# SUBSIDENCE INVESTIGATIONS OVER A HIGH-EXTRACTION RETREAT MINE IN WILLIAMSON COUNTY, ILLINOIS: FINAL REPORT



B. B. Mehnert, D. J. Van Roosendaal, R. A. Bauer, D. Barkley, and E. Gefell

Illinois Mine Subsidence Research Program

1994 IMSRP ₩ IX

cooperating agencies ILLINOIS STATE GEOLOGICAL SURVEY Illinois Department of Energy and Natural Resources BUREAU OF MINES United States Department of the Interior

# SUBSIDENCE INVESTIGATIONS OVER A HIGH-EXTRACTION RETREAT MINE IN WILLIAMSON COUNTY, ILLINOIS: FINAL REPORT

B. B. Mehnert, D. J. Van Roosendaal, R. A. Bauer, D. Barkley, and E. Gefell

Illinois Mine Subsidence Research Program

1994 IMSRP 101 1 X

ILLINOIS STATE GEOLOGICAL SURVEY Morris W. Leighton, Chief

Natural Resources Building 615 East Peabody Drive Champaign, IL 61820-6964

The **Illinois Mine Subsidence Research Program** (IMSRP) was established in 1985 to investigate methods and develop guidelines for underground mining operations that aim to maximize coal extraction yet preserve the productivity of prime farmland. The research program was initiated by the Illinois Coal Association and the Illinois Farm Bureau.

The Illinois State Geological Survey, a division of the Illinois Department of Energy and Natural Resources, directed the IMSRP. Participating research institutions included Southern Illinois University at Carbondale, the University of Illinois at Urbana–Champaign, Northern Illinois University, and the Illinois State Geological Survey. A 5-year Memorandum of Agreement, signed by the State of Illinois and the Bureau of Mines, U. S. Department of the Interior, ensured collaboration, cooperation, and financial support through 1991. Major funding was also provided by the Illinois Coal Development Board.

This publication is one in a series printed and distributed by the Illinois State Geological Survey as a service to the IMSRP.

Printed by authority of the State of Illinois/1994/800

# CONTENTS

| ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                  |
| Scope and Purpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                  |
| Background and Previous Studies<br>Natural resources affected by mine subsidence<br>Methods of mining<br>Overburden fracturing<br>Hydrogeologic effects<br>Surface subsidence characteristics                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>1<br>1<br>2<br>2                                                                              |
| Physical Setting<br>Site selection<br>Physiography<br>Surficial geology<br>Bedrock stratigraphy and structure<br>Hydrogeology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3<br>3<br>5<br>5<br>5<br>5                                                                         |
| Mine Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                  |
| GEOTECHNICAL MONITORING PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                  |
| Introduction<br>Instrument layout<br>Mine operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br>7<br>8                                                                                        |
| Surface Subsidence and Deformation Monitoring<br>Surveying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8<br>8<br>10                                                                                       |
| intplates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    |
| Overburden Characterization<br>Exploratory drilling<br>Laboratory testing for intact rock properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11<br>11<br>11                                                                                     |
| Overburden Characterization<br>Exploratory drilling<br>Laboratory testing for intact rock properties<br>Overburden Deformation Monitoring<br>Multiple-position borehole extensometer<br>Time-domain reflectometry                                                                                                                                                                                                                                                                                                                                                                                                   | 11<br>11<br>11<br>12<br>12<br>13                                                                   |
| Overburden Characterization<br>Exploratory drilling<br>Laboratory testing for intact rock properties<br>Overburden Deformation Monitoring<br>Multiple-position borehole extensometer<br>Time-domain reflectometry<br>Hydrogeologic Investigations<br>Drift piezometers<br>Bedrock observation wells                                                                                                                                                                                                                                                                                                                 | 11<br>11<br>12<br>12<br>13<br>14<br>14<br>14                                                       |
| Overburden Characterization<br>Exploratory drilling<br>Laboratory testing for intact rock properties<br>Overburden Deformation Monitoring<br>Multiple-position borehole extensometer<br>Time-domain reflectometry<br>Hydrogeologic Investigations<br>Drift piezometers<br>Bedrock observation wells<br>MONITORING PROGRAM RESULTS                                                                                                                                                                                                                                                                                   | 11<br>11<br>12<br>12<br>13<br>14<br>14<br>14<br>14                                                 |
| Overburden Characterization<br>Exploratory drilling<br>Laboratory testing for intact rock properties<br>Overburden Deformation Monitoring<br>Multiple-position borehole extensometer<br>Time-domain reflectometry<br>Hydrogeologic Investigations<br>Drift piezometers<br>Bedrock observation wells<br>MONITORING PROGRAM RESULTS<br>East Cluster<br>Surveying and subsidence characteristics<br>Overburden deformation monitoring<br>Hydrogeologic investigations                                                                                                                                                  | 11<br>11<br>12<br>12<br>13<br>14<br>14<br>14<br>17<br>18<br>19<br>21                               |
| Overburden Characterization<br>Exploratory drilling<br>Laboratory testing for intact rock properties<br>Overburden Deformation Monitoring<br>Multiple-position borehole extensometer<br>Time-domain reflectometry<br>Hydrogeologic Investigations<br>Drift piezometers<br>Bedrock observation wells<br>MONITORING PROGRAM RESULTS<br>East Cluster<br>Surveying and subsidence characteristics<br>Overburden deformation monitoring<br>Hydrogeologic investigations<br>West Cluster<br>Surveying and subsidence characteristics<br>Hydrogeologic investigations                                                      | 11<br>11<br>12<br>12<br>13<br>14<br>14<br>14<br>17<br>18<br>19<br>21<br>24<br>24<br>25             |
| Overburden Characterization<br>Exploratory drilling<br>Laboratory testing for intact rock properties<br>Overburden Deformation Monitoring<br>Multiple-position borehole extensometer<br>Time-domain reflectometry<br>Hydrogeologic Investigations<br>Drift piezometers<br>Bedrock observation wells<br>MONITORING PROGRAM RESULTS<br>East Cluster<br>Surveying and subsidence characteristics<br>Overburden deformation monitoring<br>Hydrogeologic investigations<br>West Cluster<br>Surveying and subsidence characteristics<br>Hydrogeologic investigations<br>CONCLUSIONS                                       | 11<br>11<br>12<br>12<br>13<br>14<br>14<br>14<br>17<br>18<br>19<br>21<br>24<br>25<br>25             |
| Overburden Characterization<br>Exploratory drilling<br>Laboratory testing for intact rock properties<br>Overburden Deformation Monitoring<br>Multiple-position borehole extensometer<br>Time-domain reflectometry<br>Hydrogeologic Investigations<br>Drift piezometers<br>Bedrock observation wells<br>MONITORING PROGRAM RESULTS<br>East Cluster<br>Surveying and subsidence characteristics<br>Overburden deformation monitoring<br>Hydrogeologic investigations<br>West Cluster<br>Surveying and subsidence characteristics<br>Hydrogeologic investigations<br>CONCLUSIONS<br>RECOMMENDATIONS                    | 11<br>11<br>12<br>12<br>13<br>14<br>14<br>14<br>17<br>18<br>19<br>21<br>24<br>25<br>25<br>27       |
| Overburden Characterization<br>Exploratory drilling<br>Laboratory testing for intact rock properties<br>Overburden Deformation Monitoring<br>Multiple-position borehole extensometer<br>Time-domain reflectometry<br>Hydrogeologic Investigations<br>Drift piezometers<br>Bedrock observation wells<br>MONITORING PROGRAM RESULTS<br>East Cluster<br>Surveying and subsidence characteristics<br>Overburden deformation monitoring<br>Hydrogeologic investigations<br>West Cluster<br>Surveying and subsidence characteristics<br>Hydrogeologic investigations<br>CONCLUSIONS<br>RECOMMENDATIONS<br>ACKNOWLEDGMENTS | 11<br>11<br>12<br>12<br>13<br>14<br>14<br>14<br>17<br>18<br>19<br>21<br>24<br>25<br>25<br>27<br>27 |

# APPENDIXES

| A Overburden Characterization                            |                                       | 32       |
|----------------------------------------------------------|---------------------------------------|----------|
| Geotechnical Core Log                                    | y Results                             | 32       |
| B MPBX Readings and Calcula<br>East Cluster MPBX Reading | tions for Both Clusters               | 47<br>47 |
| West Cluster MPBX Reading                                | ngs and Calculations                  | 50       |
| C Surveying Data                                         |                                       | 51       |
| Survey Coordinates for East                              | st Cluster Instruments and Monuments  | 51       |
| Survey Coordinates for We                                | est Cluster Instruments and Monuments | 54       |
| D Elevation Changes due to Su                            | Ibsidence                             | 57       |
| Elevation Changes of East                                | Cluster Instruments                   | 57       |
| Elevation Changes of Wes                                 | t Cluster Instruments                 | 60       |
| E Water Level Readings and P                             | recipitation Data                     | 63       |
| Piezometer Water Level Re                                | eadings, East Cluster                 | 63       |
| Piezometer Water Level Re                                | eadings, West Cluster                 | 65       |
| Precipitation Data from Ma                               | rion Station                          | 67       |

#### FIGURES

| 110 |                                                                                     |     |
|-----|-------------------------------------------------------------------------------------|-----|
| 1   | Two high-extraction techniques commonly used to remove coal                         | 2   |
| 2   | Approximate location of site in Williamson County, Illinois                         | 3   |
| З   | Generalized stratigraphic column of the Carbondale and Modesto Formations           | • 4 |
| 4   | The Cottage Grove and other major fault systems of southern Illinois                | 6   |
| 5   | Partial mine map showing the monitored panel and adjacent workings                  | 7   |
| 6   | Instrumentation layout superimposed over the mine panel                             | 8   |
| 7   | Schematic map of east cluster instrument location and surface crack location        | 9   |
| 8   | Schematic map of west cluster instrument location                                   | 9   |
| 9   | Frost-free monument and rebar monument design                                       | 10  |
| 10  | General tiltplate installation                                                      | 11  |
| 11  | Multiple-position borehole extensometer installation                                | 13  |
| 12  | Schematic of original TDR installation                                              | 15  |
| 13  | Schematic of TDR installation with revised cable anchor                             | 16  |
| 14  | Schematic of piezometer and observation well installation                           | 17  |
| 15  | Subsidence profile characteristics of a longitudinal line for the east cluster area | 18  |
| 16  | Vertical drop of each MPBX anchor for the east cluster                              | 19  |
| 17  | Amount of strain measured between MPBX anchors                                      | 20  |
| 18  | Deformation history of TDR cable at the east cluster                                | 21  |
| 19  | Photo of the east cluster TDR cable                                                 | 22  |
| 20  | Piezometric response of the drift piezometers (east cluster)                        | 23  |
| 21  | Piezometric response of the bedrock piezometers (east cluster)                      | 24  |
| 22  | Piezometric response of the drift piezometers (west cluster)                        | 25  |
| 23  | Piezometric response of the bedrock observation wells (west cluster)                | 26  |
|     |                                                                                     |     |

# TABLES

| 1 | Summary of overburden unit thickness and thickness ranges      | 6  |
|---|----------------------------------------------------------------|----|
| 2 | Summary of subsurface overburden movements in the east cluster | 22 |

## ABSTRACT

The effects of high-extraction retreat (HER) mining on the overburden were investigated using two instrument clusters placed over one HER panel in Williamson County, Illinois. The amount, extent, and location of fracturing in the bedrock were measured, and the effects of the fracturing on the local hydrogeology were examined. Instruments used included surface monuments, piezometers, extensometers, and two time-domain reflectometry cables. The Illinois State Geological Survey (ISGS) monitored the panel before, during, and after subsidence. This was the first time such information was collected over an HER operation in Illinois. This site is one of three investigated under the Illinois Mine Subsidence Research Program to study the effects of mining on the overburden.

#### INTRODUCTION

#### **Scope and Purpose**

High-extraction mining techniques are being used more frequently in Illinois to maximize coalmining productivity and to decrease the cost of the delivered product. Underground coal extraction by these techniques causes immediate collapse of the overburden and subsidence of the ground surface. Farmland and water resources may be affected by surface subsidence. The Illinois Mine Subsidence Research Program (IMSRP) was created to address these concerns. This study is one of several projects performed under the IMSRP with funding from the U.S. Bureau of Mines, Illinois Department of Energy and Natural Resources Coal Development Board, and the Office of Surface Mining.

The purpose of this investigation was to study the effects of high-extraction retreat (HER) mining on the overburden. Two instrument clusters were installed over an HER panel to investigate the following: subsidence of the ground surface; amount, extent, and location of fracturing in the bedrock overburden; and hydrogeologic changes caused by bedrock deformations. Surface monuments, piezometers, extensometers, and two time-domain reflectometry cables were used to monitor overburden and ground surface response. The Illinois State Geological Survey (ISGS) monitored the panel before, during, and after subsidence. This was the first time such information was collected over an HER operation in Illinois.

This report summarizes the geotechnical monitoring program and the results of monitoring throughout a 3-year period. Unfortunately, the mining company did not complete the panel and only onehalf of the instrumentation was undermined. The undermined instruments were located near the start of the panel.

## **Background and Previous Studies**

**Natural resources affected by mine subsidence** Illinois is the second largest producer of agricultural commodities and the fifth largest producer of coal in the United States. Problems sometimes occur in ensuring that both the farmland and the coal resources are used to their maximum potential. Subsidence-induced ground movements modify surface drainage, which may affect crop yields of the gently rolling farmland. Clearly, coal and farmland are valuable resources and important to the state's economy. Mine operators are required to manage the impacts of underground mining on near-surface hydrology and surface-drainage patterns.

**Methods of mining** Two high-extraction mining methods, HER and longwall, are used in Illinois; each produces immediate, planned subsidence. Figure 1 shows the configuration of the two high-extraction mining methods commonly used. These two methods differ in the amount of fracturing and hydrologic changes caused in the overburden and the amount of damage produced in surface structures.

High-extraction retreat methods are similar to room and pillar mining techniques except that pillars are removed on retreat. In this type of operation, small sections of the panel collapse and subside as they are extracted. The roof may stay up until several hundred feet have been mined out and then collapse. In contrast, the longwall method removes all the coal across a wide working face, which is temporarily supported by hydraulic shields. A double row of pillars separates the panels. The entryways of the pillars are used for ventilation and transportation. As the mine face advances, the overburden behind the shields is left unsupported and collapses into the void. Surface subsidence immediately follows this collapse.

**Overburden fracturing** Coe and Stowe (1984), Ming-Gao (1982), and Whitworth (1982) investigated the location and amount of fracturing in subsided bedrock over longwall operations in Ohio



high-extraction retreat

longwall

Figure 1 Two high-extraction techniques commonly used to remove coal. Both result in controlled surface subsidence.

(USA), Jiangsu Province (China), and South Staffordshire Coalfield (United Kingdom), respectively. Before the IMSRP efforts, Conroy (1980) performed the only study concerning fracturing above a high-extraction mining operation in Illinois. He grouted two time-domain reflectometry (TDR) cables into boreholes that extended from the ground surface into a 625-foot-deep longwall mine. Conroy found that the bedrock movements severed one of the cables within 100 to 150 feet of the surface.

**Hydrogeologic effects** Fracturing of the overburden may affect water-bearing formations by creating voids and increasing secondary permeability as found in the Appalachian Plateau of Pennsylvania (Booth 1986). In a study in England, Garritty (1982) suggested that fracturing of the bedrock up to the surface may hydrologically connect an aquifer or surface water body with the mine. While studying a mine roof in Illinois, Cartwright and Hunt (1978) observed localized, open, vertical joints that had been caused by faulting; they speculated that these joints could provide a direct passage for water from higher strata in the immediate roof. These fractures were discontinuous, however, and did not provide any hydrologic connection to the surface. In another study in Illinois, Nieto (1979) found that mines with faults showed no leakage, even though they were located about 600 feet under the Rend Lake reservoir. Similarly, subsequent studies in Illinois (Brutcher et al. 1990, Van Roosendaal et al. 1990, Booth and Spande 1990) have shown that discontinuous, localized fracturing caused by strains in the bedrock may occur without any hydrologic connections to the surface.

Before this study was initiated, the hydrogeologic effects of subsidence were investigated by several researchers (Coe and Stowe 1984, Duigon and Smigaj 1985, Garritty 1982, Owili-Eger 1983, Pennington et al. 1984, Sloan and Warner 1984). In studies of the Appalachian Plateau by Coe and Stowe (1984), Booth (1986), and Pennington et al. (1984), drops in water level were observed in wells that were undermined using the longwall method. Water levels partially or completely recovered, however, several months after being undermined by the longwall method (Owili-Eger 1983). Subsequent studies in Illinois by Pauvlik and Esling (1987), Brutcher et al. (1990), and Booth and Spande (1991) have also documented similar observations. Booth and Spande (1991) also determined that aquifer characteristics of an originally poor aquifer actually improved after mining.

**Surface subsidence characteristics** Planned subsidence is produced by both the HER and longwall methods of mining. Two types of surface subsidence profiles, static and dynamic, are produced during high-extraction mining (Kratzsch 1983). The static profile reflects the final changes in elevation after subsidence. Static profiles are generally measured transverse to the panel to show the final shape



Figure 2 Approximate location of site in Williamson County, Illinois.

of the subsidence trough. Dynamic profiles are documented as surface subsidence occurs. For instance, longitudinal survey lines are used to document the dynamic traveling subsidence wave that develops on the ground surface behind the advancing mine face. Near the sides of the panels, the progression from dynamic to static subsidence is complex (Van Roosendaal et al. 1991).

Strain and slope characteristics of the two different profiles are unique and depend on the overburden properties and the rate of mining. Kratzsch (1983) states that a fast rate of advance in viscoelastic strata produces a flatter dynamic profile; strain and slope values are greatly reduced, as compared with those of the static profile. If the strata are fractured and loose, however, the dynamic profile becomes much more severe as mining-advance rates increase.

## **Physical Setting**

**Site selection** Several factors were considered during the site selection process. First, an HER mine had to be available for study within a reasonable time frame. It was essential that instruments be installed well before the site was undermined so that site characterization and base-line data collection could take place. Next, the full cooperation of the mine operators and surface owners was required. Formal agreements with these parties were negotiated prior to initiation of work. Finally, the site had to be accessible and well suited for both instrument installation and long-term monitoring.

The above criteria were used to select an HER panel in northeastern Williamson County, Illinois. Figure 2 shows the approximate location of the mine panel about 2 miles east-southeast of the town of Pittsburg in the southwest quarter of Section 6, T9S, R4E, of the 3rd Principal Meridian (Pittsburg Quadrangle).

**Physiography** The study site is located in the Mount Vernon Hill Country physiographic division of Illinois (Leighton et al. 1948). The geomorphology of the area is characteristic of a maturely dissected, sandstone-shale plain of low relief mantled by thin (<40 feet) Illinoian drift. Restricted uplands and broad alluviated valleys occur along the larger streams.

Surface topography above the panel is gently rolling. The maximum relief is about 40 feet. Surface elevations range from about 480 to about 520 feet above mean sea level (msl) and slopes vary from less than 3% to more than 18%. The topography in the area is primarily bedrock controlled (Horberg 1950). Bedrock features are modified, however, by glacial action and somewhat subdued by a thin mantle of deeply eroded drift that covers the region (Leighton et al. 1948).



**Figure 3** Generalized stratigraphic column of the Carbondale and Modesto Formations. The column was derived from one core log taken at the study site.

Dendritic drainage is predominantly bedrock-controlled in the vicinity of the panel site (MacClintock 1929). Upland areas are generally well drained, although some of the broad lowlands are poorly drained (Leighton et al. 1948). The surface above the panel is a well drained upland north of the watershed divide between the Big Muddy River Drainage Basin and the Saline River Drainage Basin to the east. The surface above the mine panel drains generally northwestward into Crab Orchard Creek. **Surficial geology** The surficial geology at the study site consists of deeply eroded Illinoian till overlain by 3.3 to 4.6 feet of loess. Alluvial sand, silt, gravel, and clay are found in the bottomlands. Some lacustrine deposits are located downstream from the study area along Crab Orchard Creek. Outcrops of bedrock are rare and of limited extent; they are predominantly located low on the valley walls (MacClintock 1929). Glacial drift thickness may have substantial local variations, but as available borehole data indicate, it generally ranges from about 14 to 60 feet.

Å,

Soils found in the area include the Belknap silt loam, the Hickory-silt-loam-Ava-silt-loam complex, and the Ava silt loam (Feherenbacher and Odell 1959). The light-colored, acidic Belknap silt loam developed in the alluvium bottomlands where slopes are less than 1.5%. Belknap soils are characterized by poor drainage. The Hickory-silt-loam-Ava-silt-loam complex is found on slopes of 10% to 18% in loess and Illinoian till. It is developed under forest vegetation. The light-colored Hickory silt loam developed in 1llinoian till on the lower, steeper parts of the slopes. Ava silt loam generally developed in 40 to 60 inches of loess over leached Illinoian till on gently sloping areas of the uplands and on relatively level, uneroded ridgetops. The Ava silt loam has a well developed fragipan (cemented layer) from 2 to 7 feet deep, which inhibits root penetration.

**Bedrock stratigraphy and structure** The bedrock units at the study site are the Carbondale and the Modesto Formations, which belong to the Pennsylvanian System of Illinois. Both formations are composed primarily of shales and siltstones (70–80%) along with fewer units of sandstone and limestone. A generalized regional stratigraphic column of parts of the Carbondale and Modesto Formations of the Pennsylvanian System in southern Illinois is shown in figure 3. In addition, table 1 summarizes the average thickness of overburden units and their ranges as derived from eight core logs of boreholes drilled within 1 mile of the study site.

The Cottage Grove Fault System is located 1.5 miles north of the site. The fault system consists of a right-lateral, strike-slip master fault and subsidiary, en echelon, high-angle normal faults (fig. 4). The Cottage Grove Fault is oriented northwest-southeast as a result of the orientation of the principal horizontal compressive stresses during the late Pennsylvanian to Early Permian Periods. The Cottage Grove Fault System is thought to have developed along a zone of weakness in the basement rocks at the time of general east-west compression that formed the Appalachian Mountains (Nelson and Krausse 1981). Contemporary stress measurements indicate the maximum horizontal stresses may be as much as three times the minimum horizontal and vertical stresses; the major stress field direction is east-northeast to west-southwest (Ingram and Molinda 1988, Nelson and Bauer 1987). The bedrock dips gently to the north at 25 to 100 feet per mile (Nieto 1979). Local dips of more than 15° were observed, however, in a coal mine operating in the Herrin Coal just north of the study site (Krausse et al. 1979). Mine workings affected by the Cottage Grove Fault System are oriented according to the pattern of faults encountered.

The immediate mine roof strata sequence contains Energy Shale distributed as an overbank deposit associated with the Walshville paleochannel, which is a clastic-filled channel that trends roughly north to south through southern Illinois about 20 miles to the west of the study site. The Walshville channel was, in part, contemporaneous with the deposition of the Herrin Coal and provided the Energy Shale, the youngest roof unit present here. Further details of the geology of the Walshville channel are found in Nelson (1979).

Drill-hole data and mine information indicate that the Energy Shale is typically 10 to 20 feet thick in the study area, placing the Anna Shale and Brereton Limestone out of bolting range. An unusual aspect of the roof sequence is the thick sandstone-rich, Anvil Rock Sandstone–Lawson Shale interval, which averages 37 feet in the area and includes a sandstone 7.3 feet thick in the west part of the panel.

The Herrin Coal Member is the seam mined at the site. It lies between 250 to 350 feet msl. Core logs indicate, however, that coal elevations vary from less than 240 feet to more than 390 feet msl within 1 mile of the site. The variation is due to the northward dip in strata and offsets of the coal seam caused by faulting. The thickness of the Herrin Coal varies between 5.5 to 6.5 feet, as measured in mines in the area, and probably averages around 6 feet near the study area (table 1).

**Hydrogeology** Local groundwater resources are limited and primarily used for domestic and household needs (Feherenbacher and Odell 1959). Surface water reservoirs, such as Crab Orchard Lake and other smaller manmade impoundments, supply water to the larger communities. Water for livestock, minor irrigation, and other farming purposes is usually obtained from small, natural or manmade ponds such as the one located at this site.

| Unit/interval                  | Thickness range (ft) | Average thickness* (ft) |
|--------------------------------|----------------------|-------------------------|
| Pleistocene (soil/till/drift)  | 14 — 60              | 37                      |
| Bedrock above Bankston Fork Ls | s 45 – 137           | 105                     |
| Bankston Fork Limestone        | 5 – 8                | 6.6                     |
| Anvil Rock Ss / Lawson Shale   | 32 – 45              | 37                      |
| Jamestown Coal / Conant Ls**   | 0.6 - 4              | 1.9                     |
| Brereton Limestone**           | 0.6 - 4.2            | 3.0                     |
| Anna Shale                     | 2.6 - 6.7            | 3.5                     |
| Energy Shale**                 | 8.2 – 19.5           | 15.3                    |
| Herrin Coal                    | 5.6 - 6.2            | 6.0                     |

Table 1 Summary of overburden unit thickness and thickness ranges

\* Where present; zero thickness is not averaged.

\* Missing in either one or two drill holes.



Figure 4 The Cottage Grove and other major fault systems of southern Illinois (after Nelson and Krausse 1981).

Groundwater is pumped from large diameter (2–5 feet) dug wells, which provide water for private and domestic purposes. These wells penetrate sand and gravel lenses that are in the glacial drift and usually directly overlie the bedrock surface at depths of as much as 60 feet (Pryor 1953). These lenses are as much as 12 feet thick. Sasman (1953) reported static water levels in the dug wells from about 5 to 35 feet below the surface and at pumping rates that varied from about 5 to 15 gallons per minute. This information concurs with water well data obtained from the ISGS and the Illinois State Water Survey (ISWS). Smaller diameter wells have also obtained groundwater from the glacial drift; however, yields were much lower than they were from the dug wells.





Bedrock aquifers of the Pennsylvanian System in the study area are limited primarily to sandstone units; however, some fractured limestone aquifers were also reported (Pryor 1953). Static water levels in these wells ranged from about 10 feet to as much as 80 feet below ground surface.

#### **Mine Description**

The study site was situated over Panel 23 East of the Orient No. 4 Mine, which is operated by the Freeman United Coal Mining Company. Figure 5 shows the location of 23 East and adjacent workings. Mine plans called for a panel that is 2,300 feet long and 210 feet wide and has a seam 250 feet deep. The panel width was increased to 385 feet and the south edge of the panel was relocated northward during mining because of roof conditions. The operations at the mine were suspended on May 18, 1987, after the panel had progressed only 900 feet. Only the east cluster of instrumentation was undermined by the HER method. The west cluster was undermined by the room-and-pillar method only, but it is adjacent to the solid, unmined portion of the panel.

## **GEOTECHNICAL MONITORING PROGRAM**

#### Introduction

The instrumentation for this study was selected to measure the geotechnical and hydrological effects of subsidence on the overburden. Engineers International (EI) of Westmont, Illinois, proposed an instrumentation plan that was reviewed and accepted by the U.S. Bureau of Mines, Twin Cities Research Center (USBM), and the ISGS. Representatives of the USBM let the contract to Engineers International to implement the instrumentation program and to conduct base-line surveys. Engineers International was responsible for installing most of the instruments including four bedrock and 11 drift piezometers, two multiple-position borehole extensometers (MPBXs), and 30 surface monuments (EI 1988). The ISGS, with assistance from Northwestern University, installed two time-domain reflectometry (TDR) cables, five tiltplates, four control monuments, survey turning points, and 14 additional rebar monuments to determine the static subsidence profile transverse to the panel.

The drilling program was conducted by the Soil and Rock Drilling Corporation of Bartlett, Illinois, under separate contracts. Engineers International installed the instruments in June 1986. The ISGS installed the tiltplates and additional survey monuments in March 1987.

**Instrument layout** Wyant Surveying Company of West Frankfort, Illinois, used mine coodinates to stake out the panel center line on the surface. The instrumentation layout shown in figure 6 was designed to measure two different responses of the overburden to mining of the panel by placing one instrument cluster near the beginning of the panel (east cluster) and one near the



Figure 6 Instrumentation layout superimposed over the mine panel.

center (west cluster). The initial subsidence at the beginning of a high-extraction panel is usually sudden and extensive because the roof stays up until a critical span has been undermined. The subsequent subsidence that takes place shortly after roof support has been removed causes a dynamic subsidence wave behind the retreating face. The instrumentation in the west cluster was to monitor the effects of the dynamic subsidence wave.

Each instrument cluster consisted of a TDR cable, MPBX, one shallow (100 feet) bedrock observation well, and one deep (160–203 feet) bedrock observation well (figs. 7, 8). A line of surface monuments and drift piezometers extended from each instrument cluster; each line was oriented nearly east to west, perpendicular to the anticipated front of the subsidence wave. The west instrument cluster included additional rebar monuments, which were installed perpendicular to the panel center line to record the static profile over the edge of the panel. Additionally, five tiltplates were adjacent to successive east–west monuments. Two surface control monuments and two drift piezometers were placed well away (500 feet) from any undermined areas for both east and west clusters.

**Mine operations** Development and mining of Panel 23 East began in early 1987. Before mining, the company changed the panel dimensions, which placed the instrument clusters closer to the south side of the panel than was originally planned. The mine was abruptly closed shortly after pillar extraction had begun and before the face had reached the west instrument cluster. A company press release stated, "The mine company suspended operations due to economic conditions effective 12:01 a.m., Monday, May 18th, 1987." Although the mine company hoped to resume operations as soon as market conditions permitted, operations were not continued.

## Surface Subsidence and Deformation Monitoring

**Surveying** *Monument design and installation* Two types of surface monuments were installed at the site. Frost-isolated monuments were anchored below the frost zone (fig. 9). The section of pipe that extended to the surface was surrounded by PVC pipe to isolate it from soil movements. Control monuments and long-term monitoring points were constructed in this manner. Simple rebar monuments, as shown in figure 9, were also used. Rebar monuments 3 feet in length were driven 2.5 feet into the ground as temporary monuments and turning points. The locations of surface monuments were selected on the basis of the mine layout. They were spaced 20 to 25 feet apart.

*Surveying methods and frequency* The ISGS began base-line monitoring in September 1986. Several level surveys were made with a WILD NA-2 as a check on the preliminary data received from Engineers International. A Lietz SET3 total station equipped with a SDR2 electronic notebook



Figure 7 Schematic map of the east cluster instrument location and surface crack location.



Figure 8 Schematic map of the west cluster instrument location.



frost-isolated monument

Figure 9 Frost-isolated monument and rebar monument design.

was used to set new control monuments for each instrument cluster. The west cluster instrument base line was set from ISGS control monuments during the period of April 2–30,1987.

Information provided by mine personnel was used to track the mining progress and to determine the frequency of monitoring. Monitoring surveys to document time-related effects were most frequent during the early, most active stage of subsidence. The east cluster survey monuments were monitored frequently for the first 8 days following the initial roof failure and steadily thereafter through the end of May 1987. The frequency of monitoring decreased with the rate of movement. Instruments were monitored about every 3 months through January 1988. Long-term monitoring continued to document residual movement of the overburden through December 1989.

The west cluster was not undermined by the HER method, although it was partially undermined by the room-and-pillar method. Monitoring of the west cluster survey monuments was performed to determine whether any changes were due to the approaching mine face.

**Tiltplates** Tiltplates installed in the west cluster were to be used to record changes in slope as the subsidence wave passed. Tiltplate installation is illustrated in figure 10. The plates were set into mortar beneath the frost zone (12–15 in.) and inside of 6-inch PVC casings with caps. The tiltplates were placed next to five frost-isolated monuments in the west cluster only. Unfortunately, the area did not subside.



Figure 10 General tiltplate installation.

#### **Overburden Characterization**

**Exploratory drilling** A hole was drilled at a 10.5° angle from vertical, with a dip direction of S18.5°E near the center of the panel (west cluster). The coring was performed off-vertical so as to encounter any vertical joints in the formations. Core description, core recovery, fractures, and rock quality designation (RQD) were logged in the field by Engineers International. A stratigraphic section developed on the basis of the resulting depth-adjusted core log is presented in figure 3. The bedrock here is composed of Pennsylvanian-age siltstones and shales with approximately 49 feet of glacial deposits overlying it. The bedrock overburden is composed of approximately 54% shales, 11% siltstones, 23% sandstones, and 6% limestones; coals and claystones make up the remaining 6%. The geotechnical core log is presented in appendix A. The GeoTechnical Graphics System software (1991) was used to combine all the field logging notes into a present-able and legible core log.

*Rock quality designation* Rock quality designation (RQD) is a standard parameter for evaluating the degree of fracturing of a rock core. Rock quality designation is used as an index property to indicate rock-mass quality. The RQD value, expressed as a percent, is the quotient of the sum of the length of all core segments longer than 4 inches divided by the length of the core run. Fractures caused by drilling or handling are not included in the determination.

*Fracture frequency* Total fracture frequency per core run, in units of fractures per foot, is determined by counting the number of natural fractures per core run and dividing by the length of the core run. All natural discontinuities are counted, including fractures along weak bedding planes and joints. As with RQD, breaks caused by drilling and handling are not included in the determination.

**Laboratory testing for intact rock properties** Rock characterization was performed in the ISGS laboratory. Core samples were tested for unconfined compressive strength, modulus of elasticity, indirect tensile strength, specific gravity, shore hardness, and point-load index. The standards and suggested methods of the American Standard and Testing Materials (1988) and International Society for Rock Mechanics (1985) were followed. Results of all tests performed on the rock core are given in appendix A.

Unconfined strength and elastic modulus Samples were cut with a saw to near the allowable tolerance before they were lapped. Additional preparation of the sample consisted of lapping to a height-to-diameter ratio of 2 to 2.5 with a tolerance for nonparallelism of 0.001 inch (according to ASTM D 4543-85 1988). The 2:1 height-to-diameter ratio requirement was not always maintained, especially within a section of core that was quite fractured. Sample loading was under constant strain conditions, as allowed by ASTM D 2938-86 (1988). As recommended in Brown (1981), the sample ends were not capped.

The elastic modulus was obtained directly from the plot of "load versus deformation." The elastic modulus represents the slope of the line tangent to the elastic portion of the stress/strain graph

and at 50% of the ultimate compressive strength. The ultimate compressive strength was found by dividing the ultimate axial force by the area of core perpendicular to its axis, as suggested by the ISRM.

Indirect tensile strength Discs 1 inch thick were compressed diametrically between high modulus (steel) platens. The values of indirect tensile strength,  $\sigma_t$ , were calculated by the following equation (Brown 1981):

$$\sigma_t = \frac{2P}{\pi Dt}$$

where

D = diameter (in.)

t =thickness (in.)

P = axial load (lbs)

Axial point-load index The method suggested for the axial point-load index by the ISRM Commission on Testing Methods (1985) was used. Samples with a height-to-diameter ratio of 0.3 to 1.0 were tested. The samples were placed between two spherically truncated, conical platens of the standard geometry (60° cone). The load was steadily increased such that failure occurred within 10 to 60 seconds, and the failure load, P, was recorded. The point-load index was calculated using the following equation suggested by Broch and Franklin (1972):

$$l_s = \frac{P}{t^2}$$

where

 $I_s$  = uncorrected point-load strength

P = axial load (lbs)

t =thickness

This equation does not take into account varying sample thicknesses, therefore a size correction is required. The size correction for the axial point-load index  $T_{500}$  of a rock specimen or sample is defined as the value that would have been measured by a diametral test with D = 50 mm (Brook 1980). The corrected axial point-load index is calculated by the following equation:

$$T_{500} = 211.47 \frac{P}{A^{0.75}}$$

where

P = load (kN)

A = diameter x thickness (mm<sup>2</sup>)

 $T_{500}$  = corrected point-load index (MPa)

*Moisture content* A center portion of each of the samples tested for unconfined strength was used for moisture content determination. Moisture content was calculated as a percentage of the dry weight of the sample as specified in ASTM D 2216-80 (1988).

*Specific gravity* The specific gravity of all samples was determined in accordance with ASTM D-1188-83 (1988). Samples were oven dried and coated with a polyurethane spray. The specific gravity for each sample was obtained by comparing its weight submerged in water to that in air.

Shore hardness A model D schleroscope, manufactured by Shore Instrument and Manufacturing Company, was used for hardness determination of compressive strength specimens. Each of the values in the summary tables is an average of the highest ten tests from a total of 20 tests performed on the lapped ends of the uniaxial compressive strength test specimen as described in Brown (1981).

#### **Overburden Deformation Monitoring**

**Multiple-position borehole extensometer** Two 6-anchor, multiple-position borehole extensometers (MPBXs) were installed at the site, as shown in figure 11. The anchors of each MPBX were grouted at depths of 50, 75, 100, 125, 150, and 175 feet below the ground surface. The extensometers mechanically monitor vertical overburden movements at each level. Anchor displacements are transmitted by the fiberglass rods to the surface, where movement of the rod tips is



Figure 11 Multiple-position borehole extensometer installation.

measured relative to a reference plate. Displacements of the anchors relative to each other and to the reference plate indicate the magnitude and general depth interval of the vertical component of ground movements. Elevation control was maintained on the reference plates to establish absolute anchor movements. Appendix B contains the data collected for both the east and west cluster MPBX.

**Time-domain reflectometry** The time-domain reflectometry (TDR) technique was used to document fracture development caused by subsidence in the overburden. This technique was developed by the power and communications industries to locate breaks in transmission cables. A TDR tester sends ultra-fast rise time voltage pulses down the coaxial cable. Deformations in the cable reflect signals back to the tester. Reflections appear as a distinct signature versus distance on a cathode-ray tube (CRT) or strip-chart recorder. The cable is crimped every 20 feet to produce recognizable signals at known intervals on the cable, which increases the accuracy of distance measurements.

Researchers at Northwestern University (Dowding et al. 1988, 1989), determined the optimum cable size, bonding strength, and grout composition; they also characterized the signatures caused by different modes of deformation (e.g., tension versus shear).

A generalized TDR installation is shown in figure 12. One 0.5-inch-diameter unjacketed coaxial cable (Cablewave FXA 12-50) was installed at each instrument cluster. In the west cluster, a cable that was 269 feet long and extended through the Herrin Coal was grouted into the inclined borehole. The east cluster cable (256 feet long) was installed in a vertical borehole that did not penetrate the coal.

The TDR cable in the east cluster was designed with a weight or anchor of the type shown in figure 12. This anchor design works best with a braided cable and not the solid outer conductor type used on this project because the outer conductor splits when the cable is bent around the bolt. Therefore, a new design was implemented for the second cable in the west cluster. The new design consisted of placing the TDR cable through a 5-foot-long piece of black pipe with a cable clamp placed over the cable below the pipe, as shown in figure 13. Electrician's tape was wrapped around the clamp to smooth its profile and prevent snags during cable installation.

The entire cable was laid out on the ground and reference crimps were placed at intervals of 20 feet. Without reference crimps along the cable, location accuracy is on the order of 2% of the distance from the tester to the cable defect. Crimps at known distances allow for much more accurate defect locations. The reflected signal is attenuated as a function of distance along the cable. Therefore, a wider crimp, consisting of adjacent, individual plier crimps, is required at greater depths to produce the desired signal amplitude of 40 mp. The grout had a 65% water-to-cement ratio by weight (7.6 gal/94 lb sack cement). High early strength Type III cement and 2% Intrusion-Aid (Intrusion-Prepakt, Inc.) were used, as recommended by Dowding et al. (1989). The grout was placed in the borehole up to the ground surface through the glacial material. The TDR installation and monitoring was part of an ongoing contract with the Office of Surface Mining to test the application of using TDR to monitor overburden fractures. Results of several studies using the TDR technique over both active and abandoned mines may be found in Bauer et al. (1991).

#### Hydrogeologic Investigations

The groundwater response to subsidence was monitored using two types of wells. Piezometers with 2-foot screens were used to document water levels in the drift material; the bedrock material was monitored using 20-foot screens in what is called here an observation well. Water level changes in the piezometers and observation wells reflect fluctuations in the piezometric head at the various screen depths.

**Drift piezometers** A total of 11 piezometers were installed. Five were placed in or near each instrumentation cluster, and one was located outside the area of anticipated subsidence. Alternating shallow and deep piezometers were installed in the drift to record the effect of the subsidence on piezometric levels in the unlithified glacial materials. The general design for both bedrock and drift piezometers is shown in figure 14. Screen depths ranged from about 15 to 50 feet, and the screen interval was 2 feet. The deep drift piezometers were set near the bedrock surface. Design specifications called for 2.5 feet of 1.0-inch screened PVC tubing surrounded by rounded river sand to a height of 5 feet above the screen. The sand was capped with a bentonite seal 2 feet thick, and the remaining borehole length was backfilled with a cement-bentonite grout. Small 1/2-inch riser tubing was used to reduce the response time to piezometric fluctuations. Piezometers were developed by pumping out all the fines before monitoring.

**Bedrock observation wells** Design specifications for the bedrock observation wells were identical to those for the drift piezometers except that the screened section was 20 feet long in order to increase the infiltration area. One shallow observation well and one deep observation well were installed in each instrument cluster. Screen depths of both east and west cluster shallow observation wells were from 80 to about 100 feet below the surface in a low hydraulic conductivity unit. The screen depth of the west cluster deep observation well was from 183 to 203 feet in the Anvil Rock Sandstone. The east cluster deep observation well screen was from 145 to 165 feet below the surface.



Figure 12 Schematic of original TDR installation.









# MONITORING PROGRAM RESULTS

In September 1986, instrument monitoring commenced, excluding the TDR cables that were first read on June 20, 1986, by ISGS and Northwestern University research teams. Engineers International was responsible for collecting three sets of readings on all the instruments except the TDR cables, tiltplates, and rebar monuments. Wyant Surveying Company conducted the surveys and set vertical and horizontal controls on the instrumentation. The data were reduced and a draft base-line report was distributed by Engineers International in February 1987.



Figure 15 Subsidence profile characteristics of a longitudinal line for the east cluster area.

Survey coordinates and elevations for both the east and west cluster instrumentation may be found in appendix C.

The east cluster instrument readings from March 26–27, 1987, changed dramatically from those taken just 2 days earlier. These changes reflected the effects of subsidence on the overburden of what was probably an abrupt initial failure of the mine roof at the beginning of the panel.

At the west cluster, the MPBX, TDR, and tiltplates were unaffected by the mining. Some subsidence was detected, however, and piezometric changes were observed in the bedrock well. All the instruments were last monitored on September 25, 1987, after which only the drift and bedrock piezometers were read. Long-term monitoring of the west cluster instruments continued through October 1988. East cluster instruments were monitored through December 1989 to document water level recovery and any residual movement of the surface and overburden.

#### **East Cluster**

**Surveying and subsidence characteristics** Surface movements of the east cluster instrumentation were measured with a Lietz SET3 total station and recorded by an SDR2 electronic notebook. Subsidence was first detected at the east instrument cluster on March 26, 1987. Coordinates obtained for the monument points on March 26 did not match those of previous surveys, including one taken 2 days earlier. Also the grout apron around the MPBX was broken, and the casing apparently dropped about 0.4 foot relative to the ground surface. Subsequent readings of the MPBX, TDR cable, monuments, and drift and bedrock piezometers all registered changes, confirming the subsidence event.

The maximum elevation change determined by ISGS personnel was a drop of 3.16 feet at the MPBX as of January 12, 1988. The ground surface dropped approximately 2.7 feet at the MPBX, about 0.46 foot less than the casing, which was apparently pulled down into the disturbed drift by the anchor rod tubes. About 95% (on average) of the recorded subsidence occurred in the first 10 weeks following undermining. Appendix D contains the elevation changes for the east cluster instrumentation.

A surface crack up to 0.3 foot wide, located at the point of maximum tension, stretched in an arc from the east end of the panel westward through the east instrument cluster and beyond, roughly paralleling the edge of the mined-out area or panel rib (fig. 7). The crack was traced from a graben-like feature perpendicular to the center line at the east end of the panel. The crack opened to a maximum width of about 1 foot by April 16, 1987, when the pillaring sequence had advanced approximately 200 feet.

Although data were collected from the east cluster instrumentation, some subsidence characteristics could not be accurately determined because of the geometry of the instrumentation layout relative to





the changed panel orientation and the irregular dimensions of the mined-out area near the east instrument cluster. No width to depth ratio (W/D) was well defined because the panel width increased from about 210 to 385 feet just north of the east cluster. The instruments were too close to the beginning of the panel to calculate the maximum percentage of subsidence (maximum subsidence/mining height), and the survey data from outside the panel rib were insufficient to accurately determine a representative angle of draw. The relationship between percentage of subsidence and the ratio of the distance to the panel edge versus mine depth is shown in figure 15. The data fall within the known range of values for HER mining in Illinois (Hunt 1980).

The only reference point that registered no consistent change along the east-west monument line was monument 28 (M28). The amount of subsidence of the monuments as of January 12, 1988, steadily increased from east to west to a maximum of 0.80 foot recorded at M16, just a few feet outside the surface crack; whereas, M28 subsided only 0.02 foot.

Maximum lateral movements of about 1 foot were recorded on the inside of the panel. The lateral movements were generally to the west and north, toward the mined-out void.

#### Overburden deformation monitoring

*Multiple-position borehole extensometer* Maximum subsidence recorded at the MPBX was about 3.16 feet. Differential vertical movements in the overburden were recorded by the MPBX (fig. 16). The MPBX indicated differential vertical movements at various depths from the ground surface to the bottom anchor. Anchor 6 (initial depth 175 feet) dropped 4.00 feet; anchor 5 (depth 150 feet) dropped 4.99 feet; anchor 4 (125 feet) dropped about 4.58 feet; anchors 1, 2, and 3 moved 3.26 feet; and the ground surface dropped about 2.7 feet. The anomalously small movement of anchor 6, as compared with the displacement of anchor 5, indicates that a large, abrupt movement between a depth of 150 and 175 feet broke the fiberglass rod-anchor assembly. No significant anchor movements were detected after May 1987, about 2 months after initiation of subsidence.

The lack of vertical movement or change in strain recorded by the MPBX after the initial failure indicates fracture openings that developed between the depths of 50 and 150 feet did not close significantly.



Figure 17 Amount of strain measured between MPBX anchors in relation to the stratigraphy.

Furthermore, the lack of differential movement indicated that subsequent subsidence was caused principally by closure of voids below the depth range monitored by the MPBX. A later, nearly uniform decrease of about 0.12 foot of all the rod readings was caused by closure of voids above anchor 1, as shown by the same downward movement of the surface monuments and reference head.

Strain within the overburden is shown in conjunction with the stratigraphy in figure 17. The nearly equal vertical movements of anchors 1, 2, and 3 indicate that the overburden from 50 to 100 feet beneath the surface moved largely as a mass. Some of the vertical differential movements in the overburden were associated with interfaces between materials of contrasting stiffness such as bedrock as opposed to drift. A massive sandstone of moderate strength (unconfined compressive strength of 5,000–6,400 psi) was encountered in the west cluster angled borehole core at a depth of 100 to 125 feet. Large vertical strains of 5.3% were detected between anchors 3 and 4, which spanned this interval. These large differential movements can be attributed to the sandstone being stiffer than the underlying material. Therefore, the sandstone acts as a beam and deflects less than the less rigid, underlying material.



Figure 18 Deformation history of TDR cable at the east cluster.

*Time-domain reflectometry* The TDR cable at the east cluster was sheared and broken 8 feet below the ground surface during initial subsidence (fig. 18). After the shear was recorded, a pit was excavated so that a new piece of cable could be spliced to the top end of the grouted cable. The sheared cable was located near the base of the fragipan (cemented layer). The lower part of the cable had displaced 0.2 foot toward the mined-out area relative to the upper 8 feet of cable as shown in figure 19. The spliced TDR cable was read, and a second shear signal at a depth of approximately 38.5 feet was recorded. The shearing action that occurred near the sides of the panel was interpreted to result from differential lateral displacement at the bedrock and soil interface, which indicates that the drift deformed as a beam. Evidence of subsurface movements in the overburden is summarized in table 2.

**Hydrogeologic investigations** A prime objective of the study was to determine the effects of subsidence on the hydrogeology of the overburden at this site. Water levels in some drift and bedrock piezometers were affected by subsidence. The data collected, though inconclusive, indicate that subsidence impacted the groundwater regime for at least 1 year after mining.

*Drift piezometers* Data from a deep drift piezometer P1E (fig. 20) located near the panel edge show the subsidence event affected the groundwater in the drift materials. The water level in the piezometers at the east instrument cluster dropped from 497.39 feet msl to a dry condition at 489.41 feet msl, or

| Instrument               | Evidence                                                 | Interpretation of movement                                                                         |
|--------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| TDR                      | cable shear at 8 feet                                    | differential lateral displacement at base of fragipan                                              |
| · · ·                    | cable shear at 38.5 feet                                 | differential lateral displacement at drift/bedrock interface                                       |
| Deep observation well    | "plugged" at 28 feet                                     | differential lateral displacement at<br>drift/bedrock interface                                    |
| Shallow observation well | "plugged" at 71 feet then<br>"plugged" at 40 feet        | shear offset in the bedrock                                                                        |
| MPBX                     | anchor 1 drops about 0.23 feet more than reference plate | vertical differential movement in the upper 50 feet of overburden                                  |
|                          | anchor 1, 2, and 3 all drop<br>about 3.26 feet           | vertical differential movement in the<br>bedrock between 50 and 100 feet,<br>which moved as a mass |
|                          | anchor 4 drops 4.58 feet                                 | large vertical differential movement between 100 and 125 feet                                      |
|                          | anchor 5 moves 4.99 feet                                 | smaller vertical differential movement between 125 and 150 feet                                    |
|                          | anomalous small movement<br>of anchor 6                  | perhaps violent, large offset between<br>150 and 175 feet; broken rod                              |

**Table 2** Summary of subsurface overburden movements in the east cluster.



**Figure 19** Photo of the east cluster TDR cable shows the lower part of the cable displaced 0.2 foot toward the mined-out area relative to the upper 8 feet of cable as a result of mining.





about 8 feet over a 23-day period because of the subsidence event. The water level dropped, however, only 4.6 feet from the average elevation of about 494.0 feet msl for P1E (fig. 20). The control piezometer dropped 0.5 foot during the same period. The precipitation data shown in figure 20 were collected at a National Oceanic and Atmospheric Administration (NOAA) station located in Marion, Illinois, 8 miles west of the site. These data aid in distinguishing piezometric fluctuations caused by subsidence from those caused by variations in precipitation. The rise of the water levels in the three drift piezometers shown in figure 20 just prior to the subsidence event was probably caused by the high seasonal water table associated with the spring thaw and heavy rainfall (R. Darmody, University of Illinois, personal communication, 1987). The gradual fall and subsequent rise of the water levels in P4E and the control piezometer were similar, and they were probably caused by a precipitation deficit of about 6 inches in the first 7 months after subsidence, which was followed by a 4-inch surplus in the next 2 months. The sudden drop in the water level in P1E (deep piezometer) in late March 1987 was directly attributed to the subsidence event. P1E remained dry through December 1989.

Piezometers P2E and P3E were dry before and after subsidence and yielded no useful data. The apparently unaffected water level in P4E demonstrated that the zone of hydrogeologic influence of subsidence in the drift material was less than 125 feet outside the panel (fig. 20). Appendix E contains the precipitation data from the Marion Station and all water level data collected for the east and west cluster piezometers.

*Bedrock observation wells* The water levels in the east cluster bedrock wells stabilized by late November 1986, about 4 months prior to subsidence (fig. 21). The levels dropped more than 4 feet from February 3 to March 24, 1987. They apparently dropped because of dilation (due to fracturing) of the bedrock in response to changes in the in situ stress field as mining activity increased near the instrumentation. Wells in the west cluster detected similar, dilation-related, piezometric changes.



Figure 21 Piezometric response of the bedrock piezometers (east cluster).

Both the shallow and deep wells in the east cluster were obstructed in the initial subsidence event by movements in the overburden. The shallow well was plugged about 70 feet below the surface on March 26, 1987, about 43 feet below the water level recorded prior to subsidence just 2 days earlier. The shallow well was obstructed about 40 feet from the surface on April 16, 1987. The deep well was obstructed and dry at a depth of 28 feet after the initial failure. The sudden loss of water in the bedrock observation wells may be attributed in part to dilation of the bedrock caused by differential movements and fracturing. The fracturing in the bedrock increases the volume of the unit monitored, thereby decreasing the pressure head, as found in subsequent studies in Illinois by Van Roosendaal et al. (1990) and Booth and Spande (1991). The east instrument cluster bedrock wells maintained water levels below their initial readings (above the plugged depths) through the last readings in December 1989.

Subsidence affected the hydrogeology of the very low permeability materials of the bedrock over the mined-out area more significantly than that of the drift materials above. Both the bedrock wells and P1E were still dry more than 2 years after the initial failure.

## West Cluster

The instrument and survey monument layout of the west cluster is shown in figure 8. Virtually all of the data collected from the west instrument cluster were base-line data. Base-line survey coordinates were established from ISGS control monuments during the period from April 2 to April 30, 1987. Base-line data for the MPBX, TDR, and drift and bedrock piezometers were established by numerous readings prior to April 30, 1987.

**Surveying and subsidence characteristics** Although the west cluster instrumentation was directly undermined by room-and-pillar mining only, pillar extraction stopped within 10 to 30 feet of part of the transverse monument line (fig. 8). Mining continued for 200 feet using the room-and-pillar mining technique. In July 1987, the maximum subsidence recorded at the west instrument cluster was about 0.13 foot at rebar monument R33, which was closest to the center line of the mined-out area. This monument was located 10 feet off the west edge of the pillar extraction. Unfortunately, all work ceased in the mine as of May 18, 1987. No additional subsidence has been measured at the west instrument cluster since September 1987. Measurements on the rebar monuments were only made with a total station, which produces less accurate elevation readings in comparison to using a level. Also, rebar monuments that rapidly diminished westward from the caved face were recorded along the east–west monument line.



Figure 22 Piezometric response of the drift piezometers (west cluster).

#### Hydrogeologic investigations

*Drift piezometers* The water levels in drift piezometers P1W, P3W, and P5W (screens ranged from 15 to 50 feet below the surface), which were located along the side of a small draw, fluctuated in a manner somewhat similar to that of the shallow observation well in figure 22. However, the piezometric response of these piezometers, although exaggerated, compared more closely with that of the drift control piezometer, which was located on an interfluve and not affected by the mining. Water levels in the drift piezometers appeared to fluctuate more in response to precipitation (fig. 22), similar to the recorded levels in the piezometers in the east cluster.

*Bedrock observation wells* The water level in the shallow observation well fell about 13 feet from an average depth of 18.0 feet (late March 1987) to 29.6 feet (late September 1987) as shown in figure 23. The well water depth recovered to 18.8 feet by May 1988. The screen of the shallow well was 100 feet below the ground surface, under 50 feet of shale and 50 feet of drift. Piezometric pressures were probably not directly affected by variation in precipitation at this depth.

The screen of the deep observation well was about 50 feet above the coal seam at a depth of 203 feet. The water level in this well dropped approximately 26 feet during 15 months from a previously steady depth of around 37.5 feet (period 7/30/86 to 2/3/87) to about 63.3 feet (5/16/88). The water level fell 8 feet rather sharply from March to May 1987 during subsidence of the east cluster (fig. 22). The water dropped gradually and was apparently leveling off more than 25 feet below presubsidence readings by May 1988. Both the shallow and deep observation wells are about 300 feet from the caved face of the mine workings (fig. 8) and 75 feet from the entryways next to the panel. Solid coal is present on the other side of these entryways. Again, the piezometric pressure drop was apparently not affected by seasonal variations, but was more a function of the fracturing induced by the increased stress field around the mined-out area. This indicates that the mining activity affected the deep aquifer a horizontal distance of at least 300 feet from the caved face.

#### CONCLUSIONS

Although only one-half of the instruments were undermined by the high-extraction retreat method, some conclusions may be drawn from this site-specific study. The subsidence event affected the overburden at the Williamson County research site in several ways.



Figure 23 Piezometric response of the bedrock observation wells (west cluster).

1) Subsidence after the initial overburden failure (survey data) and a reconstructed subsidence profile line perpendicular to the edge of the mined-out area was similar to documented static profiles characteristic of high-extraction retreat subsidence in Illinois.

2) Only one drift piezometer was affected by mine subsidence. Drift piezometer P1E, which was screened just above the bedrock surface, showed a decline in water level as it was undermined. Other drift piezometers showed only fluctuations in the water level related to precipitation.

3) Bedrock observation wells in the east and west clusters responded to the mining activity by a sudden and gradual loss in piezometric pressures, respectively. The initial loss of head in the west cluster bedrock wells was probably caused by dilation of the rock (or microfracturing) in response to changes in the stress field around the mined-out area. The relatively rapid recovery of the shallow observation well as opposed to the slower recovery of the deep observation well indicates three possible explanations: the attenuation of the fracturing with distance from the caved face, more rapid recharge closer to the ground surface, and different aquifer characteristics at the two monitored levels. The latter may be the most probable explanation. Subsequent studies in Illinois (Van Roosendaal et al. 1991, Booth and Spande 1991) have shown that aquifer characteristics as well as lateral extent of the aquifer determine the recovery time after subsidence.

4) Drops in the water level in the bedrock wells of the west instrument cluster indicated that the mining activity affected the deep aquifer for a horizontal distance of at least 300 feet from the caved face.

5) The nearly equal vertical movements of anchors 1, 2, and 3 indicated that the overburden from 50 to 100 feet beneath the surface moved largely as a contiguous mass.

6) The lack of any further differential vertical movements in the overburden observed with the MPBX indicated that surface subsidence after the initial failure was caused primarily by closure of voids below a depth of 150 feet.

7) The break in the TDR cable and the obstruction of the bedrock wells in the east instrument cluster demonstrated the shearing action that occurs near the sides of the panel. This action is a result of differential lateral displacement of the soil and bedrock strata toward the center of the panel due to flexure of the units. Shear offsets were also observed in the piezometers when they were reclaimed.

8) Differential vertical and horizontal movements were associated with interfaces between material of contrasting strengths. These interfaces were located at the base of the fragipan, the drift/bedrock contact, and near the thick sandstone unit in the bedrock where the largest vertical strains were recorded.

#### RECOMMENDATIONS

The following are recommendations for performing a similar monitoring program.

1) The recovery time of the aquifer should be determined by monitoring on a more continuous basis than was done in this study. Groundwater fluctuations might also be correlated to surface strain if monitoring were more continuous.

2) The TDR weight/anchor design developed during this study is recommended. Use of a flexible bentonite fill in the glacial overburden in order to avoid cable shear failure in the glacial overburden or at the contact with the bedrock is also highly recommended.

3) An inclinometer installation is recommended to document lateral movements in the bedrock as the subsidence wave approaches and passes through the instrumented site.

4) Pre- and postsubsidence rock core should be compared to determine changes in fracture frequency and locations of increased shearing. The location of fractures would be useful in comparing any bedrock movements found using the inclinometer, MPBX, and TDR cables.

5) Glacial material should be sampled using standard split-spoon sampling; standard penetration tests (SPT) should be performed before and after subsidence.

6) One cored borehole should be geophysically logged before and after subsidence to measure differences in shear wave velocity as well as other rock mass properties.

7) All survey monuments, including the control or benchmark monuments, should be constructed alike. All vertical changes should be determined using a level instrument, which has a higher degree of accuracy than a total station instrument.

8) A series of packer tests should be conducted before and after subsidence to compare hydraulic conductivity.

#### ACKNOWLEDGMENTS

The Engineering Geology Section of the Illinois State Geological Survey in Champaign prepared this report under USBM Cooperative Agreement CO 267001, which was initiated under the Illinois Mine Subsidence Research Program. It was administered under the technical direction of the U.S. Bureau of Mines Twin Cities Research Center with Larry Powell acting as Technical Project Officer. Kent Charles and Jose Martinez were the contract administrators for the Bureau of Mines. This report is a summary of the work recently completed as part of the contract during the period from October 1, 1986, to September 30, 1992.

The authors acknowledge the partial funding provided by the Illinois Department of Energy and Natural Resources, the Illinois Coal Development Board, and the Office of Surface Mining. The authors also acknowledge the work of David F. Brutcher, Joseph (Jay) T. Kelleher, Christine E. Ovanic, and students from Northwestern University for their assistance in the field. Billy Anne Trent assisted with manuscript preparation, and Philip J. DeMaris provided several map figures. The authors also thank the land owner Sam Stotlar and the mining company for their assistance and cooperation. Paul B. DuMontelle, former director of the Ilinois Mine Subsidence Research Program, assisted in securing the research site.

#### REFERENCES

- ASTM, 1988, Annual Book of Standards, Section 4 Construction, v. 04.08, Soil and Rock, Building Stones; Geotextiles, 951 p.
- Bauer, R. A., C. H. Dowding, D. J. Van Roosendaal, B. B. Mehnert, M. B. Su, and K. O'Connor, 1991, Application of time domain reflectometry to subsidence monitoring, Final report to Office of Surface Mining: NTIS No. PB91-228411, 48 p.
- Booth, C. J., 1986, Strata-movement concepts and the hydrogeological impact of underground coal mining: Ground Water, v. 24, p. 507-515.
- Booth, C. J., and E. D. Spande, 1990, Piezometric and aquifer property changes above subsiding longwall panels, Southern Illinois, *in* EOS (Trans., Am. Geophys. Union), v. 71, no. 17, p. 506 (AGU Spring Meeting, Baltimore, MD, May 30).
- Booth, C. J., and E. D. Spande, 1991, Changes in hydraulic properties of strata over active longwall mining, Illinois, USA: Proceedings, Fourth International Mine Water Congress, Portschach, Austria/Lubljana, Slovenia, September, 12 p.
- Broch, E., and J. A. Franklin, 1972, The point-load strength test: International Journal for Rock Mechanics and Mining Sciences and Geomechanics Abstracts, v. 9, p. 669-697.
- Brook, N., 1980, Technical note-size correction for point load testing: International Journal for Rock Mechanics and Mining Sciences and Geomechanics Abstracts, v. 17, p. 231-235.
- Brown, E. T., 1981, Rock Characterization Testing and Monitoring, ISRM Suggested Methods, Published for the Commission on Testing Methods: International Society for Rock Mechanics, Pergamon Press, Oxford, 211 p.
- Brutcher, D. F., B. B. Mehnert, D. J. Van Roosendaal, and R. A. Bauer, 1990, Rock strength and overburden changes due to subsidence over a longwall coal mining operation in Illinois, *in* W. A. Hustrulid and G. A. Johnson, editors, Rock Mechanics Contributions and Challenges, Proceedings of the 31st U.S. Symposium, Balkema, Rotterdam, p. 93-100.
- Cartwright, K., and C. S. Hunt, 1978, Hydrogeology of underground coal mines in Illinois: ISGS reprint 1978-N, 1978. Reprinted from Proceedings of International Symposium on Water in Mining and Underground Works, Granada, Spain, Sept. 17-22, 20 p.
- Coe, C. J., and S. M. Stowe, 1984, Evaluating the impact of longwall coal mining on the hydrologic balance, *in* D. H. Graves, editor, Proceedings of 1984 Symposium on Surface Mining, Hydrology, Sedimentology, and Reclamation, Lexington, Kentucky, p. 395-403.
- Conroy, P. J., 1980, Longwall coal mining. Dames and Moore, Engineering Bulletin 52, 1980, p. 13-26.
- Dowding, C. H., M. B. Su, and K. O'Connor, 1988, Principles of time domain reflectometry applied to measurement of rock mass deformation: International Journal for Rock Mechanics and Mining Science and Geomechanics Abstracts, v. 25, p. 287-297.
- Dowding, C. H., M. B. Su, and K. O'Connor, 1989, Measurement of rock mass deformation with grouted coaxial antenna cables: Rock Mechanics and Rock Engineering, v. 22, p. 1-23.
- Duigon, M. T., and M. J. Smigaj, 1985, First report on the hydrologic effects of underground coal mining in southern Garrett County, Maryland: Maryland Geological Survey, Report of Investigations 41, 99 p.
- Engineers International, 1988, Instrumentation to monitor subsidence associated with highextraction mining in the Illinois Coal Basin: Final report to the U.S. Bureau of Mines, Twin Cities Research Center, Contract No. H0256005, 60 p.
- Feherenbacher, J. B., and R. T. Odell, 1959, Williamson County Soils, Report 79: Agricultural Experiment Station, University of Illinois at Urbana–Champaign, in cooperation with the Soil Conservation Service, U.S. Department of Agriculture, 72 p.
- Garritty, P., 1982, Water percolation into fully caved longwall faces, Proceedings of the Symposium on Strata Mechanics held in Newcastle-upon-Tyne: Developments in Geotechnical Engineering, v. 32, p. 25-29.
- GeoTechnical Graphics System, 1991, Software (version 3.1): GeoTechnical Graphics, Berkeley, CA.

Horberg, C. L., 1950, Bedrock Topography of Illinois: Illinois State Geological Survey, Bulletin 73, 111 p.

- Hunt, S. R., 1980, Surface subsidence due to coal mining in Illinois: Ph.D. thesis, University of Illinois at Urbana–Champaign, 129 p.
- Ingram, D. K., and G. M. Molinda, 1988, Relationship between horizontal stresses and geologic anomalies in two coal mines in southern Illinois: U.S. Bureau of Mines, RI 9189, p. 17.
- International Society for Rock Mechanics, 1985, Commission of Testing Methods (J.A. Franklin coordinator): International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, v. 22, no. 2, p. 51-60.
- Kratzsch, H., 1983, Mining Subsidence Engineering: Springer-Verlag, New York, 543 p.
- Krausse, H. F., H. H. Damberger, W. J. Nelson, S. R. Hunt, C. T. Ledvina, C. G. Treworgy, and W. A. White, 1979, Roof Strata of the Herrin (No. 6) Coal Member in Mines of Illinois: Their Geology and Stability, Summary Report: Illinois State Geological Survey, Illinois Minerals Note 72, 54 p.
- Leighton, M. M., G. E. Ekblaw, and C. L. Horberg, 1948, Physiographic Divisions of Illinois: Illinois State Geological Survey, Report of Investigations 129, 19 p.
- MacClintock, P., 1929, Physiographic Divisions of the Area Covered by the Illinoian Driftsheet in Southern Illinois: Illinois State Geological Survey, Report of Investigations 19, 57 p.
- Ming-Gao, C., 1982, A study of the behaviour of overlying strata in longwall mining and its application to strata control, *in* I. W. Farmer, editor, Proceedings of the Symposium on Strata Mechanics: Elsevier, New York, p. 13-17.
- Nelson, W. J., 1979, Geologic effects of the Walshville channel on coal mining conditions in southern Illinois, Depositional and structural history of the Pennsylvanian System of the Illinois Basin Part 2: Invited Papers, Field trip 9/Ninth International Congress of Carboniferous Stratigraphy and Geology, p. 151-158.
- Nelson, W. J., and R. A. Bauer, 1987, Thrust faults in southern Illinois basin—result of contemporary stress? Geological Society of America Bulletin, v. 98, p. 302-307.
- Nelson, W. J., and H. F. Krausse, 1981, The Cottage Grove Fault System in Southern Illinois: Illinois State Geological Survey, Circular 522, 65 p.
- Nieto, A. S., 1979, Evaluation of damage potential to earth dam by subsurface coal mining at Rend Lake, Illinois: Ohio River Valley Soils Seminar; Geotechnics of Mining. Lexington, KY, Oct. 5, p. 9-18.
- Owili-Eger, A. S., 1983, Geohydrologic and hydrogeochemical impacts of longwall coal mining on local aquifers: SME-AIME Fall Meeting, Salt Lake City, UT. Preprint No. 83-376, 16 p.
- Pauvlik, C. M., and S. P. Esling, 1987, The effects of longwall mining subsidence on the groundwater conditions of a shallow, unconfined aquitard in Southern Illinois, *in* Proceedings, 1987 National Symposium on Mining, Hydrology, Sedimentology, and Reclamation, Lexington, Kentucky, December 7-11, University of Kentucky, Lexington, p. 189-195.
- Pennington, D., J. G. Hill, G. J. Burgdorf, and D. R. Price, 1984, Effects of longwall mine subsidence on overlying aquifers in Western Pennsylvania: U.S. Bureau of Mines OFR 142-84, 129 p.
- Pryor, W. A., 1953, Groundwater possibilities for municipal supply of Pittsburg, Williamson County: Illinois State Geological Survey, Division of Ground Water Geology and Geophysical Exploration, unpublished geologic report.
- Sasman, R. T., 1953, Groundwater resources at Pittsburg, Williamson County: State Water Survey Division, Illinois Department of Registration and Education, unpublished report.
- Sloan, P., and R. C. Warner, 1984, A case study of groundwater impact caused by underground mining, *in* D. H. Graves, editor, Proceedings of 1984 Symposium on Surface Mining, Hydrology, Sedimentology and Reclamation, Lexington, Kentucky, p. 113-120.
- Van Roosendaal, D. J., D. F. Brutcher, B. B. Mehnert, J. T. Kelleher, and R. A. Bauer, 1990, Overburden deformation and hydrologic changes due to longwall mine subsidence in Illinois, *in* Y. P. Chugh, editor, Proceedings of 3rd Conference on Ground Control Problems in the Illinois Coal Basin: Southern Illinois University at Carbondale, p. 73-82.

- Van Roosendaal, D. J., B. B. Mehnert, J. T. Kelleher, and C. E. Ovanic, 1991, Three dimensional ground movements associated with longwall mine subsidence in Illinois: Association of Engineering Geologists 34th Annual Meeting, Chicago, IL, p. 815-826.
- Whitworth, K. R., 1982, Induced changes in permeability of coal measure strata as an indicator of the mechanics of rock deformation above a longwall coal face, *in* I. W. Farmer, editor, Proceedings of the Symposium on Strata Mechanics, Elsevier, New York, p. 18-24.

## APPENDIXES

A Overburden Characterization Rock Mechanics Laboratory Results Geotechnical Core Log

B MPBX Readings and Calculations for Both Clusters East Cluster MPBX Readings and Calculations West Cluster MPBX Readings and Calculations

C Surveying Data

Survey Coordinates for East Cluster Instruments and Monuments Survey Coordinates for West Cluster Instruments and Monuments

- D Elevation Changes due to Subsidence Elevation Changes of East Cluster Instruments Elevation Changes of West Cluster Instruments
- E Water Level Readings and Precipitation Data Piezometer Water Level Readings, East Cluster Piezometer Water Level Readings, West Cluster Precipitation Data from Marion Station
# ILLINOIS STATE GEOLOGICAL SURVEY ROCK MECHANICS LABORATORY WILLIAMSON COUNTY -- HER MINE SITE (PRE-SUBSIDENCE)

|         |          |        |                |              | AVERAGE    |         | AVERAGE  |          |          |
|---------|----------|--------|----------------|--------------|------------|---------|----------|----------|----------|
| SAMPLE  | ROCK     | qu     | MODULUS        | MOISTURE     | AXIAL      | AVERAGE | INDIRECT | SPECIFIC | SHORE    |
| ID.     | TYPE     | (psi)  | (psi x 10 ^ 6) | CONTENT      | POINT LOAD | T500    | TENSILE  | GRAVITY  | HARDNESS |
| (DEPTH) |          |        |                | @qu          | INDEX      |         | STRENGTH |          |          |
| (ft)    |          |        |                | (%)          | (psi)      | (MPa)   | (psi)    |          |          |
| 79.8    | SH       | 7,294  | 0.61           | 2.72         | **         | **      | **       | 2.50     | 27       |
| 80.7    | SH       | 7,768  | 0.59           | 2.48         | 1,066      | 3.95    | 880      | 2.50     | 27       |
| 90.9    | SH       | 7,668  | 0.79           | 3.29         | 1,132      | 3.19    | 638      | 2.35     | 33       |
| 138.9   | SS       | 6,332  | 4.05           | 2.39         | **         | **      | **       | 2.26     | 35       |
| 140.0   | SS       | 5,351  | 1.19           | 2.44         | 879        | 3.46    | 423      | 2.26     | 27       |
| 152.3   | LS       | 7,252  | 1.63           | `       0.63 | **         | **      | **       | **       | 44       |
| 163.7   | SLTST    | 8,401  | 0.82           | 0.90         | 1,200      | 5.11    | 702      | 2.47     | 48       |
| 164.8   | SLTST    | 6,908  | 1.00           | 0.79         | **         | **      | **       | 2.47     | 39       |
| 170.6   | SS-SLTST | 6,345  | 0.70           | 1.19         | 1,294      | 4.53    | 614      | 2.53     | 18       |
| 181.9   | SLTST    | 3,873  | 0.57           | 1.66         | 877        | 2.94    | 472      | 2.58     | 18       |
| 190.5   | LS       | 14,383 | 8.09           | 0.18         | 3,655      | 13.43   | 1,223    | 2.86     | 63       |
| 198.0   | SS       | 7,544  | 1.13           | 1.44         | 956        | 3.76    | 605      | 2.44     | 35       |
| 221.6   | SH       | **     | **             | 2.47         | 1,276      | 4.83    | 859      | 2.57     | 19       |
| 232.0   | SH       | **     | **             | 3.12         | 505        | 2.65    | 659      | 2.04     | 46       |
| 238.0   | SH       | 5,320  | 0.69           | 1.7          | **         | **      | **       | **       | 19       |
| 239.1   | SH       | **     | **             | **           | 614        | 3.16    | 576      | 2.54     | 22       |
| 241.3   | SH       | 5,788  | 0.48           | 3.34         | 487        | 2.27    | 422      | 2.52     | 18       |

\*\* No sample available.

SH = Shale

SS = Sandstone

SLTST = Siltstone

LS = Limestone

| GEO                                                                                                                                                   | LOGICAL BORING LOG: Pre-                                                                                  |                                          | Page 1 of 14   |             |          |           |       |                                                                                                                |         |               |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|-------------|----------|-----------|-------|----------------------------------------------------------------------------------------------------------------|---------|---------------|--------|
| PROJE                                                                                                                                                 | ECT: IMSRP Williamson Cnty High-E                                                                         | xtractio                                 | n Retreat Site | 9           |          |           | รเ    | JRF                                                                                                            | ELEV: 8 | 609.75 FT     |        |
| LOCA                                                                                                                                                  | TION: NW¼, SW¼, S6, T9S, R4E, Will                                                                        | iamson (                                 | Cnty, IL       |             |          |           | T     | DTAL                                                                                                           | . DEPTH | : 264.3 FT    |        |
| LOGG                                                                                                                                                  | ED BY: E. Gefell, R. Bauer, T. Hone                                                                       | ycutt                                    | METHOD:        | NX-wireline | e core   |           | D     | ATE                                                                                                            | DRILLEC | ): June 10-12 | , 1986 |
| et)                                                                                                                                                   |                                                                                                           | ۷g٥                                      | Drilling       | Core        | RGD      | Fractures | ests  |                                                                                                                |         | Joints        |        |
| Der<br>Fe                                                                                                                                             | Description                                                                                               | Litho                                    | Data           | Recov (%)   | 25 50 75 | per foot  | RM Te | Log                                                                                                            |         | Description   | 'n     |
|                                                                                                                                                       | GLACIAL TILL: less than 3<br>ft Loess overlying<br>Illinosian till, some sandy<br>zones, clayey at bottom | 0.0.0.0.0.0<br>0.0.0.0.0<br>0.0.0.0      |                |             |          |           | •     |                                                                                                                | -<br>-  |               |        |
|                                                                                                                                                       |                                                                                                           | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. |                |             |          |           |       |                                                                                                                |         |               |        |
| 5                                                                                                                                                     |                                                                                                           | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.   |                |             |          |           |       |                                                                                                                |         |               |        |
| -<br>-<br>10                                                                                                                                          |                                                                                                           | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,   |                |             |          |           |       |                                                                                                                |         |               |        |
| -                                                                                                                                                     |                                                                                                           | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.   |                |             |          |           |       |                                                                                                                | S2      |               | ₹      |
| 15                                                                                                                                                    |                                                                                                           | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.   |                |             |          |           |       |                                                                                                                |         |               |        |
| -                                                                                                                                                     |                                                                                                           | 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.   |                |             |          |           |       | And a second |         |               |        |
| 20-<br>Illinois State Geological Survey<br>Illinois Mine Subsidence Research Program<br>615 East Peabody Drive, Champaign, IL 61820<br>(217) 333-4747 |                                                                                                           |                                          |                |             |          |           |       |                                                                                                                |         |               |        |

| GEO                                       | LOGICAL BORING LOG: Pre-            | Page 2 of 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |          |           |        |            |                  |
|-------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|-----------|--------|------------|------------------|
| PROJE                                     | ECT: IMSRP Williamson Cnty High-Ex  | traction Retreat S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ite                   |          |           | SUR    | F ELEV: 50 | 19.75 FT         |
| LOCA                                      | TION: NWX, SWX, S6, T9S, R4E, Willi | amson Cnty, IL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u>               |          |           | тот    | AL DEPTH:  | 264.3 FT         |
| LOGG                                      | ED BY: E. Gefell, R. Bauer, T. Hone | ycutt METHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D: NX-wireling        | e core   |           | DAT    | E DRILLED: | June 10-12, 1986 |
| et ja                                     | _                                   | 8<br>Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Core                  | ROD      | Fractures | ests   |            | Joints           |
| E<br>E<br>E<br>E<br>D<br>E<br>D<br>E<br>D | Description                         | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Recov (%)<br>25 50 75 | 25 50 75 | per foot  | RM Te  |            | Description      |
| -                                         |                                     | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |          |           | · ·    |            |                  |
| 25-                                       |                                     | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |          |           |        |            |                  |
| 30-                                       |                                     | 0.00.00.00.00<br>0.00.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0 |                       |          |           |        |            |                  |
| 35-                                       |                                     | 0.00.00.00.00.00.00.00.00.00.00.00.00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |          |           |        |            |                  |
| 40-                                       |                                     | Illinois Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | State Ge              | eologica | al Surve  | y<br>m |            |                  |
|                                           |                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |          |           |        |            |                  |
|                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |          |           |        |            |                  |

| GEO          | LOGICAL BORING LOG: Pre-                                                             | Page 3 of 14 |                                              |                                                |                                               |                                            |       |          |                                                                                                                               |
|--------------|--------------------------------------------------------------------------------------|--------------|----------------------------------------------|------------------------------------------------|-----------------------------------------------|--------------------------------------------|-------|----------|-------------------------------------------------------------------------------------------------------------------------------|
| PROJE        | ECT: IMSRP Williamson Cnty High-E                                                    | ixtrac       | tion Retreat Site                            | Ç                                              | anne ann ta farmanna a stàrtain a san ann ann | en nora tizani pro filika ( erre ere un er | S     | URF      | ELEV: 509.75 FT                                                                                                               |
| LOCA         | TION: NWX, SWX, S6, T9S, R4E, Wil                                                    | liamso       | on Cnty, IL                                  |                                                |                                               |                                            | T     | OTAI     | DEPTH: 264.3 FT                                                                                                               |
| LOGG         | ED BY: E. Gefell, R. Bauer, T. Hone                                                  | eycutt       | METHOD:                                      | NX-wireline                                    | e core                                        |                                            | 0,    | ATE      | DRILLED: June 10-12, 1986                                                                                                     |
| et)          |                                                                                      | УĮО          | Drillina                                     | Core                                           | BOD                                           | Fractures                                  | ests  | <u> </u> | Joints                                                                                                                        |
| E Dep        | Description                                                                          | Lithol       | Data                                         | Recov (%)<br>25 50 75                          | 25 50 75                                      | per foot<br>1 2 3 4                        | RM Te | Log      | Description                                                                                                                   |
| 40           |                                                                                      |              |                                              |                                                |                                               |                                            |       |          |                                                                                                                               |
| 50<br>-<br>- | MUDSTONE: mottled<br>gray-brown, soft, some<br>fractures, some harder<br>silty zones |              | Run 1<br>6.1 ft.                             |                                                |                                               |                                            |       |          | 51.25: no filling, brown<br>staining, uneven,<br>slickensides, 35° dip<br>51.75: no filling, uneven,<br>slickensides, 55° dip |
| - 55         | SHALE: gray; med-soft<br>SHALE: gray-black to<br>black, med-soft                     |              |                                              |                                                |                                               |                                            |       |          |                                                                                                                               |
| -            | SHALE: med It gray, sI silty                                                         |              | Run 2<br>10.4 ft.                            |                                                |                                               | Ø                                          |       |          | 56.83: no filling, planar,<br>slickensides, 30° dip<br>57.0: no filling, uneven,<br>slickensides, 40° dip                     |
| 60-          | SHALE: med It gray,<br>calcareous, thinly lam with<br>siderite nodules, some silt    |              | Illinois St<br>Illinois Mine<br>615 East Pea | ate Ge<br>Subsidenc<br>body Drive<br>(217) 333 | <b>y</b><br>am<br>:0                          |                                            |       |          |                                                                                                                               |

|              | EUDIDAE DOMINO EUD. TTO                                                                                                                     | 300 00    | <i>ne</i> , 10 110                                                                                                           | MI VEIL, M            | Page 4 of 14    |                     |       |       |         |                     |   |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|---------------------|-------|-------|---------|---------------------|---|
| PROJE        | ECT: IMSRP Williamson Cnty High-E                                                                                                           | xtraction | Retreat Site                                                                                                                 |                       |                 |                     | รเ    | JRF I | ELEV: 5 | 09.75 FT            |   |
| LOCA         | TION: NW¥, SW¥, S6, T9S, R4E, Wil                                                                                                           | liamson C | nty, IL                                                                                                                      |                       |                 |                     | T     | DTAL  | DEPTH   | 264.3 FT            |   |
| LOGG         | ED BY: E. Gefell, R. Bauer, T. Hone                                                                                                         | eycutt    | METHOD:                                                                                                                      | NX-wireline           | e core          |                     | D     | ATE   | DRILLEC | ): June 10-12, 1986 | ; |
| £⊋           |                                                                                                                                             | 5         | Deilline                                                                                                                     | Core                  | 500             | Fractures           | sts   |       |         | Joints              |   |
| Dept<br>(Fee | Description                                                                                                                                 | Litholo   | Data                                                                                                                         | Recov (%)<br>25 50 75 | RGD<br>25 50 75 | per foot<br>1 2 3 4 | RM Te | ۲٥    |         | Description         |   |
|              |                                                                                                                                             |           |                                                                                                                              |                       |                 |                     |       |       |         |                     |   |
| -            | SHALE: med, It gray, thinly<br>lam with silt and shale                                                                                      |           |                                                                                                                              |                       |                 |                     |       |       |         |                     |   |
| -            |                                                                                                                                             |           |                                                                                                                              |                       |                 |                     |       |       |         |                     |   |
| 65-          |                                                                                                                                             |           |                                                                                                                              |                       |                 |                     |       |       |         |                     |   |
|              | SHALE: med dk gray to dk<br>gray, thinly lam, lenticular<br>It gray banding, some 2 to<br>3 in thick siderite bands,<br>becoming less silty |           | Run 3<br>9.75 ft.                                                                                                            |                       |                 | 8                   |       |       |         |                     |   |
| 70-          | downward                                                                                                                                    |           |                                                                                                                              |                       |                 |                     |       |       |         |                     |   |
|              |                                                                                                                                             |           |                                                                                                                              |                       |                 |                     |       |       |         |                     |   |
|              |                                                                                                                                             |           |                                                                                                                              |                       |                 |                     |       |       |         |                     |   |
| 75-          |                                                                                                                                             |           |                                                                                                                              |                       |                 |                     |       |       |         |                     |   |
|              |                                                                                                                                             |           | Run 4<br>9.05 ft.                                                                                                            |                       |                 |                     |       |       |         |                     |   |
| a0           |                                                                                                                                             |           | Sectorementoring                                                                                                             |                       |                 |                     | X     |       |         |                     |   |
| 80-          |                                                                                                                                             | I         | Illinois State Geological Survey<br>Illinois Mine Subsidence Research Program<br>615 East Peabody Drive, Champaign, IL 61820 |                       |                 |                     |       |       |         |                     |   |

| GEO            | LOGICAL BORING LOG: Pre-                                                                                                     | Τ                 | Page 5 of 14    |                         |                     |                                               |              |      |                                                |  |
|----------------|------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-------------------------|---------------------|-----------------------------------------------|--------------|------|------------------------------------------------|--|
| PROJE          | ECT: IMSRP Williamson Cnty High-E                                                                                            | xtractio          | on Retreat Site | )                       |                     | , <u>, , , , , , , , , , , , , , , , , , </u> | SI           | URF  | ELEV: 509.75 FT                                |  |
| LOCA           | TION: NW¥, SW¥, S6, T9S, R4E, Will                                                                                           | iamson            | Cnty, IL        |                         |                     | . *                                           | T            | DTAL | DEPTH: 264.3 FT                                |  |
| LOGG           | ED BY: E. Gefell, R. Bauer, T. Hone                                                                                          | ycutt             | METHOD:         | NX-wireline             | e core              |                                               | D            | ATE  | DRILLED: June 10-12, 1986                      |  |
| oth<br>(et)    |                                                                                                                              | vgo               | Drilling .      | Core                    | RGD                 | Fractures                                     | ests         |      | Joints                                         |  |
| 80-<br>80-     | Description                                                                                                                  | Litho             | Data            | Recov (%)               | 25 50 75            | perfoot                                       | RM Te        | Log  | Description                                    |  |
| -              |                                                                                                                              |                   |                 |                         |                     |                                               | $\mathbb{N}$ |      |                                                |  |
| 85             | SHALE: med to dk gray,<br>lam with some greenish It<br>gray shale bands                                                      | Run 5<br>9.9 ft.  |                 |                         |                     |                                               |              |      |                                                |  |
| 90-            | SHALE: black,<br>carbonaceous, fissile,<br>phosphate lenses at 89.8,<br>sharp contact to sl less<br>carbonaceous black shale |                   |                 |                         |                     |                                               | $\square$    |      | ——90.25: no filling, planar,<br>rough, 65° dip |  |
|                | COAL: normally bright<br>banded, calcite filled<br>cleat, pyritic at base<br>SHALE: med gray, weak<br>SHALE: med It gray     |                   |                 |                         |                     |                                               | Μ            |      |                                                |  |
| 95             |                                                                                                                              | Run 6<br>10.5 ft. |                 |                         |                     |                                               |              |      |                                                |  |
| -<br>-<br>100- | SHALE: dk gray, sl silty,<br>lam with silty, micaceous<br>layers                                                             | I                 | Ilinois St      | ate Ge                  | ologica<br>ce Resea | I Surve                                       | y<br>am      | -    |                                                |  |
|                |                                                                                                                              |                   | 615 East Pea    | body Drive<br>(217) 333 | 20                  |                                               |              |      |                                                |  |

| GEO            | LOGICAL BORING LOG: Pre-                                                                                                         | Page 6 of 14 |                                              |                     |                                   |                                               |                      |          |                           |  |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------|---------------------|-----------------------------------|-----------------------------------------------|----------------------|----------|---------------------------|--|--|
| PROJE          | ECT: IMSRP Williamson Cnty High-E                                                                                                | xtrac        | tion Retreat Site                            | 9                   |                                   |                                               | SI                   | JRF      | ELEV: 509.75 FT           |  |  |
| LOCA           | TION: NWK, SWK, S6, T9S, R4E, Will                                                                                               | iamso        | n Cnty, IL                                   |                     |                                   |                                               | T                    | DTAL     | AL DEPTH: 264.3 FT        |  |  |
| LOGG           | ED BY: E. Gefell, R. Bauer, T. Hone                                                                                              | ycutt        | METHOD:                                      | NX-wireline         | e core                            | te attente we all the state of the state      | D                    | ATE      | DRILLED: June 10-12, 1986 |  |  |
| ef) t          |                                                                                                                                  | ygo          | Drilling                                     | Core                | RGD                               | Fractures                                     | ests                 | <u> </u> | Joints                    |  |  |
| E<br>Fe        | Description                                                                                                                      | Lithol       | Data                                         | Recov (%)           | 25 50 75                          | per foot<br>1 2 3 4                           | RM Te                | Log      | Description               |  |  |
|                |                                                                                                                                  |              | Run 7<br>10.5 ft.                            |                     |                                   |                                               |                      |          |                           |  |  |
| -<br>-<br>110- | SANDSTONE: med It to It<br>gray, sI argillaceous and<br>micaceous<br>SANDSTONE: med It to It                                     |              |                                              |                     |                                   |                                               |                      |          |                           |  |  |
| -              | micaceous, some thin shale<br>partings<br>SANDSTONE: med It to It<br>gray, coarser and more<br>micaceous, fine to med<br>grained |              | · .                                          |                     |                                   |                                               |                      |          |                           |  |  |
| 115-           |                                                                                                                                  |              | Run 8<br>10.1 ft.                            |                     |                                   |                                               |                      |          |                           |  |  |
| 120-           | SANDSTONE: med It to It<br>gray, coarser and more<br>micaceous, fine to med<br>grained, few shale partings                       |              | Illinois St<br>Illinois Mine<br>615 East Pea | ate Ge<br>Subsident | ologica<br>ce Resea<br>e, Champai | I <b>I Surve</b><br>rch Progra<br>gn, IL 6182 | <b>y</b><br>am<br>20 |          |                           |  |  |







| GEOL         | OGICAL BORING LOG: Pre-                                                                                         |              |                   | Page 10 of 14           |                                 |                  |           |      |                                               |
|--------------|-----------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------------------------|---------------------------------|------------------|-----------|------|-----------------------------------------------|
| PROJE        | CT: IMSRP Williamson Cnty High-E                                                                                | xtract       | tion Retreat Site | )                       | *//15 III 2012 COLOND SUBSICILE |                  | SI        | JRF  | ELEV: 509.75 FT                               |
| LOCAT        | ION: NWX, SWX, S6, T9S, R4E, Will                                                                               | iamso        | n Cnty, IL        |                         | <u> </u>                        | -                | T         | DTAL | DEPTH: 264.3 FT                               |
| LOGGE        | D BY: E. Gefell, R. Bauer, T. Hone                                                                              | ycutt        | METHOD:           | NX-wireline             | e core                          |                  | D/        | ATE  | DRILLED: June 10-12, 1986                     |
| £ 2          | <u></u>                                                                                                         | δ            | Drilling          | Core                    | 000                             | Fractures        | sts       |      | Joints                                        |
| Dept<br>(Fee | Description                                                                                                     | Lithold      | Data              | Recov (%)<br>25 50 75   | 25 50 75                        | per foot<br>1234 | RM Te     | ۲٥g  | Description                                   |
| 180-         | nga mang mang kalèn selah selah selah selah selah serah s |              |                   |                         |                                 |                  |           |      |                                               |
| -            |                                                                                                                 |              |                   |                         |                                 |                  |           |      |                                               |
| -            |                                                                                                                 |              |                   |                         |                                 |                  | Π         |      |                                               |
|              |                                                                                                                 |              |                   |                         |                                 |                  | X         |      |                                               |
|              | COAL: argillaceous                                                                                              |              |                   |                         |                                 |                  | $\square$ |      |                                               |
|              | CLAYSTONE-SHALE: med<br>dk gray to dk gray in lam                                                               | $\bigotimes$ |                   |                         |                                 |                  |           |      |                                               |
| 185-         |                                                                                                                 |              |                   |                         |                                 |                  |           |      |                                               |
| -            |                                                                                                                 |              | Run 15            |                         |                                 |                  |           |      | 30-45° dip, underclay<br>with numerous joints |
| -            | LIMESTONE: buff color,                                                                                          | Ĥ            | 10.02 ft.         |                         |                                 |                  |           |      |                                               |
|              | irregularly shaped clay                                                                                         | 日            |                   |                         |                                 |                  |           |      |                                               |
|              |                                                                                                                 | H            |                   |                         |                                 |                  |           |      |                                               |
|              |                                                                                                                 | 日            |                   |                         |                                 |                  |           |      |                                               |
| 190-<br>·    |                                                                                                                 | H            |                   |                         |                                 |                  |           |      |                                               |
|              |                                                                                                                 | F            |                   |                         |                                 |                  | IM.       |      |                                               |
|              | •                                                                                                               | H            |                   |                         |                                 |                  | IM        |      |                                               |
|              | SHALE: med It gray, soft,                                                                                       |              |                   |                         |                                 |                  |           |      |                                               |
|              | SHALE: med It gray, soft,                                                                                       | Ē            |                   |                         |                                 |                  |           |      |                                               |
| 1            | lam with silt                                                                                                   |              |                   |                         |                                 |                  |           |      |                                               |
| 195-         | SILTSTONE: lam<br>shale-siltstone                                                                               |              |                   |                         |                                 |                  |           |      |                                               |
|              | SANDSTONE: It brown to It gray, fine ti med grained,                                                            |              |                   |                         |                                 |                  |           |      |                                               |
|              | lam with shale                                                                                                  |              | 10.05 ft.         |                         |                                 |                  |           |      |                                               |
|              |                                                                                                                 |              |                   |                         |                                 |                  |           |      |                                               |
|              |                                                                                                                 |              |                   |                         |                                 |                  |           |      |                                               |
|              |                                                                                                                 |              |                   |                         |                                 |                  |           |      |                                               |
| 200-         |                                                                                                                 | لننا         | Illinois S        | tate Ge                 | eoloaic                         | al Surve         | רע<br>פע  | 1    |                                               |
|              |                                                                                                                 |              | Illinois Mine     | Subsider                | ice Resea                       | arch Prog        | ram       |      |                                               |
|              |                                                                                                                 |              | 615 East Pe       | adody Driv<br>(217) 333 |                                 |                  |           |      |                                               |

| GÉOL                   | OGICAL BORING LOG: Pre                                   |         | Page II of 14                                                                                                                                      |            |          |           |      |      |           |                 |    |
|------------------------|----------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-----------|------|------|-----------|-----------------|----|
| PROJE                  | CT: IMSRP Williamson Cnty High-E                         | Extract | tion Retreat Site                                                                                                                                  | 2          |          |           | SI   | JRF  | ELEV: 509 | ).75 FT         |    |
| LOCAT                  | ION: NW¥, SW¥, S6, T9S, R4E, Wi                          | lliamso | n Cnty, IL                                                                                                                                         |            |          |           | T    | DTAL | DEPTH: 2  | 264.3 FT        |    |
| LOGGE                  | D BY: E. Gefell, R. Bauer, T. Hon                        | eycutt  | METHOD:                                                                                                                                            | NX-wirelin | e core   |           | D    | ATE  | ORILLED:  | June 10-12, 198 | 36 |
| ft ft                  |                                                          | logy    | Drilling                                                                                                                                           | Core       | RQD      | Fractures | ests |      |           | Joints          |    |
| 200-                   | Description                                              | Litho   | Data                                                                                                                                               | 25 50 75   | 25 50 75 | per foot  | RMT  | Log  |           | Description     |    |
|                        | SHALE: med dk gray, some<br>silt lam, few siderite bands |         |                                                                                                                                                    |            |          |           |      |      |           |                 |    |
| -                      | SHALE: med dk gray, more<br>silty, lam silt and shale    |         | Run 17<br>9.97 ft.                                                                                                                                 |            |          |           |      |      |           |                 |    |
| 210-<br>-<br>-<br>215- |                                                          |         |                                                                                                                                                    |            |          |           |      |      |           | · · · · ·       |    |
| -<br>-<br>220-         |                                                          |         | Run 18<br>9.88 ft.<br>Illinois State Geological Survey<br>Illinois Mine Subsidence Research Program<br>615 East Peabody Drive, Champaign, IL 61820 |            |          |           |      |      |           |                 |    |

| GEOL  | _OGICAL BORING LOG: Pre-                                                                                                                                                                                                                                                                                                                                                                                  | Page 12 of 14 |                                                   |                                                |                                                     |                     |           |      |                           |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------|------------------------------------------------|-----------------------------------------------------|---------------------|-----------|------|---------------------------|
| PROJE | CT: IMSRP Williamson Cnty High-E                                                                                                                                                                                                                                                                                                                                                                          | JRF           | ELEV: 509.75 FT                                   |                                                |                                                     |                     |           |      |                           |
| LOCAT | TION: NWK, SWK, S6, T9S, R4E, Will                                                                                                                                                                                                                                                                                                                                                                        | iamson C      | Cnty, IL                                          |                                                |                                                     |                     | T         | DTAL | . DEPTH: 264.3 FT         |
| LOGG  | ED BY: E. Gefell, R. Bauer, T. Hone                                                                                                                                                                                                                                                                                                                                                                       | ycutt         | METHOD:                                           | NX-wireline                                    | e core                                              |                     | D         | ATE  | DRILLED: June 10-12, 1986 |
| et t  | un ander en                                                                                                                                                                                                                                                                                                                                                           | λ <u>δ</u> ς  | Drilling                                          | Core                                           | BOD                                                 | Fractures           | sts       |      | Joints                    |
| E Dep | Description                                                                                                                                                                                                                                                                                                                                                                                               | Lithol        | Data                                              | Recov (%)<br>25 50 75                          | 25 50 75                                            | per foot<br>1 2 3 4 | RM Te     | Log  | Description               |
|       |                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                   |                                                |                                                     |                     | $\square$ |      |                           |
| 230-  | LIMESTONE: med to med<br>dk gray, fossiliferous<br>COAL: normally bright<br>banded<br>LIMESTONE: med gray to<br>med It gray, fossiliferous,<br>argillaceous (BRERETON)<br>SHALE: dk gray to black,<br>carbonaceous, fissile, thin<br>phosphate bands or lenses<br>(ANNA)<br>SHALE: dk gray to med dk<br>gray, sl fissile, siderite<br>bands with pyrite nodule<br>and vert cleat calcite fill<br>(ENERGY) |               | Run 19<br>8.7 ft.                                 |                                                |                                                     |                     |           |      |                           |
| 235   |                                                                                                                                                                                                                                                                                                                                                                                                           |               | Run 20<br>9.55 ft.                                |                                                |                                                     |                     | $\square$ |      |                           |
|       | •                                                                                                                                                                                                                                                                                                                                                                                                         | II<br>II      | <b>llinois St</b><br>Ilinois Mine<br>615 East Pea | ate Ge:<br>Subsiden<br>abody Driv<br>(217) 333 | e <b>ologica</b><br>ce Resea<br>e, Champa<br>8-4747 | 20                  |           |      |                           |

.



| GEOI       | OGICAL BORING LOG: Pre-                                                                                         |        | Page 14 of 14                                |                                                |                                                                                                                |                                                                      |                     |      |                           |
|------------|-----------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------|------|---------------------------|
| PROJE      | CT: IMSRP Williamson Cnty High-E                                                                                | xtrac  | tion Retreat Site                            | 9                                              | er an en fan an fan de fan | an an har far i ser i sen an far | SI                  | JRF  | ELEV: 509.75 FT           |
| LOCAT      | TION: NWX, SWX, S6, T9S, R4E, Will                                                                              | iamsc  | on Cnty, IL                                  |                                                |                                                                                                                |                                                                      | T                   | DTAL | L DEPTH: 264.3 FT         |
| LOGG       | ED BY: E. Gefell, R. Bauer, T. Hone                                                                             | ycut   | t METHOD:                                    | NX-wireline                                    | e core                                                                                                         |                                                                      | 0,                  | ATE  | DRILLED: June 10~12, 1986 |
| £ €        | n gang dapang menang pangkang pangkang kanang ka | уgo    | Drilling                                     | Core                                           | ROD                                                                                                            | Fractures                                                            | ests                |      | Joints                    |
| Dep<br>(Fe | Description                                                                                                     | Lithol | Data                                         | Recov (%)<br>25 50 75                          | 25 50 75                                                                                                       | per foot<br>1 2 3 4                                                  | RM Te               | Log  | Description               |
| 260-       | SHALE: med gray,<br>limestone nodules<br>TOTAL DEPTH: 264.3 FT                                                  |        |                                              |                                                |                                                                                                                |                                                                      |                     |      |                           |
| 270-       |                                                                                                                 |        |                                              |                                                |                                                                                                                |                                                                      |                     |      |                           |
| 275-       |                                                                                                                 |        |                                              |                                                |                                                                                                                |                                                                      |                     |      |                           |
| 280-       |                                                                                                                 |        | Illinois St<br>Illinois Mine<br>615 East Pea | ate Ge<br>Subsidenc<br>body Drive<br>(217) 333 | <b>ologica</b><br>ce Resea<br>c. Champa<br>-4747                                                               | <b>al Surve</b><br>Irch Progra<br>Ign, IL 6182                       | <b>y</b><br>am<br>0 |      |                           |

### WILLIAMSON COUNTY EAST CLUSTER MPBX READINGS [in feet]

| ROD #1           | •    |               |         |          |         |        |
|------------------|------|---------------|---------|----------|---------|--------|
| [length = 50 ft] |      | DATE          | ROD TIP | SURFACE  | ANCHOR  | TOTAL  |
|                  |      |               | READING | ELEV     | ELEV    | ANCHOR |
|                  |      |               |         |          |         | CHANGE |
|                  | 1986 | SEPT 9        | -0.080  | 523.050  | 472.970 |        |
|                  |      | SEPT 20       | -0.080  | 523.050  | 472.970 | 0.000  |
| •                |      | DEC 10        | -0.079  | 523.050  | 472.971 | 0.001  |
|                  | 1987 | FEB 2         | -0.079  | 523.050  | 472.971 | 0.001  |
|                  |      | MAR 24        | -0.080  | 523.050  | 472.970 | 0.000  |
|                  |      | MAR 27        | -0.403  | 521.226  | 470.823 | -2.147 |
|                  |      | MAR 31        | -0.401  | 521.098  | 470.697 | -2.273 |
|                  |      | APR 1         | -0.400  | 521.098  | 470.698 | -2.272 |
|                  |      | APR 2         | -0.400  | 521.098  | 470.698 | -2.272 |
|                  |      | APR 3         | -0.403  | 521.025  | 470.622 | -2.348 |
|                  |      | APR 16        | -0.287  | 521.025  | 470.738 | -2.232 |
|                  |      | APR 21        | -0.280  | 520.056  | 469.776 | -3.194 |
|                  |      | APR 23        | -0.279  | 520.056  | 469.777 | -3.193 |
|                  |      | APR 29        | -0.278  | 520.011  | 469.733 | -3.237 |
|                  |      | MAY 14        | -0.278  | 519.990  | 469.712 | -3.258 |
|                  |      | MAY 27        | -0.278  | 519.990  | 469.712 | -3.258 |
|                  |      | MAY 28        | -0.280  | 519.990  | 469.710 | -3.260 |
|                  |      | JULY 22       | -0.280  | 519.937  | 469.657 | -3.313 |
|                  |      | SEPT 24       | -0.280  | 519.926  | 469.646 | -3.324 |
|                  | 1988 | <b>JAN 12</b> | -0.28   | 519.887  | 469.607 | -3.364 |
|                  |      | OCT 11        | -0.274  | 519.887  | 469.613 | -3.358 |
|                  | 1989 | APR 27        | -0.2728 | 519.7776 | 469.505 | -3.465 |

| ROD #2           |      | DATE    | ROD TIP | SURFACE  | ANCHOR  | TOTAL  |  |
|------------------|------|---------|---------|----------|---------|--------|--|
| [length = 75 ft] |      |         | READING | ELEV     | ELEV    | ANCHOR |  |
| • • •            |      |         |         |          |         | CHANGE |  |
|                  | 1986 | SEPT 9  | -0.081  | 523.050  | 447.969 |        |  |
|                  |      | SEPT 20 | -0.082  | 523.050  | 447.968 | -0.001 |  |
|                  |      | DEC 10  | -0.081  | 523.050  | 447.969 | 0.000  |  |
|                  | 1987 | FEB 2   | -0.081  | 523.050  | 447.969 | 0.000  |  |
|                  |      | MAR 24  | -0.082  | 523.050  | 447.968 | -0.001 |  |
| L                |      | MAR 27  | -0.403  | 521.226  | 445.823 | -2.146 |  |
|                  |      | MAR 31  | -0.400  | 521.098  | 445.698 | -2.271 |  |
|                  |      | APR 1   | -0.400  | 521.098  | 445.698 | -2.271 |  |
|                  |      | APR 2   | -0.400  | 521.098  | 445.698 | -2.271 |  |
|                  |      | APR 3   | -0.403  | 521.025  | 445.622 | -2.347 |  |
|                  |      | APR 16  | -0.289  | 521.025  | 445.736 | -2.233 |  |
|                  |      | APR 21  | -0.284  | 520.056  | 444.772 | -3.197 |  |
|                  |      | APR 23  | -0.280  | 520.056  | 444.776 | -3.193 |  |
|                  |      | APR 29  | -0.280  | 520.011  | 444.731 | -3.238 |  |
|                  |      | MAY 14  | -0.280  | 519.990  | 444.710 | -3.259 |  |
|                  |      | MAY 27  | -0.282  | 519.990  | 444.708 | -3.261 |  |
|                  |      | MAY 28  | -0.281  | 519.990  | 444.709 | -3.260 |  |
|                  |      | JULY 22 | -0.285  | 519.937  | 444.652 | -3.317 |  |
|                  |      | SEPT 24 | -0.283  | 519.926  | 444.643 | -3.326 |  |
|                  | 1988 | JAN 12  | -0.283  | 519.887  | 444.604 | -3.365 |  |
|                  |      | OCT 11  | -0.279  | 519.887  | 444.608 | -3.361 |  |
|                  | 1989 | APR 27  | -0.2777 | 519.7776 | 444.500 | -3.469 |  |

continued

### WILLIAMSON COUNTY EAST CLUSTER MPBX READINGS [in feet]

| ROD #3         |      | DATE          | ROD TIP | SURFACE  | ANCHOR  | TOTAL  |
|----------------|------|---------------|---------|----------|---------|--------|
| [length = 100] | Oft] |               | READING | ELEV     | ELEV    | ANCHOR |
| • •            |      |               |         |          |         | CHANGE |
|                | 1986 | SEPT 9        | -0.077  | 523.050  | 422.973 |        |
|                |      | SEPT 20       | -0.077  | 523.050  | 422.973 | 0.000  |
|                |      | DEC 10        | -0.077  | 523.050  | 422.973 | 0.000  |
|                | 1987 | FEB 2         | -0.077  | 523.050  | 422.973 | 0.000  |
|                |      | <b>MAR 24</b> | -0.077  | 523.050  | 422.973 | 0.000  |
|                |      | MAR 27        | -0.397  | 521.226  | 420.829 | -2.144 |
|                |      | MAR 31        | -0.396  | 521.098  | 420.702 | -2.271 |
|                |      | APR 1         | -0.396  | 521.098  | 420.702 | -2.271 |
|                |      | APR 2         | -0.396  | 521.098  | 420.702 | -2.271 |
|                |      | APR 3         | -0.397  | 521.025  | 420.628 | -2.345 |
|                |      | APR 16        | -0.287  | 521.025  | 420.738 | -2.235 |
|                |      | APR 21        | -0.285  | 520.056  | 419.771 | -3.202 |
|                |      | APR 23        | -0.282  | 520.056  | 419.774 | -3.199 |
|                |      | APR 29        | -0.281  | 520.011  | 419.730 | -3.243 |
|                |      | MAY 14        | -0.281  | 519.990  | 419.709 | -3.264 |
|                |      | MAY 27        | -0.280  | 519.990  | 419.710 | -3.263 |
|                |      | MAY 28        | -0.281  | 519.990  | 419.709 | -3.264 |
|                |      | JULY 22       | -0.287  | 519.937  | 419.650 | -3.323 |
|                |      | SEPT-24       | -0.286  | 519.926  | 419.640 | -3.333 |
|                | 1988 | JAN 12        | -0.285  | 519.887  | 419.602 | -3.371 |
|                |      | OCT 11        | -0.281  | 519.887  | 419.606 | -3.367 |
|                | 1989 | APR 27        | -0.2788 | 519.7776 | 419.499 | -3.474 |

| ROD #4<br>[length = 125 ft] |      | DATE    | ROD TIP<br>READING | SURFACE<br>ELEV | ANCHOR  | TOTAL<br>ANCHOR |
|-----------------------------|------|---------|--------------------|-----------------|---------|-----------------|
|                             |      |         |                    |                 | · .     | CHANGE          |
|                             | 1986 | SEPT 9  | -0.072             | 523.050         | 397.978 |                 |
|                             |      | SEPT 20 | -0.073             | 523.050         | 397.977 | -0.001          |
|                             |      | DEC 10  | -0.073             | 523.050         | 397.977 | -0.001          |
|                             | 1987 | FEB 2   | -0.074             | 523.050         | 397.976 | -0.002          |
|                             |      | MAR 24  | -0.074             | 523.050         | 397.976 | -0.002          |
|                             |      | MAR 27  | -1.698             | 521.226         | 394.528 | -3.450          |
|                             |      | MAR 31  | -1.703             | 521.098         | 394.395 | -3.583          |
|                             |      | APR 1   | -1.700             | 521.098         | 394.398 | -3.580          |
|                             |      | APR 2   | -1.700             | 521.098         | 394.398 | -3.580          |
|                             |      | APR 3   | -1.698             | 521.025         | 394.327 | -3.651          |
|                             |      | APR 16  | -1.600             | 521.025         | 394.425 | -3.553          |
|                             |      | APR 21  | -1.598             | 520.056         | 393.458 | -4.520          |
|                             |      | APR 23  | -1.595             | 520.056         | 393.461 | -4.517          |
|                             |      | APR 29  | -1.595             | 520.011         | 393.416 | -4.562          |
|                             |      | MAY 14  | -1.594             | 519.990         | 393.396 | -4.582          |
|                             |      | MAY 27  | -1.599             | 519.990         | 393.391 | -4.587          |
|                             |      | MAY 28  | -1.595             | 519.990         | 393.395 | -4.583          |
|                             |      | JULY 22 | -1.605             | 519.937         | 393.332 | -4.646          |
|                             |      | SEPT 24 | -1.6               | 519.926         | 393.326 | -4.652          |
|                             | 1988 | JAN 12  | -1.605             | 519.887         | 393.282 | -4.696          |
|                             |      | OCT 11  | -1.593             | 519.887         | 393.294 | -4.684          |
|                             | 1989 | APR 27  | -1 5885            | 519 7776        | 393 189 | -4 789          |

continued

### WILLIAMSON COUNTY EAST CLUSTER MPBX READINGS [in feet]

*з*.

| ROD #5            |      | DATE    | ROD TIP | SURFACE  | ANCHOR  | TOTAL  |
|-------------------|------|---------|---------|----------|---------|--------|
| [length = 150 ft] |      |         | READING | ELEV     | ELEV    | ANCHOR |
|                   |      |         |         |          |         | CHANGE |
|                   | 1986 | SEPT 9  | -0.075  | 523.050  | 372.975 | ••     |
|                   |      | SEPT 20 | -0.075  | 523.050  | 372.975 | 0.000  |
|                   |      | DEC 10  | -0.076  | 523.050  | 372.974 | -0.001 |
|                   | 1987 | FEB 2   | -0.077  | 523.050  | 372.973 | -0.002 |
|                   |      | MAR 24  | -0.077  | 523.050  | 372.973 | -0.002 |
|                   |      | MAR 27  | -2.123  | 521.226  | 369.103 | -3.872 |
|                   |      | MAR 31  | -2,130  | 521.098  | 368.968 | -4.007 |
|                   |      | APR 1   | -2.127  | 521.098  | 368.971 | -4.004 |
|                   |      | APR 2   | -2.128  | 521.098  | 368.970 | -4.005 |
|                   |      | APR 3   | -2.123  | 521.025  | 368.902 | -4.073 |
|                   |      | APR 16  | -2.008  | 521.025  | 369.017 | -3.958 |
|                   |      | APR 21  | -2.010  | 520.056  | 368.046 | -4.929 |
|                   |      | APR 23  | -2.004  | 520.056  | 368.052 | -4.923 |
|                   |      | APR 29  | -2.008  | 520.011  | 368.003 | -4.972 |
|                   |      | MAY 14  | -2.008  | 519.990  | 367.982 | -4.993 |
|                   |      | MAY 27  | -2.008  | 519.990  | 367.982 | -4.993 |
|                   |      | MAY 28  | -2.006  | 519.990  | 367.984 | -4.991 |
|                   |      | JULY 22 | -2.012  | 519.937  | 367.925 | -5.050 |
|                   |      | SEPT 24 | -2.009  | 519.926  | 367.917 | -5.058 |
|                   | 1988 | JAN 12  | -2.009  | 519.887  | 367.878 | -5.097 |
|                   |      | OCT 11  | -2.001  | 519.887  | 367.886 | -5.089 |
|                   | 1989 | APR 27  | -1.9948 | 519.7776 | 367.783 | -5.192 |

| ROD #6          |      | DATE    | ROD TIP | SURFACE  | ANCHOR  | TOTAL  |
|-----------------|------|---------|---------|----------|---------|--------|
| [length = 175 f | t]   |         | READING | ELEV     | ELEV    | ANCHOR |
|                 |      |         |         |          |         | CHANGE |
|                 | 1986 | SEPT 9  | -0.056  | 523.050  | 347.994 |        |
|                 |      | SEPT 20 | -0.056  | 523.050  | 347.994 | 0.000  |
|                 |      | DEC 10  | -0.055  | 523.050  | 347.995 | 0.001  |
|                 | 1987 | FEB 2   | -0.056  | 523.050  | 347.994 | 0.000  |
|                 |      | MAR 24  | -0.057  | 523.050  | 347.993 | -0.001 |
|                 |      | MAR 27  | -1.120  | 521.226  | 345.106 | -2.888 |
|                 |      | MAR 31  | -1.122  | 521.098  | 344.976 | -3.018 |
|                 |      | APR 1   | -1.120  | 521.098  | 344.978 | -3.016 |
|                 |      | APR 2   | -1.123  | 521.098  | 344.975 | -3.019 |
|                 |      | APR 3   | -1.120  | 521.025  | 344.905 | -3.089 |
|                 |      | APR 16  | -0.998  | 521.025  | 345.027 | -2.967 |
|                 |      | APR 21  | -0.996  | 520.056  | 344.060 | -3.934 |
|                 |      | APR 23  | -0.995  | 520.056  | 344.061 | -3.933 |
|                 |      | APR 29  | -0.995  | 520.011  | 344.016 | -3.978 |
|                 |      | MAY 14  | -0.994  | 519.990  | 343.996 | -3.998 |
|                 |      | MAY 27  | -0.993  | 519.990  | 343.997 | -3.997 |
|                 |      | MAY 28  | -0.992  | 519.990  | 343.998 | -3.996 |
|                 |      | JULY 22 | -0.995  | 519.937  | 343.942 | -4.052 |
|                 |      | SEPT 24 | -0.995  | 519.926  | 343.931 | -4.063 |
|                 | 1988 | JAN 12  | -0.995  | 519.887  | 343.892 | -4.102 |
|                 |      | OCT 11  | -0.989  | 519.887  | 343.898 | -4.096 |
|                 | 1989 | APB 27  | -0.9844 | 519,7776 | 343 793 | -4.201 |

#### WILLIAMSON COUNTY WEST CLUSTER MPBX READINGS

| ROD #1           |         |         |         |         | TOTAL  |
|------------------|---------|---------|---------|---------|--------|
| [length = 50 ft] | DATE    | ROD TIP | SURFACE | ANCHOR  | ANCHOR |
|                  |         | READING | ELEV    | ELEV    | CHANGE |
| 1986             | SEPT 9  | 0.007   | 509.613 | 459.620 |        |
|                  | SEPT 20 | 0.008   | 509.613 | 459.621 | 0.001  |
|                  | DEC 11  | 0.006   | 509.613 | 459.619 | -0.001 |
| 1987             | FEB 2   | 0.004   | 509.613 | 459.617 | -0.003 |
|                  | APR 14  | 0.004   | 509.613 | 459.617 | -0.003 |
|                  | APR 22  | 0.002   | 509.613 | 459.615 | -0.005 |
|                  | APR 30  | 0.002   | 509.613 | 459.615 | -0.005 |
|                  | MAY 13  | 0.001   | 509.613 | 459.614 | -0.006 |

| ROD #2    |        |         |         |         |         | TOTAL  |
|-----------|--------|---------|---------|---------|---------|--------|
| {length = | 75 ft] | DATE    | ROD TIP | SURFACE | ANCHOR  | ANCHOR |
|           |        |         | READING | ELEV    | ELEV    | CHANGE |
|           | 1986   | SEPT 9  | 0.050   | 509.613 | 434.663 |        |
|           |        | SEPT 20 | 0.050   | 509.613 | 434.663 | 0.000  |
|           |        | DEC 11  | 0.047   | 509.613 | 434.660 | -0.003 |
|           | 1987   |         | 0.046   | 509.613 | 434.659 | -0.004 |
|           |        | APR 14  | 0.046   | 509.613 | 434.659 | -0.004 |
|           |        | APR 22  | 0.043   | 509.613 | 434.656 | -0.007 |
|           |        | APR 30  | 0.045   | 509.613 | 434.658 | -0.005 |
|           |        | MAY 13  | 0.046   | 509.613 | 434.659 | -0.004 |

| ROD #3            |      |         |         |         |         | TOTAL  |
|-------------------|------|---------|---------|---------|---------|--------|
| [length = 100 ft] |      | DATE    | ROD TIP | SURFACE | ANCHOR  | ANCHOR |
| _                 |      |         | READING | ELEV    | ELEV    | CHANGE |
|                   | 1986 | SEPT 9  | 0.150   | 509.613 | 459.763 |        |
|                   |      | SEPT 20 | 0.150   | 509.613 | 459.763 | 0.000  |
|                   |      | DEC 11  | 0.149   | 509.613 | 459.762 | -0.001 |
|                   | 1987 | FEB 2   | 0.149   | 509.613 | 459.762 | -0.001 |
|                   |      | APR 14  | 0.146   | 509.613 | 459.759 | -0.004 |
|                   |      | APR 22  | 0.146   | 509.613 | 459.759 | -0.004 |
|                   |      | APR 30  | 0.149   | 509.613 | 459.762 | -0.001 |
|                   |      | MAY 13  | 0.148   | 509.613 | 459.761 | -0.002 |

| ROD #4    |         |         |         |         |         | TOTAL  |
|-----------|---------|---------|---------|---------|---------|--------|
| [length = | 125 ft] | DATE    | ROD TIP | SURFACE | ANCHOR  | ANCHOR |
|           |         |         | READING | ELEV    | ELEV    | CHANGE |
|           | 1986    | SEPT 9  | 0.170   | 509.613 | 434.783 |        |
|           |         | SEPT 20 | 0.170   | 509.613 | 434.783 | 0.000  |
|           |         | DEC 11  | 0.166   | 509.613 | 434.779 | -0.004 |
|           | 1987    | FEB 2   | 0.168   | 509.613 | 434.781 | -0.002 |
|           |         | APR 14  | 0.161   | 509.613 | 434.774 | -0.009 |
|           |         | APR 22  | 0.164   | 509.613 | 434.777 | -0.006 |
|           |         | APR 30  | 0.165   | 509.613 | 434.778 | -0.005 |
|           |         | MAY 13  | 0.164   | 509.613 | 434.777 | -0.006 |

| ROD #5    |         |         |         |         |         | TOTAL  |
|-----------|---------|---------|---------|---------|---------|--------|
| [length = | 150 ft] | DATE    | ROD TIP | SURFACE | ANCHOR  | ANCHOR |
|           |         |         | READING | ELEV    | ELEV    | CHANGE |
| -         | 1986    | SEPT 9  | 0.112   | 509.613 | 459.725 |        |
|           |         | SEPT 20 | 0.112   | 509.613 | 459.725 | 0.000  |
|           |         | DEC 11  | 0.109   | 509.613 | 459.722 | -0.003 |
|           | 1987    |         | 0.110   | 509.613 | 459.723 | -0.002 |
|           |         | APR 14  | 0.107   | 509.613 | 459.720 | -0.005 |
|           |         | APR 22  | 0.109   | 509.613 | 459.722 | -0.003 |
|           |         | APR 30  | 0.110   | 509.613 | 459.723 | -0.002 |
|           |         | MAY 13  | 0.111   | 509.613 | 459.724 | -0.001 |

| ROD #6            |      |         |         |         |         | TOTAL  |  |
|-------------------|------|---------|---------|---------|---------|--------|--|
| [length = 175 ft] |      | DATE    | ROD TIP | SURFACE | ANCHOR  | ANCHOR |  |
|                   |      |         | READING | ELEV    | ELEV    | CHANGE |  |
|                   | 1986 | SEPT 9  | 0.083   | 509.613 | 434.696 |        |  |
|                   |      | SEPT 20 | 0.083   | 509.613 | 434.696 | 0.000  |  |
|                   |      | DEC 11  | 0.081   | 509.613 | 434.694 | -0.002 |  |
|                   | 1987 | FEB 2   | 0.079   | 509.613 | 434.692 | -0.004 |  |
|                   |      | APR 14  | 0.078   | 509.613 | 434.691 | -0.005 |  |
|                   |      | APR 22  | 0.077   | 509.613 | 434.690 | -0.006 |  |
|                   |      | APR 30  | 0.079   | 509.613 | 434.692 | -0.004 |  |
|                   |      | MAY 13  | 0.079   | 509.613 | 434.692 | -0.004 |  |

### COORDINATES FOR THE EAST CLUSTER INSTRUMENTS & MONUMENTS

#### WILLIAMSON COUNTY

| INSTRUMENT/ |           |           |            |         | INSTRUMENT/ |           |           |            |         |
|-------------|-----------|-----------|------------|---------|-------------|-----------|-----------|------------|---------|
| MONUMENT    | NORTHINGS | EASTINGS  | ELEVATIONS | DATE    | MONUMENT    | NORTHINGS | EASTINGS  | ELEVATIONS | DATE    |
|             |           |           |            |         |             |           |           |            |         |
| мрвх        | -4082.360 | 32160.930 | 523.330    | E.I.*   | PIE         | -4116.950 | 32158.930 | 522.490    | E.I.*   |
|             | -4081.694 | 32161.258 | 521.226    | 3-27-87 |             | -4116.901 | 32159.175 | 522.256    | 3-27-87 |
|             | -4081.717 | 32161.170 | 521.025    | 4-03-87 |             | -4116.910 | 32159.173 | 522.235    | 3-31-87 |
|             | -4081.795 | 32160.475 | 520.056    | 4-21-87 |             | -4116.889 | 32159.152 | 522.204    | 4-03-87 |
|             | -4081.814 | 32160.443 | 520.011    | 4-29-87 |             |           |           | 521.909    | 4-21-8/ |
|             | -4081.872 | 32160.379 | 519,990    | 5-14-86 |             | -4116.681 | 32158.868 | 521.891    | 4-23-87 |
|             | -4081.800 | 32160.423 | 519.937    | 7-22-87 |             | -4116.666 | 32158.854 | 521.884    | 4-29-87 |
|             | -4081.793 | 32160.509 | 519.926    | 9-24-87 |             | -4116./14 | 32158.808 | 521.879    | 5-14-87 |
|             | -4001.049 | 32100.437 | 519.007    | 1-12-00 |             | -4116.600 | 32138.865 | 521.847    | 7-22-87 |
|             |           |           |            |         |             | -4116.000 | 32158.951 | 521.834    | 9-24-67 |
|             |           |           |            |         |             | -4110.000 | 32138.889 | 521.697    | 1-12-00 |
|             |           |           |            |         |             |           |           |            |         |
|             |           |           |            |         |             |           |           |            |         |
| TDR         | -4078.330 | 32158.800 | 522.700    | E.I.*   | P2E         | -4164.100 | 32209.080 | 515.770    | E.I.*   |
|             | -4077.734 | 32159.356 | 521.069    | 3-27-87 |             | -4164.062 | 32209.242 | 515.716    | 3-27-87 |
|             | -4077.769 | 32159.257 | 520.882    | 4-03-87 |             | -4164.088 | 32209.234 | 515.701    | 3-31-87 |
|             |           |           |            |         |             | -4164.071 | 32209.209 | 515.693    | 4-03-87 |
|             |           |           |            |         |             |           |           | 516.642    | 4-21-87 |
|             |           |           |            |         |             | -4164.073 | 32209.189 | 515.637    | 4-23-87 |
|             |           |           |            |         |             | -4164.067 | 32209.177 | 515.632    | 4-29-87 |
|             |           |           |            |         |             | -4164.099 | 32209.158 | 515.631    | 5-14-87 |
|             |           |           |            |         |             | -4164.065 | 32209.194 | 515.614    | 7-22-87 |
|             |           |           |            |         |             | -4164.073 | 32209.268 | 515.620    | 9-24-87 |
|             |           |           |            |         |             | -4164.100 | 32209.229 | 515.635    | 1-12-88 |
|             |           |           |            |         |             |           |           |            |         |
| P5E (DOW)   | -4087.080 | 32163.640 | 522.640    | E.I.*   | P3E         | -4206.470 | 32235.230 | 515.620    | E.I.*   |
|             | -4086.507 | 32163.758 | 521.420    | 3-27-87 |             | -4206.353 | 32235.411 | 515.627    | 3-27-87 |
|             | -4086.492 | 32163.647 | 521.256    | 4-03-87 |             | -4206.368 | 32235.415 | 515.614    | 3-31-87 |
|             | -4086.346 | 32162.982 | 520.453    | 4-21-87 |             | -4206.356 | 32235.397 | 515.610    | 4-03-87 |
|             | -4086.369 | 32162.940 | 520.422    | 4-29-87 |             |           |           | 515.577    | 4-21-87 |
|             | -4086.422 | 32162.877 | 520.370    | 5-14-86 |             | -4206.367 | 32235.415 | 515.579    | 4-23-87 |
|             | -4086.345 | 32162.928 | 520.317    | 7-22-87 |             | -4206.371 | 32235.392 | 515.575    | 4-29-87 |
|             | -4086.336 | 32162.996 | 520.292    | 9-24-87 |             | -4206.383 | 32235.364 | 515.573    | 5-14-87 |
|             | -4086.385 | 32162.934 | 520.281    | 1-12-88 |             | -4206.635 | 32235.451 | 515.391    | 7-22-87 |
|             |           |           |            |         |             | -4206.591 | 32233.325 | 515.359    | 9-24-87 |
|             |           |           |            |         |             | -4206.610 | 32235.487 | 515.400    | 1-12-88 |
| P6E (SOW)   | -4090.960 | 32166.070 | 522,560    | E.L*    | P4E         | -4256.080 | 32281.650 | 513,590    | E.I.*   |
|             | -4090.425 | 32166.378 | 521.541    | 3-27-87 |             | -4255.944 | 32281.714 | 513.654    | 3-27-87 |
|             | -4090.396 | 32166.345 | 521,478    | 3-31-87 |             | -4255.937 | 32281 720 | 513.642    | 3-31-87 |
|             | -4090.367 | 32166.303 | 521.443    | 4-03-87 |             | -4255.935 | 32281.714 | 513.639    | 4-03-87 |
|             |           |           | 520.812    | 4-21-87 |             |           |           | 513.631    | 4-21-87 |
|             | -4090.163 | 32165.651 | 520.778    | 4-23-87 |             | -4255.943 | 32281.721 | 513.629    | 4-23-87 |
|             | -4090.147 | 32165.617 | 520.761    | 4-29-87 |             | -4255.952 | 32281.732 | 513.625    | 4-29-87 |
|             | -4090.207 | 32165.569 | 520.729    | 5-14-87 |             | -4255.955 | 32281.697 | 513.625    | 5-14-87 |
|             | -4090.130 | 32165.612 | 520.683    | 7-22-87 |             | -4255.929 | 32281.741 | 513.604    | 7-22-87 |
|             | -4090.092 | 32165.671 | 520.673    | 9-24-87 |             | -4255.934 | 32281.777 | 513.606    | 9-24-87 |
|             | -4090.157 | 32165.617 | 520.651    | 1-12-88 |             | -4255.973 | 32281.719 | 513.637    | 1-12-88 |

## COORDINATES FOR THE EAST CLUSTER INSTRUMENTS & MONUMENTS

#### WILLIAMSON COUNTY

| INSTRUMENT/ | NODTUNNOS   | FACTINICO | ELE ATIONS | DATE    | INSTRUMENT/ | NORTHINGS | EACTINICS |            | DATE                |
|-------------|-------------|-----------|------------|---------|-------------|-----------|-----------|------------|---------------------|
| MONUMENT    | NORTHINGS   | EASTINGS  | ELEVATIONS | DATE    | MONUMENT    | NURTHINGS | EASTINGS  | ELEVATIONS | DATE                |
| M-15        | -4124 760   | 32148 680 | 522 480    | F1*     | M-19        | -4125 090 | 32203.610 | 518.260    | E.I.*               |
|             | -4124.675   | 32148.789 | 522,332    | 3-27-87 |             |           |           | 518,109    | 3-26-87             |
|             | -4124.698   | 32148.781 | 522.323    | 3-31-87 |             | -4124.964 | 32203.542 | 518.107    | 3-27-87             |
|             | -4124.676   | 32148.746 | 522.288    | 4-03-87 |             | -4124.979 | 32203.535 | 518.099    | 3-31-87             |
|             |             |           | 521.966    | 4-21-87 |             | -4124.960 | 32203.499 | 518.083    | 4-03-87             |
|             | -4124.467   | 32148.480 | 521.953    | 4-23-87 |             |           | <u> </u>  | 518.008    | 4-21-87             |
|             | -4124.451   | 32148.466 | 521.943    | 4-29-87 |             | -4124.940 | 32203.428 | 518.001    | 4-23-87             |
|             | -4124.508   | 32148.434 | 521.941    | 5-14-87 |             | -4124.933 | 32203.427 | 517.995    | 4-29-87             |
|             | -4124.455   | 32148.482 | 521.907    | 7-22-87 |             | -4124.973 | 32203.389 | 517.996    | 5-14-87             |
|             | -4124.456   | 32148.551 | 521.915    | 9-24-87 |             | -4124.923 | 32203.440 | 517.975    | 7-22-87             |
|             | -4124.492   | 32148.492 | 521.894    | 1-12-88 |             | -4124.929 | 32203.516 | 517.974    | 9-24-87             |
|             |             |           |            |         |             | -4124.984 | 32203.460 | 517.956    | 1-12-88             |
|             |             |           |            |         |             |           |           |            |                     |
| M 16        | 4111 610    | 22156 100 | 522 280    | E1*     | M-20        | -4125 350 | 32223 610 | 515 850    | FI*                 |
| 10          | = -4111.010 | 32130.190 | 522.200    | 3-26-87 | W-20        | -4125.000 | 32223.517 | 515 731    | 3-27-87             |
|             | -4111 324   | 32156 294 | 521 988    | 3-27-87 |             | -4125.258 | 32223.507 | 515.723    | 3-31-87             |
|             | -4111.331   | 32156.297 | 521.975    | 3-31-87 |             | -4125.231 | 32223.482 | 515.714    | 4-03-87             |
|             | -4111.303   | 32156.260 | 521.941    | 4-03-87 |             |           |           | 515.664    | 4-21-87             |
|             |             | '         | 521.560    | 4-21-87 |             | -4125.238 | 32223.456 | 515.659    | 4-23-87             |
|             | -4111.028   | 32155.831 | 521.547    | 4-23-87 |             | -4125.223 | 32223.436 | 515.657    | 4-29-87             |
|             | -4111.013   | 32155.805 | 521.539    | 4-29-87 |             | -4125.274 | 32223.408 | 515.656    | 5-14-87             |
|             | -4111.071   | 32155.770 | 521.535    | 5-14-87 |             | -4125.234 | 32223.464 | 515.641    | 7-22-87             |
|             | -4111.028   | 32155.834 | 521.505    | 7-22-87 |             | -4125.223 | 32223.525 | 515.639    | <del>9</del> -24-87 |
|             | -4111.010   | 32155.898 | 521.510    | 9-24-87 |             | -4125.283 | 32223.473 | 515.618    | 1-12-88             |
|             | -4111.085   | 32155.842 | 521.487    | 1-12-88 |             |           |           |            |                     |
|             |             |           |            |         |             |           |           |            |                     |
| NA 17       |             | 32163 420 | 521 850    | FI*     | M-21        | -4125 490 | 32243 370 | 513 570    | E.L*                |
| 141- 1 7    | = -4124.300 | 32163 498 | 521 685    | 3-27-87 |             |           |           | 513.472    | 3-26-87             |
|             | 4124.701    | 02100.400 | 521.681    | 3-31-87 |             | -4125.392 | 32243.298 | 513.476    | 3-27-87             |
|             | -4124.781   | 32163.430 | 521.632    | 4-03-87 |             | -4125.414 | 32243.292 | 513.465    | 3-31-87             |
|             | -4124.628   | 32163.264 | 521.428    | 4-21-87 |             | -4125.392 | 32243.268 | 513.459    | 4-03-87             |
|             |             |           |            |         |             |           |           | 513.424    | 4-21-87             |
|             |             |           |            |         |             | -4125.413 | 32243.254 | 513.419    | 4-23-87             |
|             |             |           |            |         |             | -4125.398 | 32243.247 | 513.415    | 4-29-87             |
|             |             |           |            |         |             | -4125.451 | 32243.211 | 513.416    | 5-14-87             |
|             |             |           |            |         |             | -4125.412 | 32243.263 | 513.402    | 7-22-87             |
|             |             |           |            |         |             | -4125.429 | 32243.332 | 513.405    | 9-24-87             |
|             |             |           |            |         |             | -4125.473 | 32243.272 | 513.387    | 1-12-88             |
|             |             |           |            |         |             |           |           |            |                     |
| M-18        | -4124 820   | 32183 740 | 520.380    | E.I.*   | M-22        | -4125.800 | 32263.220 | 510.430    | E.I.*               |
|             |             |           | 520.219    | 3-26-87 |             | -4125.719 | 32263.134 | 510.359    | 3-27-87             |
|             | -4124.707   | 32183.734 | 520.217    | 3-27-87 |             | -4125.732 | 32263.112 | 510.351    | 3-31-87             |
|             | -4124.715   | 32183.732 | 520.208    | 3-31-87 |             | -4125.701 | 32263.086 | 510.345    | 4-03-87             |
|             | -4124.690   | 32183.700 | 520.189    | 4-03-87 |             |           |           | 510.315    | 4-21-87             |
|             |             |           | 520.066    | 4-21-87 |             | -4125.729 | 32263.085 | 510.318    | 4-23-87             |
|             | -4124.638   | 32183.589 | 520.053    | 4-23-87 |             | -4125.711 | 32263.083 | 510.312    | 4-29-87             |
|             | -4124.628   | 32183.578 | 520.047    | 4-29-87 |             | -4125.766 | 32263.039 | 510.314    | 5-14-87             |
|             | -4124.682   | 32183.544 | 520.048    | 5-14-87 |             |           |           |            | 7-22-87             |
|             | -4124.644   | 32183.601 | 520.022    | 7-22-87 |             | -4125.755 | 32263.159 | 510.308    | 9-24-87             |
|             | -4124.636   | 32183.666 | 520.021    | 9-24-87 |             | -4125.803 | 32263.103 | 510.295    | 1-12-88             |
|             | -4124.685   | 32183.606 | 520.004    | 1-12-88 |             | •         |           |            |                     |

## COORDINATES FOR THE EAST CLUSTER INSTRUMENTS & MONUMENTS

### WILLIAMSON COUNTY

| INSTRUMENT/ | NORTHINGS  | FASTINGS  | ELEVATIONS | DATE               | INSTRUMENT/ | NORTHINGS | FASTINGS  | FLEVATIONS | DATE               |
|-------------|------------|-----------|------------|--------------------|-------------|-----------|-----------|------------|--------------------|
| WONOWLIN    | Nonmindo   | LAGINIQU  | LEUANONO   |                    | MONOMENT    | tonnindo  | LAGINIGO  | LLLVAIIONG | DATE               |
| M-23        | -4125.860  | 32283.090 | 508,130    | E.I.*              | M-26        |           |           | 510.800    | E.I.*              |
|             |            |           | 508.780    | 3-26-87            |             | -4126.771 | 32343.031 | 510.785    | 3-27-87            |
|             | -4125.791  | 32283.060 | 508.081    | 3-27-87            |             | -4126.771 | 32343.012 | 510.779    | 3-31-87            |
|             | -4125.805  | 32283.038 | 508.074    | 3-31-87            |             | -4126.742 | 32343.009 | 510.776    | 4-03-87            |
|             | -4125.768  | 32283.021 | 508.070    | 4-03-87            |             |           |           | 510.779    | 4-21-87            |
|             |            |           | 508.052    | 4-21-87            |             | -4126.788 | 32343.008 | 510.771    | 4-23-87            |
|             | -4125.807  | 32283.014 | 508.050    | 4-23-87            |             | -4126.773 | 32343.031 | 510.768    | 4-29-87            |
|             | -4125.785  | 32283.026 | 508.044    | 4-29-87            |             | -4126.803 | 32342.961 | 510.772    | 5-14-87            |
|             | -4125.833  | 32282.977 | 508.047    | 5-14-87            |             | -4127.337 | 32343.385 | 510.763    | 7-22-87            |
|             | -4125.910  | 32283.394 | 508,030    | 7-22-87            |             | -4126.825 | 32343.101 | 510.766    | 9-24-87            |
|             | -4125.826  | 32283.089 | 508.030    | 9-24-87            |             | -4126.858 | 32343.005 | 510.763    | 1-12-88            |
|             | -4125 875  | 32283.030 | 508.030    | 1-12-88            |             |           |           |            |                    |
|             |            |           |            |                    |             |           |           |            |                    |
|             |            |           |            |                    |             |           |           |            |                    |
|             |            |           |            |                    |             |           |           |            |                    |
|             | . 4106 010 | 20202 020 | 507 660    | . E1*              | M 97        |           |           | 512 720    | Ë I *              |
| M-24        | -4126.210  | 32303.030 | 507.000    | E.I.<br>2 07 07    | M1-27       | 4100 700  | 20262 104 | 512.730    | 2 07 97            |
|             | -4126.142  | 32302.970 | 507.032    | 3-21-01            |             | -4120.702 | 32363.104 | 512.733    | 3 31.87            |
|             | -4126.136  | 32302.941 | 507.621    | 4 02 97            |             | 4120.700  | 32363.170 | 512.731    | 3-31-07<br>4-03-87 |
|             | -4126.116  | 32302.939 | 507.021    | 4-03-07            |             | -4120.703 | 32303.103 | 512.723    | 4-03-07            |
|             |            |           | 507.609    | 4-21-07            |             | 4106 807  | 20262 174 | 512.751    | 4-21-07            |
|             | -4126.155  | 32302.934 | 507.611    | 4-23-87            |             | -4126.807 | 32363.174 | 512.724    | 4-23-67            |
|             | -4126.132  | 32302.942 | 507.604    | 4-29-87            |             | -4120.793 | 32303.107 | 512.720    | 4-29-07            |
|             | -4126.183  | 32302.887 | 507,608    | 5-14-87<br>7 00 07 |             | -4120.020 | 32303,121 | 512.720    | 3-14-07            |
|             | -4126.412  | 32303.345 | 507.592    | 1-22-87            |             | -4127.502 | 32363,540 | 512.709    | 0.04.97            |
|             | -4126.193  | 32303.051 | 507.583    | 9-24-87            |             | -4126.849 | 32363.252 | 512.719    | 9-24-07            |
|             | -4126.234  | 32302.934 | 507.595    | 1-12-88            |             | -4120.070 | 32303.172 | 512.707    | 1-12-00            |
|             |            |           |            |                    |             |           |           |            |                    |
|             |            |           |            |                    |             |           |           |            |                    |
| N OF        | 4106 600   | 20202 100 | 508 790    | E i *              | M-98        |           |           | 515 150    | E1*                |
| M-25        | -4120.000  | 32323.100 | 508.760    | 2 06 97            | M-28        | 4126 027  | 22282 626 | 515 161    | 3-27-87            |
|             |            |           | 508.750    | 3-20-07            |             | -4120.927 | 32303.030 | 515.101    | 2 21 97            |
|             | -4126.540  | 32323.042 | 508.757    | 2 21 07            |             | 4120.923  | 32383.601 | 515 149    | 4-03-87            |
|             | -4120.532  | 32323.027 | 506.752    | 3-31-0/<br>4.02.07 |             | -4120.901 | 02000.001 | 515 1542   | 4-03-07            |
|             | -4126.513  | 32323.014 | 508.747    | 4-03-67            |             | 4126.040  | 20282 600 | 515 155    | 4-23-87            |
|             |            |           | 508.743    | 4-21-0/            |             | 4120.940  | 32303.022 | 515,100    | 4-20-07            |
|             | -4126.551  | 32323.019 | 508.740    | 4-23-87            |             | -4120.940 | 32303.032 | 515.148    | 5 14 87            |
|             | -4126.538  | 32323.044 | 508.734    | 4-29-8/            |             | -4120.904 | 32383.363 | 515.154    | J-14-0/            |
|             | -4126.578  | 32322.969 | 508.740    | 5-14-87            |             | -4127.804 | 32383.981 | 515.137    | 1-22-01            |
|             | -4126.963  | 32323.412 | 508.728    | 7-22-87            |             | -4126.981 | 32383.697 | 515.150    | 9-24-8/            |
|             | -4126.590  | 32323.099 | 508.733    | 9-24-87            |             | -4127.017 | 32383.613 | 515.134    | 1-12-88            |
|             | -4126.629  | 32323.015 | 508.731    | 1-12-88            |             |           |           |            |                    |

# WILLIAMSON COUNTY BASELINE SURVEY DATA (WEST CLUSTER)

| INSTRUMENTS | ***** | NORTHINGS   | EASTINGS    | ELEVATIONS | NORTHINGS   | EASTINGS  | ELEVATIONS |
|-------------|-------|-------------|-------------|------------|-------------|-----------|------------|
| MPBX        | 1     | -4400.931   | 31327.936   | 509.607    | -4400.922   | 31327.968 | 509.613    |
|             | 2     | -4400.979   | 31327.969   | 509.622    |             |           |            |
|             | 3     | -4400.855   | 31327.998   | 509.609    |             |           |            |
| מחד         | 1     | -4401 322   | 31337 176   | 510 743    | -4401 310   | 31337 214 | 510 748    |
|             | 2     | -4401 366   | 31337 220   | 510.756    | 101.010     | 01007.211 | 0.000.00   |
|             | 2     | -4401.000   | 31337 245   | 510 744    |             |           |            |
|             | 5     | -4401.242   | 01007.240   | 510.744    |             |           |            |
| P7W (SOW)   | 1     | -4406.115   | 31306.133   | 508.493    | -4406.103   | 31306.167 | 508.498    |
| *****       | 2     | -4406.161   | 31306.178   | 508.507    |             |           |            |
|             | 3     | -4406.033   | 31306.189   | 508.495    |             |           |            |
| P6W (DOW)   | 1     | -4407.305   | 31301.968   | 508.418    | -4407.294   | 31302.012 | 508.421    |
|             | 2     | -4407.356   | 31302.025   | 508.426    |             |           |            |
|             | 3     | -4407.221   | 31302.044   | 508.419    |             |           |            |
| D1W         | 1     | -4399 767   | 31312 301   | 508 101    | -4399 756   | 31312,334 | 508,107    |
|             | 2     | -4399 820   | 31312 338   | 508 117    | 1000.700    | 01012.001 |            |
|             | 2     | -4300 682   | 31312 364   | 508 103    |             |           |            |
|             | 0     | -4099.002   | 01012.004   | 500.100    |             |           |            |
| P2W         | 1     | -4404.440   | 31372.781   | 512.574    | -4404.430   | 31372.816 | 512.582    |
|             | 2     | -4404.472   | 31372.824   | 512.593    |             |           |            |
|             | 3     | -4404.377   | 31372.844   | 512.578    |             |           |            |
| P3W         | 1     | -4409.067   | 31432.058   | 515.470    | -4409.049   | 31432.112 | 515.475    |
|             | 2     | -4409.094   | 31432.126   | 515.485    |             | *         |            |
|             | 3     | -4408.985   | 31432.151   | 515.470    |             |           |            |
|             | 1     | -4413 647   | 31492 212   | 518 190    | -4413 619   | 31492 240 | 518,194    |
|             | 2     | -4413 653   | 31492 232   | 518 204    |             |           |            |
|             | 2     | -4413 556   | 31492 276   | 518 188    |             |           |            |
|             | 0     | -4410.000   | 01492.270   | 510.100    |             |           |            |
| P5W         | 1     | -4419.982   | 31572.062   | 519.580    | -4419.966   | 31572.088 | 519.583    |
|             | 2     | -4420.005   | 31572.086   | 519.590    |             |           |            |
|             | 3     | -4419.911   | 31572.117   | 519.578    |             |           |            |
|             |       | COORDINATES | SURVEY DATE |            | 1 = 4/02/87 |           |            |

AVERAGE

2 = 4/22/873 = 4/30/87

### WILLIAMSON COUNTY BASELINE SURVEY DATA (WEST CLUSTER)

## AVERAGE

| MONUMENTS    | NORTHINGS | EASTINGS  | ELEVATIONS | NORTHINGS | EASTINGS  | ELEVATIONS |
|--------------|-----------|-----------|------------|-----------|-----------|------------|
| M-1 1        | -4399.444 | 31307.801 | 507.581    | -4399.432 | 31307.836 | 507.588    |
| 2            | -4399.486 | 31307.843 | 507.597    |           |           |            |
| 3            | -4399.365 | 31307.864 | 507.585    |           |           |            |
| M-2 2        | -4412.836 | 31314.229 | 509.701    | -4412.772 | 31314.244 | 509.689    |
| 3            | -4412.708 | 31314.258 | 509.677    |           |           |            |
| M-3 1        | -4400.586 | 31322.597 | 509.351    | -4400.578 | 31322.631 | 509.358    |
| 2            | -4400.636 | 31322.634 | 509.368    |           |           |            |
| 3            | -4400.512 | 31322.661 | 509.354    |           | ч         |            |
| M-4 2        | -4402.091 | 31342.757 | 511.001    | -4402.033 | 31342.771 | 510.994    |
| 3            | -4401.974 | 31342.784 | 510.987    |           |           |            |
| <u>M-5</u> 1 | -4403.770 | 31362.201 | 511.844    | -4403.760 | 31362.239 | 511.853    |
| 2            | -4403.815 | 31362.241 | 511.864    |           |           |            |
| 3            | -4403.696 | 31362.274 | 511.850    |           |           |            |
| M-6 2        | -4405.380 | 31382.283 | 512.982    | -4405.332 | 31382.295 | 512.974    |
| 3            | -4405.284 | 31382.306 | 512.966    |           |           |            |
| M-7 1        | -4406.661 | 31402.282 | 514.455    | -4406.648 | 31402.334 | 514.463    |
| 2            | -4406.696 | 31402.345 | 514.474    |           |           |            |
| 3            | -4406.586 | 31402.375 | 514.460    |           |           |            |
| M-8 2        | -4408.447 | 31422.288 | 515.088    | -4408.393 | 31422.306 | 515.081    |
| 3            | -4408.338 | 31422.324 | 515.073    |           |           |            |
| M-9 1        | -4409.915 | 31442.169 | 516.133    | -4409.903 | 31442.216 | 516.137    |
| 2            | -4409.951 | 31442.221 | 516.147    |           |           |            |
| 3            | -4409.842 | 31442.257 | 516.132    |           |           |            |
| M-10 2       | -4411.492 | 31462.224 | 517.136    | -4411.443 | 31462.244 | 517.130    |
| 3            | -4411.394 | 31462.264 | 517.123    |           |           |            |
| M-11 1       | -4412.930 | 31482.150 | 517.894    | -4412.906 | 31482.187 | 517.899    |
| 2            | -4412.943 | 31482.185 | 517.908    |           | •         |            |
| 3            | -4412.844 | 31482.226 | 517.895    |           |           |            |
| M-12 2       | -4414.523 | 31502.067 | 518.405    | -4414.473 | 31502.090 | 518.397    |
| 3            | -4414.422 | 31502.112 | 518.389    |           |           |            |
| M-13 1       | -4415.991 | 31522.064 | 518.891    | -4415.976 | 31522.089 | 518.896    |
| 2            | -4416.019 | 31522.082 | 518.906    |           |           |            |
| 3            | -4415.918 | 31522.121 | 518.891    |           |           |            |
| M-14 2       | -4417.583 | 31541.930 | 519.178    | -4417.531 | 31541.950 | 519,173    |
| 3            | -4417.479 | 31541.970 | 519.167    |           |           |            |

COORDINATES: 1 = 4-2-87 2 = 4-22-87 3 = 4-30-87

## WILLIAMSON COUNTY BASELINE SURVEY DATA (WEST CLUSTER)

| REBAR  | NORTHINGS | EASTINGS   | ELEVATIONS |   | REBAR  | NORTHINGS | EASTINGS  | ELEVATIONS |
|--------|-----------|------------|------------|---|--------|-----------|-----------|------------|
|        |           |            |            |   |        |           |           |            |
| R-20 1 | -4604.042 | 31651.354  | 525.963    |   | R-27 1 | -4409.745 | 31575.681 | 519.237    |
| 2      | -4603.997 | 31651.364  | 525.967    |   | 2      | -4409.645 | 31575.722 | 519.223    |
| AV     | -4604.020 | 31651.359  | 525.965    |   | AV     | -4409.695 | 31575.702 | 519.230    |
|        |           |            |            |   |        |           |           |            |
| R-21 1 | -4572.285 | 31637.129  | 525.675    |   | R-28 1 | -4385.242 | 31570.481 | 518.628    |
| 2      | -4572.227 | 31637.137  | 525.679    |   | 2      | -4385.145 | 31570.526 | 518.611    |
| AV     | -4572.256 | 31637.133  | 525.677    |   | AV     | -4385.194 | 31570.504 | 518.620    |
|        |           |            |            |   |        |           |           |            |
| R-22 1 | -4539.861 | 31623.230  | 524.889    |   | R-29 1 | -4360.643 | 31565.412 | 517.325    |
| 2      | -4539.791 | 31623.255  | 524.893    |   | 2      | -4360.536 | 31565.460 | 517.309    |
| AV     | -4539.826 | 31623.243  | 524.891    |   | AV     | -4360.590 | 31565.436 | 517.317    |
|        |           |            |            |   |        |           |           |            |
| R-23 1 | -4516.929 | 31613.323  | 524.311    |   | R-30 1 | -4336.333 | 31560.441 | 516.985    |
| 2      | -4516.860 | 31613.337  | 524.313    | ` | 2      | -4336.236 | 31560.491 | 516.964    |
| AV     | -4516.895 | 31613.330  | 524.312    |   | AV     | -4336.285 | 31560.466 | 516.975    |
|        |           |            |            |   |        |           |           |            |
| R-24 1 | -4494.103 | 31603.183  | 523.396    |   | R-31 1 | -4312.024 | 31555.494 | 516.979    |
| 2      | -4494.025 | 31603.208  | 523.398    |   | 2      | -4311.924 | 31555.546 | 516.956    |
| AV     | -4494.064 | 31603.196  | 523.397    |   | AV     | -4311.974 | 31555.520 | 516.968    |
|        |           |            |            |   |        |           |           |            |
| R-25 1 | -4471.102 | 31593.177  | 522.382    |   | R-32 1 | -4288.821 | 31550.679 | 516.650    |
| 2      | -4471.025 | 31593.205  | 522.381    |   | 2      | -4288.718 | 31550.731 | 516.627    |
| AV     | -4471.064 | 31593,191  | 522.382    |   | AV     | -4288,770 | 31550.705 | 516.639    |
| ,      |           |            |            |   |        |           |           |            |
| R-26 1 | -4448.043 | 31583.407  | 521.743    |   | R-33 1 | -4263.271 | 31545.544 | 515.807    |
| 2      | -4447.955 | 31583.432  | 521,747    |   | 2      | -4263.170 | 31545.607 | 515.782    |
| ۸V     | -4447 999 | 31583.420  | 521.745    |   | AV     | -4263.221 | 31545.576 | 515.795    |
|        |           | 2.200.1110 | 22111 10   |   |        |           |           |            |

1 = 4-22-87

2 = 4-30-87

| INSTRUMENT                                                                                                     | DATE         | ELEVATION | SUBSIDENCE | INSTRU     | JMENT DATE                                                                                                      | ELEVATION | SUBSIDENCE |
|----------------------------------------------------------------------------------------------------------------|--------------|-----------|------------|------------|-----------------------------------------------------------------------------------------------------------------|-----------|------------|
| the planet over the planet of the second |              | (F1)      | (F1)       |            | Miles and a second s | (FT)      | (F1)       |
| MPBX                                                                                                           | E.I.*        | 523.050   | _          | P1E        | E.I.*                                                                                                           | 522.490   |            |
|                                                                                                                | 3-27-87      | 521.226   | -1.824     | <u></u>    | 3-27-87                                                                                                         | 522.256   | -0.234     |
|                                                                                                                | 4-03-87      | 521.098   | -1.952     |            | 3-31-87                                                                                                         | 522.235   | -0.255     |
|                                                                                                                | 4-21-87      | 521.025   | -2.025     |            | 4-03-87                                                                                                         | 522.204   | -0.286     |
|                                                                                                                | 4-23-87      | 520.056   | -2.994     |            | 4-21-87                                                                                                         | 521.909   | -0.581     |
|                                                                                                                | 4-29-87      | 520.011   | -3.039     |            | 4-23-87                                                                                                         | 521.891   | -0.599     |
|                                                                                                                | 5-14-87      | 519.990   | -3.060     |            | 4-29-87                                                                                                         | 521.884   | -0.606     |
|                                                                                                                | 7-22-87      | 519.937   | -3.113     |            | 5-14-87                                                                                                         | 521.879   | -0.611     |
|                                                                                                                | 9-24-87      | 519.926   | -3.124     |            | 7-22-87                                                                                                         | 521.847   | -0.643     |
|                                                                                                                | 1-12-88      | 519.887   | -3.163     |            | 9-24-87                                                                                                         | 521.834   | -0.656     |
|                                                                                                                |              |           |            |            | 1-12-88                                                                                                         | 521.897   | -0.593     |
|                                                                                                                | <b>C</b> 1 * | 500 700   |            | DOE        | <b>E</b> ! <b>*</b>                                                                                             | E1E 770   |            |
|                                                                                                                | E.I."        | 522.700   |            | F2E        | ======================================                                                                          | 515.770   |            |
|                                                                                                                | 2 21 27      | 520.051   | 1 749      |            | 3 31 97                                                                                                         | 515.710   | -0.034     |
|                                                                                                                | 4-03-87      | 520.882   | -1.749     |            | 4-03-87                                                                                                         | 515 603   | -0.009     |
|                                                                                                                | 4-00-07      | 520.002   | -1.010     |            | 4-00-07                                                                                                         | 515 642   | -0.128     |
|                                                                                                                |              |           |            |            | 4-23-87                                                                                                         | 515 637   | -0.120     |
|                                                                                                                |              |           |            |            | 4-29-87                                                                                                         | 515 632   | -0.138     |
|                                                                                                                |              |           |            |            | 5-14-87                                                                                                         | 515 631   | -0.139     |
|                                                                                                                |              |           |            |            | 7,22,87                                                                                                         | 515 614   | -0.156     |
|                                                                                                                |              |           |            |            | 9-24-87                                                                                                         | 515 620   | -0.150     |
|                                                                                                                |              |           |            |            | 1-12-88                                                                                                         | 515.635   | -0.135     |
|                                                                                                                |              |           |            |            |                                                                                                                 |           |            |
| P5E (DOW)                                                                                                      | E.I.*        | 522.640   |            | <u>P3E</u> | E.I.*                                                                                                           | 515.620   |            |
|                                                                                                                | 3-27-87      | 521.420   | -1.220     |            | 3-27-87                                                                                                         | 515.627   | 0.007      |
|                                                                                                                | 3-31-87      | 521.323   | -1.317     |            | 3-31-87                                                                                                         | 515.614   | -0.006     |
|                                                                                                                | 4-03-87      | 521.256   | -1.384     |            | 4-03-87                                                                                                         | 515.610   | -0.010     |
|                                                                                                                | 4-21-87      | 520.453   | -2.187     |            | 4-21-87                                                                                                         | 515.577   | -0.043     |
|                                                                                                                | 4-29-87      | 520.422   | -2.218     |            | 4-23-87                                                                                                         | 515.579   | -0.041     |
|                                                                                                                | 5-14-87      | 520.370   | -2.270     |            | 4-29-87                                                                                                         | 515.575   | -0.045     |
|                                                                                                                | 7-22-87      | 520.317   | -2.323     |            | 5-14-87                                                                                                         | 515.573   | -0.047     |
|                                                                                                                | 9-24-87      | 520.292   | -2.348     |            | 7-22-87                                                                                                         | 515.391   | -0.229     |
|                                                                                                                | 1-12-88      | 520.281   | -2.359     |            | 9-24-87                                                                                                         | 515.359   | -0.261     |
|                                                                                                                |              |           |            |            | 1-12-88                                                                                                         | 515.400   | -0.220     |
| P6E (SOW)                                                                                                      | E.I.*        | 522.560   |            | P4E        | E.I.*                                                                                                           | 513.590   |            |
|                                                                                                                | 3-27-87      | 521.541   | -1.019     |            | 3-27-87                                                                                                         | 513.654   | 0.064      |
|                                                                                                                | 3-31-87      | 521.478   | -1,082     |            | 3-31-87                                                                                                         | 513.642   | 0.052      |
|                                                                                                                | 4-03-87      | 521,443   | -1,117     |            | 4-03-87                                                                                                         | 513.639   | 0.049      |
|                                                                                                                | 4-21-87      | 520.778   | -1.782     |            | 4-21-87                                                                                                         | 513.631   | 0.041      |
|                                                                                                                | 4-29-87      | 520.761   | -1.799     |            | 4-23-87                                                                                                         | 513.629   | 0.039      |
|                                                                                                                | 5-14-87      | 520.729   | -1.831     |            | 4-29-87                                                                                                         | 513.625   | 0.035      |
|                                                                                                                | 7-22-87      | 520.683   | -1.877     |            | 5-14-87                                                                                                         | 513.625   | 0.035      |
|                                                                                                                | 9-24-87      | 520.673   | -1.887     |            | 7-22-87                                                                                                         | 513.606   | 0.016      |
|                                                                                                                | 1-12-88      | 520.651   | -1.909     |            | 9-24-87                                                                                                         | 513.606   | 0.016      |
|                                                                                                                |              |           |            |            | 1-12-88                                                                                                         | 513.637   | 0.047      |

#### WILLIAMSON COUNTY ELEVATIONAL CHANGES DUE TO SUBSIDENCE EAST CLUSTER INSTRUMENTS

### WILLIAMSON COUNTY ELEVATIONAL CHANGES DUE TO SUBSIDENCE EAST CLUSTER MONUMENTS

| MONUMENT DAT | E ELEVATION | SUBSIDENCE | MONUMEN                               | DATE           | ELEVATION | SUBSIDENCE |
|--------------|-------------|------------|---------------------------------------|----------------|-----------|------------|
|              | (FT)        | (FT)       |                                       |                | (FT)      | (FT)       |
| M.15 EI      | * 500 /90   |            | M 10                                  |                | 518 260   |            |
| 3.27.6       | 522.400     | -0 148     | WF13                                  | = 3.27.87      | 518 107   | -0 153     |
| 3.31.4       | 27 522.002  | -0.140     |                                       | 3.31.87        | 518 099   | -0.161     |
| 4-03-6       | 37 522.020  | -0.107     |                                       | 4.03.87        | 518 083   | -0.107     |
| 4-03-0       | 37 521 966  | -0.192     |                                       | 4-00-07        | 518.008   | -0.177     |
| 4-23-6       | 37 521 953  | -0.517     |                                       | 4.23.87        | 518.001   | -0.259     |
| 4-20-0       | 37 521 943  | -0.527     |                                       | 4-20-07        | 517 995   | -0.265     |
| 5-14-8       | 37 521 941  | -0.539     |                                       | 5.14.87        | 517 996   | -0.264     |
| 7-22-5       | 57 521 907  | -0.573     |                                       | 7.22.87        | 517 975   | -0.285     |
| 9-24-8       | 521 915     | -0.565     |                                       | 9.24.87        | 517 974   | -0.286     |
| 1-12-8       | 37 521 894  | -0.586     |                                       | 1.12.88        | 517 956   | -0.304     |
| 1-12-0       | 57 OE1.004  | -0.000     |                                       | 1412-00        | 017.000   | -0.004     |
| M-16 E.I.    | * 522.280   |            | M-20                                  | E.I.*          | 515.850   | '          |
| 3-27-8       | 37 521.988  | -0.292     | · · · · · · · · · · · · · · · · · · · | <b>3-27-87</b> | 515.731   | -0.119     |
| 3-31-8       | 521.975     | -0.305     |                                       | 3-31-87        | 515.723   | -0.127     |
| 4-03-8       | 521.941     | -0.339     |                                       | 4-03-87        | 515.714   | -0.136     |
| 4-21-8       | 521.560     | -0.720     |                                       | 4-21-87        | 515.664   | -0.186     |
| 4-23-8       | 521.547     | -0.733     |                                       | 4-23-87        | 515.659   | -0.191     |
| . 4-29-8     | 521.539     | -0.741     |                                       | 4-29-87        | 515.657   | -0.193     |
| 5-14-8       | 521.535     | -0.745     |                                       | 5-14-87        | 515.656   | -0.194     |
| 7-22-8       | 521.505     | -0.775     |                                       | 7-22-87        | 515.641   | -0.209     |
| 9-24-8       | 521.510     | -0.770     |                                       | 9-24-87        | 515.639   | -0.211     |
| 1-12-8       | 521.487     | -0.793     |                                       | 1-12-88        | 515.618   |            |
|              |             |            |                                       |                |           |            |
| M-17 E.I.    | * 521.850   |            | M-21                                  | =              | 513.570   | '          |
| 3-27-8       | 521.685     | -0.165     |                                       | 3-27-87        | 513.476   | -0.094     |
| 3-31-8       | 521.681     | -0.169     |                                       | 3-31-87        | 513.465   | -0.105     |
| 4-03-8       | 37 521.632  | -0.218     |                                       | 4-03-87        | 513.459   | -0.111     |
| 4-21-8       | 521.428     | -0.422     |                                       | 4-21-87        | 513.424   | -0.146     |
|              |             |            |                                       | 4-23-87        | 513.419   | -0.151     |
|              |             |            |                                       | 4-29-87        | 513.415   | -0.155     |
|              |             |            |                                       | 5-14-87        | 513.416   | -0.154     |
|              |             |            |                                       | 7-22-87        | 513.402   | -0.168     |
|              |             |            |                                       | 9-24-87        | 513.405   | -0.165     |
|              |             |            |                                       | 1-12-88        | 513.387   |            |
| M-18 EI      | * 520,380   | _          | M-22                                  | F1*            | 510.430   |            |
| 3-27-5       | 520,217     | -0 163     |                                       | = 3-27-87      | 510,359   | -0.071     |
| 3.31.6       | 520 208     | -0 172     |                                       | 3-31-87        | 510.351   | -0.079     |
| 4_03_6       | 37 520 180  | _0.101     |                                       | 4-03-87        | 510 345   | -0.085     |
| 4-01-F       | 37 520,066  | -0.314     |                                       | 4-21-87        | 510 315   | -0.115     |
| 4.93.5       | 7 520.000   | -0.314     |                                       | 4.23.87        | 510.318   | -0.112     |
| 4-20-6       | 7 520.000   | -0.027     |                                       | 4.20.87        | 510 312   | -0.112     |
|              | 7 520.047   | -0.000     |                                       | 5.14.87        | 510.314   | -0.116     |
| 7_00.9       | 7 520.040   | -0.352     |                                       | 9.24.87        | 510 308   | -0.110     |
| 9.24-8       | 7 520.022   | -0.000     |                                       | 1.12.88        | 510 295   | -0 135     |
| 1_10_6       | 38 520.004  | -0.376     |                                       | 1-12 00        | 010.200   | 0.100      |
| 1-12-0       | 020.004     | -0.070     |                                       |                |           |            |

#### WILLIAMSON COUNTY ELEVATIONAL CHANGES DUE TO SUBSIDENCE EAST CLUSTER MONUMENTS

| MONUMENT | DATE    | ELEVATION | SUBSIDENCE | MONUMENT | DATE                 | ELEVATION | SUBSIDENCE |
|----------|---------|-----------|------------|----------|----------------------|-----------|------------|
|          |         | (FT)      | (FT)       |          |                      | (FT)      | (FT)       |
| M-23     | E.I.*   | 508.130   |            | M-26     | E.I.*                | 510.800   |            |
|          | 3-27-87 | 508.081   | -0.049     |          | 3-27-87              | 510,785   | -0.015     |
|          | 3-31-87 | 508.074   | -0.056     |          | 3-31-87              | 510.779   | -0.021     |
|          | 4-03-87 | 508.070   | -0.060     |          | 4-03-87              | 510.776   | -0.024     |
| •        | 4-21-87 | 508.052   | -0.078     |          | 4-21-87              | 510.779   | -0.021     |
|          | 4-23-87 | 508.050   | -0.080     |          | 4-23-87              | 510.771   | -0.029     |
|          | 4-29-87 | 508.044   | -0.086     |          | 4-2 <del>9</del> -87 | 510.768   | -0.032     |
|          | 5-14-87 | 508.047   | -0.083     |          | 5-14-87              | 510.772   | -0.028     |
|          | 7-22-87 | 508.030   | -0.100     |          | 7-22-87              | 510.763   | -0.037     |
|          | 9-24-87 | 508.030   | -0.100     |          | 9-24-87              | 510.766   | -0.034     |
|          | 1-12-88 | 508.030   | -0.100     |          | 1-12-88              | 510.763   | -0.037     |
|          |         |           |            |          |                      |           |            |
|          |         |           |            |          |                      |           |            |
| M-24     | E.I.*   | 507.660   |            | M-27     | E.I.*                | 512.730   | _          |
|          | 3-27-87 | 507.632   | -0.028     |          | 3-27-87              | 512.735   | 0.005      |
|          | 3-31-87 | 507.627   | -0.033     |          | 3-31-87              | 512.731   | 0.001      |
|          | 4-03-87 | 507.621   | -0.039     |          | 4-03-87              | 512.723   | -0.007     |
|          | 4-21-87 | 507.609   | -0.051     |          | 4-21-87              | 512.731   | 0.001      |
|          | 4-23-87 | 507.611   | -0.049     |          | 4-23-87              | 512.724   | -0.006     |
|          | 4-29-87 | 507.604   | -0.056     |          | 4-29-87              | 512.720   | -0.010     |
|          | 5-14-87 | 507.608   | -0.052     |          | 5-14-87              | 512.726   | -0.004     |
|          | 7-22-87 | 507.592   | -0.068     | · · ·    | 7-22-87              | 512.709   | -0.021     |
|          | 9-24-87 | 507.583   | -0.077     | 9        | 9-24-87              | 512.719   | -0.011     |
|          | 1-12-88 | 507.595   | -0.065     |          | 1-12-88              | 512.707   | -0.023     |
| M-25     | E.I.*   | 508.780   |            | M-28     | E.L*                 | 515.150   | ·          |
|          | 3-27-87 | 508.757   | -0.023     |          | 3-27-87              | 515.161   | 0.011      |
|          | 3-31-87 | 508.752   | -0.028     | :        | 3-31-87              | 515.154   | 0.004      |
|          | 4-03-87 | 508.747   | -0.033     |          | 4-03-87              | 515.142   | -0.008     |
|          | 4-21-87 | 508.743   | -0.037     |          | 4-21-87              | 515.156   | 0.006      |
|          | 4-23-87 | 508.740   | -0.040     |          | 4-23-87              | 515.155   | 0.005      |
|          | 4-29-87 | 508.734   | -0.046     |          | 4-29-87              | 515.148   | -0.002     |
|          | 5-14-87 | 508.740   | -0.040     | :        | 5-14-87              | 515.154   | 0.004      |
|          | 7-22-87 | 508.728   | -0.052     | -        | 7-22-87-             | 515.137   | -0.013     |
|          | 9-24-87 | 508.733   | -0.047     |          | 9-24-87              | 515.150   | 0.000      |
|          | 1-12-88 | 508.731   | -0.049     |          | 1-12-88              | 515.134   | -0.016     |

# WILLIAMSON COUNTY ELEVATION CHANGES DUE TO SUBSIDENCE (WEST CLUSTER INSTRUMENTS)

7-23-87

519.568

-0.015

| INSTRUMENT | DATE    | ELEVATION<br>(FT) | CHANGE<br>(FT)                        | INSTRUMENT                                    | DATE    | ELEVATION<br>(FT) | CHANGE<br>(FT) |
|------------|---------|-------------------|---------------------------------------|-----------------------------------------------|---------|-------------------|----------------|
|            |         | -                 | der Welchen weren der einen einen der |                                               |         |                   |                |
| MPBX       | BASE    | 509.613           |                                       | P1W                                           | BASE    | 508.107           |                |
|            | 5-13-87 | 509.616           | 0.003                                 |                                               | 5-13-87 | 508.106           | -0.001         |
|            | 7-23-87 | 509.601           | -0.012                                |                                               | 7-23-87 | 508.069           | -0.038         |
| TDR        | BASE    | 510.748           |                                       | P2W                                           | BASE    | 512.582           |                |
|            | 5-13-87 | 510.748           | 0.000                                 |                                               | 5-13-87 | 512.577           | -0.005         |
|            | 7-23-87 | 510.729           | -0.019                                |                                               | 7-23-87 | 512.534           | -0.048         |
| P7W (SOW)  | BASE    | 508.498           |                                       | P3W                                           | BASE    | 515.475           |                |
|            | 5-13-87 | 508.501           | 0.003                                 |                                               | 5-13-87 | 515.472           | -0.003         |
|            | 7-23-87 | 508.461           | -0.037                                |                                               | 7-23-87 | 515.455           | -0.020         |
| P6W (DOW)  | BASE    | 508.421           |                                       | P4W                                           | BASE    | 518.194           |                |
|            | 5-13-87 | 508.424           | 0.003                                 | <b>tititi anna an ann an an an an an an a</b> | 5-13-87 | 518.188           | -0.006         |
|            | 7-23-87 | 508.384           | -0.037                                |                                               | 7-23-87 | 518.161           | -0.033         |
|            |         |                   |                                       | P5W                                           | BASE    | 519.583           | *              |
|            |         |                   |                                       | · · · · · · · · · · · · · · · · · · ·         | 5-13-87 | 519.564           | -0.019         |

# WILLIAMSON COUNTY ELEVATION CHANGES DUE TO SUBSIDENCE (WEST CLUSTER MONUMENTS)

| MONUMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DATE    | ELEVATION<br>(FT) | CHANGE<br>(FT) | MONUMENT | DATE    | ELEVATION<br>(FT) | CHANGE<br>(FT) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|----------------|----------|---------|-------------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                   |                |          |         |                   |                |
| M-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BASE    | 507.588           |                | <u> </u> | BASE    | 515.081           |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-13-87 | 507.593           | 0.005          |          | 5-13-87 | 515.075           | -0.006         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-23-87 | 507.574           | -0.014         |          | 7-23-87 | 515.058           | -0.023         |
| M-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BASE    | 509.689           |                | M-9      | BASE    | 516.137           |                |
| THE DESIGN OF COMPANY OF THE PARTY OF THE PA | 5-13-87 | 509.697           | 0.008          |          | 5-13-87 | 516.134           | -0.003         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-23-87 | 509.675           | -0.014         |          | 7-23-87 | 516.120           | -0.017         |
| M-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BASE    | 509.358           |                | M-10     | BASE    | 517.130           |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-13-87 | 509.362           | 0.004          |          | 5-13-87 | 517.124           | -0.006         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-23-87 | 509.340           | -0.018         |          | 7-23-87 | 517.107           | -0.023         |
| M-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BASE    | 510.994           |                | M-11     | BASE    | 517.899           |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-13-87 | 510.991           | -0.003         |          | 5-13-87 | 517.893           | -0.006         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-23-87 | 510.976           | -0.018         |          | 7-23-87 | 517.874           | -0.025         |
| M-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BASE    | 511.853           |                | M-12     | BASE    | 518.397           |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-13-87 | 511.855           | 0.002          |          | 5-13-87 | 518.388           | -0.009         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-23-87 | 511.838           | -0.015         |          | 7-23-87 | 518.362           | -0.035         |
| M-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BASE    | 512.974           |                | M-13     | BASE    | 518.896           |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-13-87 | 512.969           | -0.005         |          | 5-13-87 | 518.889           | -0.007         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-23-87 | 512.953           | -0.021         |          | 7-23-87 | 518.862           | -0.034         |
| M-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BASE    | 514.463           |                | M-14     | BASE    | 519.173           |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5-13-87 | 514.460           | -0,003         |          | 5-13-87 | 519.158           | -0.015         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-23-87 | 514.441           | -0.022         |          | 7-23-87 | 519.150           | -0.023         |

# WILLIAMSON COUNTY ELEVATION CHANGES DUE TO SUBSIDENCE (WEST CLUSTER INSTRUMENTS)

| REBAR | DATE                  | ELEVATION | CHANGE | REBAR        | DATE    | ELEVATION | CHANGE |
|-------|-----------------------|-----------|--------|--------------|---------|-----------|--------|
|       |                       | (FT)      | (FT)   | •            |         | (FT)      | (FT)   |
| B 20  | BASE                  | 525 965   |        | <b>P.</b> 27 | BASE    | 519 230   |        |
| h-20  | 5 10 07               | 525.905   | 0.003  | <u>n-27</u>  | 5 12 97 | 519.230   | -0.034 |
|       | 0-10-07<br>7 00 07    | 525.900   | 0.003  |              | 7 02 07 | 519,190   | 0.034  |
|       | 1-23-01               |           |        |              | 0.25.97 | 519.192   | -0.037 |
|       |                       |           |        |              | 9-20-07 | 515.155   | -0.007 |
| R-21  | BASE                  | 525.677   |        | R-28         | BASE    | 518.620   |        |
| ·     | 5-13-87               | 525.678   | 0.001  |              | 5-13-87 | 518.580   | -0.040 |
|       | 7-23-87               | 525.669   | -0.008 |              | 7-23-87 | 518.578   | -0.042 |
|       |                       |           |        |              | 9-25-87 | 518.579   | -0.041 |
|       |                       |           |        | •            |         |           |        |
| R-22  | BASE                  | 524.891   |        | R-29         | BASE    | 517.312   |        |
|       | 5-13-87               | 524.890   | -0.001 |              | 5-13-87 | 517.266   | -0.046 |
|       | 7-23-87               |           |        |              | 7-23-87 | 517.251   | -0.061 |
|       |                       |           |        |              | 9-25-87 | 517.251   | -0.061 |
| B-23  | BASE                  | 524 312   |        | B-30         | BASE    | 516 975   |        |
|       | 5-13-87               | 524 312   | 0 000  |              | 5-13-87 | 516.915   | -0.060 |
|       | 7-23-87               | 524 289   | -0.023 |              | 7-23-87 | 516.901   | -0.074 |
|       | / 20 0/               | 02 1.200  | 0.020  |              | 9-25-87 | 516.912   | -0.063 |
|       |                       |           |        |              |         |           |        |
| R-24  | BASE                  | 523.397   |        | R-31         | BASE    | 516.968   |        |
|       | 5-13-87               | 523.395   | -0.002 |              | 5-13-87 | 516.889   | -0.079 |
|       | 7-23-87               |           |        |              | 7-23-87 | 516.866   | -0.102 |
|       |                       |           |        |              | 9-25-87 | 516.871   | -0.097 |
| B 05  | <b>D</b> 4 0 <b>F</b> |           |        | B 00         | DAOF    | 510,000   |        |
| R-25  | BASE                  | 522.382   |        | R-32         | BASE    | 516.639   | 0.1.01 |
|       | 5-13-87               | 522.379   | -0.003 |              | 5-13-87 | 516.538   | 0.101  |
|       | 7-23-87               | 522.356   | -0.026 |              | 7-23-87 | 516.524   | -0.115 |
|       |                       |           |        |              | 9-25-87 | 516.526   | -0.113 |
| R-26  | BASE                  | 521,745   |        | R-33         | BASE    | 515.795   |        |
|       | 5-13-87               | 521.739   | -0.006 | <u>.</u>     | 5-13-87 | 515.680   | -0.115 |
|       | 7-23-87               | 521.704   | -0.041 |              | 7-23-87 | 515.657   | -0.138 |
|       |                       |           |        |              | 9-25-87 | 515.666   | -0.129 |

### PIEZOMETERS IN THE EAST INSTRUMENT CLUSTER WATER LEVEL READINGS

|             |              |           |       | GLACIAL                   | DRIFT WE | LLS      |        | BEDROCK WELLS |                                             |  |  |
|-------------|--------------|-----------|-------|---------------------------|----------|----------|--------|---------------|---------------------------------------------|--|--|
|             |              |           | 0.5   | 045                       | DOF      |          | D.( -  |               |                                             |  |  |
|             | WELL DESIGNA |           |       | P1E                       | P2E      | P3E      | P4E    | P5E (DOW)     | P6E (SOW)                                   |  |  |
| TOP OF WELL | ELEVATION (F | <u>')</u> | 17.05 | 522.49                    | 10.45    | 515.62   | 513.59 | 522.56        | 512.00                                      |  |  |
|             | WELL DEPIR ( | -1)       | 17.25 | 32.50                     | 10.40    | 17.00    | 21.85  | 165.00        | 99.80                                       |  |  |
|             | <b></b>      |           |       |                           |          |          |        |               |                                             |  |  |
| YEAR        | DATE         | TIME      |       | DEPTH TO WATER LEVEL (FT) |          |          |        |               |                                             |  |  |
| 1986        | July 31      |           | 11.40 | 28.20                     | DRY      | DRY      | 12.20  | 28.50         | 21.80                                       |  |  |
|             | Sept 9       |           | 12.85 | 28.00                     | 15.80    | DRY      | 12.40  | 29.60         | 21.50                                       |  |  |
|             | Sept 12      |           | 14.00 | 28.70                     | DRY      | DRY      | 13.70  | 30.30         | 22.40                                       |  |  |
|             | Sept 20      |           | 12.95 | 28.05                     | 15.80    | 16.15    | 12.45  | 29.90         | 21.60                                       |  |  |
|             | Oct 3        |           | 13.10 | 28.00                     | 15.85    | 16.15    | 12.40  | 30.00         | 21.55                                       |  |  |
|             | Nov 20       |           | 14.20 | 28.80                     | DRY      | DRY      | 13.85  | 31.60         | 22.65                                       |  |  |
|             | Dec 11       |           |       | 28.75                     | DRY      | DRY      | 13.65  | 31.75         | 22.40                                       |  |  |
| 1987        | Feb 2        |           | 12.20 | 28.70                     | DRY      | DRY      | 13.30  | 31.90         | 21.90                                       |  |  |
|             | Mar 23       |           | 10.29 | 25.10                     | DRY      | 16.60    | 11.85  | 36.00         | 26.64                                       |  |  |
|             | Mar 24       |           |       |                           |          |          |        | 36.15         | 26.69                                       |  |  |
|             |              |           |       |                           | "SUBSIDE | NCE EVEN | NT"    |               |                                             |  |  |
|             | Mar 26       |           | 10.31 | 31.37                     | DRY      | DRY      | 12.30  | 28.00 *       | 70.35*                                      |  |  |
|             | Mar 27       | 12:30     | 10.44 | 28.42                     | DRY      | DRY      | 12.25  | 28.00 *       | 70.35*                                      |  |  |
|             |              | 4:30      | 10.43 | 28.54                     | DRY      | DRY      |        | 28.00 *       | 70.35*                                      |  |  |
|             | Mar 30       | 5:20      |       | 29.89                     | DRY      | DRY      | 12.45  | U.            | 11                                          |  |  |
|             | Apr 1        | 11:00     | 10.28 | 29.82                     | DRY      | DRY      | 12.26  | 11            | н                                           |  |  |
|             | Apr 2        | 11:50     | 10.39 | 30.10                     | DRY      | DRY      | 12.42  | n             | u                                           |  |  |
|             | Apr 3        | 11:10     |       | 30.15                     | DRY      | DRY      | 12.54  | u             | и                                           |  |  |
| <i>n</i> .  |              | 3:30      |       | 30.10                     | DRY      | DRY      | 12.50  | "             | u                                           |  |  |
|             | Apr 16       | 8:30      | 9.78  | DRY                       | DRY      | 16.64    | 12.33  | ĸ             | н                                           |  |  |
| -           | Apr 21       | 3:00      | 9.49  | DRY                       | DRY      | DRY      | 12.27  | Н             | 40.00*                                      |  |  |
|             | Apr 23       | 11:30     | 9.60  | DRY                       | DRY      | DRY      | 12.25  | н             | н                                           |  |  |
|             | Apr 29       | 2:00      | 9.90  | DRY                       | DRY      | DRY      | 12.28  | n             | u                                           |  |  |
|             | May 14       |           | 11.44 | DRY                       | DRY      | DRY      | 13.07  | , н           | u                                           |  |  |
|             | May 27       |           | 12.12 | DRY                       | DRY      | DRY      | 13.55  | Ш             | и                                           |  |  |
|             | July 22      |           | 15.57 | DRY                       | DRY      | DRY      | 14.65  | н             | u                                           |  |  |
|             | Sept 24      |           | 16.32 | DRY                       | DRY      | DRY      | 16.28  | н .           | п                                           |  |  |
| 1988        | Jan 12       |           | 16.50 | DRY                       | DRY      | DRY      | 17.52  | u             | . н. с. |  |  |
|             | May 16       |           | 14.55 | DRY                       | DRY      | DRY      | 15.70  | и             |                                             |  |  |
|             | Oct 11       |           |       | DRY                       | DRY      | DRY      | 16.55  | н             | , w                                         |  |  |
| 1989        | Dec 6        |           | 17    | DRY                       | DRY      | DRY      | 14.5   | и             | н                                           |  |  |

\* Denotes well is blocked and dry at this depth.

## WATER LEVEL ELEVATIONS (EAST INSTRUMENT CLUSTER)

|                  |         |        |          | GLACIAL DRIP | TWELLS     | ana ana ini ini canada ana bana | BEDROCK   | WELLS     |  |  |  |
|------------------|---------|--------|----------|--------------|------------|---------------------------------|-----------|-----------|--|--|--|
|                  |         |        |          |              |            |                                 |           |           |  |  |  |
| WELL DESIGNATION |         | Con E  | P1E      | P2E          | P3E        | P4E                             | P5E (DOW) | P6E (SOW) |  |  |  |
| WELL DEPTH (FT)  |         | 17.25  | 32.50    | 16.45        | 17.00      | 21.85                           | 165.00    | 99.80     |  |  |  |
|                  | -       |        |          |              |            |                                 |           |           |  |  |  |
| YEAR             | DATE    |        |          | WATER LEVEL  | _ ELEVATIO | NS (FT)                         |           |           |  |  |  |
| 1986             | July 31 | 524.14 | 494.29   | d-499.32     | d-498.62   | 501.45                          | 494.06    | 500.84    |  |  |  |
|                  | Sept 9  | 522.69 | 494.49   | 499.97       | d-498.62   | 501.25                          | 492.96    | 501.14    |  |  |  |
|                  | Sept 12 | 521.54 | 493.79   | d-499.32     | d-498.62   | 499.95                          | 492.26    | 500.24    |  |  |  |
|                  | Sept 20 | 522.59 | 494.44   | 499.97       | 499.47     | 501.20                          | 492.66    | 501.04    |  |  |  |
|                  | Oct 3   | 522.44 | 494.49   | 499.92       | 499.47     | 501.25                          | 492.56    | 501.09    |  |  |  |
|                  | Nov 20  | 521.34 | 493.69   | d-499.32     | d-498.62   | 499.80                          | 490.96    | 499.99    |  |  |  |
|                  | Dec 11  |        | 493.74   | d-499.32     | d-498.62   | 500.00                          | 490.81    | 500.24    |  |  |  |
| 1987             | Feb 2   | 523.34 | 493.79   | d-499.32     | d-498.62   | 500.35                          | 490.66    | 500.74    |  |  |  |
|                  | Mar 23  | 525.25 | 497.39   | d-499.32     | 499.02     | 501.80                          | 486.56    | 496.00    |  |  |  |
|                  | Mar 24  |        |          |              |            |                                 |           |           |  |  |  |
|                  |         |        |          | "SUBSIDENCE  | E EVENT"   |                                 |           |           |  |  |  |
|                  | Mar 26  | 525.23 |          |              |            |                                 |           |           |  |  |  |
|                  | Mar 27  | 525.10 | 493.84   | d-499.27     | d-498.63   | 501.40                          | *493.54   | *451.07   |  |  |  |
|                  | Mar 27  | 525.11 | 493.72   | d-499.27     | d-498.63   |                                 | м.        |           |  |  |  |
|                  | Mar 31  |        | 492.35   | d-499.25     | d-498.61   | 501.19                          | н         | u         |  |  |  |
|                  | Apr 1   | 525.26 | 492.42   | d-499.25     | d-498.61   | 501.38                          |           | н.        |  |  |  |
|                  | Apr 2   | 525.15 | 492.14   | d-499.25     | d-498.61   | 501.22                          |           | H         |  |  |  |
|                  | Apr 3   |        | 492.05   | d-499.24     | d-498.61   | 501.10                          |           | E .       |  |  |  |
|                  | Apr 3   |        | 492.10   | d-499.24     | d-498.61   | 501.14                          |           | н         |  |  |  |
|                  | Apr 16  | 525.76 | 489.70   | d-499.19     | 498.97     | 501.31                          | 8         | и         |  |  |  |
|                  | Apr 21  | 526.05 | d-489.41 | d-499.19     | d-498.58   | 501.36                          | 80        | *480.45   |  |  |  |
|                  | Apr 23  | 525.94 | d-489.39 | d-499.19     | d-498.58   | 501.38                          | и         | и         |  |  |  |
|                  | Apr 29  | 525.64 | d-489.38 | d-499.18     | d-498.58   | 501.35                          | M         | u         |  |  |  |
|                  | May 14  | 524.10 | d-489.38 | d-499.18     | d-498.57   | 500.56                          | 8         |           |  |  |  |
|                  | May 27  | 523.42 | d-489.38 | d-499.18     | d-498.57   | 500.08                          | 4         | u         |  |  |  |
|                  | July 22 | 519.97 | d-489.35 | d-499.16     | d-498.57   | 498.98                          | н         | и         |  |  |  |
|                  | Sept 24 | 519.22 | d-489.33 | d-498.91     | d-498.34   | 497.33                          | ы -       | н         |  |  |  |
| 1988             | Jan 12  | 519.04 | d-489.33 | d-498.91     | d-498.34   | 496.09                          |           | м         |  |  |  |
|                  | May 16  | 520.99 | d-489.33 | d-498.91     | d-498.34   | 497.91                          |           |           |  |  |  |
| 1989             | Dec 6   |        | d-489.33 | d-498.91     | d-498.34   | 497.06                          | E .       | и         |  |  |  |

d- Denotes well is dry

\* Denotes well is blocked and dry at this elevation

## PIEZOMETERS IN THE WEST INSTRUMENT CLUSTER

|                 |               |      | BEDROCK WELLS             |        |        |        |        |        |           |           |
|-----------------|---------------|------|---------------------------|--------|--------|--------|--------|--------|-----------|-----------|
|                 | WELL DESIGNA  | TION | Con W                     | P1W    | P2W    | P3W    | P4W    | P5W    | P6W (DOW) | P7W (SOW) |
| TOP OF WELL     | ELEVATION (FT | )    | 536.59                    | 508.11 | 512.58 | 515.48 | 518.19 | 519.58 | 508.39    | 508.45    |
| WELL DEPTH (FT) |               |      | 28.90                     | 29.55  | 16.25  | 49.80  | 14.95  | 30.50  | 203.10    | 100.00    |
|                 |               |      |                           |        |        |        |        |        |           |           |
| YEAR            | DATE          | ТІМЕ | DEPTH TO WATER LEVEL (FT) |        |        |        |        |        |           |           |
| 1986            | July 31       |      | 19.00                     | 10.40  | 13.20  | 13.70  | 14.65  | 15.40  | 38.20     | 17.65     |
|                 | Sept 9        |      | 18.75                     | 11.60  | 14.55  | 15.00  | 14.35  | 16.50  | 36.55     | 19.15     |
| ~               | Sept 12       |      | 19.50                     | 11.80  | 15.75  | 15.45  | DRY    | 17.50  | 37.10     | 19.50     |
|                 | Sept 20       |      | 19.00                     | 11.65  | 15.30  | 15.25  | 14.25  | 16.85  | 36.55     | 19.00     |
|                 | Oct 3         |      | 18.83                     | 11.42  | 15.40  | 15.30  | 14.30  | 17.00  | 36.81     | 18.50     |
|                 | Nov 20        |      | 20.50                     | 11.55  | DRY    | 16.10  | DRY    | 18.30  | 37.95     | 17.75     |
|                 | Dec 11        |      | 20.90                     | 11.25  | DRY    | 15.90  | DRY    | 18.10  | 37.75     | 17.25     |
| 1987            | Feb 3         |      | 21.05                     | 11.10  | 15.25  | 14.90  | DRY    | 17.67  | 37.97     | 16.20     |
|                 | Apr 1         |      | 20.47                     | 9.65   | 13.15  | 13.27  | 12.19  | 15.73  | 40.45     | 16.05     |
|                 | Apr 15        |      | 20.05                     | 9.41   | 12.23  | 12.87  | 10.55  | 15.30  | 43.45     | 18.12     |
|                 | Apr 22        |      | 20.10                     | 9.25   | 11.31  | 12.28  | 12.30  | 15.01  | 43.40     | 18.98     |
|                 | Apr 30        |      | 20.00                     | 9.72   | 12.41  | 13.31  | 13.51  | 15.14  | 45.60     | 22.67     |
|                 | May 13        |      | 20.13                     | 10.36  | 13.11  | 14.77  | 14.88  | 16.15  | 45.49     | 23.65     |
|                 | May 28        |      | 20.25                     | 11.12  | 13.78  | 15.82  | DRY    | 16.64  | 46.78     | 24.08     |
|                 | July 22       |      | 20.75                     | 12.98  | DRY    | 17.87  | DRY    | 17.98  | 50.95     | 23.88     |
|                 | Sept 24       |      | 21.76                     | 15.86  | DRY    | 20.19  | DRY    | 20.24  | 54.65     | 29.58     |
| 1988            | Jan 13        |      | 23.50                     | 16.45  | DRY    | 22.10  | DRY    | 22.43  | 60.07     | 22.00     |
|                 | May 16        |      | 22.61                     | 13.24  | DRY    | 18.10  | DRY    | 19.30  | 63.32     | 18.81     |
|                 | Oct 6         |      | 23.22                     | 18.15  | 15.62  | 22.62  | DRY    | 22.97  |           |           |

## WATER LEVEL ELEVATIONS (WEST INSTRUMENT CLUSTER)

| Ir       |          | · · · · · · · · · · · · · · · · · · · |        | <u> </u>  |            |          |          |           |           |  |  |
|----------|----------|---------------------------------------|--------|-----------|------------|----------|----------|-----------|-----------|--|--|
|          |          |                                       |        | GLACIAL D | HIFT WELLS | 5        |          | BEDHOCK   |           |  |  |
|          |          |                                       | 5444   | 5014      |            | 5.044    | 5-14     |           |           |  |  |
| WELL DES | IGNATION | Conw                                  | PIW    | P2W       | P3W        | P4W      | P5W      | P6W (DOW) | P7W (SOW) |  |  |
| WELL DEP | IH (FI)  | 28.90                                 | 29.55  | 16.25     | 49.80      | 14.95    | 30.50    | 203.10    | 100.00    |  |  |
| VEAD     | DATE     |                                       |        |           |            |          |          |           |           |  |  |
|          |          |                                       | 407.71 | WATER LE  |            |          | <u> </u> | 470 10    | 400.00    |  |  |
| 1900     | July 31  | 517.59                                | 497.71 | 499.38    | 501.78     | 503.54   | 504.18   | 470.19    | 490.80    |  |  |
|          | Sept 9   | 517.84                                | 496.51 | 498.03    | 500.48     | 503.84   | 503.08   | 4/1.84    | 489.30    |  |  |
| 1        | Sept 12  | 517.09                                | 496.31 | 496.83    | 500.03     | d-503.24 | 502.08   | 471.29    | 488.95    |  |  |
|          | Sept 20  | 517.59                                | 496.46 | 497.28    | 500.23     | 503.94   | 502.73   | 471.84    | 489.45    |  |  |
| · ·      | Oct 3    | 517.76                                | 496.69 | 497.18    | 500.18     | 503.89   | 502.58   | 471.58    | 489.95    |  |  |
|          | Nov 20   | 516.09                                | 496.56 | d-496.33  | 499.38     | d-503.24 | 501.28   | 470.44    | 490.70    |  |  |
|          | Dec 11   | 515.69                                | 496.86 | d-496:33  | 499.58     | d-503.24 | 501.48   | 470.64    | 491.20    |  |  |
| 1987     | Feb 3    | 515.54                                | 497.01 | 497.33    | 500.58     | d-503.24 | 501.91   | 470.42    | 492.25    |  |  |
|          | Apr 1    | 516.12                                | 498.46 | 499.43    | 502.21     | 506.00   | 503.85   | 467.94    | 492.40    |  |  |
|          | Apr 15   | 516.54                                | 498.70 | 500.35    | 502.61     | 507.64   | 504.28   | 464.94    | 490.33    |  |  |
|          | Apr 22   | 516.49                                | 498.86 | 501.27    | 503.20     | 505.89   | 504.57   | 464.99    | 489.47    |  |  |
|          | Apr 30   | 516.59                                | 498.39 | 500.17    | 502.17     | 504.68   | 504.44   | 462.79    | 485.78    |  |  |
|          | May 13   | 516.46                                | 497.75 | 499.47    | 500.71     | 503.31   | 503.43   | 462.90    | 484.80    |  |  |
|          | May 28   | 516.34                                | 496.99 | 498.80    | 499.66     | DRY      | 502.94   | 461.61    | 484.37    |  |  |
|          | July 22  | 515.84                                | 495.13 | DRY       | 497.61     | DRY      | 501.60   | 457.44    | 484.57    |  |  |
|          | Sept 24  | 514.83                                | 492.25 | DRY       | 495.29     | DRY      | 499.34   | 453.74    | 478.87    |  |  |
| 1988     | Jan 13   | 513.09                                | 491.66 | DRY       | 493.38     | DRY      | 497.15   | 448.32    | 486.45    |  |  |
|          | May 16   | 513.98                                | 494.87 | DRY       | 497.38     | DRY      | 500.28   | 445.07    | 489.64    |  |  |
| L        | Oct 6    | 513.98                                | 489.96 | 496.96    | 492.86     | DRY      | 496.61   |           |           |  |  |

# ILLINOIS MINE SUBSIDENCE RESEARCH PROGRAM

## WILLIAMSON COUNTY SITE \*\*\* PRECIPITATION DATA FROM MARION STATION\*\*\*

# TOTAL AND DEPARTURE FROM NORMAL PRECIPITATION FROM JUL 1986 - DEC 1988

## \*\*\* FOR GRAPHING: DEPARTURE FROM NORM VS. MONTH \*\*\*

|      |       | DEPARTURE          | TOTAL |  |
|------|-------|--------------------|-------|--|
| YEAR | MONTH | FROM NORM          |       |  |
|      |       | * NOAA             |       |  |
|      |       | (in)               | (in)  |  |
| 1986 | JUL   | 2.35               | 5.96  |  |
|      | AUG   | 3.26               | 6.76  |  |
|      | SEP   | 1.29               | 4.34  |  |
|      | OCT   | 1.04               | 3.23  |  |
|      | NOV   | -1.51              | 2.13  |  |
|      | DEC   | -0.53              | 2.78  |  |
| 1987 | JAN   | -1.69              | 1.11  |  |
|      | FEB   | 0.65               | 3.72  |  |
|      | MAR   | -1.99              | 2.73  |  |
|      | APR   | -2.04              | 2.06  |  |
|      | MAY   | -2.18              | 1.81  |  |
|      | JUN   | -0.23              | 3.57  |  |
|      | JUL   | 2.05               | 5.66  |  |
|      | AUG   | -1.58              | 1.92  |  |
|      | SEP   | -1.71              | 1.34  |  |
|      | ОСТ   | -0.67              | 1.52  |  |
|      | NOV   | 0.88               | 4.52  |  |
|      | DEC   | 2.90               | 6.21  |  |
| 1988 | JAN   | -1.31              | 1.49  |  |
|      | FEB   | -0.39              | 2.68  |  |
|      | MAR   | 0.49               | 5.21  |  |
|      | APR   | -2.14              | 1.96  |  |
|      | MAY   | -1.64 <sup>°</sup> | 2.35  |  |
|      | JUN   | -2.62              | 1.18  |  |
|      | JUL   | 2.83               | 6.44  |  |
|      | AUG   | -1.94              | 1.56  |  |
|      | SEP   | 0.80               | 3.85  |  |
|      | ост   | 0.91               | 3.10  |  |
|      | NOV   | 3.70               | 7.34  |  |
|      | DEC   | -0.13              | 3.18  |  |

67