |        |                      |         | ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 <   | 7      | 0      | 9            | Ģ             | 4           | φ.          | اب          | ώ.                 | -j          | 3,5        | 0.0                                     |
| 3         | ທຸ          | 0.3 PPB | ¢₁           | ú           | c1     | Ċ1                   | C1     | c.i    |        | 4      | 4           | <del>-</del> -1 | <del></del> - | <b></b>     | c.i         | Ċ      | ď                                                                               |        |        |                      |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        | 177    | <del>ب</del> | Ģ             | กว          | μĵι         | Ğ           | Ų.                 | ,<br>D      | 26         | E 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| >         | E04 29      | 7.6 PPM |              |             |        |                      |        |        |        |        |             |                 |               |             |             |        |                                                                                 |        |        |                      |         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · c   | , 0    | 0      | 0            | 0             | 0           | 0           | 0           | 06                 | 500 OT      | ) ed       | E & & C > C >                           |
| GEOL, NO. | LW-H-5      | LW-B-2C | 19582B       | 22379B      | 223880 | 22403D               | 22403D | 19576B | 22453B | 19541C | 22362B      | 19473C          | 19526C        | LW-C-4B     | 22600E      | LW-A-1 | LW-K-1                                                                          | 19582B | 223/4B | 1057405              | 177/00  | - 11-H-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19557 | [W-N-2 | Z-Z-M7 | 22067F       | 22062B        | 0K3-C-3     | 0R3-C-2     | 086-C-5     | 77067              | 1 W 1 E 1 3 | 20707      | Č2-K-11                                 |
| LAE.NO.   | C21533      | C21534  | C21557       | C21558      | C21559 | C21560               | C21561 | 021562 | C21563 | C21564 | C21565      | C21566          | C21567        | C21568      | C21569      | C21570 | C21571                                                                          | 0215/2 | したよいへん | 7217<br>7217<br>7217 | C 213/3 | 0 + 0<br>0 + 0<br>0<br>0 + 0<br>0 + | 1000  | C21583 | C21584 | C21585       | C21586        | C21587      | C21583      | C21589      | C21590             | C21271      | 701750     | C21766                                  |

APPENDIX C. Analyses of Associated Rocks

| P205      | 29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 000000<br>000000<br>000000<br>000000                          | 0000                                                                               | 00000<br>00000<br>00000<br>00000                                                       | 00000000<br>10040000<br>20040000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00000000000000000000000000000000000000                                   | 000<br>001<br>001<br>001<br>001<br>001<br>001<br>001<br>001<br>001 | 40000<br>40000<br>4444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00<br>0,00 |
|-----------|----------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| NA20      | 796<br>796<br>796<br>796                                                         | <br>                                                          | 1.05%<br>1.05%<br>1.34%<br>80%                                                     | 1,20%<br>1,20%<br>1,22%<br>1,38%                                                       | 1<br>1,03<br>1,12<br>1,12<br>1,12<br>1,12<br>1,12<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,13<br>1,1 | 0.10.40.0<br>7.20.0<br>7.20.0<br>7.20.0<br>7.20.0<br>7.20.0              | .25%<br>48%<br>%88%                                                | 11.17<br>23.77<br>24.77<br>24.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .36%<br>.09%<br>.43%                                         |
| K20       | พพพ<br>440<br>หหห                                                                | 1.000.<br>184.000.<br>174.444                                 | 4444<br>\$000<br>mmmm                                                              | 4-12-4<br>6-1000<br>74777                                                              | 040000000<br>64-04000<br>8888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br>00004410<br>%%%%%%                                                   | 11<br>640<br>%%%                                                   | 5.4.5.2.3.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                        |
| MGO       | 111<br>5.00<br>5.34<br>7.22                                                      | 00000<br>54444<br>84444                                       |                                                                                    | ~4,000<br>ñùñôôô<br>xxxxx                                                              | 44044444<br>Qaabbaadhi<br>XXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 000-00<br>000-00<br>000000<br>000000<br>000000                           | <br><br><br><br><br><br>                                           | 411.00<br>11.00<br>11.40<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>22.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25 | <br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00<br>6.00     |
| T102      | 0.65<br>1.00<br>2.00<br>2.00<br>2.00<br>2.00                                     | 00000<br>00000<br>001100<br>001100<br>001100                  | 00000000000000000000000000000000000000                                             | TERIA<br>000000000000000000000000000000000000                                          | 0000000<br>000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -00-                                                                     | TINGS<br>0.7 %<br>0.7 %<br>0.7 %                                   | ED MATERIALS<br>0.15%<br>0.2 %<br><0.1 %<br>0.2 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RETIONS<br>0.2 x<br><0.2 x<br>0.3 x                          |
| FE203     | UNDERCLAY<br>2.63%<br>2.4 %<br>3.0 %                                             | C00<br>1,100<br>1,100<br>1,00<br>1,00<br>1,00<br>1,00<br>1,00 | ENERGY SHAL<br>5.62%<br>5.7%<br>9.7%<br>6.4%                                       | HANNEL FILL MA<br>12.6 %<br>6.3 %<br>9.6 %<br>55.1 %                                   | ANNA<br>ANA<br>ANA<br>ANA<br>ANA<br>ANA<br>ANA<br>ANA<br>ANA<br>AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BLUE BAND<br>4.15<br>1.56 %%<br>1.36 %%<br>1.35 %%<br>1.35 %%<br>1.35 %% | HER SHALE PAR<br>14.7 %<br>11.0 %                                  | ONE AND RELAT<br>1.35%<br>4.1 %<br>11.7 %<br>6.4 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SHALE CONC<br>10.7 %<br>2.3 %<br>9.4 %                       |
| CAO       | 1,22%<br>0,7%<br>0,7%                                                            | 14010<br>00800<br>2087<br>2222                                | 0000<br>N-46<br>N-46                                                               | 24<br>100<br>12:22<br>000<br>322<br>222<br>222<br>222<br>222<br>222<br>222<br>222<br>2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400000<br>8444400<br>8444444                                             | 00.1 %<br>00.1 %<br>01.2 %                                         | LIMEST<br>44.80%<br>30.6 %<br>28.8 %<br>22.8 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANNA<br>19.6 %<br>48.4 %<br>2.7 %                            |
| AL203     | 15.85%<br>18.3%<br>19.1%                                                         | 44444<br>44444<br>444444                                      | 1198<br>1499<br>148<br>148<br>148<br>148<br>148<br>148<br>148<br>148<br>148<br>148 | 40000<br>40000<br>600040<br>72222                                                      | 15<br>17<br>16<br>16<br>16<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.<br>8.9<br>17.9<br>17.9<br>21.0<br>21.0<br>21.0<br>21.0               | 222<br>225<br>245<br>247                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o.<br>••••<br>••••<br>••••<br>••••<br>••••                   |
| 2018      | 555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>55                | さらゅるな<br>Ci-toでし<br>がなながな                                     | 2225<br>2325<br>2325<br>2325<br>2325<br>2325<br>2325<br>2325                       | 2020<br>2020<br>2020<br>2030<br>2030<br>2030<br>2030<br>2030                           | Nowandra<br>Gamanda<br>Goodward<br>Karanan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8000044<br>8000044<br>6000000<br>6000000000000000                        | 31<br>30<br>4<br>4<br>5<br>6<br>7<br>7<br>7<br>7<br>7              | 9.91%<br>11.3 %<br>55.1 %<br>38.5 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34,66,2<br>6,2<br>3,2 %                                      |
| GEOL, NO. | LM-Z-09<br>LM-PZ-1A<br>LM-PZ-1B                                                  | LM-C-01<br>C2-L-12A<br>C2-F-5<br>0B26-1                       | CW-J-10<br>OR6-D-2<br>C2-M-13<br>OB26-A26                                          | LW-T-3A<br>0B27-A-2<br>0B26-A12<br>0B26-A21<br>LW-W-2                                  | LM-S-32<br>LW-S-7<br>LW-T-11<br>C2-H-11B<br>C2-H-11C<br>C2-H-11D<br>0B26-A8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LM-W-13<br>C2-N-10<br>LM-W-1<br>LM-W-1<br>C2-0-1<br>0826-A20             | C2-N-12<br>C2-0-2<br>C2-0-3                                        | LM-V-31<br>C2-M-12<br>26524C<br>LW-S-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LW-H-5<br>LW-T-16<br>OB26A16B                                |
| LAB.NO.   | C21540<br>C21662<br>C21663                                                       | C21538<br>C21657<br>C21658<br>C21721<br>C21722                | C21535<br>C21631<br>C21655<br>C21764                                               | C21627<br>C21634<br>C21760<br>C21763                                                   | C21536<br>C21633<br>C21633<br>C21635<br>C21636<br>C21759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C21533<br>C21662<br>C21661<br>C21664<br>C21762                           | Dame from Second                                                   | C21537<br>C21626<br>C21659<br>C21767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C21628<br>C21629<br>C21761                                   |

APPENDIX C. continued

| AG        | 0.21PPm<br><0.2 PPm<br><0.2 PPm       | 0.04998880000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>&lt;0.04PPm &lt;0.25FPm &lt;0.2 PPm &lt;0.2 PPm &lt;0.2 PPm</pre> | 0.25ppm<br>0.25ppm<br>0.25ppm<br>0.25ppm<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.00.00 ppg ppg ppg                                                    | 2<br>C | 0.17ppm<br><0.25ppm<br><0.25ppm<br><0.2 ppm<br><0.2 ppm<br><0.2 ppm<br><0.2 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>&lt;0.25ppm &lt;0.2 ppm &lt;0.2 ppm &lt;0.2 ppm</pre>         | 0.4 PPB<br><0.25PPB<br><0.2 PPB<br><0.25PPB        | <pre>&lt; 0.25PPB &lt; 0.25PPB &lt; 0.25PPB &lt; 0.2 PPB</pre> |
|-----------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|
| LOI       | 6.81%<br>11.47%<br>9.44%              | 91.72%<br>82.70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.42%<br>12.49%<br>8.01%                                               | 20.53%<br>6.71%<br>17.90%<br>8.59%<br>68.68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95.58                                                                  | 25,71% | 15.06%<br>66.60%<br>13.27%<br>20.73%<br>24.98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37.67%<br>44.85%<br>36.24%                                         | 38.69%<br>37.80%<br>35.11%<br>21.70%               | 17.66%<br>39.02%<br>11.45%                                     |
| H20       | 400<br>640<br>744<br>744              | 20.25<br>20.25<br>30.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25<br>20.25 | 3,20%<br>0,7%<br>2,7%<br>0,76%                                         | 1,01<br>2,01<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,339<br>1,36<br>1,36<br>1,36<br>1,36<br>1,36<br>1,36<br>1,36<br>1,36 | ひまりて 4 th<br>これで 0 th 5<br>2 th 7 th 7 th 1 th 1 th 1 th 1 th 1 th 1   | 1.16%  | 23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>23.56<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 | 222<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 0000<br>6000<br>744<br>744<br>744                  | 0000                                                           |
| TOT S     | 0.45%<br>0.25%<br>0.77%               | 2.69%<br>9.77%<br>3.25%<br>2.76%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,29%<br>1,30%<br>7,86%<br>0,17%                                       | IATERIALS<br>2.96%<br>2.76%<br>2.79%<br>4.14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.71%<br>2.91%<br>2.91%<br>2.03%<br>2.74%                              | 1.60%  | 2.61%<br>0.48%<br>3.20%<br>0.85%<br>0.85%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.31%<br>11.31%<br>8.89%<br>15.85%                                | TED MATERIALS<br>0.54%<br>0.65%<br>3.73%<br>4.53%  | CRETIONS<br>7.36%<br>1.43%<br>6.33%                            |
| ORG C     | UNDERCLAY<br>0.94%<br>5.46%<br>2.59%  | COAL<br>72,44%<br>53,65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ENERGY SHALE<br>0.70%<br>6.26%<br>5.34%<br>2.04%                       | ANNEL FILL MATE<br>2.24%<br>0.62%<br>5.62%<br>1.72%<br>54.95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>(T · · · · ·</b>                                                    | 17.98% | *BLUE BAND*<br>4.25%<br>52.09%<br>3.69%<br>11.60%<br>11.39%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HER SHALE PART:<br>19.93%<br>26.28%<br>15.85%                      | ONE AND RELATE<br>0.83%<br>0.75%<br>1.80%<br>3.44% | SHALE CON<br>4.012<br>3.412<br>3.132                           |
| TOT C     | 0<br><br><br><br><br><br><br><br><br> | 72.58%<br>53.70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.94%<br>5.26%<br>5.36%<br>04%                                         | CHAN<br>7.81%<br>0.62%<br>7.55%<br>1.72%<br>54.95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.60%<br>3.39%<br>8.25%<br>11.32%<br>13.03%<br>38.38%                  | 18.84% | 4.54%<br>52.09%<br>3.69%<br>11.60%<br>14.40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0TH<br>19.93%<br>26.28%<br>15.85%                                  | LIMESTO<br>10.93%<br>10.73%<br>11.35%<br>8.23%     | ANNA<br>7.702<br>13.872<br>3.682                               |
| C02       | 0.08%<br>0.12%<br>0.08%               | 0.50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.03%<br>0.03%<br>0.07%<br>0.1 %                                       | 20.07<br>7.052<br>7.052<br>0.1 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00<br>0.103<br>0.103<br>0.0203<br>0.784<br>0.784                     | 3,14%  | 1.03%<br>0.08%<br>0.08%<br>0.08%<br>0.1 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <0.07%<br><0.08%<br><0.08%                                         | 37.00%<br>36.55%<br>34.98%<br>17.56%               | 13.50%<br>38.33%<br>2.00%                                      |
| 0         | # 6 E<br>4 4 4<br>4 4 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ######################################                                 | 60.00  | <b>2522</b><br>4444<br>4444<br>4444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>E E E</b><br><b>a a a</b><br>a <b>a a</b>                       |                                                    | # # #<br>4 4 4<br>4 4 4                                        |
| WN        | 165<br>61<br>93                       | 24<br>35<br>37<br>37<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 545<br>461<br>675                                                      | 1173<br>455<br>1322<br>397<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1222<br>2222<br>2021<br>2022<br>2032<br>2032<br>3032<br>3032           | 0      | 222<br>223<br>533<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 155<br>83<br>124                                                   | 622<br>2605<br>1907<br>593                         | 545<br>919<br>156                                              |
| GEOL, NO. | LM-Z-09<br>LM-PZ-1A<br>LM-PZ-1B       | LM-C-01<br>C2-L-12A<br>C2-F-5<br>0B26-1<br>0B26-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LW-J-10<br>0R6-D-2<br>C2-H-13<br>0B26-A26                              | LW-T-3A<br>0827-A-2<br>0826-A12<br>0826-A21<br>LW-W-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LW-S-32<br>LW-S-7<br>LW-T-11<br>C2-M-11B<br>C2-M-11C<br>C2-M-11D       |        | LM-W-13<br>C2-N-10<br>LM-W-2<br>LM-FW-1<br>C2-D-1<br>0826-A20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C2-N-12<br>C2-0-2<br>C2-0-3                                        | LM-V-31<br>C2-M-12<br>26524C<br>LW-S-5             | LW-H-5<br>LW-T-16<br>0826A16B                                  |
| LAB.NO.   | C21540<br>C21662<br>C21663            | C21538<br>C21657<br>C21658<br>C21721<br>C21722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C21535<br>C21631<br>C21655<br>C21764                                   | C21627<br>C21634<br>C21760<br>C21763<br>C21763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CC11636<br>CC11636<br>CC11635<br>CC11635<br>CC1655<br>CC1655<br>CC1655 | 217    | C21539<br>C21640<br>C21660<br>C21661<br>C21664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C21633<br>C21665<br>C21666                                         | C21537<br>C21626<br>C21659<br>C21767               | C21628<br>C21629<br>C21761                                     |

|         | ## ##<br>Q Q Q<br>Q 2 Q                 | 86666<br>4444<br>1442                          |                                                                                                  | 86855<br>2020<br>2020<br>2000                                      |                                                               |                                                                                                                                                                                              |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
|---------|-----------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| ñ       | 1111                                    | 37000                                          | 1110<br>100<br>98<br>98                                                                          | 122<br>100<br>288<br>288                                           | 64284<br>640111066<br>6477278<br>8477278                      | 7667490                                                                                                                                                                                      | 4 4 4 7<br>5 4 7<br>5 6 7      | 31.04<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05<br>31.05 | 185<br>123<br>221               |
|         | # <b>#</b> 6<br>a a a<br>a a a          |                                                | ## E E<br>& & & &<br>& & & &                                                                     |                                                                    |                                                               |                                                                                                                                                                                              | # # # #<br># # #<br># # # #    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |
| 2       | 115<br>100<br>100<br>100<br>100         | -00 w4                                         | 220<br>40<br>41<br>40<br>40                                                                      | 24.6<br>17<br>10<br>10                                             | 00000000<br>00000000                                          | 13.<br>10.<br>10.<br>10.<br>10.<br>10.                                                                                                                                                       | œα.<br>                        | www.<br>4úni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.0                            |
|         | = = 6<br>a a a<br>a a a                 |                                                |                                                                                                  |                                                                    |                                                               |                                                                                                                                                                                              | <b>三 任 三</b><br>ひ ひ ひ<br>ひ ひ ひ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ###<br>444<br>444               |
| 핑       | 82<br>92<br>109                         | 60<br>11<br>11                                 | 99<br>93<br>74<br>108                                                                            | 481104<br>98504                                                    | 1004<br>1004<br>1006<br>1009<br>1009                          | 11<br>201<br>124<br>128<br>138                                                                                                                                                               | 448<br>0440                    | 115<br>178<br>178<br>178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 228                             |
|         | € E 6<br>0.0.0<br>0.0.0                 |                                                |                                                                                                  |                                                                    |                                                               | 66666<br>a a a a a a<br>a a a a a                                                                                                                                                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 <b>2 2</b><br>4 4 4<br>4 4 4  |
| Ē       | 100<br>0.00                             | 00-00                                          | <u> </u>                                                                                         | 2.444.0<br>•••                                                     | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200   | 100004<br>100004                                                                                                                                                                             | \$00.0<br>\$0.0<br>\$0.0       | 1104<br>2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 214<br>214                      |
|         |                                         |                                                | 5555<br>444<br>444                                                                               | 6 6 6 6 6<br>0 0 0 0 0<br>0 0 0 0 0                                |                                                               |                                                                                                                                                                                              | = = =<br>4 4 4<br>4 4 4        | MATERIALS<br>1.6 PPm<br>.8 PPm<br>2.6 PPm<br>2.6 PPm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 6 6<br>0 0 0<br>0 0 0         |
| #       | Sus4<br>Si                              | 40000                                          | m<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\ | ERIAL<br>1.2<br>2.4<br>6.9                                         | A AAAAAAAAAA A A A A A A A A A A A A A A A A A A A            | \<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\<br>\                                                                                                                 | FARTINGS<br>m < 2<br>m 1.9     | EI .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ETIONS<br>2.5<br>1.5            |
|         | UNDERCLAY<br>8.4 PPm<br>9 PPm<br>10 PPm | COAL<br>PPE<br>PPE<br>PPE<br>PPE               | SHAL                                                                                             | ILL MA<br>Preserve<br>Preserve<br>Preserve                         |                                                               |                                                                                                                                                                                              | LILLE                          | RELAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONCRET<br>PPS<br>PPS           |
| 꾩       | UNDER<br>8.4<br>10                      | 14400                                          | ENERGY<br>11<br>53<br>53<br>3.3                                                                  | CHANNEL F) Pm                                                      | ANNUAL CONTRACTOR AND     | a<br>No-Nous<br>No-Nous<br>No-Nous<br>No-Nous<br>No-Nous<br>No-Nous<br>No-Nous<br>No-Nous<br>No-Nous<br>No-Nous<br>No-Nous<br>No-Nous<br>No-Nous<br>No-No-No-No-No-No-No-No-No-No-No-No-No-N | ER SHALI<br>2<br>1.8<br>1.8    | NE AND<br>1.8<br>66<br>63<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SHALE                           |
| ,       | 6                                       | #####<br>4444<br>4444                          | ## # # #<br>a a a a<br>a a a a                                                                   |                                                                    |                                                               | 2                                                                                                                                                                                            | OTHER<br>ere<br>ere            | IMESTONE<br>PPB<br>PPB<br>PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANA<br>Tara<br>Tara             |
| ₽₩      | 262<br>340<br>340                       | 3130<br>100<br>340<br>350<br>350               | 614<br>539<br>592<br>592                                                                         | 7653<br>615<br>2758<br>548<br>169                                  | 2442<br>442442<br>2426<br>2426<br>2426<br>2436<br>2436<br>243 | 2842<br>2842<br>2844<br>2000<br>2000<br>2000                                                                                                                                                 | 263<br>320                     | 292<br>655<br>107<br>540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 300<br>66<br>313                |
|         | 6 6 6<br>0 0 0<br>0 0 0                 |                                                |                                                                                                  |                                                                    |                                                               |                                                                                                                                                                                              | <b>三 価 壁</b><br>山 山 山<br>山 山 山 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <br><br>                        |
| ρΩ      | 240<br>153<br>184                       | 300<br>14<br>75<br>75                          | 170<br>34<br>95                                                                                  | 350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350<br>350 | 0010<br>0010<br>0010<br>0010<br>0010<br>0010<br>0010<br>001   | 2220<br>2220<br>2220<br>2220<br>2220<br>2220<br>2220<br>222                                                                                                                                  | <b>800</b> 시<br>그러만            | 10000<br>1000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 010<br><b>010</b><br><b>010</b> |
| d.      | 6                                       |                                                | ######################################                                                           |                                                                    |                                                               | 4/ 4W0<br>9 9 9 9 9 9<br>9 8 8 8 8 8 8                                                                                                                                                       | ###<br>0.0.0.0<br>0.0.0        | # # # #<br>4 4 4 4<br>4 4 6 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 <b>2 5</b><br>a a a<br>a a a  |
| AS      | 7.E1                                    | 122.7                                          | <b>90</b> M0                                                                                     | とうこうこく なりゅうゆう                                                      | 22250708                                                      | 0-1/-w0                                                                                                                                                                                      | 10<br>10.6                     | 4040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17<br>20                        |
| .NO.    | -09<br>Z-1A<br>Z-1B                     | 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1        | D-10<br>D-2<br>-13<br>-426                                                                       | -3A<br>-A-2<br>-A12<br>-A21                                        | 48211172<br>4821118<br>4821118                                | -4-13<br>-N-10<br>-N-2<br>-H-2<br>-PW-1<br>-0-1                                                                                                                                              | -N-12<br>-0-2<br>-0-3          | -131<br>-45<br>-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br>16<br>A16B                 |
| GEOL    | LM-Z-09<br>LM-PZ-16<br>LM-PZ-16         | 022-1-0<br>022-1-0<br>022-1-0                  | LW-J-10<br>0R6-D-2<br>C2-M-13<br>0B26-A26                                                        | 0826-<br>0826-<br>0826-<br>18-8-                                   | 6-13-3-100<br>8-1-1-1-1-1<br>8-1000-1-1<br>8-1000-1-1         | SOLECCE<br>BCCCCC                                                                                                                                                                            | C2-N<br>C2-0                   | LM-V-31<br>C2-M-12<br>26524C<br>LW-S-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LW-H-5<br>LW-T-10<br>OB26A1     |
| LAB.NO. | 21540<br>21662<br>21663                 | C21538<br>C21657<br>C21658<br>C21721<br>C21722 | C21535<br>C21631<br>C21655<br>C21764                                                             | C21627<br>C21634<br>C21760<br>C21768                               | C21536<br>C21630<br>C21635<br>C21635<br>C21653<br>C21656      | 21539<br>216632<br>21661<br>21661<br>21762                                                                                                                                                   | 222                            | 21537<br>21626<br>21659<br>21767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C21628<br>C21629<br>C21761      |
| ت       | ಚಚಚ                                     | ຜຜຜຜຜ                                          | ಬಲಬಲ                                                                                             | منننن                                                              | CCCCCCC                                                       | ناداداداد                                                                                                                                                                                    | ددد                            | ರದಾದ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ಬರದ                             |

| 웊         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e 4 4 60.0                                                    | 0.10 pem                                                                          | 0.18 PPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.23<br>0.09 PPE<br>0.34 PPE<br>0.34 PPE<br>0.35 PPE<br>0.12 PPE                                                |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        | 0,08 PPB                                                                         |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 노         | 6.7 C - 10 E E E E E E E E E E E E E E E E E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <br>N/N4N<br>99799<br>Eggee                                   | 6.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44<br>0.44                      | 0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N4.N44.44.0<br>0.00.00.00.44.0<br>0.00.00.00.44.0<br>0.00.00.00.00.00.00.00.00.00.00.00.00.0                    | NC44NN<br>O→NAC.<br>9 9 9 9 9 9 9<br>9 9 9 9 9 9 9                                      | 2.<br>2.<br>2.<br>2.<br>3.<br>3.<br>3.<br>4.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0. ◆ 0. • • • • • • • • • • • • • • • • • •                                            | 1.3 PPB<br>-2 PPB<br>2.7 PPB                                                     |
| 96        | 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CO . O . O . O . O . O . O . O . O . O .                      | 414<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45 | 99 99 99 99 99 99 99 99 99 99 99 99 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | **************************************                                                                          | 89999999999999999999999999999999999999                                                  | 4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11<br>64<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65 | ######################################                                           |
| 6A        | 224<br>244<br>264<br>264<br>264<br>264<br>264<br>264<br>264<br>264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C1-0WC/C1<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0            | 24 PPB 25 PPB 25 PPB PPB PPB PPB PPB PPB PPB PPB PPB PP                           | C.4C.00C.<br>C.4C.00C.<br>C.4C.00C.<br>C.4C.00C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200<br>201<br>201<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                              | 24<br>7.3 PPS<br>20 PPS<br>19 PPS<br>12 PPS<br>21 PPS                                   | 50 4 6<br>50 4 6<br>50 4 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.1 PPm<br>2.7 PPm<br>3.6 PPm                                                          | 0.4<br>0.4<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0 |
|           | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               | 64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>6   | TALS<br>PPS<br>6 PPS<br>6 PPS<br>7 PPS<br>7 PPS<br>7 PPS<br>7 PPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00000000000000000000000000000000000000                                                                          |                                                                                         | 65 PPB 77 | MATERIALS<br>9 PPB<br>1 PPB<br>2 PPB                                                   | ONS<br>PPR<br>6<br>PPR<br>2<br>2<br>2                                            |
| EO        | UNDERCLAY<br>1.4 PPM 1509<br>1.5 PPM 1798<br>2.0 PPM 1231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COAL 132<br>1.9 PPM 1011<br>17PPM 230<br>20PPM 72<br>18PPM 56 | ENERGY SHALE<br>1.5 PPB 589<br>1.4 PPB 348<br>1.4 PPB 517<br>1.5 PPB 625          | NEL FILL MATERI<br>2.5 PPm 354<br>1.5 PPm 490<br>1.6 PPm 476<br>1.0 PPm 906<br>4 PPm 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ANNA SHALE 4 PPE 1318 1,2 PPE 1478 1,1 PPE 696 1,2 PPE 1750 1,2 PPE 1555 1,0 PPE 1255 1,0 PPE 1255 1,9 PPE 4165 | **BLUE BAND** 412 1.6 PPM 118 1.3 PPM 518 1.2 PPM 218 1.1 PPM 359                       | R SHALE PARTING<br>.59ppm 358<br>.5 ppm 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ₹                                                                                      | SHALE CONCRETION .38PPM 629 .41PPM 606 .16PPM 372                                |
| ρλ        | 4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               | / MA 4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0                                      | CHANNEL 2, 3,7 PPm 1, 6,8 PPm 1, 2,6 PPm 1, 1,2 PPm 1, 1,2 PPm 1, 2,6 PPm 1, | 00000000000000000000000000000000000000                                                                          | A                                                                                       | 0THEF<br>1.3 PPm<br>1.7 PPm<br>1.9 PPm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LIMESTONE<br>1.0 PPB<br>1.7 PPB<br>1.4 PPB                                             | 1.2 PPB<br>1.3 PPB<br>4.3 PPB                                                    |
| CO        | 46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>46<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N. N. V.                  | 30.5 PPM<br>20 PPM<br>186 PPM<br>42 PPM                                           | 24<br>40<br>40<br>35<br>30<br>30<br>30<br>30<br>30<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 113<br>92<br>124<br>92<br>124<br>124<br>127<br>127<br>127<br>127<br>127<br>127<br>127<br>127<br>127<br>127      | 020000<br>020000<br>020000<br>020000<br>020000<br>020000                                | 16 PPE 43 PPE 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.1<br>23.1<br>33.4<br>33.1<br>23.1<br>23.1<br>23.1<br>23.1<br>23.1<br>23.1<br>23.1   | 79 PPB 75 PPB 75                                                                 |
| S         | 122 PPE 155 PP |                                                               | 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                           | 10<br>7<br>7<br>11<br>4.8 PPP<br>4.8 PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10                                        | 11<br>4.4<br>11<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        | 7.7 PP                                       |
| GEOL, NO. | LM-Z-09<br>LM-PZ-1A<br>LM-PZ-1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LM-C-01<br>C2-L-12A<br>C2-F-5<br>0B26-1<br>0B26-2             | LW-J-10<br>OR6-D-2<br>C2-M-13<br>OB26-A26                                         | LW-T-3A<br>OB27-A-2<br>OB26-A12<br>OB26-A21<br>LW-W-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LM-S-32<br>LM-S-7<br>LM-T-11<br>C2-X-11B<br>C2-X-11D<br>C2-X-11D<br>C2-X-11D                                    | LM-13<br>C2-N-10<br>LM-W-2<br>LM-PW-1<br>C2-0-1<br>DB26-A20                             | C2-N-12<br>C2-0-2<br>C2-0-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LM-V-31<br>C2-M-12<br>26524C<br>LW-S-5                                                 | LW-H-5<br>LW-T-16<br>OB26A16B                                                    |
| LAB.NO.   | C21540<br>C21662<br>C21663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C21538<br>C21657<br>C21658<br>C21721<br>C21722                | C21535<br>C21631<br>C21655<br>C21764                                              | C21627<br>C21634<br>C21760<br>C21763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C21635<br>C21635<br>C21635<br>C21653<br>C21656<br>C21656                                                        | C21539<br>C21640<br>C21660<br>C21661<br>C21664                                          | C21633<br>C21665<br>C21666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C21537<br>C21626<br>C21659<br>C21767                                                   | C21628<br>C21629<br>C21761                                                       |

|          | 6 6 6<br>0 0 0<br>0 0 0         | 6 2 8 2 8<br>4 4 4 4 4<br>4 4 4 4 4               | 6 6 6 6<br>0 0 0 0<br>0 0 0 0                                                   | # # # # #<br>0                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | # # # # # # #<br>a a a a a a<br>a a a a a                                         | E                                    | ####<br>4.4.4.4<br>4.4.4.4                   | 2 E &<br>4 4 4<br>4 4 4                  |
|----------|---------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------|------------------------------------------|
| S        | ~.U                             | พ่นจ์เก๋จ                                         | 0487                                                                            | 44444<br>4004n                                        | Nuo44004V<br>ひらないいらもる                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | พทสเมพก                                                                           | 4 NO L                               | 6011<br>8017                                 | 5.2                                      |
|          | 2                               | 6 2 2 2 2<br>4 4 4 4 4<br>4 4 4 4 4               |                                                                                 | 5655<br>4444<br>4444                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |                                      |                                              | # # #<br>a a a<br>a a a                  |
| A.B      | 222<br>232<br>232               | <b>ರಬ್</b> ಬಗ                                     | 188<br>202<br>1113<br>175                                                       | 202<br>1387<br>458<br>55                              | 1247<br>1252<br>1523<br>1016<br>101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 447<br>777<br>8<br>78<br>8                                                        | 93<br>48                             | 3555                                         | 7083                                     |
| æ        | 5 E E                           |                                                   |                                                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |                                      | 55 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6       | # # #<br>4 4 4<br>4 4 4                  |
| a.       | 400<br>300<br>300<br>400        | 2004E                                             | 40000<br>1000<br>1000                                                           | 000000<br>000000<br>000000<br>000000<br>000000        | 10000011<br>10000011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4440004<br>8440004<br>888888                                                      | 22.25<br>22.55<br>25.55              | ~~~<br>4330<br>1930                          | 533                                      |
|          | # # #<br>0. 0. 0.<br>0. 0. 0.   |                                                   |                                                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   | # # #<br>a a a<br>a a a              |                                              | # # #<br>& & &<br>& & &                  |
| N.       | C22<br>454<br>745               | 2772                                              | %%<br>%%<br>%%                                                                  | 00000<br>40000                                        | . 10004-10<br>10004-10<br>10004-10<br>10004-10<br>10004-10<br>10004-10<br>10004-10<br>10004-10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2017<br>2017<br>2017<br>2017<br>2017                                              | とまる                                  | s<br>225<br>44<br>8                          | 2827<br>545                              |
|          | # # # #<br>0. 0. 0.<br>0. 0. 0. |                                                   |                                                                                 | # # # # # # # # # # # # # # # # # # #                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |                                      | TERIAL<br>PPM<br>PPM<br>PPM                  | © € € €<br>0 1 0<br>0 1 0                |
| OM.      | × 16 ×                          | ^^<br>&@NN/                                       | ^^^^<br>2352<br>2362                                                            | MATERIAL<br>18<br>0 < 9<br>153                        | E 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501182 2501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~^^^^                                                                             | ARTINGS<br>A < 10<br>A < 6<br>A < 48 | TED MAY                                      | RETION:<br>108<br>30<br>102              |
| 2        | UNDERCLAY .54PPB .6 PPB         | CUAL<br>• 03999<br>• 4 9999<br>• 08999<br>• 07999 | ENERGY SHALE . 63PPm . 7 PPm . 56PPm . 56PPm . 56PPm .                          | CHANNEL FILL M6  a                                    | ANA<br>CONTRACTOR<br>AND CONTRACTOR<br>AND CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BLUE BAND<br>4.172798<br>4.372798<br>4.372798<br>4.572798<br>4.572798<br>4.572798 | OTHER SHALE PAI                      | ONE AND RELATIONS 19PPS .19PPS .5 PPS .20PPS | SHALE CONC.                              |
|          | 6                               | 58555<br>aaaa<br>aaaa                             |                                                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |                                      | IMESTONE PPE PPE PPE PPE                     | a a a a<br>A a a a<br>A a a a<br>A a a a |
| LI       | 19<br>32<br>28                  | ৰ্ব <i>ખ</i> ⁄ৰ<br>*                              | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 | 14401<br>02481                                        | 40 444040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>23<br>383<br>47<br>79<br>79<br>79                                           | 448<br>809                           | V-0-11200                                    | 16 21                                    |
| æ        | # # #<br>a a a<br>a a a         |                                                   |                                                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   | 665<br>444<br>404                    | # 6 6 6<br>4 4 4 4<br>4 4 4 4                | <b>E E E</b><br>4 4 4<br>4 4 4           |
| Z,       | ₩4N<br>484                      | 4,0%<br>4,0%<br>5,0%                              | 08442<br>0841                                                                   | 04744<br>04776                                        | WW4/WWW<br>W&W4/4RW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 227747<br>226777                                                                  | 22.00<br>7.44.00                     | 400 e                                        | 137                                      |
| 7        | 222                             |                                                   |                                                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                   |                                      |                                              | 222<br>222<br>222                        |
| ZI       | 35                              | ^^^\\<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\         | 908<br><409<br>1                                                                | <pre>&lt;506 2828 &lt;410 &lt;143</pre>               | 303<br>7303<br>733<br>733<br>733<br>730<br>740<br>750<br>750<br>750<br>750<br>750<br>750<br>750<br>750<br>750<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                   | >><br>31<br>310                      | ~\\\\<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\    | >><br>80<br>50<br>50                     |
| GEOL.NO. | LM-Z-09<br>LM-PZ-1A<br>LM-PZ-1B | LM-C-01<br>C2-L-12A<br>C2-F-5<br>0B26-1<br>0B26-2 | LW-J-10<br>OR6-D-2<br>C2-M-13<br>OB26-A26                                       | LW-T-3A<br>OB27-A-2<br>OB26-A12<br>OB26-A21<br>LW-W-2 | LM-S-32<br>LW-S-7<br>LW-T-11<br>C2-M-11C<br>C2-M-11C<br>C2-M-11C<br>C2-M-11C<br>C2-M-11C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LM-W-13<br>C2-N-10<br>LM-W-2<br>LM-PW-1<br>C2-0-1<br>0B26-A20                     | C2-N-12<br>C2-0-2<br>C2-0-3          | LM-V-31<br>C2-M-12<br>26524C<br>LW-S-5       | LW-H-5<br>LW-T-16<br>OB26A16B            |
| LAB.NO.  | C21540<br>C21662<br>C21663      | C21538<br>C21657<br>C21658<br>C21721<br>C21722    | C21535<br>C21631<br>C21655<br>C21764                                            | C21627<br>C21634<br>C21763<br>C21763<br>C21763        | C211653<br>C211653<br>C211653<br>C211653<br>C21765<br>C21765<br>C21765<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C2176<br>C | C21539<br>C21640<br>C21661<br>C21661<br>C21664                                    | C21633<br>C21665<br>C21666           | C21537<br>C21626<br>C21659<br>C21659         | C21628<br>C21629<br>C21761               |

| <b>-</b>    | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | ######################################                                                                                      | で<br>・                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 01100<br>0222<br>0222<br>0222<br>0222<br>0222<br>0222<br>022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,4<br>2,4<br>8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9              | 14 PPB 6.1 PPB 7.8 FPB                                                                        |
|-------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 己           | .44.5<br>.410 eve<br>.10 eve                                       | 2.1<br><3.3<br><3.3<br><1.1<br><1.1<br><1.2<br><1.2<br><1.2<br><1.3<br><1.3<br><1.3<br><1.3<br><1.3<br><1.3<br><1.3<br><1.3 |                                                              | \\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.7<br>(10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | @ E G G G G G G G G G G G G G G G G G G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre></pre>                                                        | 〈10 PP部<br>〈10 PP部<br>〈11 PP部                                                                 |
| <b>=</b>    | 16<br>16<br>16<br>16<br>16<br>16                                   | 2 * 88 PP                                                                                  | 1144<br>1244<br>1444<br>1444<br>1444<br>1444<br>1444<br>1444 | 13.2 ppe 11.7 ppe 17.7 ppe 17.7 ppe 17.7 ppe 17.7 ppe 17.7 ppe 17.7 ppe 18.7 ppe 18. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00<br>155.00 | 844<br>9°8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1<br>0.1<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 8.4<br>879 7.<br>899                                                                          |
| <b>50</b> ) |                                                                    | 0.000000000000000000000000000000000000                                                                                      | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200  | 2.11.13.45.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | © 66 66 66 66 66 66 66 66 66 66 66 66 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.<br>2. 1999<br>1.4. 1999<br>1.0. 1999                            | で<br>を<br>を<br>を<br>を<br>を<br>を<br>を<br>を<br>を<br>を<br>を<br>を<br>を                            |
| Ą           | ~~~~<br>~~~~<br>~~~~<br>~~~<br>~~~<br>~~~<br>~~~<br>~~~<br>~~~     | . 1 08 P P P P P P P P P P P P P P P P P P                                                                                  | ######################################                       | MATERIALS<br>3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11NGS<br>+8 PPB<br>+7 PPB<br>+7 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ID MATERIALS<br>15PPB<br>1 PPB<br>09PPB<br>3 PPB                   | .TIONS<br>.3 PPE<br>.1 PPE<br>.7 PPE                                                          |
| SS          | UNDERCLAY<br>164 FPM<br>140 FPW<br>180 FPM                         | COAL<br>47 PPB<br>150 PPB<br>61 PPB<br>31 PPB<br>27 PPB                                                                     | ENERGY SHALE<br>107 PPW<br>119 PPW<br>130 PPW<br>139 PPW     | CHANNEL FILL MA<br>238 PPB<br>92 PPB<br>98 194 PPB<br>98 109 PPB<br>98 51 FPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ANNA SHALE 99 PPB 165 PPB 196 PPB 100 PPB 140 PPB 165 | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HER SHALE PARTINGS<br>71 PPS 70 PPS 160 P | ONE AND RELATED 877 PPB 393 PPB 210 PPB 252 PPB                    | SHALE CONCRETION 251 PPB < 61 PPB <                                                           |
| SK          | 7<br>9.0 ppm<br>10.0.0                                             | 000000<br>0000000<br>00000000000000000000000                                                                                | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200  | 10.7 PPB<br>8.2 PPB<br>8.8 PPB<br>6.0 PPB<br>4.7 PPB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>4.5<br>1.9<br>7.8<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5<br>7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.5 PPB 7.5 4.7 PPB 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LIMESTO<br>1.8 PPB<br>1.5 PPB<br>8.3 PPB<br>3.0 PPB                | ANNA<br>2.9 PPm<br>2.2 PPm<br>1.2 PPm                                                         |
| 35          | Segretary<br>Segretary<br>Segretary                                | 1.2<br>1.3<br>1.4<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6                                     |                                                              | 2.0 2.0 122 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29<br>45.5<br>45.5<br>14.5<br>10.1<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.5.7<br>2.5.7<br>3.6.5<br>5.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13<br>9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.3 5.4<br>1.7 7.1<br>2.0 6.0<br>2.0 6.0                           | 88<br>844<br>85<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80<br>80 |
| 38          | 16<br>17<br>19<br>19                                               |                                                                                                                             | 21<br>19 PPE<br>12 PPE<br>20 PPE                             | 15<br>20<br>11<br>17<br>6.6<br>6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20<br>116<br>116<br>116<br>116<br>116<br>116<br>116<br>116<br>116<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00                                                                                                                                                                                                       | 7.2 ppm<br>7.0 ppm<br>5.4 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    | 13.6 PPE E E E E E E E E E E E E E E E E E                                                    |
| GEOL.NO.    | LM-Z-09<br>LM-PZ-1A<br>LM-PZ-1B                                    | LM-C-01<br>C2-L-12A<br>C2-F-5<br>0826-1                                                                                     | LW-J-10<br>OR6-D-2<br>C2-N-13<br>OB26-A26                    | LW-T-3A<br>OB27-A-2<br>OB26-A12<br>OB26-A21<br>LW-W-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LM-S-32<br>LW-S-7<br>LW-T-11<br>C2-M-11B<br>C2-M-11D<br>C2-M-11D<br>C2-M-11D<br>0826-A8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2-N-10<br>C2-N-10<br>C2-N-10<br>C2-0-1<br>C2-0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2-N-12<br>C2-0-2<br>C2-0-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LM-V-31<br>C2-M-12<br>26524C<br>LW-S-5                             | LW-H-5<br>LW-T-16<br>0826A16B                                                                 |
| LAB.NO.     | C21540<br>C21662<br>C21663                                         | C21538<br>C21657<br>C21658<br>C21721                                                                                        | C21535<br>C21631<br>C21655<br>C21764                         | C21627<br>C21634<br>C21760<br>C21763<br>C21763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C21536<br>C21635<br>C21635<br>C21635<br>C21655<br>C21655<br>C21655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C21539<br>C21663<br>C21660<br>C21661<br>C21664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C21633<br>C21665<br>C21666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C21537<br>C21626<br>C21659<br>C21767                               | C21628<br>C21629<br>C21761                                                                    |

APPENDIX C. continued

| œ        | # 6 6<br>4 4<br>4 4             | # # # # # #<br>& & & & & &<br>& & & & & &         | <b>多級医器</b><br>4.4.4.4<br>4.4.4.4            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 666666<br>4444<br>4444                                        | ###<br>@ @ @<br>@ @ @                   | # E # #<br>0.0.0.0<br>0.0.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # # E<br>0.00<br>0.00         |
|----------|---------------------------------|---------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| ZR       | 329<br>210<br>185               | 2200E                                             | 181<br>178<br>93<br>176                      | 179<br>103<br>103<br>103                                      | 135<br>135<br>135<br>135<br>139<br>139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12871<br>1287<br>1287<br>1287<br>1287<br>1287<br>1287<br>1287 | 102<br>88<br>88                         | 7253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2003                          |
| NZ       |                                 |                                                   |                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               | ######################################  | 磨磨 磨 磨<br>化 众 众 众<br>众 众 众 众                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 6 6<br>4 4 4<br>4 4 4       |
| 7        | 233                             | 193<br>433<br>150                                 | 11<br>7000<br>7000<br>7000                   | 144<br>222<br>1064<br>1064                                    | 633<br>75<br>75<br>75<br>1098<br>1050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | △11 4411<br>4739970                                           | 111                                     | ERIALS<br><4<br>24<br>13<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 404<br>596<br>12              |
|          | 6 6 E                           |                                                   |                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | # # # # # #<br>0 4 4 6 4<br>0 4 4 4 4                         | S & & & & & & & & & & & & & & & & & & & | MAN<br>F 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SNOI                          |
| YB       | RCLAY 2.9                       | 4<br>                                             | SHALE<br>3.6<br>3.5<br>2.5<br>3.7            | 1.1                                                           | SHALE<br>22255<br>3345066<br>4266<br>56666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BAND.<br>2.9<br>1.1<br>1.1<br>2.2                             | E PARTIN<br>1.4<br>1.2                  | RELATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONCRET1<br>2.0<br>2.1<br>2.1 |
|          |                                 |                                                   | NERG<br>TOTAL                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               | SHAL                                    | 20000<br>20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AALE PPE                      |
| 3        | 0.÷0                            | ^^^<br>.on.in.in.4                                | ^<br>———<br>———————————————————————————————— | CHANNE                                                        | Name in in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ო-ოიიი<br>• • • • • • • • • • • • • • • • • •                 | OTHER<br>1.1                            | ESTONE < .35 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 < .55 | ANNA SH                       |
|          | 靈 癌 概<br>& & &<br>& & &         | <b>E E E E</b> E<br>A A A A A<br>A A A A A        |                                              |                                                               | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               | 感 概 癒<br>& & &<br>& & &                 | Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ####<br>0.0.0.<br>0.0.0.      |
| >        | 330<br>833<br>873               | 31<br>10<br>10<br>10<br>10<br>10<br>10            | 400<br>114<br>604<br>17                      | 3,734<br>3,734<br>3,434<br>4,44<br>4,44<br>4,44<br>4,44<br>4, | 1560<br>1158138<br>730<br>730<br>731<br>731<br>731<br>731<br>731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2<br>4000404<br>040000                                        | 400<br>400                              | 88<br>542<br>8844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120<br>188<br>188             |
| GEOL.NO. | LM-Z-09<br>LM-PZ-1A<br>LM-PZ-1B | LM-C-01<br>C2-L-12A<br>C2-F-5<br>0826-1<br>0826-2 | LW-J-10<br>OR6-D-2<br>C2-M-13<br>OB26-A26    | LW-T-3A<br>0827-A-2<br>0826-A12<br>0826-A21<br>LW-W-2         | LM-S-32<br>LW-S-32<br>CC2-H-11<br>CC2-H-11<br>CC2-H-11<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC2-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H-10<br>CC3-H | LM-W-13<br>C2-N-10<br>LM-W-2<br>LM-PW-1<br>C2-0-1<br>0B26-A20 | C2-N-12<br>C2-0-2<br>C2-0-3             | LM-V-31<br>C2-M-12<br>26524C<br>LW-S-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LW-H-5<br>LW-T-16<br>OB26A16B |
| LAB.NO.  | C21540<br>C21662<br>C21663      | C21538<br>C21657<br>C21658<br>C21721              | C21535<br>C21631<br>C21655<br>C21764         | C21627<br>C21634<br>C21760<br>C21763<br>C21768                | C21536<br>C21635<br>C21635<br>C21652<br>C21654<br>C21756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C21539<br>C21632<br>C21660<br>C21661<br>C21664                | C21633<br>C21665<br>C21666              | C21537<br>C21626<br>C21659<br>C21767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C21628<br>C21629<br>C21761    |