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Geological Science Field Trips The Illinois State Geological Survey (ISGS) conducts four free
tours each year to acquaint the public with the rocks, mineral resources, and landscapes of various
regions of the state and the geological processes that have led to their origin. Each trip is an all-
day excursion through one or more Illinois counties. Frequent stops are made to explore interest-
ing phenomena, explain the processes that shape our environment, discuss principles of earth
science, and collect rocks and fossils. People of all ages and interests are welcome. The trips are
especially helpful to teachers who prepare earth science units. We ask, however, that grade school
students be accompanied by at least one parent or guardian for each five students. High school
science classes should be supervised by at least one adult for each ten students.

A list of guidebooks of earlier field trips for planning class tours and private outings may be

obtained by contacting the Geoscience Outreach Coordinator, Illinois State Geological Survey,

Natural Resources Building, 615 East Peabody Drive, Champaign, IL 61820-6964. Telephone:

217- 244-2427 or 217-333-4747. This information is on the ISGS home page:
http://www.isgs.uiuc.edu.

Six USGS 7.5-Minute Quadrangle maps (Apple River, Elizabeth Northeast, Scales Mound East,
Scales Mound West, Shullsburg, and Warren) provide coverage for this field trip area.
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INTRODUCTION

The Apple River Canyon State Park area is located in the unglaciated area of northwestern Illinois
in Jo Daviess County in the northeastern part of the Wisconsin Driftless Section of Illinois. This
natural division is part of the highly significant North American geobiological feature, the “Driftless
Area.” First described in 1823 by geologist W. H. Keating, it is world renowned for its isolation
from direct glacial impacts during the Pleistocene Epoch. High hills, sharp ridges, sweeping slopes,
and narrow valleys form some of the most picturesque topography in the state.

The area’s rugged surface was formed mainly by the differential erosion of Ordovician and Sil-
urian sedimentary strata consisting primarily of dolomite' and shale and some limestone (see gen-
eralized geologic column on facing page). Ridges and large mounds are upheld by resistant dolo-
mite caps, and sweeping slopes are developed on soft shale. Steep-walled valleys are incised into
lower, older, resistant dolomite strata. The trails along the tops of the towering bluffs of Apple
River Canyon State Park offer spectacular views of the Apple River and the surrounding scenic
topography of the county. This geological science field trip will acquaint you with the geology,
landscape, and mineral resources for part of Jo Daviess County, Illinois.

Stockton, with a population of 1,926, is the largest city within the field trip area. Apple River Can-
yon State Park is 20 miles east and slightly north of Galena and approximately 135 miles west of
Chicago, 190 miles north of Springfield, 285 miles north of East St. Louis, and 420 miles north of
Cairo.

Jo Daviess County was named after Col. Joseph Hamilton Daveiss, a prominent Kentucky lawyer
and Indian fighter who died in 1811 while leading a charge against Native Americans at the Battle

of Tippecanoe in Indiana. Interestingly, an early clerical error led to the spelling of Daveiss with an
“ie” rather than “ei.”

Kentucky, Indiana, and Missouri also have a Daviess County, named after the same man, but
without the first name added. Many visitors ask about the correct pronunciation. In most parts of
the county Daviess is pronounced the same as “Davis” with a short “i.” One often hears, how-

(43 »”

ever, particularly from those who have not grown up in the county, the long “e,” as in “Davees.”

When first established, Jo Daviess County included most of northwestern Illinois, including all or
parts of the following counties: Carroll, Stephenson, Winnebago, Whiteside, Ogle, Lee, Henry, Bu-
reau, and Rock Island.

GEOLOGIC FRAMEWORK
Precambrian Era (3.8 BY to 543 MY)

Through several billion years of geologic time, the area surrounding the Apple River Canyon State
Park, like the rest of present-day Illinois, has undergone many changes throughout the hundreds of
millions of years of geologic time. The oldest rocks beneath the field trip area belong to the ancient
Precambrian basement complex. We know relatively little about these rocks from direct observa-
tions because they are not exposed at the surface anywhere in Illinois. Only about 35 drill holes
have reached deep enough for geologists to collect samples from Precambrian rocks of Illinois.

' Words in italics (except for fossil names) are defined in the glossary at the back of the guidebook. Also,
please note: although all present localities have only recently appeared within the geologic time frame, the
present names of places and geologic features are used because they provide clear reference points for de-
scribing the ancient landscape.



The depth to the Precambrian rocks in Jo
Daviess County range from 2,000 to 2,500
feet. In southern Illinois, the depth to the Pre-
cambrian rocks is greater than 20,000 feet in
the deepest part of the Illinois Basin. From
these samples, however, we know that these
ancient rocks consist mostly of granitic and
rhyolitic igneous rocks and possibly meta-
morphic, crystalline rocks formed about 1.5 to
1.0 billion years ago. From about 1 billion to
about 0.6 billion years ago, these Precambrian
rocks were exposed at the surface. During
this long period, the rocks were deeply weath-
ered and eroded, forming a barren landscape
that was probably quite similar to the topogra-
phy of the present Missouri Ozarks. There is
no rock record (sediments) in Illinois that rep-
resents the long interval of weathering and
erosion that lasted from the time the Precam-
brian rocks were formed until the first Cam-
brian age sediments accumulated on the
eroded Precambrian rocks. This interval of
weathering and erosion is almost as long as
the time from the beginning of the Cambrian
Period to the present.

Figure 1 Location of some of the major structures in
Because geologists cannot see the Precam- the Hlinois region: (1) La Salle Anticlinorium, (2) I1li-

; . Al nois Basin, (3) Ozark Dome, (4) Pascola Arch, (5)
brian basement rocks in Illinois except as cut-  yachville Dome, (6) Cincinnati Arch, (7) Rough Creek
tings and cores from boreholes, other various  Graben—Reelfoot Rift, and (8) Wisconsin Arch.
techniques, such as measurements of Earth’s

gravitational, and magnetic fields, and seismic

exploration, are used to map the regional characteristics of the basement complex. The evidence
collected from these various exploratory techniques indicates that southernmost Illinois, near what
is now the historic Kentucky-Illinois Fluorspar Mining District, consisted of #ift valleys similar to
those in eastern Africa. These Illinois Basin rift valleys formed as movement of crustal plates
(plate fectonics) began to rip apart the Precambrian North American continent. These rift valleys
have been named the Rough Creek Graben and the Reelfoot Rift (fig. 1).

Paleozoic Era (543 MY to 248 MY)

After the beginning of the Paleozoic Era, about 520 million years ago in the late Cambrian Period,
the rifting stopped, and the hilly Precambrian landscape began to sink slowly on a broad regional
scale, allowing the invasion of a shallow sea from the south and southwest. During the following
280 million years of the Paleozoic Era, the area that is now called the Illinois Basin continued to
accumulate sediments that were deposited in the shallow seas that repeatedly covered this subsid-
ing basin. The region continued to sink until at least 20,000 feet of sedimentary strata were depos-
ited in the deepest part of the basin, located in the Rough Creek Graben and Reelfoot Rift areas of
southeastern Illinois and western Kentucky. At various times during this era, the seas withdrew,
and deposits were weathered and eroded. As a result, there are gaps (called a hiatus) in the sedi-
mentary rock record in [llinois.



These deposited sediments, when compacted and hardened (indurated), constitute the bedrock
succession. Bedrock refers to the indurated or lithified rock units that underlie the soils or other
relatively loose, crumbly, materials near Earth’s surface.

In the field trip area, bedrock strata range in age from more than 490 million years (the Cambrian
Period) to less than 420 million years old (the Silurian Period). Jo Daviess County is underlain by
as much as 2,500 feet of Paleozoic sedimentary strata. Figure 2 shows the succession of rock
strata a drill bit would penetrate in this area if the rock record were complete and all the forma-
tions were present. The oldest Paleozoic rocks exposed in the area are Ordovician in age. These
rocks formed from sediments that accumulated from about 490 up to 443 million years ago in an
ancient sea.

DEPOSITIONAL HISTORY
Paleozoic Era (543 MY to 248 MY)

As noted previously, the Rough Creek Graben and the Reelfoot Rift (figs. 1 and 3) were formed
by tectonic activity that began in the latter part of the Precambrian Era and continued until the
Late Cambrian. Toward the end of the Cambrian, rifting ended, and the whole region began to
subside, allowing shallow seas to cover the land.

These inland seas connected with the open ocean to the south during much of the Paleozoic, and
the area that is now southern Illinois was an embayment. The southern part of Illinois and adjacent
parts of Indiana and Kentucky sank more rapidly than the areas to the north, allowing more sedi-
ment to accumulate. During the Paleozoic and Mesozoic, the Earth’s thin crust was periodically
flexed and warped in places as stresses built up in response to the tectonic forces associated with
the collision of continental and oceanic plates and mountain building. These movements caused re-
peated invasions and withdrawals of the seas across the region. The former sea floors were thus
periodically exposed to erosion, which removed some sediments from the rock record.

Stratigraphic Units and Contacts Sedimentary rock, such as limestone, sandstone, shale, or
combinations of these and other rock types, commonly occur in units called formations. A forma-
tion is a body of rock that has a distinctive lithology, or set of characteristics, and easily recogniz-
able top and bottom boundaries. It is also thick enough to be readily traceable in the field and suffi-
ciently widespread to be represented on a map. Most formation names contain modifiers, such as
St. Peter Sandstone or Scales Shale, which are usually derived from geographic names and pre-
dominant rock types. In cases where no single rock type is characteristic, the word Formation be-
comes a part of the name (for example, Dubuque Formation). A group, such as the Galena Group
or the Maquoketa Group, is a vertical lumping together of adjacent formations having many simi-
larities. A member, or bed, is a subdivision of a formation that is too thin to be classified as a for-
mation or that has minor characteristics setting it apart from the rest of the formation.

Many of the sedimentary units, called formations, have conformable contacts—that is, no signifi-
cant interruption in deposition occurred as one formation was succeeded by another (figs. 2 and
4). In some instances, even though the composition and appearance of the rocks change signifi-
cantly at the contact between two formations, the fossils in the rocks and the relationships be-
tween the rocks at the contact indicate that deposition was virtually continuous. In contrast, in
some places, the top of the lower formation was at least partially eroded before the next formation
began to be deposited. In these instances, fossils and other evidence within or at the boundary be-
tween the two formations indicate a significant age difference between the lower unit and the
overlying unit. This type of contact is called an unconformity (fig. 4). If the beds above and
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Figure 2 Generalized stratigraphic column from the top of the Niagaran (middle Silurian) to the
base of the Champlainian (middle Ordovician) in the field trip area (modified from Kolata and

Buschbach 1976). Figure continues on the next page.
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normal fault reverse fault

T TN __— fault plane
T fault line

graben

Figure 3 Diagrammatic illustrations of fault types that may be present in the field trip area. A fault is a
fracture in the Earth’s crust along which there has been relative movement of the opposing blocks. A fault
is usually an inclined plane, and when the hanging wall (the block above the plane) has moved up relative
to the footwall (the block below the fracture), the fault is a reverse fault. When the hanging wall has moved
down relative to the footwall, the fault is a normal fault.

Figure 4 Schematic drawings of (A) a disconformity and (B) an angular unconformity (x represents the
conformable rock sequence, and z is the plane of unconformity).



below an unconformity are parallel, the unconformity is called a disconformity. However, if the
lower beds were tilted and eroded prior to deposition of overlying beds, the contact is called an
angular unconformity.

Unconformities occur throughout the Paleozoic rock record and are shown as wavy lines in the
generalized stratigraphic column (fig. 2). Each unconformity represents an extended interval of
time for which there is no rock record.

Near the close of the Mississippian Period, gentle arching of the rocks in eastern Illinois initiated
the development of the La Salle Anticlinorium (figs. 1 and 5). This complex structure has smaller
structures such as domes, anticlines, and synclines superimposed on the broad upwarp of the
anticlinorium. Further gradual arching continued through the Pennsylvanian Period. Because the
youngest Pennsylvanian strata are absent from the area of the anticlinorium (either because they
were not deposited or because they were eroded), we cannot determine just when folding
ceased—perhaps by the end of the Pennsylvanian or during the Permian Period a little later, near
the close of the Paleozoic Era.

Mesozoic Era (248 MY to 65 MY)

During the Mesozoic Era, the rise of the Pascola Arch (figs. 1 and 5) in southeastern Missouri,
northeastern Arkansas, and western Tennessee produced a structural barrier that helped form the
current shape of the Illinois Basin by closing off the embayment and separating it from the open
sea to the south. The Illinois Basin is a broad, subsided region covering much of Illinois, south-
western Indiana, and western Kentucky (fig. 1). Development of the Pascola Arch, in conjunction
with the earlier sinking of the deeper portion of the basin north of the Pascola Arch in southern Ili-
nois, gave the basin its present asymmetrical, spoon-shaped configuration (fig. 6). The geologic
map (fig. 7) shows the distribution of the rock systems of the various geologic time periods as they
would appear if all the glacial, windblown, and surface materials were removed.

Younger rocks of the latest Pennsylvanian and perhaps the Permian (the youngest rock systems of
the Paleozoic) may have at one time covered the southern and northern portions of Illinois. Meso-
zoic and Cenozoic rocks (see the generalized geologic column at the front of the guidebook) might
also have been present here. Indirect evidence, based on the stage of development (rank) of coal
deposits and the generation and maturation of petroleum from source rocks (Damberger 1971), in-
dicates that perhaps as much as 1.5 miles (7,920 feet) of latest Pennsylvanian and younger rocks
once covered southern Illinois.

During the more than 240 million years since the end of the Paleozoic Era (and before the onset of
glaciation 1 to 2 million years ago), several thousands of feet of strata may have been eroded.
Nearly all traces of any post-Pennsylvanian bedrock that may have been present in Illinois were
removed. During this extended period of erosion, deep valleys were carved into the gently tilted
bedrock formations (fig. 8).

Later, during the Ice Age, the topographic relief was reduced by repeated advances and melting
back of continental glaciers that scoured and scraped the bedrock surface. This glacial erosion
affected all of the formations exposed at the bedrock surface in Illinois. The final melting of the
glaciers left behind the non-lithified deposits in which our Modern Holocene soil has developed.

ANCIENT ENVIRONMENTAL HISTORY

The sediments that form the bedrock that underlies northwestern Illinois were laid down in a
warm, tropical sea that covered the Midwest approximately 450 million years ago during the
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Figure 6 Stylized north-south cross section shows the structure of the Illinois Basin. To show detail, the
thickness of the sedimentary rocks has been greatly exaggerated and younger, unconsolidated surface de-
posits have been eliminated. The oldest rocks are Precambrian (Pre-€) granites. They form a depression
filled with layers of sedimentary rocks of various ages: Cambrian (€), Ordovician (O), Silurian (S), Devonian
(D), Mississippian (M), Pennsylvanian (P), Cretaceous (K), and Tertiary (T). Scale is approximate.
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Ordovician Period. The environment was probably similar to that in the present Bahama Islands.
The nearest land was situated about 500 miles to the north in Canada. During Ordovician time,
North America straddled the equator, and northern Illinois was positioned at about 25 degrees
South latitude (fig. 9). The prevailing wind direction during the Ordovician was out of the south-
east (southeast trade winds) in contrast to the present, prevailing westerly wind direction. Occa-
sionally, winds would carry clouds of fine ash into the area from explosive volcanic eruptions that
occurred in the region of Alabama and Georgia. Those constituted some of the largest volcanic
eruptions known on Earth. Two- to three-inch thick volcanic ash beds can be seen in several rock
quarries in northwestern Illinois.

The flat, featureless, sea floor was teeming with invertebrate animals and algae. Shells of animals
including trilobites, brachiopods, bryozoans, crinoids, snails, and clams accumulated on the sea
floor along with mud formed from very fine calcium carbonate crystals secreted by algae. The
carbonate mud and shells were slowly buried and, with time, began to solidify, producing beds of
limestone. After several million years, numerous limestone beds were formed and stacked one on
another. Evidence suggests that perhaps as much as a mile of sedimentary rocks (limestone, shale,
and sandstone) were deposited in the region after the limestones formed. Hot groundwater con-
taining dissolved salts and metals began to move slowly through the deeply buried limestone alter-
ing the rock to the mineral dolomite. Later fluid migration, approximately 270 million years ago,
during the Permian Period, formed the galena (lead ore) lead and (sphalerite (zinc ore) zinc depos-
its in northwestern Illinois and southwestern Wisconsin. The galena deposits in northwestern Illi-
nois have been radioisotope dated at 270 million years, the same date as the fluorspar deposits of
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Figure 7 Bedrock geology beneath the surficial deposits in Illinois.
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Figure 8 Bedrock valleys of Illinois (modified
from Piskin and Bergstrom 1975).
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southeastern Illinois. The fluid migration path was from the north to the south (D. Kolata and
S. Nelson, personal communication 2002). Hot brines found their way through fractures in the
limestone and dolomite, rose to the surface, cooled, and precipitated sulfide minerals, including
galena (PbS) and sphalerite (ZnS).

About 250 million years ago, the seas withdrew from the region, and a long period of erosion be-
gan that continues today. The mile thick layer of sedimentary rocks slowly eroded away, exposing
the ancient and now petrified sea floor with its abundant fossils. Outstanding specimens of trilo-
bites, crinoids, starfish, and other rare fossils have been collected from the bedrock in northwest-
ern Illinois. A large number of Ordovician and other fossil specimens are on exhibit at the Burpee
Museum of Natural History in downtown Rockford.

STRATIGRAPHY

Bedrock Names

The Ordovician dolomite bedrock in northeastern Illinois is about 400 feet thick. It is divided into
two major units called the Platteville Group (oldest) and the Galena Group (fig. 2). These are fur-
ther subdivided into numerous subunits based mainly on the relative amount of shale, presence or
absence of chert, and fossil content. Knowledge of the subtle subdivisions is useful in finding and
producing crushed stone products; siting large construction sites such as bridges, dams, and power
plants; and identifying potentially fossiliferous exposures of bedrock. The Platteville Group is un-
derlain by the Glenwood Formation and the St. Peter Sandstone of the Ancell Group (fig. 2).

Ordovician Period The oldest rock exposed on the field trip is the middle Ordovician dolomite of
the Galena Group (fig. 2), which formed from sediments deposited in the embayment that encom-
passed present-day Illinois about 468 million years ago. Most of the Galena Group strata are dolo-
mite (calcium magnesium carbonate, or CaMg(CO,),) that was originally deposited as limestone
(CaCO,) in the shallow seas of the embayment that covered what is now Illinois and adjoining
states. The limestone was later altered to dolomite.

The total thickness of the Galena Group is about 270 feet. Except for a small amount of limestone,
oil rock, and shale at the base and a few limestone layers and shaley partings near the top, the Ga-
lena Group consists of dolomite. It is crystalline, coarse grained, porous, and weathers into ex-
ceedingly rough, irregular forms. Hand specimens show small cavities, many of which are lined
with dolomite or calcite crystals. The rock weathers into a coarse yellow dolomite sand. The Ga-
lena is crisscrossed with numerous joints and crevices. At nearly all of the places where these
rocks are exposed, they are broken by cracks, which cross the strata at all possible angles and
trend in various directions. The upper Ordovician Maquoketa Shale Group unconformably overlies
the Galena Group. The mud that produced the shale was flushed into shallow areas from nearby
low-lying land areas. These shales are the youngest Ordovician rocks and are about 200 feet
thick.

Silurian Period The underlying Ordovician Maquoketa Shale was partially eroded before early
Silurian sediments accumulated in shallow seas covering what is now referred to as the Driftless
Area. Nearby low-lying lands generally did not contribute much sediment to the seas covering the
region from 443 to about 417 million years ago. Most of the sediment deposited during this period
consisted of limestone formed primarily from the shells of living organisms, both animals and
plants. Early Silurian dolomite, which is the resistant caprock (top layer of rock) of the high ridges
and mounds in the field trip area, reaches a maximum thickness of about 140 feet. Silurian strata
may once have been thicker across the area, but subsequent erosion has removed it. Furthermore,
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Figure 9 Middle Ordovician paleogeographic map of North America.

still younger rocks may also have been present, but long periods of erosion may have removed
them as well.

Silurian formations constitute the upper part of the bedrock in the field trip area (fig. 2). Through-
out the area where it only caps the knobs and ridges, the Silurian dolomite seldom is more than 75
feet thick and generally is much thinner. Because of a regional southward dip, the Silurian strata
thicken to as much as 300 feet in the southern part of the Driftless Area (Kolata and Buschbach
1976). The contact between the underlying Maquoketa Shale is marked by an erosional
unconformity.

The Mosalem Formation at the base is largely argillaceous, medium to dark gray, partly cherty do-
lomite that ranges from only a few feet to as much as 100 feet thick where it fills channels in the
underlying Maquoketa Group (fig. 2). It weathers to yellow to brown. Although the formation is
largely nonfossiliferous, fossils are present locally.

The overlying Tete des Morts Formation is a relatively pure, fine- to medium-grained, massive,
slightly cherty, light gray dolomite that is 15 to 20 feet thick (fig. 2). It forms conspicuous cliffs at
or near the top of the Silurian exposures in the ridges and knobs north of Hanover. South of
Hanover it thins rapidly and disappears. The Tete des Morts dolomite is generally thicker-bedded
with many pits or vesicles in it and looks different from the underlying Mosalem dolomite. Except
for corals, particularly Favosites, fossils are scarce.
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The uppermost units exposed often exhibit a weathered profile called “geest” (also called
“residuum” or “terra rossa”). This typical red clay layer underlies thick deposits of loess where
present, and overlies dolomite and limestone formations in northwestern Illinois. No glacial materi-
als have been found in the geest deposits. The presence of geest directly overlying an erosional
surface suggests that at least a major part of the geest deposits are Tertiary. The abundance of
smooth, brown iron-stained coatings on deposits of white chert (on a fresh broken surface) in the
geest and the presence of white chert in the underlying Silurian dolomite indicate that the geest on
the highest erosional surfaces is largely residuum from solution of the underlying dolomite.

Regionally, the bedrock strata essentially are flat-lying, although there is a slight tilt of about 15 to
20 feet per mile to the southwest away from the Wisconsin Arch (figs. 1 and 5). The upland
slopes are underlain by the Ordovician Maquoketa Shale. The ridge tops are capped by Silurian
dolomite, which is quite resistant to erosion and, therefore, protects the underlying Maquoketa
Shale. The lower elevation flats and stream valley walls consist of Ordovician dolomite.

The area’s major structural features consist of low-amplitude northeast-southwest-trending syn-
clines (downward arches) formed by a northwest-southeast compressive force. An east-west,
preexisting joint system seems to have dissipated the shearing component of the northwest-south-
east compressive force by yielding along fracture zones that were later favorable for ore deposi-
tion. Bradbury (1960) postulated that the staggered (en echelon) arrangement of north-north-
west—trending smaller synclines and ore bodies may have formed as a result of a set of localized
forces, such as might be created by a strike-slip (horizontal displacement) fault in the basement
rocks.

STRUCTURAL SETTING

The Apple River Canyon State Park field trip area is located northwest of the Illinois Basin on the
southwestern flank of the regional, broad, and gently sloping Wisconsin Arch (figs. 1 and 5). Pa-
leozoic bedrock strata in the field trip area have a regional dip of 15 to 20 feet per mile to the
southwest, except where it is affected by local structure.

Wisconsin Arch

The Wisconsin Arch (fig. 1) is a broad, positive area that separates the Michigan Basin on the east
from the Forest City Basin on the west (basins not shown). The northern end of the Wisconsin
Arch, termed the Wisconsin Dome, is a region where Precambrian rocks outcrop in northern Wis-
consin. The rest of the arch is overlapped by Cambrian, Ordovician, and Silurian sedimentary
rocks. The southeastern end of the Wisconsin Arch connects with the Kankakee Arch (fig. 5),
which separates the Michigan and Illinois Basins (Nelson 1995). The Illinois Basin is the major
structural depression between the Ozark Dome to the west, the Cincinnati Arch to the east, the
Kankakee Arch to the north, and the Pascola Arch to the south (fig. 5).

The Wisconsin Arch apparently began to emerge late in the St. Croixan Epoch (Cambrian) and
was well established by the middle of the Ordovician Period. It may have been covered by seas in
the late Ordovician through middle Silurian time, but rose again in late Silurian or Devonian time
(Nelson 1995).

PREGLACIAL HISTORY OF NORTHWESTERN ILLINOIS

The topography of northwestern Illinois has had a long history of development. Since the last Pa-
leozoic sea withdrew from the midcontinent at the end of the Pennsylvanian Period some 290 mil-
lion years ago, or possibly as late as the end of the Permian Period nearly 248 million years ago,
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the Upper Mississippi Valley region was uplifted and has remained a land area. During this long in-
terval of erosion, many hundreds of feet of Paleozoic strata have been stripped away.

Erosion Surfaces During the 1890s investigators observed two apparent erosion surfaces in far
northwestern Illinois: an upper surface at elevations of 1,000 to 1,150 feet on isolated mounds of
Silurian dolomite and a lower surface at elevations of 900 to 1,000 feet on the top of the Ordovi-
cian age Galena dolomite. The upper surface was called the Dodgeville Peneplain, and the lower
was called the Lancaster Peneplain (fig. 10). Both were named for towns in southwestern Wis-
consin. Peneplaination was the “hot idea” at the end of the nineteenth and beginning of the twenti-
eth centuries. As envisioned by William Morse Davis in a series of publications between 1896 and
1922, a peneplain is a surface of very low relief representing the final stage of an erosion cycle.
The surface should be independent of bedrock structure and stratigraphic influence. At that time,
peneplains were recognized at numerous locations on most continents. The best examples of
peneplains in the United States occur along the Atlantic Coast and in the Appalachian and the
Rocky Mountains. Multiple peneplains indicated cycles of uplift, dissection and downcutting by
streams, and development of low relief surfaces, each erosion cycle taking millions of years.

The Dodgeville and the Lancaster Surfaces appear to be stratigraphically controlled and do not
have deep regoliths. Because peneplains are supposed to truncate different stratigraphic units and
have deep regoliths, an alternate interpretation for the the Dodgeville and Lancaster Surfaces is
warranted. After the last Paleozoic sea withdrew from the midcontinent at the end of the Paleo-
zoic, the Upper Mississippi Valley remained a land area, even during the Cretaceous highstand of
sea level. Erosion dissected the region, and several topographic surfaces (five in Wisconsin) devel-
oped as successive stratigraphic units were partially removed. Each of these surfaces is on a rela-
tively resistant unit (dolomite or sandstone) overlain by a relatively week unit (shale). Although
these surfaces are not peneplains, the names Dodgeville and Lancaster are still useful to convey
the sense of topography for the region. The Dodgeville Surface on Silurian dolomite is 350 to 400
feet above the modern valley floors, and the Lancaster Surface on the top of the Galena Dolomite
is 150 to 200 feet above the modern valley floors. Relatively gentle slopes are present on the
Magquoketa Shale. Steeper slopes and mounds are present on the Silurian dolomite formations
above the Maquoketa and the Ordovician formations below the Maquoketa.

The present-day relief of the bedrock surface topography is closely related to the establishment of
the Mississippi Valley through the region during the earliest pre-Illinois glacial episode. The Missis-
sippi Valley probably was eroded to its maximum depth by meltwater during the latter stages of
the pre-Illinois glacial episode. After that, the valley was alternately aggraded (built up) by

Apple Apple Jo Davies | Carroll D ) Lol

River River County | County 1 51 mi
sil Canyon Stockton
_Si Dr r Landmark

Figure 10 Cross section showing the Dodgeville (D) and Lancaster (L) erosion surfaces in northwestern I1-
linois and their relationship to the bedrock structure. The line of the section is from Apple River to Stockton
to Lanark. Dr, glacial drift; Sil, Silurian dolomite; Maq, Maquoketa shale; Gal, Galena dolomite; and Pv,
Platteville dolomite.
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outwash and re-excavated during subsequent glacial and interglacial intervals. In the glaciated
area to the east and south, till and outwash were deposited on the bedrock surface during the Illi-
nois Glacial Episode. Loess was deposited on the uplands throughout the Upper Mississippi Valley
region during the Illinois and Wisconsin Glacial Episodes. Deposition of a thick valley train in the
Mississippi Valley during the late Wisconsin Woodfordian and Valderan Glacial Episodes aggraded
the valley to a level approximately 30 feet above its present floodplain. This aggradation also re-
sulted in alluviation of the tributary valleys. Since the last glacier melted away, the Mississippi
River and its tributaries have been deepening their valleys into the Wisconsin alluvial deposits.

GLACIAL HISTORY OF ILLINOIS
Pleistocene Epoch (1.8 MY to 0.01 MY)

The Driftless Area was never overrun by the Pleistocene glaciers of the “Ice Age” (fig. 11). Nev-
ertheless, the region has been profoundly affected by the events of the glacial period. As previ-
ously stated, preglacial erosion left a network of deep valleys carved into the bedrock surface (fig.
8). The present fopography of Illinois is significantly different from the topography of the
preglacial bedrock surface, which is largely hidden from view by glacial deposits except along the
major streams and in the driftless areas of northwestern and southern Illinois (fig. 12). In many
areas, the glacial drift is thick enough to completely mask the underlying bedrock surface. Studies
of mine shafts, water-well logs, and other drill hole information and of scattered bedrock expo-
sures in some stream valleys and road cuts show that the present land surface of the glaciated
areas of Illinois do not reflect the underlying bedrock surface. The topography of the preglacial
bedrock surface has been significantly modified by glacial erosion and is subdued by glacial deposits.

During the past 1.8 million years, during the Pleistocene Epoch of the Quaternary Period (also
known as the Ice Age), much of northern North America was repeatedly covered by huge gla-
ciers (see fig. 11). These continent-size masses of ice formed in eastern and central Canada as a
result of climatic cooling. Their advances into the central lowland of the United States altered the
landscape across much of the Midwest.

During an early part of the Pleistocene Epoch, glaciers advanced out of centers of ice accumula-
tion both east and west of the Hudson Bay area in Canada (fig. 11, a and b). These centers are
referred to in this guidebook as northeastern and northwestern source areas because Illinois lies to
the south of and between these centers of accumulation. Glaciers flowing out of these centers into
Illinois carried along rock debris incorporated into the ice as they advanced; the material was
dropped out as the ice melted. The number and timing of these early episodes of glaciation are un-
certain at present and are therefore unnamed, but, because they precede the first named glacial
episode (the Illinois Episode; Hansel and Johnson 1996), they are called simply pre-lilinois glacial
episodes (figs. 13 and 14). The pre-Illinois glacial episodes ended about 425,000 years ago.

A long interglacial episode, called the Yarmouth, followed the last of the pre-Illinois glacial ad-
vances (figs. 13 and 14). The Yarmouth interglacial episode is estimated to have lasted approxi-
mately 125,000 years, and deep soil formation took place during that long interval (Yarmouth
Geosol). On the parts of the landscape that were generally poorly drained, fine silts and clays that
slowly accumulated (accreted) in shallow, wet depressions formed what are called accretion
gleys, which are characterized by dark gray to black, massive, and dense gleyed clays.

Approximately 300,000 years ago, the Illinois Episode of glaciation began. It lasted for about
175,000 years, and, during this interval, the ice advanced three times out of the northeastern center
of accumulation (figs. 11c and 13). During the Illinois Episode, North American continental glaciers
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Figure 11 Maximum extent of (a) early pre-Illinois glacial episode (1,000,000 + years ago); Driftless Area
shown by stippled pattern; arrows indicate direction of ice movement; (b) late pre-Illinois glacial episode
(600,000 + years ago); (c) Illinois Glacial Episode (250,000 + years ago); and (d) late Wisconsin Glacial Epi-
sode (22,000 years ago).

reached their southernmost position in the northern part of Johnson County (fig. 12). Locally the
glacier stopped approximately 3 miles east of the Apple River State Park. A line indicating the
westernmost advance of the Illinois glacier can be drawn from just east of Warren to the east
edge of Stockton. During the first of these advances, ice of this episode reached westward across
Illinois and into Iowa, south of the Driftless Area (fig. 11c).

Another long interglacial episode, called the Sangamon (figs.13 and 14), followed the Illinois Epi-
sode and lasted about 50,000 years. Although shorter than the Yarmouth, this interglacial interval’s
length was long enough for another major soil, called the Sangamon Geosol, to develop. The
Sangamon Geosol exhibits both well-drained and poorly drained soil profiles; although accretion
gleys are not as pronounced as they are in the Yarmouth Soil, their occurrence is common across
the Sangamon landscape, and they are easily identified by the same characteristics as the
Yarmouth accretion gleys.

The Wisconsin Episode of glaciation began about 75,000 years ago (figs. 11d, 13, and 14). Ice
from the early and middle parts of this episode did not reach into Illinois. Although late Wisconsin
ice did advance across northeastern Illinois beginning about 25,000 years ago, it did not reach
southern or western [llinois (figs.11d and 12). The late Wisconsin glaciation is represented in the
field trip area by the windblown silts (Joess) that blanket the landscape and compose the parent
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Figure 12 Generalized map of the glacial deposits in Illinois (modified from Willman and Frye 1970).
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Figure 13 The sequence of glaciations and interglacial drainage in Illinois.
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Figure 14 Timetable illustrating the glacial and interglacial events sediment record, and dominant climate

conditions of the Ice Age in Illinois (modified from Killey 1998).
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materials for our modern Holocene Epoch soils. The maximum thickness of the later Wisconsin
Episode glaciers was about 2,000 feet in the Lake Michigan Basin, but only about 700 feet over
most of the Illinois land surface (Clark et al. 1988). The last of these glaciers melted from north-
eastern Illinois about 13,500 years ago.

Wisconsin Episode moraines were deposited in Illinois from approximately 25,000 to 13,500 years
ago (fig. 12). Although Illinois Episode glaciers probably built morainic ridges similar to those of
the later Wisconsin Episode glaciers, the Illinois Episode moraines apparently were not as numer-
ous and have been exposed to weathering and erosion for approximately 280,000 years longer
than their younger Wisconsin Episode counterparts. For these reasons, Illinois Episode glacial fea-
tures generally are not as conspicuous as the younger Wisconsin Episode features.

In general, glacial deposits consist primarily of (1) #ill —pebbly clay, silt, and sand, deposited di-
rectly from melting glaciers; (2) outwash—mostly sand and gravel, deposited by the rapidly flow-
ing meltwater rivers; (3) lacustrine deposits—silt and clay that settled out in quiet-water lakes
and ponds; and (4) loess—windblown sand and silt.

Although glaciers did not advance over the field trip area or completely surround it at any one time
during the major ice advances (fig.11), outwash deposits of silt, sand, and gravel were dumped
along the Mississippi Valley. When these deposits dried out during the winters, strong prevailing
winds from the west (the westerlies) winnowed out the finer materials, such as fine sand and silt,
and carried them eastward across the unglaciated terrain.

The loess (pronounced “luss”) that mantles the bedrock and glacial drift throughout the field trip
area was laid down by the wind during all of the glacial episodes, from the earliest pre-Illinois gla-
cial episode (approximately 1.6 million years ago) to the last glacial episode, the Wisconsin Episode
(which occurred approximately 25,000 to 13,500 years ago). This yellowish brown silt occurs on
the uplands and mantles the bedrock throughout the field trip area. The loess is generally between
20 to 25 feet thick, but erosion has completely removed the loess in scattered areas, especially
atop the bluffs along the Mississippi River valley. In general, the thickness of the loess decreases
to the east. The loess, which covers most of Illinois, is up to 15 feet thick along the Illinois River
valley and is more than 50 feet thick, in some localities, along the east edge of the Mississippi
River valley.

GEOMORPHOLOGY

Wisconsin Driftless Section

Physiography is a general term used for describing landforms; a physiographic province is a region
in which the relief or landforms differs markedly from those is adjacent regions. The field trip area
is located in the Wisconsin Driftless Section of the Central Lowland Physiographic Province (fig.15).
This unglaciated area covers about 10,000 square miles and extends northward into southwestern
Wisconsin and northwestward into northeastern Iowa and southeastern Minnesota. The eastern-
most part of the field trip parallels the Rock River Hill Country of the Till Plains Section.

The Wisconsin Driftless Section, or “Driftless Area” as it is commonly called, has some of the
most rugged topography in Illinois. The Driftless Area is a submaturely, deeply dissected, low pla-
teau bounded by the outwash-filled valley of the Upper Mississippi River to the west and the mar-
gin of the Illinois Glacial Episode on the east and southeast. The high hills and sharp ridges are un-
derlain by dolomitic strata, and the sweeping slopes and wide valleys are generally eroded into the
less resistant underlying shales. Only loess, in which the modern soils developed, mantles the
deeply dissected bedrock surface. Remnants of the former upland surface remain, but most of the
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area is in slopes that dip rather steeply toward the streams. The major streams are flowing in
rather broad, steep-walled valleys, and relatively flat upland areas still remain. Except for the
major streams, most drainage is via a system of V-shaped, steep-walled, relatively short tributaries
with steep gradients (longitudinal bottom slope). Some of the minor tributaries have incised mean-
ders. Major streams flow from a central upland westward to the Mississippi River and eastward
and southward to the Rock River. Alluvium, relatively modern deposits along the streams, has
been eroded, leaving terraced remnants along the valley walls. Sinkholes (depressions caused by
dissolution of underlying dolomite) and other karst features, although present, are not conspicuous.
Topography in the adjacent glaciated area of the Rock River Hill Country (fig. 15) is more sub-
dued than in the Driftless Area. Here the thin Illinois glacial deposits—which barely mask the
irregularities of the major uplands and valleys formed by pre-Illinois erosion of the bedrock—have
produced a rolling landscape.

Rock River Hill Country

The Rock River Hill Country is characterized by subdued, rolling hill lands in the stage of late
youth to early maturity. It includes the eroded Illinois glacial drift plain north of the Bloomington
Moraine and Meredosia Valley and a fringe of early Wisconsin drift, which lies west of Marengo
Ridge.

The Illinois glacial drift is thin throughout most of the district and is not known to be underlain by
older till. Thus, the major uplands and valleys are determined primarily by the bedrock surface.
The Illinois glacial drift is without marked ridging, and constructional forms are very localized. In
the western part of the district, where it borders the Mississippi Valley, thick deposits of loess and
fine sand occur as broad ridges, paha, and dunes on the Illinois glacial till plain.

The major streams flow radially from a central upland into the Mississippi River on the west and
the Rock River on the east and south. Their valleys are relatively broad and steep walled and have
terrace remnants of alluvial fill. The Mississippi River and the upper part of the Rock River oc-
cupy large alluviated valleys. Below the mouth of Kishwaukee River, sometime after the Illinois
Glacial Episode, the Rock River has cut a rock gorge that extends south to the Green River Low-
land. Numerous smaller rock gorges are also present along tributaries that locally are superim-
posed on spurs of the bedrock upland. Most of the minor streams are narrow and V-shaped.

NATURAL DIVISIONS AND GEOLOGY

Glacial history has played an important role in shaping Illinois topography by eroding the preglacial
landscape and depositing glacial sediments. Topography influences the diversity of plants and ani-
mals (biota) of Illinois by strongly influencing the diversity of habitats. Geological processes form,
shape, and create the topography on all of the Earth’s surface. Specifically, geology not only deter-
mines the composition of the parent material of soils, but geological processes also form soils
through the weathering of parent materials. Thus, the geology of a region is the foundation of its
habitats.

Natural Divisions

The state has been divided into 14 different Natural Divisions. These divisions are distinguished
according to differences in significant aspects of topography, glacial history, bedrock geology, soils,
aquatic habitats, and distribution of plants and animals (flora and fauna). A strong relationship
exists between the Physiographic Divisions of Illinois and the Natural Divisions of Illinois because
the geologic factors used to determine the Physiographic Divisions were important elements used to
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define the boundaries of the Natural Divisions. The following descriptions of the Natural Divisions are
modified from Schwegman (1973).

Wisconsin Driftless Division

The Wisconsin Driftless Division is part of an area extending from northwestern Illinois into Wis-
consin, Iowa, and Minnesota that escaped Pleistocene glaciation. This division is one of the most
maturely developed land surfaces in Illinois and is characterized by rugged terrain and a dissected
pattern of wooded ridges; the division includes such prominent features as canyons, ravines, bluffs,
and palisades. Originally most of the area was forested. The area has the coldest climate in the
state and contains several distinctive plants of northern affinity and some species that may repre-
sent relicts of the pre-Ice Age flora. In Illinois, algific slopes—north-facing rocky slopes that retain
subsurface ice through most of the year—occur only in the Driftless Area. The cold microclimate
created on the surface of the slope supports relict northern and Pleistocene biota, including many
endangered, threatened, and rare species.

® Bedrock The Wisconsin Driftless Division is a maturely dissected upland of Ordovician and Sil-
urian limestone, dolomite, and shale. Bedrock crops out along the major watercourses. Promi
nent “mounds” capped with the more resistant dolomite are common. A mineralized zone con-
taining deposits of lead and zinc is an important feature. Caves are known in the dolomite.

» Topography The topography of the division is one of rolling hills and great relief, particularly
along interior stream canyons. High erosional remnants are prominent features. There are loess-
capped bluffs and palisades along the Mississippi River valley and ravines and bluffs throughout
the division.

» Soils The soils of this division have developed from loess or, on steeper slopes, from loess on

bedrock. The loess soils are derived from thick deposits and are weakly to moderately devel-
oped. The soils on bedrock are thin to moderately thick and well drained.

Drainage The Mississippi River is the major drainageway in northwestern Illinois. The main
tributary in the field trip area is Apple River, which flows southwest to the master stream. The
larger tributaries include Clear Creek, Kentucky Creek, Mud Run, Hell’s Branch, and Mill Creek.
The major streams have flat floodplain areas, and stream channels in the major valleys generally
meander freely. A well-developed network of smaller, V-shaped, steep-gradient tributaries has
grown headward into the upland remnants. Considerable subsurface drainage occurs through
small caves and solution channels that have developed in the dolomite bedrock.

Relief Relief is defined as the vertical difference in elevation between the hilltops or mountain
summits and the lowlands or valley bottoms of a particular area. The highest point along the field
trip route is Charles Mound (the highest point in Illinois) at 1,241 feet above mean sea level (msl),
located northeast of the community of Scales Mound just south of the Wisconsin state line. The
lowest elevation on the route is 763 feet msl at the intersection of North Hammer Road and North
Mill Creek Road (NW/4, Sec. 18, T28N, R3E). Therefore, the relief along the route is slightly
more than 478 feet, and local relief of 150 to 200 feet is fairly common, especially along the bluffs
bordering the Apple River.
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NATURAL RESOURCES

Mineral Production

The field trip area is located within the eastern part of the Zinc and Lead District of northwestern
Illinois. Areas of mineralization in Illinois, lowa, and Wisconsin make up the Upper Mississippi Val-
ley District. The Illinois portion of the district has a history of lead mining that dates from Native
American mines from the late 1700s. The last commercial zinc and lead operation in Illinois closed
in 1973.

The total value of all minerals extracted, processed, and manufactured in Illinois during 1998 was
$1,950,000,000. Extracted minerals accounted for 86.4% of this total. Coal continued to be the
leading commodity, followed by construction stone (limestone and dolomite), sand and gravel, and
oil. The 2001 Illinois production data for stone and sand and gravel was $547,000,000. Illinois
ranked 5th among coal-producing states, 13th among the 31 oil-producing states, and 16th among
the 50 states in total production of nonfuel minerals but continues to lead all other states in produc-
tion of industrial sand and tripoli. Jo Daviess County mineral production is currently limited to dolo-
mitic stone and sand and gravel deposits.

Groundwater

Few of us are likely to think of groundwater as a mineral resource when we consider the natural
resource potential of an area. Yet the availability of groundwater is essential for orderly economic
and community development. More than 48% of the state’s 11 million citizens and 97% of those
who live in rural areas depend on groundwater for their water supply.

The source of groundwater is precipitation that infiltrates the soil and percolates into the ground-
water system lying below the water table in the zone of saturation. Groundwater is stored in and
transmitted through saturated earth materials called aquifers. An aquifer is any body of saturated
earth materials that will yield sufficient water to serve as a water supply for some use. Pores and
other void spaces in the earth materials of an aquifer must be permeable; that is, they must be
large enough and interconnected so that water can overcome confining friction and move readily
toward a point of discharge such as a well, spring, or seep. Generally, the water-yielding capacity
of an aquifer can be evaluated by constructing wells into it. The wells are then pumped to deter-
mine the quantity and quality of groundwater available for use.

Thick permeable sand and gravel deposits occur locally in the Mississippi Valley, and some may be
found in the major tributaries, especially in the lower parts of their valleys. Electrical earth resistiv-
ity surveys (a geophysical method for characterizing buried sand and gravel deposits) can be use-
ful in locating groundwater supplies in these valleys.

Silurian and Ordovician dolomite units are creviced and water-bearing. Most domestic water wells
in the area get their water from these creviced formations at depths of less than 250 feet and are
susceptible to bacterial pollution, particularly where the formation is overlain by less than 35 feet
of overburden (soil and/or unconsolidated materials above the formation). Open crevices provide
little filtering action, and polluted water may travel long distances through these openings with little
loss of poilutants.

Future of Mineral Industries in Illinois For many years, the mineral resources of the
midcontinent have been instrumental in the development of the nation’s economy. The mineral re-
source extraction and processing industries continue to play a prime role in our economy and in
our lives, and they will continue to do so in the future.
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The prime mission of the ISGS is to map the geology and mineral resources of the state, conduct
field mapping, collect basic geologic data in the field and in the laboratory, and interpret and com-
pile these data on maps and in reports for use by industry, the general public, and the scientific
community. Over the years, maps of the geology of the state have been published at various
scales. Recently, more detailed maps and reports covering particular regions have been com-
pleted. To meet growing demands for detailed geologic information to guide economic develop-
ment and environmental decision-making, the ISGS is conducting a program to geologically map
the 1,071 Illinois 7.5-minute quadrangles of Illinois.

Scattered throughout Jo Daviess County are some farming practices that are not so common else-
where in Illinois. Crops, which are planted in strips following the contour around the hills and along
slopes, appear like a patchwork quilt. This practice minimizes erosion on the steep slopes in this
region. In some cases, ridges have been constructed following the contour around the hills, and the
crops are planted in the flatter areas behind the ridge crest. This practice helps conserve moisture
by reducing run-off from the field. In some locations, you see grass strips from high up on the
slopes heading downslope—these are grass-waterways. Thick, coarse grass is established to mini-
mize downcutting of surface run-off. The result is that you see very few gullies here compared
with the number you see elsewhere in the state, despite the steepness of the slopes and the easily
eroded shale that underlies the loessal soils.
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GUIDE TO THE ROUTE

We will start the field trip at the Apple River Canyon State Park, at the Devil’s Hollow Picnic
Area Shelter (SW, NE, SW, Sec. 4, T28N, R4E, 4% PM,, Elizabeth NE 7.5-minute Quadrangle, Jo
Daviess County). Mileage will start at the entrance to the shelter’s parking lot. Set your odometer
to 0.0.

You must travel in the caravan. Please drive with headlights on while in the caravan. Drive
safely but stay as close as you can to the car in front of you. Please obey all traffic signs. If the
road crossing is protected by an Illinois State Geological Survey (ISGS) vehicle with flashing lights
and flags, please obey the signals of the ISGS staff directing traffic. When we stop, park as close
as possible to the car in front of you and turn off your lights.

Private property Some stops on the field trip are on private property. The owners have graciously
given us permission to visit on the day of the field trip only. Please conduct yourselves as guests

and obey all instructions from the trip leaders. So that we may be welcome to return on future
field trips, follow these simple rules of courtesy:

* Do not litter the area.

* Do not climb on fences.

* Leave all gates as you found them.

* Treat public property as if you were the owner—which you are!
e Stay off of all mining equipment.

e Parents must closely supervise their children at all times.

When using this booklet for another field trip with your students, a youth group, or family, remem-
ber that you must get permission from property owners or their agents before entering pri-
vate property. No trespassing, please.

Six USGS 7.5-minute Quadrangle maps (Apple River, Elizabeth NE, Scales Mound East, Scales
Mound West, Shullsburg, and Warren ) provide coverage for this field trip area.

START: The field trip will begin with a hike along the Primrose Nature Trail in Apple River
Canyon State Park (SW, NE, SW, Sec. 4, T28N, R4E, 4th PM,, Elizabeth NE 7.5-minute Quad-
rangle, Jo Daviess County).
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4.5

Exit parking lot and TURN LEFT onto West Canyon Road and cross bridge
over the North Fork of the Apple River.

Pass the trail head for the Primrose Nature Trail on the left.

STOP (one-way). T-intersection (West Canyon Road and North Canyon Park
Road). TURN LEFT. Begin the ascent out of the Apple River Canyon.

YIELD SIGN. Y-intersection (North Canyon Park Road and East Canyon
Road). BEAR LEFT onto North Canyon Park Road.

Entrance to Canyon River Campground on the left. CONTINUE AHEAD.
Road flattens out as you cross the north edge of Apple River Canyon.

Road curves 90 degrees to the left.

Road curves 90 degrees to the right.

Road curves 90 degrees to the left. T-intersection (North Canyon Park Road
and Sweet Home Road). TURN LEFT and follow North Canyon Park Road.

NOTE: No stop sign at the intersection.

Cross a small creek, an unnamed tributary of Apple River. The road immedi-
ately curves 90 degrees to the right.

Crossroad intersection (North Canyon Park Road and East Twin Bridges
Road). TURN RIGHT onto East Twin Bridges Road. The large mound north-
west of the intersection is Squirrel Grove Mound. This mound is capped by
Silurian dolomitic bedrock.

Cross unnamed tributary of Clear Creek.

Cross first bridge over Clear Creek. Immediately past bridge, on the left, is
the entrance to an abandoned quarry.

STOP 1: Rutherford’s Quarry and Dolomite Prairie (SW, SW, NE, Sec. 27, T29N, R4E, 4th
P.M., Elizabeth NE 7.5-minute Quadrangle, Jo Daviess County). On the day of the field trip, we
will park along the road.

0.0

0.1

4.5

4.6

Leave Stop 1. Retrace your route back to Twin Bridges Road.

Entrance to abandoned quarry. TURN LEFT onto Twin Bridges Road (head-
ing east).
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Cross bridge over the east fork of Clear Fork. Notice the gray clayey soil in
the ditch along the road just past the bridge. This soil is characteristic of soils
developed in a wetland.

T-intersection from the right (Bausman Road). CONTINUE AHEAD. Road
makes a series of 90 degrees turns to the left and then to the right.

Road heading east.
T-intersection from the left (Slaughter House Road). CONTINUE AHEAD.
Road curves 90 degrees to the right.

Road curves 90 degrees to the left. Looking to the northeast, you can see the
city of Warren, population 1,595. Warren was started by two entrepreneurs,
Capt. Alexander Burnett and Freeman A. Tisdel. The town is named after
Capt. Burnett’s first son. The Warren Cheese Plant, the home of Apple Jack
Cheese, produces 4.5 million pounds of cheese a year.

STOP (one-way). T-intersection (North Fiedler Road and East Twin Bridges
Road). TURN RIGHT onto North Fiedler Road heading south.

Angle intersection from the left (East Hicks Road). CONTINUE AHEAD.
Road curves 45 degrees to the right.

T-intersection from the right (Sweet Home Road). CONTINUE AHEAD on
North Fiedler Road. We are traveling across the relatively flat Dodgeville
Surface. This erosional surface represents the top of the Ordovician age, Ga-
lena Dolomite.

T-intersection from the left (Mahoney Road). CONTINUE AHEAD.

Note the stand of native birch trees on the right. The Driftless Area of Illinois
is one of the few places in Illinois where native birch trees can be found.

STOP (two-way). Crossroad intersection (East Canyon Road and North
Fiedler Road). CONTINUE AHEAD. USE CAUTION: Dangerous inter-

section.

Y-intersection (North Kuppersmith Road and East Fiedler Road). BEAR
LEFT onto North Kuppersmith Road (heading south). Note: The main road
(East Fiedler Road) curves 45 degrees to the right.

Road jogs to the right and then back to the left. Note the outcrop of Galena

dolomite on the left. The high ridge to the south is Benton Mound, which is
capped by Silurian dolomitic bedrock.
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Cross the South Fork of the Apple River. STOP (two-way) immediately south
of bridge. Crossroad intersection (Rush Town Road and North Kuppersmith
Road). CONTINUE AHEAD.

The South Fork of the Apple River currently flows to the northwest. Prior to
the Illinois Glacial Episode, the pre-glacial river that occupied this valley
flowed to the southeast and eventually emptied into the ancient Pecatonica
River, which flowed into the ancient Rock River. The South Fork of the Apple
River is an underfit stream with respect to the size of the valley it occupies.

View of Youngbluth Quarry on the left.
Cross narrow bridge over a small unnamed branch to Mud Run Creek.
Weight limit is 3 tons. Road immediately curves 90 degrees to the left.

Although unmarked, the road changes name at the curve; you are now on
Chelsea Road.

Cross the narrow bridge over Mud Run Creek.

Stop 2. Entrance to Youngbluth Quarry is on the left. TURN LEFT into
quarry and park on the quarry floor.

STOP 2: Youngbluth Quarry (NE, NW, NW, Sec. 23, T28N, R4E, 4th PM., Elizabeth NE 7.5-
minute Quadrangle, Jo Daviess County). Pull into the quarry and park on the bed of the quarry.
Please wait for instructions from your field trip leaders before you attack the outcrop.
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Leave Stop 2 and retrace your route back to the quarry entrance.
At the exit of the quarry, TURN LEFT onto Chelsea Road.
Cross Mud Run Creek.

T-intersection from the left (Rush Town Road). CONTINUE AHEAD. Inter-
section is unmarked.

STOP (two-way). Crossroad intersection (Chelsea Road and Stockton Road).
TURN RIGHT onto Stockton Road. Intersection is unmarked. Road ascends
hill and immediately begins to drop down into a large valley eroded by Mud
Run Creek. There is a view of Benton Mound to the southwest.

Cross bridge (unnamed branch of Mud Creek). STOP (two-way). Crossroad
intersection on the south side of the bridge (Stockton Road and Greenvale
Road). TURN RIGHT onto Greenville Road. Intersection is unmarked.

This intersection is in the middle of the old paleo drainage channel where the
Apple River used to flow from the northwest to the southeast. Looking to the
southeast, you can see a low in the landscape, which marks the position of the
buried paleo-channel. Looking to the northwest, you can follow the low in the
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landscape where Mud Creek is flowing today. This valley marks the position
of an ancient river that once flowed to the southeast. The drainage through
this area has reversed. Today Mud Run Creek is flowing to the northwest.
Prior to glaciation, the drainage was to the southeast through this valley. The
low ridge to the east marks the margin of the Illinois Glacial Episode deposits.

Cross Mud Run creek. CONTINUE AHEAD.

Old abandoned quarry on the left. The quarry is in the Galena dolomite, Wise
Lake Formation. The old stone foundation on the right is made from the Ga-
lena dolomite.

Road curves 90 degrees to the left.

Road curves 90 degrees to the right. The road is now paralleling the southern
edge of Benton Mound, a Silurian bedrock capped mound.

Small lane on the left side of the road. Sign on tree says “Trail’s End.” The
“911” emergency address pole is Number 9041.

STOP 3: Benton Mound (SW, NW, NE, Sec. 28, T28N, R4E, 4th P.M,, Elizabeth NE 7.5-
minute Quadrangle, Jo Daviess County). Several of the Silurian capped mounds are visible from
this vantage point to the north and northwest.
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Leave Stop 3. CONTINUE AHEAD.

STOP (one-way). T-intersection (East Greenville Road and North Canyon
Park Road). TURN RIGHT.

T-intersection from the left (East Upmann Road). CONTINUE AHEAD.
Crossroad intersection (Rush Town Road). CONTINUE AHEAD. On the
southeast corner of the intersection is the Rush Township Hall. This building
was once the one-room Rush Center Schoolhouse.

T-intersection from the right (East Fiedler Road). CONTINUE AHEAD.
Begin the descent into Apple River Canyon.

Enter Apple River Canyon State Park boundary.

Cross bridge on the South Fork of the Apple River. TURN LEFT onto West
Canyon Road on the north side of the bridge.

Cross the bridge on the North Fork of the Apple River and immediately enter
the Devil’s Hollow Picnic Area shelter parking lot.
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STOP 4: Lunch (SW, NE, SW, Sec. 4, T28N, R4E, 4th P.M., Elizabeth NE 7.5-minute Quad-
rangle, Jo Daviess County). After lunch, reset the odometer at the entrance to the shelter parking
lot to 0.0.

0.0 0.0  Exit parking lot. TURN RIGHT. Road begins ascent out of Apple River
Canyon.

0.9 0.9  T-intersection from the left (Bouroquin Road). CONTINUE AHEAD.

0.1 1.0  Note the view of an unnamed mound on right side of the road. The mound is

capped by Silurian dolomite. The slope between the top of the mound and the
road is underlain by the Ordovician Maquoketa Shale. Locally the mound is
known as Sigafus Mound.

1.0 2.0  STOP (one-way). T-intersection (West Canyon Road and Broadway Road).
TURN RIGHT. Unmarked intersection.

0.15 2.15  Stone house on the right is made from locally quarried Ordovicain dolomite.
Historically, this building was used as a one-room school called Brown
School. Locally it is known as the old Broadway School.

0.15 2.3  Good view of unnamed Silurian capped mound on the right.

04 2.7  T-intersection from the left (East Dotzel Road). CONTINUE AHEAD.

0.5 3.2  Road curves to the right.

0.2 3.4  Road begins its descent into the valley cut by the North Fork of the Apple
River.

0.2 3.6  Cross bridge. Dolomite bluffs are visible along Apple River on the right.

0.3 3.9  Directly ahead is an unnamed Silurian capped mound.

03 42  Road curves to the left.

02 4.4  T-intersection from the right (Twin Bridges Road). CONTINUE AHEAD.

0.6 5.0  Good view of Squirrel Mound, a Silurian capped mound to the left.

0.1 5.1 Cross creek.

0.65 5.75 STOP (one-way). T-intersection (North Broadway and Stage Coach Road).

TURN LEFT and enter community of Apple River, population 472.

0.45 6.2  Apple River School is on the left. CONTINUE AHEAD. Road begins its de-
scent into the valley cut by Kentucky Creek
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03 6.5  Cross Kentucky Creek, a tributary of Apple River.

0.2 6.7  T-intersection from the left (North Scout Camp Road). TURN LEFT onto
North Scout Camp Road. St. Joseph Cemetery is on the southwest corner of
the intersection. The low area on the left is the valley cut by Kentucky Creek.

0.8 7.5  Pass guard rail on the left side of the road. Entrance road to Cox Quarry on
the left. TURN LEFT. The “911” emergency address sign is marked as 8045.
Follow road to the Cox Quarry.

0.3 7.8  Entrance to Cox Quarry

STOP 5: Cox Quarry (NW, NE, NE, Sec.25, T29N, R3E, 4th P.M., Elizabeth NE 7.5-minute
Quadrangle, Jo Daviess County). Pull into the quarry and park on the bed of the quarry. Please
wait for instructions from your field trip leaders before you attack the outcrop.

0.0 7.8  Leave Stop 5. Retrace your route back to North Scout Camp Road.

0.2 8.0  Entrance road to the quarry. TURN LEFT onto North Scout Camp Road
(heading south).

0.6 8.6  Cross Apple River. Kentucky Creek is flowing into the Apple River on the left
and northeast of the bridge.

0.6 9.2  Good view of Mount Sumner mound to the right at curve in road.

0.8 10.0 Mount Sumner straight ahead.

04 104  T-intersection from the right in the middle of curve (North Scout Camp and

East Mount Sumner Road). TURN RIGHT onto East Mount Sumner Road.

0.1 10.5  T-intersection from the right (South Hodgin Road). CONTINUE AHEAD.
Large mound directly north of the intersection is Squirrel Grove Mound. Road
begins ascent up Mount Sumner mound.

0.3 10.8  Road curves around the south side of the mound.

0.1 10.9  Good view to the south of the topography of Jo Daviess County.

04 113 View of mound to the northwest is Hudson Mound.

1.0 123 STOP (one-way). T-intersection (East Mount Sumner Road and North Lake
No.1 Road). TURN LEFT onto North Lake No. 1 Road (heading south).

0.7 13.0  Road curves 90 degrees to the right.

0.8 13.8  View of Apple Canyon Lake to the left.
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T-intersection from the left (North Apple Canyon Road and North Lake No.1
Road). CONTINUE AHEAD and cross bridge over Hell’s Branch. Road
changes to West Canyon Road at the bridge.

Local historical archives state that in the early days a large family of rough
characters named Daves settled on a branch of the Apple River, which was
subsequently named Hell’s Branch. There is a good view of Apple Canyon
Lake from the middle of the bridge to the left. The lake was formed by dam-
ming Hell’s Branch. Certainly one “hell” of a way to make a lake.

T-intersection from the right (Fair Oaks Road). CONTINUE AHEAD on
West Apple Canyon Road.

Crossroad intersection (West Apple Canyon Road and Blue Gray Drive).
TURN RIGHT onto Blue Gray Drive.

STOP (one-way). T-intersection (Blue Gray and Pea Ridge Road). TURN

RIGHT onto Pea Ridge Road and immediately TURN LEFT onto East Fox
Road at the Y-intersection (East Fox Road and Pea Ridge Road). East Fox

Road immediately begins to ascend up a hill.

Pass bee hives on the right side of the road.

Silurian outcrop on the right side of the road.

STOP (one-way). T-intersection (East Fox road and Hammer Road).
Unmarked intersection. TURN LEFT onto Hammer Road.

Y-intersection (North Anderson Road and North Hammer Road). BEAR
RIGHT onto North Hammer Road.

Entrance to old abandoned quarry in the Galena dolomite on the right.
Road begins its descent to the valley cut by Mill Creek.
There is a great view of Mill Creek Valley on your right.

STOP (one-way). T-intersection (North Mill Creek Road and North Hammer
Road). TURN RIGHT on North Mill Creek Road.

Cross an unnamed creek. Mill Creek is on the left side of the road. The road
follows the contact between the alluvium on left and the colluvium on the

right.
Cross the unnamed creek, a branch to Mill Creek.

A good view of entrenched meanders can be seen to the left of the road
within the Mill Creek floodplain.
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0.2 19.5  Cross the small bridge over the branch of Mill Creek.

0.1 19.6  Entrance to Wenzel Mound Quarry. TURN RIGHT.

STOP 6: Wenzel Mound Quarry (SW, SW, NE, Sec. 2, T28N, R2E, 4th P.M., Scales Mound
East 7.5-minute Quadrangle, Jo Daviess County). Pull into the quarry and park on the bed of the
quarry. Please wait for instructions from your field trip leaders before you attack the outcrop.

0.0 19.6  Leave Stop 6. Exit the quarry and retrace your route back to Mill Creek
Road.
0.25 19.85 Exit to the Quarry.

The following road log will get you back to Apple River Canyon State Park or
other destinations. Reset your odometer to 0.0 at the exit of the quarry and
TURN RIGHT onto Mill Creek Road.

Miles Miles
to next from

point start

0.0 0.0  STOP (one-way). T-intersection (North Mill Creek Road and North Eliza-
beth/Scales Mound Road).

To head back toward Apple River State Park or Galena TURN RIGHT head-
ing toward Scales Mound.

To head toward Elizabeth and U.S. Route 20, TURN LEFT and follow the
Elizabeth/Scales Mound Road.

The following road log is ONLY for those who TURNED RIGHT.

1.1 1.2 STOP (one-way). Crossroad intersection (Elizabeth/Scales Mound Road and
Stage Coach Trail). TURN RIGHT onto Stage Coach Trail heading toward
the communities of Apple River and Warren. The community of Scales
Mound, population 381, is directly ahead of this intersection. The Silurian
capped Scales Mound is to the left. Note: If you TURN LEFT onto Stage
Coach Trail, it will take you to Galena.

0.4 1.6  The large high Silurian capped mound to the left is Charles Mound, the high-
est point in Illinois, with an elevation of 1,241 feet.

9.25 10.85 Entering community of Apple River, population 472.

1.85 12.7  The sign for Apple River Canyon State Park is on the right.
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T-intersection from the right (North Canyon Park Road). TURN RIGHT onto
North Canyon Park Road. This road will take you to Apple River Canyon
State Park.

Note: If you continue ahead on Stage Coach Road, it will take you to the
community of Warren and Illinois Route 78.

Apple River Canyon State Park.

End of Trip! Have a Safe Journey Home.
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Resources include the Thompson and Salem Units, Witkowsky Wildlife Area, Tapley Woods,
Hanover Bluff Nature Preserve, Wards Grove Nature Preserve, Artenson-Wells Nature Preserve,
and Falling Down Prairie. For more information about these areas or the park, contact the Apple
River Canyon State Park, 8763 E. Canyon Road, Apple River, Illinois 61001 (815-745-3302).

History In the nineteenth century, European settlers arrived; the Sauk and Fox tribes were driven
out in the Black Hawk War; and Galena, thriving on the profits of lead mining, became a roaring
boom town. Miners by the hundreds entered this country through a canyon that is now one of the
principal attractions of the Apple River Canyon State Park.

The town of Millville was established where the park is now, but not a trace of it remains. Named
after its two sawmills, Millville became a stop on the Galena-Chicago stage route and flourished
until 1854 when the Illinois Central Railroad, building its line from Freeport to Galena, passed four
miles north of the town. In 1892, a devastating flood washed out the dam, swept away many build-
ings, and drove the people from the town forever.

Natural Features Flowing endlessly for countless centuries, the Apple River has cut through the
layers of limestone, dolomite, and shale until massive cliffs rose high above the water and canyons
formed. Vast ages of water and erosion widened and deepened the crevices as rivers and streams
cut their way through the stone. Close-up views of the colorful canyon reveal walls dotted with
mosses, lichens, and tenacious bushes that have found crevices to hold their roots on the'sheer
walls.

The advance of glaciers, which ironed out hills and filled valleys in other parts of the state, left this
area untouched. This circumstance accounts for the large number of fossil remains to be found
near the surface in the northwestern part of Illinois. It also accounts for the easy availability to
the veins of galena ore (lead) that had much to do with the early development of this section of
Mllinois.

The park contains such wildlife as deer, squirrels, rabbits, raccoons, badgers, eagles, hawks, and
47 varieties of birds. At least 14 different ferns, over 500 different herbaceous plants, and 165 va-
rieties of flowers can be seen throughout the park. The upper part of the Apple River has been
designated as a biologically significant stream because of the diversity of life within it. Some of the
bluffs within the park are classified as mesic cliff communities. These bluffs are sheltered from
temperature extremes; drip cool, clear limewater; and never see the sun. The species diversity
within the park is due to the combination of location, topographic complexity, and geologic diversity
of the area.

Fishing The Apple River contains a variety of fish, including smallmouth bass, sunfish, crappie,
carp, and suckers. When economically feasible, the Illinois Department of Natural Resources
stocks Apple River with keeper-size trout. The river is one of several in the state where the de-
partment releases this fish. Trout require clean, clear, cold water, and, in the spring, Apple River
meets these requirements. However, normally the fish do not live through the hot summer months
so the stream is stocked on a put-and-take basis.

Trails Five nature trails—Pine Ridge, Tower Rock, River Route, Sunset, and Primrose Trail—
wind through the woods, bluffs, and along the scenic Apple River. Trails average 1.5 miles in

length (fig.17).

For more information on state parks, write to the Illinois Department of Natural Resources, Office of
Public Services, One National Resource Way, Springfield, Illinois 62702-1271, or call 217-782-7454.
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Figure 17 Apple River Canyon State Park (modified from the Illinois Department of
Natural Resources state park brochure).

Water

The telecommunication device for deaf and hearing-impaired natural resources information is 217-
782-9175 for TDD only; the relay number is 800-526-0844. For more information on tourism in Ili-
nois, call the Illinois Department of Commerce and Community Affairs’ Bureau of Tourism at

1-800-2Connect.

History of the Apple River

The Apple River has a drainage area of 262 square miles. As you trace the Apple River to the
southwest, the valley it occupies widens considerably below the confluence of Apple River and
Mill Creek. As the valley widens, the Apple River meanders across this wider mature valley.
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Trowbridge and Shaw (1916) studied this region in considerable detail and surmised that some pe-
culiar characteristics of the valley of Apple River northeast of this locality strongly indicated that a
major drainage change occurred as a result of the Illinois Glacial Episode.

Formation of the Apple River Canyon The following text and accompanying illustrations (fig.
18) explain the series of events that created the present-day drainage system and formed the
Apple River Canyon. The following discussion of the diversion of the Apple River is modified from
Trowbridge and Shaw (1916), Horberg (1950), and Reinertsen et al. (1972).

Figure 18 (A) Pre-Illinois Glacial Drainage. Two networks of streams, one flowing southeast and
the other southwest, drained the area northwest of Stockton before the Illinois Glacial Episode.
The two systems were separated by a drainage divide trending northwest-southeast that was un-
derlain by resistant dolomite of the Galena Group. The divide crossed the area a short distance to
the southwest of the Apple River Canyon State Park. Tributary streams joined master streams
with “V’”’s pointing downstream. Headward growth of two tributaries, one from the northeast (E)
and one from the southwest (W), produced a slight low area, or sag, across the crest of the divide.
Downstream, the distance between the valley walls widened and became less steep toward the
southeast and the southwest along the major streams.

Figure 18 (B) Illinois Glacial Episode Drainage. During the Illinois Glacial Episode, the glacier ad-
vanced westward to the vicinity of Stockton, blocking the drainage that flowed to the southeast,
and a lake formed upstream, to the northwest. Water flowing southeast from the headwaters and
meltwater flowing northwest in the valley from the glacier formed a lake that rose high enough to
discharge across the low sag in the divide that one of its tributaries had formed (E and W in part
A). As the volume of water increased, its downcutting was accelerated by the hard, abrasive rock
fragments carried in the torrents of water. Continued downcutting of the divide eventually drained
the lake and produced a narrow outlet channel or canyon southwestward some 3.5 miles to Lilly
Branch. This nearly straight, deep, narrow, steep-walled canyon is as much as 200 feet deep, 250
to 400 feet wide at the bottom, which is usually full of water, and 1,500 to 1,700 feet wide at the
upper rim. The slope (gradient) of the canyon floor is about 20 feet per mile, or about twice that of
other streams in the area. Only a few short, steep tributaries enter the river in this stretch, which
is characteristic of a youthful stream. The main canyon, therefore, is younger than the valley up-
stream from it.

Figure 18 (C) Post-llinois Glacial Episode Drainage Blockage of the southeast-flowing stream has
persisted because the glacier smeared till across the area and buried its valley. South Fork drain-
age has been reversed and is quite small in relation to the size of its valley, which narrows down-
stream to the northwest. Tributaries in this stream segment now join the larger stream with their
V’s pointing upstream, the reverse of their direction during the pre-Illinois glacial episode. The val-
ley of the North Fork is in keeping with the size of its stream, becoming wider downstream, and its
tributaries join it with V’s pointing downstream. The stream and its valley northwest of the canyon
are crooked (meander), as is the valley below the canyon, which indicates that these portions of
the stream are much older in their development than the canyon segment. The walls of the canyon
remain steep (vertical in most places) because of the Galena dolomite’s resistance to lateral ero-
sion. The canyon bottom is generally water-filled, even during dry weather. Tributaries to the can-
yon are few, short, unbranched, and elevated above the floor to form waterfalls.
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Figure 18. (A) Pre-lllinois glacial episode drainage (modi-
fied from Reinertsen et al.1972). (B) lllinois glacial epi-
sode drainage (modified from Reinertsen et al.1972). (C)
Post-Illinois glacial episode drainage (modified from Rein-
ertsen, Berggren, and Killey 1972).
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Primrose Nature and Sunset Trails

Primrose Nature Trail From the Devil’s Hollow Picnic Shelter, walk to the trail head for the
Primrose Nature Trail by exiting the parking lot and walking east along Canyon Road. Cross the
bridge and note the trail head sign board on the left. The trail head for Sunset Trail is directly
across from the Devil’s Hollow Picnic Shelter parking lot on the west side of the bridge (fig.16).
The round trip distance for both trails is approximately 1.5 miles with an estimated minium hiking
time of 1 hour. Caution: The trails can be very muddy, and logs and roots pose tripping haz-
ards.

A portion of the following descriptions of the natural features along the trails has been modified
from Hiking Illinois by S. L. Post (1997).

Trail Directions Using figure 19 as a guide, begin at the Primrose trail board, and immediately
climb the 99 steps to the top of the bluff [1]. During the upward trek, check out the spring wild-
flowers protruding from the bluff. At the top, follow the trail to the left and pass through a grove of
reforested White Pines. The Canyon Ridge Camping Area is on your right. Flowers called shoot-
ing stars occur along this trail among the White Pines. The campground is out of sight at 0.2 miles,
and the trail passes an overlook of the Apple River on the left [2]. Directly across from the over-
look is a small dolomite prairie restoration.

The overlook is a good spot to view the deep northwest-southeast-trending valley of the North
Fork of the Apple River (fig. 20). At the overlook, swallows swooping for insects are very helpful
in keeping mosquitoes and biting flies at bay. From the overlook, the trail curves right, going
through a grove of big-tooth aspen. A bench is provided just before you head downhill. The trail
passes through a zone of smooth weathered brown chert, a weathered residue of the eroded
Dunleith Formation.

The trail crosses a bridge at 0.3

Primrose Trail

miles [3]. Notice the narrow V- / ; (S)t\i;l ook
shaped valley of this tributary to the I ‘03 3. Bridge
Apple River. This shape is an indi- . . 4. Picnic area

. . 5. Primrose
cation of a young stream. The rapid 6. Sunset Trail
downcutting of the Apple River 7. Canada yew
Canyon left many of its tributaries 8. Downhili siope

at higher elevations, and a number
of waterfalls can be seen along the
Apple River Canyon, especially fol-
lowing a rainfall. After it crosses
the bridge, the trail heads uphill,
through an oak woods with lots of
aspen. In spring look for hepatica,
wild geranium, and wild ginger in
this area. Within a few yards is an-
other bridge crossing. When the
formal trail ends at 0.4 miles, enter
a picnic area [4] (fig. 21). Go left,
meeting with a springtime profusion
of wildflowers. Cross a small

creek, and skirt the bluff on the far Figure 19 Primrose and Sunset trails with referenced locations
side. (modified from Post 1997).

Sunset Trail
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These bluffs are Ordovician age, Galena dolomite, and, where pockets of soil form, plants have
been able to gain a foothold. Look for columbine, ferns, and bird’s-eye primrose in the crevices. In
1909, Herman Pepoon, a botanist, described bird’s-eye primrose as “tinting the bare rock a laven-
der purple with the multitudes of its blossoms.” Bird’s-eye primrose, a northern relic of cooler
times, blooms in early May. Walk along these bluffs to discover these unique plants [5], but be
careful not to fall in the river.

Then retrace your steps across the creek back to where the formal trail ended [4]. At times, when
the water level is low, you may be able to cross Apple River at a ford to access Devil’s Hollow
picnic area. Before heading back along the main trail, look for chipmunks with full cheeks scurry-
ing under large, moss-covered boulders. On the bluff look for Solomon’s seal, Jack-in-the-pulpit,
and prairie trillium. Retrace your steps back to the trail board (1 mile) [1].

Sunset Trail From the Primrose Trail, head west and walk along the edge of the park road (see
figs. 17 and 19). Cross the bridge, taking time to enjoy the canyon from this other angle; on your
left is the trail board for Sunset Trail (1.1 miles) [6].

Climb upward; after a few steps the trail splits. Go left and up again. In the spring, the trail is lined
with wild ginger and anemones. The latter are called wind flowers because their slender stalks al-
ways blow in the wind. The trail follows a narrow ridge that overlooks the river and the park. No-
tice the trees with J-shaped trunks near their base. This trunk shape is an indication that the hill-
side is unstable and is slowly creeping toward the canyon below. At 1.2 miles [7], the low, sprawl-
ing evergreen on either side is Canada yew, a plant that occurs only in North America.

Just before reaching the switchback on the left is a carpet of ferns. Immediately past the ferns is
the entrance to a small cave. Reach down and place your hand over the opening; the air coming
out of this cave is 60 degrees Fahrenheit. At the switchback on the left is a short spur to an over-
look; after viewing, go right and continue upward. You will encounter a pair of benches on the left
near 1.25 miles.

From the first bench you encounter, an undeveloped trail leads west along the top of the bluffs.
The trail proceeds to a narrow V-shaped valley with a series of small waterfalls in the upstream
direction and one large waterfall dropping approximately 30 feet to the bottom of the Apple River
Canyon, forming a large gravel talus fan at the base of the cliff. Retrace your steps back to the
main trail.

From the benches continue along the main trail. You have been hiking among mixed hardwoods
and big-tooth aspen. At 1.35 miles is another bench where the trail goes downward [8]. You have
completed the loop, and the path soon ends at the trail board (1.5 miles) [6]. Return to the Devil’s
Hollow Picnic area parking lot.

STOP 1: Rutherford’s Quarry and Dolomite Prairie (SW, SW, NE, Sec. 27, T29N, R4E, 4th
P.M., Elizabeth NE 7.5-minute Quadrangle, Jo Daviess County). On the day of the field trip, we
will park along the road.

Twin Bridges Road is named for the two bridges that cross over Clear Creek. Just south of the
bridges, Clear Creek splits into east and west branches. A small quarry was operated north of the
bridges and between the two branches of Clear Creek. The quarry is in the Wise Lake Formation
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but this supposition is not confirmed by any record. There are reports that other French explorers
had heard about Native American lead workings in the vicinity of Dubuque, Iowa, as early as
1658. However, Nicholas Perrot, a French commandant and trader who is known to have viewed
their mines in 1682, is credited with the

actual discovery of lead ore. Perrot settled on the east side of the Mississippi in 1690. La Salle
and Father Louis Hennepin explored both the Illinois and Mississipi River valleys in the 1680s. On
a map drawn by Hennepin in 1687, he located a lead mine in the Galena area. In addition, J outel,
who was in the Mississippi Valley in 1687 and who was later to record La Salle’s expedition,
wrote tales of Native American lead mines told by travelers to the “Upper Mississippi.” The first
to exploit these deposits was a Scotch adventurer, John Law. His Company of the West, founded
in Paris in 1717 on the fraudulent claim that the Illinois lead mines were well-developed, collapsed
with a thud, which was heard all over France and went down in history as the “Mississippi
Bubble.” These early galena discoveries eventually led to the development of vital economic
resources hundreds of years later.

Commercial mining by the French and Native Americans continued on a small scale east of the
Mississippi River for the next 100 years. In 1788, the Sac and Fox tribes gave Julien DuBuque
permission to work mines on the west side of the river. DuBuque also opened a mine on the Illi-
nois side near the site of Elizabeth. The lead mining industry continued to grow slowly until 1823,
when it expanded greatly due to the rapid settlement of the area.

The principal lead ore mineral is galena, after which Galena, the county seat and largest city in Jo
Daviess County, was named in 1827. Formerly La Point, Galena was the first city in this region to
organize under a charter. The city grew rapidly as the mining industry expanded. Sphalerite, the
ore of zinc, is also found with the galena, but, until about 1850, galena was the only ore mineral
recovered. Mines in the Galena vicinity were the first in the United States to produce large quanti-
ties of lead ore, and, in 1845, the reported production was 27,000 tons. This tonnage was 90% of
all the lead produced in the United States, then the world’s leading lead producer (Cote et
al.1971).

Early Mining

In the early days of mining, the lead ore was found primarily in rich pockets or in open vertical fis-
sures, both referred to as “crevices.” These crevices occur at or near the ground surface in the
dolomite bedrock that underlies the region. As the mining industry expanded, these rich, easily ex-
ploited crevice lodes became harder to find. The crevices were largely exhausted by 1870, and, as
a result, lead production sharply declined. The search for lead ore was then extended deeper into
the bedrock. Some additional galena was found, but the deep ores consisted primarily of the min-
eral sphalerite. These deeper ores occur in fractures in the dolomite as horizontal and inclined
veins referred to as “flats” and “pitches,” respectively. Sphalerite was first reported in 1839, but
was initially considered useless and was discarded by miners in search of lead ore. However, in
1852, a zinc ore reduction plant was opened near La Salle, and this mineral also became important
to the economic development of the mining district. From 1852 to 1909, the total production of zinc
ore was greater than that of lead ore in the same period (Trowbridge and Shaw 1916).
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STOP 6: Wenzel Mound Quarry (SW, SW, NE, Sec. 2, T28N, R2E, 4th P.M,, Scales Mound
East 7.5-minute Quadrangle, Jo Daviess County). Pull into the quarry and park on the bed of the
quarry. Please wait for instructions from your field trip leaders before you attack the outcrop.

This quarry is operated by Conmat Inc., P.O. Box 750, Freeport, Illinois 60136. Remember, you must
ask for permission before entering this or any other privately owned land.

Description of stratigraphic units exposed in the quarry and shown in figure 29:

Quaternary
Loveland Silt-Peoria Loess
6 feet Mottled light gray and light yellow, clayey silt with manganese nodules and root
casts; weathers medium tan.
3 feet Very dark gray clay and geosol in 8-foot-wide paleo-gully cut into bedrock.
Ordovician
Maquoketa Group
Scales Mound Formation
8 feet Light gray, gray-green mudstone; weathers yellow-brown.

3-6 inches Dark gray, phosphatic grainstone to phosphorite; abundant small fossils; 0.25-
inch rusty zone at top.

3inches  Medium tan, discontinuous fine-grained dolomite.

30inches Dark gray mudstone; weathers light gray to grayish tan.

1 foot Medium dark gray shale.

<3inches Dark gray, phosphatic grainstone to phosphorite; abundant small fossils.

Galena Group
Dubuque Formation
2 feet Tan to brown, fine-grained dolomite, with micro-karst and vugs; sulfide minerals

line some vugs.
20 feet Tan to brown dolomite in 1- to 3-foot beds; some shale partings.

15 feet Light gray to tan, fine-grained dolomite; beds 5 to 15 inches; recognizable pack-
ages of vuggy dolomite overlain by dense dolomite with a hardground
discontinunity at top of package.

0.5inch  Medium to dark gray shale, possible volcanic ash bed; some seeps at this
horizon.

Wise Lake Formation
6inches = Medium to light gray, dense dolomite; marker bed.

>7inches Medium gray, dense dolomite, 1- to 2-foot beds, with some vugs; discontinuous
sulfide mineralization about 30 inches above quarry floor; a number of large
straight cephalopods are present on quarry floor.

The upper part of the quarry exposes a 12-foot-thick section of gray shale and phosphatic sedi-
ments in the lower part of the Maquoketa Group. The base of the shale overlies buff-colored dolo-
mite of the middle Ordovician Dubuque Formation, the uppermost formation of the Galena Group.
The shale exposed here belongs to the Scales Formation, one of several formations into which the
Magquoketa Group has been divided. The type section for the Scales Formation is located in a
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Depauperate Zone The lower bed of phosphate rock forms a crust-like layer on the top of the
Dubuque Formation. This layer of phosphate rock is the famous “depauperate zone” that occurs
widely at the base of the Maquoketa Shale throughout the Midwest. Most of the fossils of the de-
pauperate fauna are very small, usually 0.25 inch or less in diameter. Because of the abundance of
pyrite and carbonaceous material in the phosphatic sediments, many geologists formerly thought
that the fossils had been dwarfed in a restricted marine environment of poorly circulating, oxygen-
deficient waters. However, study has shown that the depauperate fauna consists mostly of normal
size individuals of species that never grew any larger.

One possible explanation for the smali-sized assemblage of fossils is that the depauperate zone
represents a cycle of varying environmental conditions between good and bad living conditions, re-
lated to rapidly changing water depths and chemistry. The fossils are small because they represent
colonies where life started to grow and then conditions changed and they all died, followed by rep-
etitions of life starting and ending. Fossils of different degrees of preservation are found within this
zone. It is thought that fossils that are well dissolved (eroded) represent early colonies that died
when the living conditions became “a stinky bottom dwelling surface.” The better preserved fos-
sils represent later colonies that were subsequently buried by the overlying Maquoketa shale
(Kolata, personal communication 2002).

What is unusual is that so many species of small animals were living together in the same environ-
ment. Forty-four species have been identified in the depauperate fauna, although not all are in any
one place. Among these are species of Ctenodonta, Vanuxemia (pelecypods), Trochonema,
Cyclonema, and Hormotoma (gastropods), which are illustrated on the fossil plate in the back of
the guidebook.

Kolata and Graese (1983) provide a slightly more detailed list of the most abundant and wide-
spread fossils found in the depauperate zone. This list includes Palaeoneio(?) fecunda and
Nuculites neglectus (nuculoid bivalves), Michelinoceras soc/ale (cephalopod), Plagioglypta
iowensis (scaphopod), Liospira (archaeogastropod), Septemchiton (polyplacophoran), Onniella
sp. (orthid brachiopod), and Leptobolus (linguloid brachiopod).

Environment of Deposition The top of the Dubuque Formation is an erosion surface known as
a disconformity. Some geologists prior to deposition of the Maquoketa Shale, the Middle Ordovi-
cian sea had withdrawn or became shallower, and this region was exposed to erosion. The phos-
phatic sediments were deposited on this erosional surface during the early part of the Late Ordovi-
cian re-invasion by the sea. The type of environment in which the Maquoketa phosphates were
deposited is not exactly known, but it probably was not a restricted environment. In modern seas,
phosphatic sediments are forming in unrestricted, open ocean environments at intermediate depths
(200 to 1,000 feet) where bottom waters are freely circulating and well oxygenated. These areas
are usually platforms bordering deep basins from which cold, phosphate-rich waters upwell toward
the surface. Over these relatively shallow platforms, the upwelling basin waters are warmed, re-
sulting in supersaturation of the seawater with dissolved phosphate. This supersaturation causes
chemical precipitation of phosphorite, in the form of crusts or nodules, on the sea floor. The up-
welling waters are also rich in other dissolved nutrients that support the growth of large popula-
tions of microscopic planktonic plants and animals in the surface waters. The plankton extract
phosphate from the seawater during their life processes. When they die, their remains settle to the
bottom, adding additional phosphate and organic carbon to the bottom sediments. Phosphate from
the water also replaces calcium carbonate in the shells of benthonic (bottom dwelling) and plank-
tonic animals that accumulate with the phosphatic sediments.
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Almost no land-derived sediments (sand, silt, or clay) and no limestone are being deposited in
present-day areas of phosphorite deposition. This nondeposition of other sediment types is a very
important factor in the formation of concentrations of phosphorite. Phosphorite accumulates so
slowly that the deposition of large quantities of other sediments would dilute the phosphorite and
prevent its concentration. Phosphorite nodules would not form if they did not remain in contact
with the sea water for a very long time. (On parts of the sea floor off the coast of southern Cali-
fornia, phosphorite nodules similar to those at the base of the Maquoketa Shale are growing at the
rate of only a few millimeters per thousand years.)

Perhaps an environment similar to the modern phosphate environments existed during Late
Ordovician time when the phosphatic nodules and shales of the Maquoketa were deposited. The
phosphate-rich waters associated with this deposit migrated from deep waters. The source was
from the area of the Reelfoot Rift in the deepest part of the Illinois Basin during the Ordovician
(fig. 1). The top phosphate-rich surface of the Galena dolomite can be traced southward toward
Kentucky where it pinches out in western Kentucky (Kolata, personal communication 2002).

At the beginning of the Late Ordovician submergence, very little mud was carried into the sea
from the land while the dark phosphatic shale was being deposited. Sedimentation was especially
slow during the growth of the phosphorite nodules and deposition of the phosphate rock. The con-
centration of phosphate ended when large amounts of mud and silt were washed into the sea from
the land and the overlying non-phosphatic light gray shales and siltstones were deposited. These
sediments are almost barren of fossils because most bottom-dwelling animals could not tolerate
the muddy conditions.

Mining in the Area

To the southeast of the Wenzel Mound Quarry is the abandoned Rockford Mining and Milling
Company mine (NW, SW, Sec. 1, T28N, R2E) located southeast of the junction of the unnamed
tributary and Mill Creek and on the east side of Mill Creek Road. The location of the mine is
shown on a 1:62,500 topographic map of the Galena and Elizabeth Quadrangles (plates 1 and 4,
Trowbridge and Shaw 1916). This old mine had two shafts about 200 feet apart on apparently
separate eastward-striking fractures. Little is known about this ore body except that it is in the
Stewartville Member of the Galena Dolomite, and it was mined between 1905 and 1915 (Heyl et
al. 1959). The Stewartville Member forms the upper massive bedded part of the Wise Lake For-
mation of the Galena Group. This mine’s name is also reported as the Scales Mound and Rockford
Mine. A number of other small exploration pits are located along Mill Creek.

This mine is in the old lead mining area known as the Apple River—Warren District. The ore bod-
ies in this district are generally in mineralized joints and openings, and, at one time, large quantities
of lead were produced from the Stewartville Member of the Wise Lake Formation. A furnace at
Warren produced about 300,000 tons of lead annually from 1872 to 1876 (Heyl et al. 1959).

The east highwall in the quarry contains a number of vertical joints that are filled with gouge. This
clay-rich joint filling also contains some smooth, iron-stained chunks of chert. Although no lead
was found within this joint during the preparation of this field trip, the joints in the highwall help
illustrate the type of geological features that were explored during the Galena Rush.

Because of its early development and long history of mining, the total quantity of galena and zinc
mined in the Driftless Area is uncertain. However, production records for Illinois and Wisconsin

are available from 1940 to 1977, the last year of mining in the area. The 1940 to 1977 cumulative
production of zinc and galena for Illinois was 323,525 tons of zinc, and 30,576 tons of galena and
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for Wisconsin was 567,437 tons of zinc and 46,640 tons of galena. Since the amount of zinc pro-
duced is more than 10 times the amount of galena, you may wonder why this area isn’t called the
Zinc District rather than the Lead District. The first mining in the area was for galena, and zinc
was initially a curse to the early miners, having no value during the early mining period.
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Glossary

The following definitions are adapted in total or in part from several sources. The principal source
is R.L. Bates and J.A Jackson, eds., 1987, Glossary of Geology, 3rd ed.: Alexandria, Virginia,
American Geological Institute, 788 p.

ablation Separation and removal of rock material and formation of deposits, especially by wind
action or the washing away of loose and soluble materials.

age An interval of geologic time; a division of an epoch.
aggraded Built up by deposition.

aggrading stream A stream that is actively depositing sediment in its channel or floodplain
because it is being supplied with more load than it can transport.

alluviated valley One that has been at least partially filled with sand, silt, and mud by flowing
water.

alluvium A general term for clay, silt, sand, gravel, or similar unconsolidated sorted or semisorted
sediment deposited during comparatively recent time by a stream or other body of running
water.

angular unconformity The name of the contact when the beds below the unconformity are tilted
and eroded prior to deposition of overlying beds.

anticline A convex-upward rock fold in which strata have been bent into an arch; the strata on
either side of the core of the arch are inclined in opposite directions away from the axis or
crest; the core contains older rocks than does the perimeter of the structure.

anticlinorium A complex structure having smaller structures, such as domes, anticlines, and
synclines superimposed on its broad upwarp.

aquifer A geologic formation that is water-bearing and that transmits water from one point to
another.

arenite A relatively clean quartz sandstone that is well sorted and contains less than 10% argilla-
ceous material.

argillaceous Said of rock or sediment that contains, or is composed of, clay-sized particles or clay
minerals.

base level Lower limit of erosion of the land’s surface by running water. Controlled locally and
temporarily by the water level of stream mouths emptying into lakes, or more generally and
semipermanently by the level of the ocean (mean sea level).

basement complex The suite of mostly crystalline igneous and/or metamorphic rocks that
generally underlies the sedimentary rock sequence.

basin A topographic or structural low area that generally receives thicker deposits of sediments
than adjacent areas; the low areas tend to sink more readily, partly because of the weight of
the thicker sediments; the term also denotes an area of relatively deep water adjacent to
shallow-water shelf areas.

bed A naturally occurring layer of earth material of relatively greater horizontal than vertical
extent that is characterized by physical properties different from those of overlying and
underlying materials. It also is the ground upon which any body of water rests or has rested,
or the land covered by the waters of a stream, lake, or ocean; the bottom of a stream channel.

bedrock The solid rock (sedimentary, igneous, or metamorphic) that underlies the unconsolidated
(non-indurated) surface materials (for example, soil, sand, gravel, glacial till).
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bedrock valley A drainageway eroded into the solid bedrock beneath the surface materials. It
may be completely filled with unconsolidated (non-indurated) materials and hidden from view.

biota All living organisms of an area; plants and animals considered together.

braided stream A low-gradient, low-volume stream flowing through an intricate network of
interlacing shallow channels that repeatedly merge and divide and are separated from each
other by branch islands or channel bars. Such a stream may be incapable of carrying all of its
load. Most streams that receive more sediment load than they can carry become braided.

calcarenite Describes a limestone composed of more or less worn fragments of shells or pieces
of older limestone. The particles are generally sand-sized.

calcareous Said of a rock containing some calcium carbonate (CaCO,), but composed mostly of
something else (synonym: limey).

calcining The heating of calcite or limestone to its temperature of dissociation so that it loses its
carbon dioxide; also applied to the heating of gypsum to drive off its water of crystallization to
make plaster of Paris.

calcite A common rock-forming mineral consisting of CaCO,; it may be white, colorless, or pale
shades of gray, yellow, and blue; it has perfect rhombohedral cleavage, appears vitreous, and
has a hardness of 3 on the Mohs scale; it effervesces (fizzes) readily in cold dilute hydrochlo-
ric acid. It is the principal constituent of limestone.

capric The top layer of rock.
chert Silicon dioxide (SiO,); a compact, massive rock composed of minute particles of quartz and/
or chalcedony; it is similar to flint, but lighter in color.

clastic Said of rocks composed of particles of other rocks or minerals, including broken organic
hard parts as well as rock substances of any sort, transported and deposited by wind, water,
ice, or gravity.

claypan (soil) A heavy, dense subsurface soil layer that owes its hardness and relative impervi-
ousness to higher clay content than that of the overlying material.

closure The difference in altitude between the crest of a dome or anticline and the lowest
structural or elevation contour that completely surrounds it.

columnar section A graphic representation, in the form of one or more vertical columns, of the
vertical succession and stratigraphic relations of rock units in a region.

conformable Said of strata deposited one upon another without interruption in accumulation of
sediment; beds parallel.

cuesta A ridge with a gentle slope on one side and a steep slope on the other.

delta A low, nearly flat, alluvial land form deposited at or near the mouth of a river where it enters
a body of standing water; commonly a triangular or fan-shaped plain extending beyond the
general trend of a coastline.

detritus Loose rock and mineral material produced by mechanical disintegration and removed
from its place of origin by wind, water, gravity, or ice; also, fine particles of organic matter,
such as plant debris.

disconformity An unconformity marked by a distinct erosion-produced irregular, uneven surface
of appreciable relief between parallel strata below and above the break; sometimes represents
a considerable time interval of nondeposition.

dolomite A mineral, calcium-magnesium carbonate (Ca,Mg[CO,],); also the name applied to
sedimentary rocks composed largely of the mineral. It is white, colorless, or tinged yellow,
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brown, pink, or gray; has perfect rhombohedral cleavage; appears pearly to vitreous; and
effervesces feebly in cold dilute hydrochloric acid.

dome A general term for any smoothly rounded landform or rock mass that roughtly resembles
the dome of a building.

drift All rock material transported by a glacier and deposited either directly by the ice or reworked
and deposited by meltwater streams and/or the wind.

driftless area A 10,000-square mile area in northeastern Iowa, southwestern Wisconsin, and
northwestern Illinois where the absence of glacial drift suggests that the area may not have
been glaciated.

earthquake Ground displacement associated with the sudden release of slowly accumulated
stress in the lithosphere.

end moraine A ridge or series of ridges formed by accumulations of drift built up along the outer
margin of an actively flowing glacier at any given time; a moraine that has been deposited at
the lower or outer end of a glacier.

en echelon Said of geologic features that are in an overlying or staggered arrangement, for
example, faults.

epoch An interval of geologic time; a division of a period (for example, Pleistocene Epoch).

era The unit of geologic time that is next in magnitude beneath an eon; it consists of two or more
periods (for example, Paleozoic Era).

erratic A rock fragment carried by glacial ice and deposited far from its point of origin.

escarpment A long, more or less continuous cliff or steep slope facing in one general direction; it
generally marks the outcrop of a resistant layer of rocks or the exposed plane of a fault that
has moved recently.

esker An elongated ridge of sand and gravel that was deposited by a subglacial or englacial
stream flowing between ice walls or in an ice tunnel and left behind by a melting glacier.

fault A fracture surface or zone of fractures in Earth materials along which there has been
vertical and/or horizontal displacement or movement of the strata on opposite sides relative to
one another.

flaggy Said of rock that tends to split into layers of suitable thickness for use as flagstone.

floodplain The surface or strip of relatively smooth land adjacent to a stream channel produced
by the stream’s erosion and deposition actions; the area covered with water when the stream
overflows its banks at times of high water; it is built of alluvium carried by the stream during
floods and deposited in the sluggish water beyond the influence of the swiftest current.

fluvial Of or pertaining to a river or rivers.

flux A substance used to remove impurities from steel. Flux combines with the impurities in the
steel to form a compound that has a lower melting point and density than steel. This compound
tends to float to the top and can be easily poured off and separated from the molten steel.

formation The basic rock unit, one distinctive enough to be readily recognizable in the field and
widespread and thick enough to be plotted on a map. It describes the strata, such as limestone,
sandstone, shale, or combinations of these and other rock types. Formations have formal
names, such as Joliet Formation or St. Louis Limestone (Formation), generally derived from
the geographic localities where the unit was first recognized and described.

fossil Any remains or traces of a once-living plant or animal preserved in rocks (arbitrarily
excludes recent remains); any evidence of ancient life. Also used to refer to any object that
existed in the geologic past and for which evidence remains (for example, a fossil waterfall)
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fragipan A dense subsurface layer of soil whose hardness and relatively slow permeability to
water are chiefly due to extreme compactness rather than to high clay content (as in claypan)
or cementation (as in hardpan).

friable Said of a rock or mineral that crumbles naturally or is easily broken, pulverized, or reduced
to powder, such as a soft and poorly cemented sandstone.

geest An alluvial material that is not of recent origin lying on the surface.

geology The study of the planet Earth that is concerned with its origin, composition, and form, its
evolution and history, and the processes that acted (and act) upon the Earth to control its
historic and present forms.

geophysics Study of the Earth with quantitative physical methods. Application of the principles of
physics to the study of the earth, especially its interior.

glaciation A collective term for the geologic processes of glacial activity, including erosion and
deposition, and the resulting effects of such action on the Earth’s surface.

glacier A large, slow-moving mass of ice formed on land by the compaction and recrystallization
of snow.

gley horizon A soil developed under conditions of poor drainage that reduced iron and other
elemental contents and results in gray to black, dense materials.

gob pile A heap of mine refuse left on the surface.

graben An elongate, relatively depressed crustal unit or block that is bounded by faults on its long
sides.

gradient A part of a surface feature of the Earth that slopes upward or downward; the angle of
slope, as of a stream channel or of a land surface, generally expressed by a ratio of height
versus distance, a percentage or an angular measure from the horizontal.

gypsum A widely distributed mineral consisting of hydrous calcium sulfate (CaSO, -2H,0).
Gypsum is soft (hardness of 2 on the Mohs scale); white or colorless when pure but com-
monly has tints of gray, red, yellow, blue or brown. Gypsum is used as a retarder in portland
cement and in making plaster of Paris.

hiatus A gap in the sedimentary record.

horst An elongate, relatively uplifted crustal unit or block that is bounded by faults on its long
sides.

igneous Said of a rock or mineral that solidified from molten or partly molten material (that is,
from magma).

indurated Said of compact rock or soil hardened by the action of pressure, cementation, and,
especially, heat.

joint A fracture or crack in rocks along which there has been no movement of the opposing sides
(see also fault).

karst Collective term for the land forms and subterranean features found in areas with relatively
thin soils underlain by limestone or other soluble rocks; characterized by many sinkholes
separated by steep ridges or irregular hills. Tunnels and caves formed by dissolution of the
bedrock by groundwater honeycomb the subsurface. Named for the region around Karst in
the Dinaric Alps of Croatia where such features were first recognized and described.

lacustrine Produced by or belonging to a lake.

Laurasia A protocontinent of the northern hemisphere, corresponding to Gondwana in the south-
ern hemisphere, from which the present continents of the Northern Hemisphere have been
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derived by separation and continental displacement. The supercontinent from which both were
derived is Pangea. Laurasia included most of North America, Greenland, and most of Eurasia,
excluding India. The main zone of separation was in the North Atlantic, with a branch in
Hudson Bay; geologic features on opposite sides of these zones are very similar.

lava Molten, fluid rock that is extruded onto the surface of the Earth through a volcano or fissure.
Also the solid rock formed when the lava has cooled.

limestone A sedimentary rock consisting primarily of calcium carbonate (the mineral, calcite).
Limestone is generally formed by accumulation, mostly in place or with only short transport, of
the shells of marine animals, but it may also form by direct chemical precipitation from solution
in hot springs or caves and, in some instances, in the ocean.

lithify To change to stone, or to petrify; especially to consolidate from a loose sediment to a solid
rock.

lithology The description of rocks on the basis of their color, structure, mineral composition, and
grain size; the physical character of a rock.

local relief The vertical difference in elevation between the highest and lowest points of a land
surface within a specified horizontal distance or in a limited area.

loess A homogeneous, unstratified accumulation of silt-sized material deposited by the wind.

magma Naturally occurring molten rock material generated within Earth and capable of intrusion
into surrounding rocks or extrusion onto the Earth’s surface. When extruded on the surface it
is called lava. The material from which igneous rocks form through cooling, crystallization, and
related processes.

meander One of a series of somewhat regular, sharp, sinuous curves, bends, loops, or turns
produced by a stream, particularly in its lower course where it swings from side to side across
its valley bottom.

meander scars Crescent-shaped swales and gentle ridges along a river’s floodplain that mark the
positions of abandoned parts of a meandering river’s channel. They are generally filled in with
sediments and vegetation and are most easily seen in aerial photographs.

metamorphic rock Any rock derived from pre-existing rocks by mineralogical, chemical, and
structural changes, essentially in the solid state, in response to marked changes in temperature,
pressure, shearing stress, and chemical environment at depth in Earth’s crust (for example,
gneisses, schists, marbles, and quartzites)

mineral A naturally formed chemical element or compound having a definite chemical composi-
tion, an ordered internal arrangement of its atoms, and characteristic crystal form and physical
properties.

monolith (a) A piece of unfractured bedrock, generally more than a few meters across. (b) A
large upstanding mass of rock.

moraine A mound, ridge, or other distinct accumulation of glacial drift, predominantly till, depos-
ited in a variety of topographic land forms that are independent of control by the surface on
which the drift lies (see also end moraine).

morphology The scientific study of form and of the structures and development that influence
form; term used in most sciences.

natural gamma log One of several kinds of measurements of rock characteristics taken by
lowering instruments into cased or uncased, air- or water-filled boreholes. Elevated natural
gamma radiation levels in a rock generally indicate the presence of clay minerals.
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nickpoint A place with an abrupt inflection in a stream profile, generally formed by the presence
of a rock layer resistant to erosion; also, a sharp angle cut by currents at base of a cliff.

nonconformity An unconformity resulting from deposition of sedimentary strata on massive
crystalline rock.

nonlithified Said of unconsolidated materials.

normal fault A fault in which the hanging wall appears to have moved downward relative to the
footwall.

outwash Stratified glacially derived sediment (clay, silt, sand, and gravel) deposited by meltwater
streams in channels, deltas, outwash plains, glacial lakes, and on floodplains.

outwash plain The surface of a broad body of outwash formed in front of a glacier.

overburden The upper part of a sedimentary deposit, compressing and consolidating the material
below.

oxbow lake A crescent-shaped lake in an abandoned bend of a river channel. A precursor of a
meander scar.

paha A low, elongated, rounded glacial ridge or hill consisting mainly of drift, rock, or windblown
sand, silt, or clay but capped with a thick cover of loess.

palisades A picturesque extended rock cliff or line of bold cliffs, rising precipitously from the
margin of a stream or lake.

Pangea The supercontinent that existed from 300 to 200 million years ago. It combined most of
the continental crust of the Earth, from which the present continents were derived by frag-
mentation and movement away from each other by means of plate tectonics. During an
intermediate stage of the fragmentation, between the existence of Pangea and that of the
present widely separated continents, Pangea was split into two large fragments, Laurasia on
the north and Gondwana in the southern hemisphere.

ped Any naturally formed unit of soil structure (for example, granule, block, crumb, or aggregate).

peneplain A land surface of regional scope worn down by erosion to a nearly flat or broadly
undulating plain.

Pentamarus An articulate brachiopod.

period An interval of geologic time; a division of an era (for example, Cambrian, Jurassic, and
Tertiary).

physiographic province (or division) (a) A region, all parts of which are similar in geologic
structure and climate and which has consequently had a unified geologic history. (b) A region
whose pattern of relief features or landforms differs significantly from that of adjacent
regions.

physiography The study and classification of the surface features of Earth on the basis of
similarities in geologic structure and the history of geologic changes.

point bar A low arcuate ridge of sand and gravel developed on the inside of a stream meander by
accumulation of sediment as the stream channel migrates toward the outer bank.

radioactivity logs Any of several types of geophysical measurements taken in boreholes using
either the natural radioactivity in the rocks, or the effects of radiation on the rocks to deter-
mine the lithology or other characteristics of the rocks in the walls of the borehole (for ex-
ample, natural gamma radiation log; neutron density log).

relief (a) A term used loosely for the actual physical shape, configuration, or general uneveness of
a part of Earth’s surface, considered with reference to variations of height and slope or to
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irregularities of the land surface; the elevations or differences in elevation, considered collec-
tively, of a land surface (frequently confused with topography). (b) The vertical difference in
elevation between the hilltops or mountain summits and the lowlands or valleys of a given
regional extent. Formed in places where the forces of plate tectonics are beginning to split a
continent (for example, East African Rift Valley).

rift (a) A narrow cleft, fissure, or other opening in rock made by cracking or splitting; (b) a long,
narrow continental trough that is bounded by normal faults—a graben of regional extent.

sediment Solid fragmental matter, either inorganic or organic, that originates from weathering of
rocks and is transported and deposited by air, water, or ice or that is accumulated by other
natural agents, such as chemical precipitation from solution or secretion from organisms.
When deposited, sediment generally forms layers of loose, unconsolidated material (for
example, sand, gravel, silt, mud, till, loess, and alluvium).

sedimentary rock A rock resulting from the consolidation of loose sediment that has accumu-
lated in layers (for example, sandstone, siltstone, mudstone, and limestone).

shoaling Said of an ocean or lake bottom that becomes progressively shallower as a shoreline is
approached. The shoaling of the ocean bottom causes waves to rise in height and break as
they approach the shore.

silt A rock fragment or detrital particle smaller than a very fine sand grain and larger than coarse
clay, having a diameter in the range of 4 to 62 microns; the upper size limit is approximately
the smallest size that can be distinguished with the unaided eye.

sinkhole Any closed depression in the land surface formed as a result of the collapse of the
underlying soil or bedrock into a cavity. Sinkholes are common in areas where bedrock is near
the surface and susceptible to dissolution by infiltrating surface water. Sinkhole is synonymous
with “doline,” a term used extensively in Europe. The essential component of a hydrologically
active sinkhole is a drain that allows any water that flows into the sinkhole to flow out the
bottom into an underground conduit.

slip-off slope Long, low, gentle slope on the inside of a stream meander. The slope on which the
sand that forms point bars is deposited.

stage, substage Geologic time-rock units; the strata formed during an age or subage, respec-
tively. Generally applied to glacial episodes (for example, Woodfordian Substage of the
Wisconsinan Stage.

stratigraphic unit A stratum or body of strata recognized as a unit in the classification of the
rocks of Earth’s crust with respect to any specific rock character, property, or attribute or for
any purpose such as description, mapping, and correlation.

stratigraphy The study, definition, and description of major and minor natural divisions of rocks,
particularly the study of their form, arrangement, geographic distribution, chronologic succes-
sion, naming or classification, correlation, and mutual relationships of rock strata.

stratum A tabular or sheet-like mass, or a single, distinct layer of material of any thickness,
separable from other layers above and below by a discrete change in character of the mate-
rial, a sharp physical break, or both. The term is generally applied to sedimentary rocks but
could be applied to any tabular body of rock (see also bed).

subage A small interval of geologic time; a division of an age.

syncline A convex-downward fold in which the strata have been bent to form a trough; the strata
on either side of the core of the trough are inclined in opposite directions toward the axis of
the fold; the core area of the fold contains the youngest rocks (see also anticline).
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system A fundamental geologic timeBrock unit of worldwide significance; the strata of a system
are those deposited during a period of geologic time (for example, rocks formed during the
Pennsylvanian Period are included in the Pennsylvanian System).

tectonic Pertaining to the global forces that cause folding and faulting of the Earth’s crust; also
used to classify or describe features or structures formed by the action of those forces.

tectonics The branch of geology dealing with the broad architecture of the upper (outer) part of
Earth; that is, the major structural or deformational features, their origins, historical evolution,
and relations to each other. It is similar to structural geology, but generally deals with larger
features such as whole mountain ranges or continents.

temperature-resistance log A borehole log, run only in water-filled boreholes, that measures the
water temperature and the quality of groundwater in the well.

terrace An abandoned floodplain formed when a stream flowed at a level above the level of its
present channel and floodplain.

till Nonlithified, nonsorted, unstratified drift deposited by and underneath a glacier and consisting
of a heterogenous mixture of different sizes and kinds of rock fragments.

till plain The undulating surface of low relief in an area underlain by ground moraine.

topography The natural or physical surface features of a region, considered collectively as to
form; the features revealed by the contour lines of a map.

unconformable Said of strata that do not succeed the underlying rocks in immediate order of age
or in parallel position. A general term applied to any strata deposited directly upon older rocks
after an interruption in sedimentation, with or without any deformation and/or erosion of the
older rocks.

unconformity A substantial break or gap in the geologic record where a rock unit is overlain by
another that is not next in stratigraphic successsion.

underfit stream A misfit stream that appears to be too small to have eroded the valley in which it
flows. It is a common result of drainage changes effected by stream capture, by glaciers, or
by climate variations.

valley train The accumulation of outwash deposited by rivers in their valleys downstream from a
glacier.

water table The point in a well or opening in the Earth where groundwater begins. It generally
marks the top of the zone where the pores in the surrounding rocks are fully saturated with
water.

weathering The group of processes, both chemical and physical, whereby rocks on exposure to
the weather change in character and decay and finally crumble into soil.
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42°N

ZINC AND LEAD DEPOSITS OF NORTHWESTERN ILLINOIS
Principal Mineralized Area

The principal mineralized area in which the zinc and lead deposits in northwestern Illinois have
been found occurs in Jo Daviess County in a belt 5 to 10 miles wide and 15 miles long (fig. Al).
The belt extends approximately northeast through Galena, from the Mississippi River to the Wis-
consin state line. Lead ore has also been mined near Elizabeth, Apple River, Warren, and at other
places in Jo Daviess County. These occurrences increase the known mineralized district to include
most of the county. Small amounts of lead ore are also reported to have been mined outside of this
area near Freeport in Stephenson County and near Mount Carroll in Carroll County.

Stratigraphic Position of Ore Deposits

The zinc and lead ore deposits occur in the middle Ordovician carbonate formations of the Galena
and Platteville Groups (Champlainian Series) of the Ordovician System (fig. A2). The major de-
posits of zinc ore (sphalerite, ZnS) are found in the lower part of the Galena Group, which includes
the “Drab,” “Gray,” and “Blue” zones of the Dunleith Formation; the “oil rock” or
Guttenberg Formation; and the “clay bed” or Spechts Ferry Formation. Some deposits are
found in the “glass rock” or Quimby’s Mill Formation, which is in the top of the Platteville Group.
These deposits are mainly of the flat-and-pitch type.

The major deposits of lead ore (galena, PbS) containing little associated sphalerite are found prin-
cipally in the upper part of the Galena Group. This includes the top half of the Dunleith (“Drab”)

and the overlying Wise Lake Formation (“Buff”). These deposits are of the crevice type. Locally,
the lead ore may grade into the mixed lead-zinc ore, especially in the lower part of the Wise Lake

Formation.
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Figure A1 Zinc and lead district in northwestern Illinois.
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Figure A2 Generalized sequence of strata in the Galena area.
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The crevice deposits of the upper miner- -
alized zone occur as fissure fillings along —%{i -
joints that are oriented mainly in an east- - _'
west direction (fig. A4).The crevices are =
actually vertical fissures, or cavities, that

were opened up along the joints by solu-

tion of the dolomite. Along a typical crev-

. ; Clay and
ice, the minable ore occurs as pods or rotfed
lenses, which range from a few feettoa  dolomite
few hundred feet long, scattered along £ 7
the strike of the joints. The ore bodies / Dolomite  / &t 7 /-
are generally only a few inches to a few / I / /Y /

feet wide, but where there are two or

more closely spaced crevices, they ex- Figure A4 Crevice ore bodies. Crevice A reaches the
tend over widths of 30 feet or more. The  ground surface and is filled with clay; B is only partially
ore is usually pure galena, but locally it clay-filled.

may grade to mixtures of galena and

sphalerite.
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Shallow crevice deposits were the principal source of lead ore in the United States between 1820
and 1865. These deposits were easily discovered in partial exposures along stream valleys. They
were also discovered by the presence of residual accumulations of ore where erosion had inter-
sected mineralized joints. In some cases, the topographic expression of crevices as shallow de-
pressions led to the discovery of ore bodies. When these easily exploited deposits were depleted,
lead ore production declined sharply. During the later years of production, zinc ore was the chief
mineral commodity of the area, and it was obtained almost exclusively from the larger, deeper flat-
and-pitch deposits. The last operating mine in northwestern Illinois, which was located south of
Galena, was closed in 1973.

Origin of Ore Deposits

The origin of the ore bodies is still in question. An early theory that was widely accepted is the
“cold water theory.” In this theory, lead and zinc minerals were assumed to be present in trace
quantities disseminated throughout the Galena Dolomite or higher rock units. The lead and zinc
were originally supposed to have been deposited with the carbonate rocks when they were pre-
cipitated from the ancient Ordovician sea more than 400 million years ago. Percolating ground-
water then dissolved the lead and zinc minerals from these rocks and carried them downward to
be reprecipitated in openings in the strata where the ore is now found.

The theory now generally favored by geologists is emplacement by warm solutions emanating
from deeply buried strata. The warm, mineralized solutions ascended until they encountered the
cavernous, jointed Champlainian (middle Ordovician) rocks that had the proper temperature-pres-
sure conditions to allow the precipitation of the lead and zinc sulfides. The neutralizing effect of
carbonate-rich groundwater on the acid-sulfide-bearing solutions could also have been partly re-
sponsible. These ideas may explain why the ore bodies are restricted to such a narrow vertical in-
terval of Ordovician strata. However, the absence of deep downward extensions of ore and major
faults that could have provided access to the rising solutions has not been resolved.
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The open fissures in which the crevice ores were deposited and the synclinal structures associated
with the flat-and-pitch ore bodies are solutional in origin and were formed before ore emplace-
ment. Whether solution was by meteoric groundwater or by warm solutions from depth has not
been definitely determined. If the latter is true, the openings might have been formed contempora-
neously with ore deposition.

Prospecting for Ore Deposits

The long, fairly narrow ore bodies in the Upper Mississippi Valley Zinc and Lead District, espe-
cially the deeper ore bodies, are difficult to find. To extend the life of the mining district, new re-
serves must be found. Geophysical and geochemical methods have been used in the exploration
for ore deposits, but with limited success. Drilling is the most commonly used means of prospect-
ing for lead and zinc ores and is currently the most effective method of searching for the deep ore
bodies. Drilling is used to explore the trends of known ore deposits and to search for new ore bod-
ies in previously untested areas.

Most prospecting for lead and zinc ores in northwestern Illinois has consisted largely of drilling in
areas of old shallow lead diggings, along the trends of known deeper ore bodies, and in the vicini-
ties of occasional water wells that happen to penetrate ore. Wildcat holes drilled in unproven
ground outside areas of known ore deposits have been relatively few. Many interrelated geologic
factors must be evaluated by the geologist before deciding where to drill such exploratory holes.

There are two principal methods of drilling deep holes: churn drilling and rotary drilling with a dia-
mond bit.

Churn drilling Churn drilling, also known as cable-tool drilling, is much less expensive than dia-
mond drilling and has been widely used in the area for deep prospecting. Vertical holes 6 inches in
diameter are drilled by a heavy steel, rock-cutting bit, suspended from a steel cable that is at-
tached to the controlling machinery at the surface. The heavy bit is alternately lifted and dropped,
and the rock is penetrated by the repeated blows of the bit. The broken rock is periodically bailed
from the hole, and samples of the rock chips are saved for examining or assaying.

Diamond drilling Diamond drilling provides better rock samples than those obtained by churn
drilling. The cores obtained are continuous samples, or a column, of the rock interval penetrated by
the bit. In soft or fractured rock, often in critical zones of mineralization where samples are most
desired, an incomplete sample may be recovered in some intervals because of poor core recovery.
A definite advantage of diamond drilling is the ability to drill inclined holes. Drilling is accomplished
by means of a small-diameter diamond bit attached to a column of pipe called the drill stem. The
bit cuts through the rock when the driil stem is rotated by the power machinery at the surface.
Water or a water-oil mixture is pumped down the inside of the drill stem under pressure to cool
and lubricate the diamond bit. The water also flushes out crushed rock from the bottom of the hole
and carries it up the drill hole to the surface. The rock core enters the hollow drill stem, where it is
surrounded by the coolant as the bit cuts downward, and the core remains there until it is retrieved
when the drill stem is pulled out of the hole. The diameter of the drill stem and bit are usually de-
creased periodically as the hole deepens, depending on the depth to be drilled.
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