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ABSTRACT

The Mississippian Cypress Formation (Chesterian) is 100 feet thick at Bartelso Field
and comprises a section of shales and sandstones that has produced about 2.5
million barrels of oil from 76 wells since production firstbegan in 1936. The reservoir
rocks are clean quartz arenites to subarkoses deposited under shallow marine
conditions. Porosity ranges from 16% to 25%, and permeabilities range from 100
to about 500 millidarcies in the reservoir rocks. ‘

The Cypress Formation was subdivided into four intervals, each separated by shale
layers. These four intervals were arbitrarily labeled, in ascending order, pink, purple,
gray, and red. On the basis of wireline log correlations, subsurface mapping, and
petrographic studies of well cuttings and core samples, the authors interpreted the
environments of deposition for these intervals to be as follows: (1) pink interval —
shallow subtidal influences in a delta-front setting; (2) purple interval — shoreface
subjected to some tidal influence; (3) gray interval — tidal flat to lagoonal influences,
possibly some lower coastal plain; and (4) red interval — upper shoreface subjected
to strong tidal influences. These environments indicate that the pink, purple, and
gray intervals were deposited in a prograding sequence, with the gray interval
representing sediments deposited under the shallowest conditions. Sandstones
within the red interval represent tidal ridges (tidal bars) formed in marine conditions
during a transgressive phase that inundated the deltaic complex.

Petrographic and mineralogic analyses revealed that silica is the primary cementing
agent of Cypress sandstones at Bartelso. Most of the silica is in the form of quartz
overgrowths, although minor amounts of chert are also present. Calcite cement is
rare and is restricted to syntaxial cement around echinoderm fragments.

Clay minerals constitute less than 2% of the total rock and comprise mainly kaolinite
with lesser amounts of chlorite, iron-rich chlorite, and illite. Porosity enhancement
has resulted from the partial dissolution of potassium feldspars and calcium-rich
plagioclases.

Reservoir compartmentalization is a factor in recovery efficiency for the sandstones
of the red interval. Currently, all sandstone reservoirs in lllinois are required to be
developed on a 10-acre well spacing. The shingled bars separated by thin shales
that characterize the red interval preclude effective drainage with a 10-acre spacing.
The less heterogeneous sandstones within the purple and gray intervals, however,
may be relatively well-drained by 10-acre well spacing. Sandstones within the pink
interval contained no hydrocarbons at Bartelso, but correlative units may provide
reservoirs in other areas of the basin.
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Figure 1 Location of Bartelso Field.

INTRODUCTION

Bartelso Field is located in south-central Clinton County, lllinois (Secs. 4, 5, 8, and
9, TIN-R3W), along the southwestern flank of the lllinois Basin (fig. 1). The area
contains several oil fields of small to medium size, and is characterized by a

relatively thick (100 to 200 ft) mantle of glacial till and soil exhibiting little topographic
relief.

The goals of this study of the Cypress Formation at Bartelso Field (fig. 2)
were to (1) determine the environment of deposition for each of the Cypress
reservoirs, (2) determine how the depositional environment relates to reservoir
heterogeneity, (3) describe how reservoir heterogeneity affects recovery ef-
ficiency, (4) estimate remaining oil in place, (5) discuss the effectiveness of the
recovery methods used in the field, and (6) discuss any other recovery methods that
might improve the recovery efficiency.
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Figure 2 Generalized stratigraphic column for southern llfinois.

DISCOVERY AND PRODUCTION HISTORY

Discovery History

Subsurface maps generated from coal borings indicated a Pennsylvanian bedrock
structural high that was subsequently drilled for oil exploration in 1936. The
discovery well, the Bartelso Oil and Gas No. 1 Trame (N1/2 SE NW, Sec. 8,
T1N-R3W), established production of 115 barrels of oil per day (BOPD) from
sandstones within the Mississippian Cypress Formation at a depth of 1,027 feet.
In 1939, the Mosebach No. 1 Robben (SE SW SE, Sec. 5, TIN-R3W) was drilled
to a total depth of 2,431 feet and established production of 162 BOPD from Silurian
carbonates at 2,413 feet. Subsequent drilling eventually verified that the Silurian
reservoir was a pinnacle reef.

Production History _
Since its discovery, Bartelso Field has produced approximately 4.7 million barrels
of oil (MMBO) from a total of 530 productive acres. The Cypress pay was developed
on 10-acre well spacing during primary production; the spacing for Silurian wells
was set at 20 acres. Seventy-six wells have produced from the Cypress sands and
43 are currently productive. An additional 39 wells have been drilled for Silurian
production.

Secondary oil recovery operations in the Cypress began in the early 1950s with the
introduction of three waterfloods involving 24 injection wells and infill drilling of 27
production wells. The field has produced approximately 2.6 MMBO and 4.0 million
barrels of water (MMBW) since waterflood operations commenced.



Itis impossible to determine exact production amounts from the individual reservoirs
because production numbers have been commingled. According to the operators,
the Cypress portion of the total production amounts to approximately 2.5 MMBO.

RESERVOIR AND TRAP CHARACTERISTICS

The Cypress Formation is approximately 100 feet thick at Bartelso and comprises
fine-grained to very fine-grained sandstones interbedded with dark brown to light
greenish gray shales. Individual Cypress sandstones in the field may be up to 60
feet thick, although thinner beds about 10 feet thick are more commonly hydrocar-
bon reservoirs. The Silurian reef facies, more than 900 feet thick here, are also
productive. Discussions of Silurian reef reservoirs can be found in other lllinois State
Geological Survey publications (e. g., Whitaker 1988).

Reservoir Geometry

A structure map on the Beech Creek (Barlow) Limestone at Bartelso reveals two
small structural domes with approximately 75 feet of closure (fig. 3). These struc-
tures are due to differential compaction around the Silurian pinnacle reef and the
resultant draping of younger strata over the reef (Bristol 1974, Whitaker 1988).
Production is concentrated on the crests and northern flanks of the structures, with
the bulk of the Cypress production situated on the western of the two domes. The
influence of these structures during Cypress time will be addressed in a later section
on paleostructure.

The Cypress Formation was divided into four individual sandstone intervals, each
separated by thin shale layers, using detailed stratigraphic correlations based on
available wireline logs obtained within the field. These four sandstone intervals were
labeled, in ascending order, pink, purple, gray, and red (fig. 4). The upper three of
these sandstone intervals produce hydrocarbons at Bartelso, although the youngest
(red) sand is the major reservoir. Preliminary regional mapping suggests that each
of the thin shale layers separating the intervals correlates with regional shale beds.
These regional shale beds apparently represent minor transgressive pulses.

Cross sections 1 to 4 (fig. 5) show the relationships between the four major
sandstone intervals within the Cypress at Bartelso. The lowest interval (pink)
displays a characteristically blocky signature on the spontaneous potential (SP)
resistivity logs run in the field and is a relatively clean sandstone package. This
interval is approximately 40 to 50 feet thick and contains numerous discontinuous
shale beds. The distribution of the sandstone(s) within the pink interval is impossible
to accurately determine because of the lack of penetrations into this sandstone, and
thus the lack of cores and wireline logs. Semiregional mapping indicates the
sandstones from this interval underlie the entire field area. No production has been
recorded from this interval in this field.

The second sand interval (purple) is generally 10 to 15 feet thick and relatively
continuous throughout the field (fig. 6). Interpretations of wireline logs indicate that
shales are rare in this interval and that distinct compartments, if present, are difficult
to document because of the lack of adequate control (fig. 5). Relative homogeneity
of this sandstone interval is indicated by a consistent oil-water contact at -550 feet
(fig. 6).

The distribution pattern of the sandstones within the purple interval suggests a
shoreface deposit that was influenced by tidal currents. This sandstone probably
represents a slightly shallower environment than that represented by the pink
interval and suggests continued progradation of the Cypress delta complex.
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Figure 3 Structure map on the top of the Beech Creek (Barlow) Formation at Bartelso Field (contour lines in fest).

Location of cross section numbers 1, 2, 3, and 4 (fig. 5) are shown.

The third sand interval (gray) is dominated by siltstones and shales, although-thin
sandstone beds are present locally. On wireline logs, these sandstones display a
suppressed SP deflection caused, in large part, by thin-bed resolution problems of
the SP-resistivity tools used. The distribution of sandstone within the gray interval
(fig. 7) suggests a small clastic influx into quiet water. Apparently, the sandstone is
derived from a northwesterly source and may represent a very small deita formed
by ebb tidal currents or a small crevasse splay. The original oil-water contact for
this interval was at approximately —540 feet. Due to the reservoir geometry, this
contact caused an isolated trap along the western, downdip flank of the field

(fig. 7).

The youngest Cypress sandstone interval (red) comprises well-formed, discon-
tinuous sand lenses that are locally multistoried (stacked). Relatively thick shales
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Flgure 5 Stratigraphic cross sections 1—4. Cross section 1 shows the variabilities in the sandstones within the four
intervals; note the relative continuity of the sandstones within the red interval in a northeast-southwest direction. Cross
section 2 shows three sandstones within the red interval, each separated by thin shales. A lack of suitable log suites
makes the distribution of all three sandstones within the red interval impossible to map. Note the discontinuity of the
sandstones within the gray interval.
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Cross section 3 illustrates the discontinuity of the sandstones within the red interval in a northwest—southeastdirection;
note the differences in log character of the various sandstones within each interval. Cross section 4 shows the stacked
nature of the isolated sandstones within the red interval in a northwest-southeast direction. Thin shale beds within
the red interval apparently form barriers to fluid migration; however, the thin, discontinuous shale lenses within the
purple interval do not substantially compartmentalize sandstones within that interval.
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Figure 6 Isopach map of clean sandstone within the purple interval. The geometry of this clean sandstone suggests
an upper shoreface deposit. Nots the single oil-water contact.

separate this interval fromthe underlying sands of the gray interval and the overlying
Beech Creek (Barlow) Limestone. The northwest—southeast cross sections (1 and
2, fig. 5) illustrate that the red interval is characterized by distinct and separate sand
bodies. These cross sections also suggest that the sandstone lenses may have
been deposited in subtle paleolows. The northeast-southwest sections (3 and 4,
fig. 5) show that the sands are more continuous in that direction.

Because data are more abundant in the red interval, sandstone distribution is more
easily defined in it than in the other intervals. Detailed stratigraphic correlations
enabled differentiation of several individual sandstone lenses within this interval,

10
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Figure 7 Isopach map of clean sandstone within the gray interval. The geometry of the thin sandstone suggests a
crevasse splay or some other higher energy influx of clastics deposited in quiet water. Note the isolated trap on the
southwestern part of the structure and the presence of one oil-water contact.

each separated by thin shale layers (fig. 8a, b). The isolated nature and distinct
orientation of these sandstones in a northeast—southwest direction suggest thatthey
are marine bars. Two hypotheses for the origin of these bars are that they are
offshore bar complexes oriented shore-parallel, or they are shore-normal tidal
shoals. We favor the second hypothesis, which was originally suggested for some
Chesterian sandstones by several workers (Potter 1962, 1963, Baker 1980, Wil-
liams et al. 1982, Specht 1985, Treworgy 1988), and will discuss it in more detail in
a later section. ‘

11




sand >50% SP 0

—8 i v _DEO } ]
— sand isopach (ft) [ —_|sand 50-25% SP 0 1 km
@ red interval producer A, commingled producer
B8 red interval waterflood producer [[] water injection into red sand

Figure 8 Isopach maps of clean sandstone within the red interval. The geometry of the sandstones suggests that
these bodies were deposited as offshore bars elongated in a northeast-southwest direction. The northern bar shown

The northern bar complex comprises at least two separate, stacked bars that are
separated by a thin shale layer (cross section 4, fig. 5). This thin shale acts as an
effective seal, as exhibited by drill-stem tests that indicated gas in the lower red
sandstone; whereas, the upper red sandstone in the same wells tested only oil.
These gas—oil relationships can best be explained if the updip, gas-saturated edge
of a lower bar underlies an oil-saturated part of an upper bar. In fact, the sandstone
thicknesses shown on the isopach maps in figure 8 suggest that the bar trends could
be further subdivided into several smaller, shingled sand lenses. Unfortunately,
further subdivision is difficult because of the poor resolution that is characteristic of
the types of logs run in the field and of the lack of cores from the interval.

12
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in (a) is overlain by the bar shown in (b), with a 8-inch to 2-foot-thick shale bed separating the two. This shale is
effective enough as a seal to have enabled a modest gas cap to develop in the underl ying bar.

Paleostructural influence

The absence of wireline logs from a substantial portion of the deeper wells makes
determinations of paleostructure dubious. The structure at Bartelso is caused by
draping over a reef. This draping is a result of differential compaction of Silurian
sediments through time (Whitaker 1988). Because this differential compaction
occurs slowly, periods of relatively constant deposition easily compensate for any
slight topographic variations caused by this phenomenon. The topographic relief
over the buried reef was probably never sufficient to have significantly affected
deposition. Consequently, the distribution of the Cypress sands here was not likely
the result of structural factors, but was instead the result of proximity to a source of

13




clastics, transport of sediment, and reworking of the deposits by marine currents.
These factors will be discussed in the section on depositional environment.

Trap Type

The trap type at Bartelso Field varies from structural to stratigraphic, depending on
the Cypress interval involved. The continuous nature of communicative sands within
the pink and purple intervals indicates that entrapment of hydrocarbons in these
intervals would require a positive structural position. It is more difficult to determine
whether the sands communicate within the gray interval, but the distribution and
thin-bedded nature of these sands suggest that stratigraphy is at least as important
as structure. This is particularly the case for the small, isolated accumulation along
the western flank of the field (fig. 7). Hydrocarbon entrapment within the red interval
is dependent, however, on stratigraphic rather than structural factors. The cleanli-
ness of the sandstones and their position within a bar are of primary importance
regarding reservoir development, oil-water ratios, and producability.

Reservoir Lithofacies

Evidence such as drilling cuttings, two cores from the field area, and cores from
other fields suggests that the various sandstones within the Cypress Formation are
remarkably similar in their lithologic characteristics. The sandstones are generally
clean, moderately to fairly well-sorted, fine-grained to very fine-grained quariz
arenites to subarkoses. Cementation is primarily due to silica, and lesser amounts
of caicite and minor amounts of clay minerals, feldspar, and limonite.

The few core analyses run by operators in the study area have shown that clean
Cypress sandstones have generally uniform porosity values that range from 16%
to 22%. Permeabilities, however, vary in these same sands from less than 100 to
more than 700 millidarcies. Two examples of the variability in porosity and per-
meability in core analyses are illustrated in figure 9.

Microscopic examinations of four thin sections from core samples from the red
interval in the Mosebach No. 1 H. Kempwerth (SE SE SW SW, Sec. 5, TI1N-R3W)
revealed that the sandstone mineralogy is more than 90% quartz with minor
amounts of feldspar, clay minerals, muscovite, chert, calcite, and very minor
amounts of fossil fragments. Quartz grains exhibited abundant overgrowths, are
thus subangular to angular in shape, and often occur in an interlocking mosaic. The
absence of clay-mineral rims on the host grains made it difficult to identify their
original outlines (pl. 1).

Feldspar grains, which constitute approximately 4% to 6% of the sandstones, are
fine to very fine in size, and their shape varies from subrounded to angular,
depending on the amount of postdepositional alteration. Dissolution has affected
many of the feldspar grains, particularly some potassium feldspars and the more
calcium-rich plagioclases. This dissolution has enhanced porosity to some degree
and has also resulted in the development of microporosity (plates 2, 3). Albite
overgrowths have been observed, but they are extremely rare.

Calcite cement was not abundant in any of the samples we examined from the No.
1 Kempwerth. When present, calcite is associated with widely dispersed fossil
fragments and also appears as syntaxial overgrowths on echinoderm fragments
(pl. 4).

Analysis of clay minerals revealed that the No. 1 Kempwerth contains minor
amounts of kaolinite, chlorite, and illite (table 1). The clay mineral content in the
samples was less than 2%. Most of the kaolinite is concentrated along a few thin
bedding planes within the sandstone and may be partly detrital. Authigenic clay
minerals are most plentiful near degraded muscovite grains and partially dissolved

14



Plate 1 Thin section from sandstone within the red interval (depth 125 pm
1,000 ft) in the No. 1 Kempwerth reveals abundant quartz over-
growths that have partially occluded porosity.

Plate 2 Thin section from sandstone within the red interval (depth 125 um

1,003 ft) in the No. 1 Kempwerth showing partial dissolution of a
feldspar grain (f).
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Plate 3 SEM photomicrograph of a partially dissolved feldspar 20 um
grain from the red interval (depth 1,006 ft) in the No. 1 Kempwerth.

Plate 4 Photomicrograph (under crossed nicols) of syntaxial cal- 250 um

cite cement (c) on echinoderm fragment from the red interval (depth
1,000 ft) in the No. 1 Kempwerth.




Plate 5 Photomicrograph of clay minerals interspersed with sand 250 um
grains from the red interval (depth 1,003 ft) in the No. 1 Kempwerth.

Plate 6 Photomicrograph (under crossed nicols) of same section 250 um
as plate 5.




Plate 7 Photomicrograph of quartz sand grains (depth 1,060 ft) 250 um
from the No. 1 Hempen (right half under crossed nicols). Arrows _—
indicate areas of possible pressure dissolution of sand grains.

Plate 8 Photomicrograph (under crossed nicols) of clay-mineral 125 um

concentrations along a bedding plane within sandstone from the red
interval (depth 1,003 ft) in the No. 1 Kempwerth.
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1016.0 PR Figure 9 Core analyses of (a) the red
1813(5) 437 185 S interval in the Ohio Co. No. 2 well (SE
10175 L NE NV\{, Sec. 8, TIN-R3W) and (b) the
1018.0 306 20.9 purple interval from the Woofter No. 1
10185 e Hempen well (SE SW NE, ch. 10, T2N-
1019.0 146 18.2 I R3W). No logs were available from

either well.

feldspars; the minerals can also be found scattered intermittently throughout the
samples, and coat some sand grains (plates 5, 6). Quartz grains coated with an
iron-rich chlorite that is interlayered with small amounts (5% to 15%) of a
serpentine-like mineral generally exhibit less overgrowths than noncoated
grains. Moore and Hughes (1991) are currently testing the hypothesis that
chlorite-serpentine clay mineral coatings are a significant factor in porosity
preservation (Heald 1965, Pittman and Lumsden 1968, Thomson 1982).

Core plugs taken from the purple-interval sandstone in the J. E. Woofter No. 1
Hempen (SE SE NE, Sec. 10, T2N-R3W), 5 miles north of Bartelso Field, revealed
texture and mineralogy that are similar to red-interval sands at Bartelso. The
sandstone appears moderately well sorted, porous, and moderately well cemented.
Additionally, the sandstone exhibits low-angle crossbedding and thin clay laminae.

Only four thin sections could be made from the No. 1 Hempen plugs for microscopic
examinations. As was the case in the No. 1 Kempwerth, the samples from the No.

1 Hempen exhibited abundant overgrowths that have modified the shapes of quartz
grains to angular or subangular. Feldspar grains are generally subrounded to
subangular, depending on the amounts of dissolution and albite overgrowths. Thin
layers within the sandstone contain clay and possess correspondingly lower
porosity. Authigenic clay minerals and calcite cement have only partially infilled
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Table 1 Mineral analysis of the clay-size particles from sandstone within the
red interval in the No. 1 Kempwerth and the purple interval in the No. 1 Hempen.

mineral analysis (%)

illite/smectite
kaolinite
chlorite
quartz

K feldspar
plagioclase
calcite
dolomite

illite

depth (ft)

red interval, No. 1 Kempwerth
- 1,0605 05 0.2 29 0.1 94 1.3 07 0.5 0.0
- 10615 22 1.3 4.4 1.6 73 111 56 0.1 0.5
- 1,0625 1.3 0.8 3.8 0.9 83 0.1 97 0.2 0.3
—1,0655 0.7 0.6 1.2 2.9 87 1.9 54 0.2 0.1

purple interval, No. 1 Hempen

—-9970 0.3 0.0 1.5 0.2 70 05 273 0.2 0.0
- 1,0000 1.3 0.4 3.0 0.6 89 1.0 33 1.2 0.0
- 1,003.0 2.1 1.2 5.3 1.4 87 0.8 1.3 1.0 0.2
- 1,006.0 1.3 0.8 2.9 0.6 89 15 07 28 0.1

pores. There are no wireline logs from this well, making it impossible to correlate
SP or resistivity responses to the lithologic variations observed in the samples.

Analysis of clay minerals from the No. 1 Hempen (table 1) revealed that the
clay-mineral content is slightly less than in the samples from the red interval in the
No. 1 Kempwerth. Most of this decrease appears to be due to a lesser content of
kaolinite within the thin clay-rich layers of sandstone.

In addition to the core samples from the area, numerous sample cuttings were
examined from the entire Cypress interval. Because of the potential for caving in
shallower strata, sample cuttings are not as reliable as cores for lithologic deter-
minations. Nevertheless, we made several generalizations on the basis of the
samples. All sandstones within the Cypress contain fragments of marine fauna.
These fragments include echinoderms, ostracods, brachiopods, and trilobites.
Siltstone, gray to green shale, and rare samples of coal were observed in the gray
interval. We believe these coal samples to be in place because no other samples
of coal were found from any other Cypress interval in the Bartelso area. Contamina-
tion from coal cavings would probably not have been limited to the few samples from
the gray interval.

Depositional Environment

The various intervals of the Cypress at Bartelso display evidence of different
environments of deposition. In general, it appears that the Cypress was deposited
during a prograding sequence that was eventually inundated during, or shortly after,
deposition of the gray interval. The authors propose that this transgression was
caused by a eustatic sea-level rise during a minor interglacial period. Stratigraphic
evidence suggests that numerous relative fluctuations in the sea level that occurred
throughout Chesterian time at a more rapid frequency than could be easily explained
by tectonism. These fluctuations affected sedimentation throughout the region
during the Carboniferous (Frakes and Crowell 1969, Robinson 1973, Rowley et al.
1985). Correlations with strata of similar age from other basins will be required to
prove our assertion.

The Ridenhower Formation, which consists of thin limestones and intercalated
limestones and shales, directly underlies the Cypress and represents what is called
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a maximum flooding surface in the sequence stratigraphy nomenclature (Mitchum
1977, Van Wagoner et al. 1990). The pink interval, then, represents the initial
progradational phase of the Cypress at Bartelso (the lower part of the highstand
systems tract). Sandstones within this interval apparently were deposited across
the shatiow lllinois Embayment in a delta-front setting. Today, these sandstones
comprise a relatively thick, continuous sequence that may be 40 to 50 feet thick in
the Bartelso area. Small shale drapes can be observed in the few wireline logs that
have been run in this interval throughout the field.

The shoreface sandstones within the purple interval are much thinner and apparent-
ly were affected by currents in a northeast—southwest direction, as indicated on the
isopach map (fig. 6). The evidence indicates to us that these currents were probably
tidal and may have been shore-normal (i.e., perpendicular to the advancing delta-
induced shoreline).

The gray interval was a low-energy environment that was apparently affected by
periods of minor clastic influx. The abundance of gray to green shales and rare coal
fragments in this interval suggests that the main environment of deposition was
shallower still than the underlying purple interval. This interval may represent a
lowstand caused by a relative sea-level fall and would then mark the beginning of
another sequence. The depositional setting is interpreted to be either tidal flat or
coastal plain or possibly a combination of the two. The source for the clastics within
this interval apparently was from the northwest (fig. 7) and may represent small
crevasse splays.

Sandstones within the red interval were probably deposited as tidal shoals or bars
located seaward of the underlying gray interval and oriented shore-normal. This
interval represents the beginning of retrogradational deposits in the transgressive
systems tract. The bars in the Bartelso area exhibit a shingled nature that can be
seen on the cross sections (fig. 5) and isopach maps (fig. 8a, b). Currents tended
to winnow out most of the clay-sized particles, leaving behind relatively clean,
porous sandstones that were separated by thin shale layers. Continued transgres-
sion covered the sands of the red interval with shales, which are in turn overlain by
the Beech Creek (Barlow) Limestone. The shales directly overlying the Beech Creek
Limestone may represent another maximum flooding surface. A summary of our
proposed sequence stratigraphy is provided in figure 10.

Diagenesis

Postdepositional alterations of the Cypress sediments are in evidence fromthe rock
samples. The diagenetic sequence for the Cypress at Bartelso Field (fig. 11) was
interpreted on the basis of macroscopic and microscopic examinations of available
well cuttings, eight thin sections, samples from two cores, and XRD analyses. One
of the earliest diagenetic alterations occurred when small echinoderm fragments
incorporated within the sands developed syntaxial overgrowths (pl. 6) almost
immediately after burial (R. D. Cole, personal communication, 1990).

Continued compaction of the sands caused pressure dissolution of quartz grains,
particularly polycrystalline quartz (pl. 7). This dissolution yielded silica-rich waters
throughout the formation and enabled overgrowths to form on most of the quartz
grains that partially occluded porosity (pl. 1). There were no apparent clay-mineral
rims on the original sand grains, making it difficult to determe their original outline.

In addition to the relatively rare, scattered patches of early-stage calcite cement,
wireline log signatures and well cuttings from several wells indicate the presence of
a presumably later-stage calcite cement that is restricted to the lowest foot or two
of sandstones in both the purple and red intervals (fig. 4). This cement was probably
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Figure 11 Interpreted diagenetic sequence in the Cypress sandstones at Bartelso Field.

formed as dewatering of subjacent calcareous shales forced carbonate ions up into
the basal paris of the overlying sandstones. This cement is not in evidence in all
wells and was not observed in the thin sections.

The dissolution of some feldspar grains has, to some degree, enhanced porosity
(plates 2, 3). Calcium-bearing plagioclases were probably subjected to the greatest
degree of dissolution because they are generally unstable at normal reservoir
pressures and chemistries. Potassium feldspars also show varying degrees of
dissolution in the samples. The dissolution of feldspars has been discussed in
numerous publications (e. g., Siebert et al. 1984, Dutton 1977) and is commonly
thought to have been caused by slightly acidic brines formed duringthe early stages
of organic maturation and dewatering in shales. Other factors within the brine
chemistry may also cause instability in feldspars and promote their dissolution, but
it is not our purpose to go into any great detail on these mechanisms. Whichever
mechanism or combination of mechanisms was responsible for feldspar dissolution,
it is believed that framework grain dissolution occurs at a moderate to deep burial
depth and would therefore tend to happen well after initial diagenetic processes had
commenced (Siebert et al. 1984). If aluminum ions are not flushed out of the
sandstone, one of the possible byproducts of feldspar dissolution is precipitation of
authigenic clay minerals. An additional byproduct of this dissolution is free silica,
which couid generate quartz overgrowths.

Authigenic albite formed as overgrowths on some feldspar grains and partially
occluded porosity to a very minor degree. The more sodium-rich plagioclase grains
(albite, oligoclase, and diagenetically albitized plagioclases) commonly act as hosts
for albite overgrowth (Helmond and van de Kamp 1984), and the occurrence here
apparently is no exception. Although oligoclase and albite hosts appear unaltered,
albitized plagioclase hosts are mottled gray in plane light because of impurities in
the original grain. Both kinds of grains are optically continuous with overgrowths.

Authigenic chlorite, illite, and mixed-layer illite/smectite are scattered on many of
the quartz overgrowths and appear to be slightly more abundant in the areas near
detrital clay-mineral concentrations (pl. 8). These authigenic clay minerals do not
rim the original grain outlines, suggesting that the clay minerals precipitated after
the onset of quartz overgrowths. There do not appear to be sufficient quantities of
the authigenic clay minerals to cause major reductions in porosity, although per-
meability is probably affected to some degree. As mentioned earlier, the precipita-
tion of layered chlorite-sempentine clay minerals may have actually preserved
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porosity by coating many of the early- to middle-stage quartz overgrowths and
preventing further overgrowths (Heald 1965, Pittman and Lumsden 1968, Thom-
son 1982, Moore and Hughes 1991).

Summary

The quality of reservoirs within the Cypress Formation at Bartelso is affected by
depositional environment more than by any other single factor. A depositional model
forthe Cypress is presented in figure 12. The best reservoirs are generally from the
clean sandstones found in the marine-bar environment of the red interval (fig. 12d).
Compartmentalization is probably a factor in this reservoir. The shoreface
sandstones of the purple interval (fig. 12b) are also good reservoirs, but trapping
mechanisms may not exist because these sandstones are laterally continuous over
relatively large areas. The thin, discontinuous sandstones deposited in the paralic
environments of the gray interval (fig. 12c) are relatively poor reservoirs because of
their limited extent and the probable clay content. Sandstones within the pink inter-
val (fig. 12a) are not productive at Bartelso, and not enough field-data were avail-
able to ascertain their potential reservoir quality. Sample examinations indicate that
these sandstones are also clean and should make good reservoirs if a trapping
mechanism is present.

Diagenesis plays a role in affecting porosity and probably accounts for some of the
variations seen in permeability. Whereas predictions of depositional environments
can be made and thereby improve development and exploration strategies, not
enough information is available to make predictions of diagenetic patterns.
Authigenic clay minerals are present, but probably not in sufficient quantities to pose
major production problems.

CLASSIFICATION AND IDENTIFICATION OF PLAYS

Our findings, based on the study at Bartelso Field, suggest there are at least four
plays (production zones) inthe Cypress Formation. Eachindividual play may require
different strategies for exploitation.

Delta Front

Sandstones deposited in this play, represented by the pink interval, would be subject
to depositional patterns and reservoir compartmentalization that are common to the
environment of deposition (i.e., occasional clay drapes, moderate current direction
indicators, potentially large sandstone deposits, possible communication over large
areas depending on effectiveness of shale seals). Outcrop studies of the Cypress
Formation in progress at the lllinois State Geological Survey (R. D. Cole, personal
communication, 1990) and examinations of sample sets from this interval suggest
that these delta-front sandstones were deposited in a shallow sea, but inthe subtidal
realm. This play requires an associated structural closure because there appears
to be sufficient communication between individual sand lenses to preclude
stratigraphic entrapment of hydrocarbons. The fact that this interval contained no
commercial hydrocarbons at Bartelso, despite the presence of a structure, suggests
that the shale layer overlying the pink sands was not an adequate seal. Correlations
with wireline logs in the field verify this supposition. Even though this interval does
not contain hydrocarbons at Bartelso, it is nevertheless a viable play, provided
adequate seals and structures can be defined.

Upper Shoreface
The second play, represented by the purple interval, is characterized by sediments
deposited in shallow marine conditions along the upper shoreface slightly seaward
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from the overlying gray interval. Reworking of the sands by what we interpret to be
tidal currents has given a northeast-southwest orientation to this sandstone.
Sandstones within this play are relatively thin, contain a moderately small amount
of clay, and may be laterally continuous over their area of deposition. In general, an
associated structure would be necessary for hydrocarbon entrapment because of
the continuity of the sandstones. The thin nature of these deposits may provide
some opportunities for stratigraphic pinchouts.

Coastal Plain

A third play, represented by the gray interval, involves sandstones deposited within
low-energy environments associated with proximity to a shoreline. These environ-
ments include coastal plains, tidal flats, and possibly lagoons to estuaries. The thin
and discontinuous sandstones within this play could be the result of tidal reworking,
small tidal channels, or possibly small crevasse splay deposits. The geometry of
these sandstones will be variable, depending on the particular geologic process
responsible for their creation. Hydrocarbon traps within this play could be numerous
and would not require structural closure, but reserves are probably limited because
of the discontinuous nature of the sands. In general, this play would not be
economical except as a secondary reservoir.

Marine Bars

Thefourth Cypress play is illustrated by the sandstones withinthe red interval. These
sandstones may be very clean in the bar core and are generally deposited as
elongate, isolated lenses oriented in a northeast-southwest direction. The
sandstone bodies are commonly stacked and/or shingled, and separated by thin
clay layers that may preclude communication between sandstones. The strong
northeast-southwest orientation of the sands should make exploration and develop-
ment of the sands relatively straightforward. Hydrocarbon entrapment within this
play would be mainly stratigraphic and not require the presence of structural closure.

The source of these sandstones was either an offshore bar, which would result in
bars oriented shore-parallel, or it was a tidal shoal/bar, which would lead to bars
forming seaward of distributary mouths oriented shore-normal. We believe that the
latter interpretation should be pursued as an exploration model.

The offshore bar hypothesis implies that the paleoshoreline, being parallel to the
bars, was oriented northeast to southwest. This paleoshoreline may have been
local, formed along the northeast—southwest flank of an individual deltaic lobe.
Another possibility is that deltaic activity within this part of the basin had shifted
sufficiently away from the area to cease to influence shoreline configuration. The
bars would have shifted northward to northwestward as the shoreline retreated
during transgression.

The tidal shoal (tidal bar) hypothesis implies that the bars were deposited paraliel
to, and seaward of, distributary channels as the deltaic system continued to be
drowned by the advancing Cypress sea. Modern analogues indicate that macrotidal
ranges coupled with low wave energy and low littoral drift are necessary for the
development of tidal bars (Duane et al. 1972, Swift et al. 1973, Swift 1975). Little
has been done, however, to examine this requirement in extremely shallow in-
tracratonic settings. The paleoslope within the embayment that became the lllinois
Basin is estimated to have been less than one tenth of 1° during Chesterian time.
It is possible that because of these dips, less dramatic tidal ranges may have
produced features similar to those seen today along coastal shelf areas under
macrotidal and mesotidal conditions. The tidal bars would have advanced north-
eastward as the delta was inundated by the transgressing sea. Minor shifts in the
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Figure 1

the Bartelso area. (b) Minor transgressive pulse deposits a thin shale over t
prior to a renewed progradation that deposits sands of the purple interval in a continui
Tidal influsnce oriented in a northeast-southwest direction is evident in these deposits. (¢) An apparent relative sea level

2 Depositional model for the Cypress at Bartelso Field. (a) Delta front sands of the pink interval advance into

he sands of the pink interval immediately
ng upward-shallowing sequence.
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fall enabled rapid progradation, resulting in tidal flat to delta plain environments of the gray interval. Shales and silts
predominate although thin sands and infrequent coal deposits are also noted. (d) Transgression inundates the deltaic

5 environments and results in the marine shales and offshore bars of the red interval. Clean sands are generally deposited
as isolated shore-normal tidal bars oriented in an east—west to slightly northeast-southwest direction.
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Figure 13 Production decline curve for Bartelso Field (Cypress and Silurian reef reservoirs
commingled). '

PRODUCTION CHARACTERISTICS

Drilling and Completion Practices

The majority of wells in Bartelso Field have been drilled with rotary tools using fresh
water-based muds, although some wells were drilled with cable tools. The Cypress
sandstones were commonly fractured with 20 to 40 quarts of nitroglycerin and
completed as open-hole producers. Wells drilled after the mid-1950s generally
perforated through casing set through the pay zone. Little to no acidization was
performed within the Cypress wells at the field. Pumping units are the main
extraction tools for both primary and secondary recovery operations.

Injection and Production Data

Cypress production was established in 1936 and peaked inthe early 1940s (fig. 13).
Enhanced recovery operations in the Cypress began in 1952 with the introduction
of three waterfloods involving 24 injection wells on the crest of the Bartelso structure.
The waterfloods were based on 10-acre well spacing and five-spot injection pat-
terns. The production curve shows a standard decline from 1939 to 1952, when
waterflooding was first initiated. Additional wells, both injector and producer, were
drilled off-pattern to enhance the effectiveness of the flood. Production peaked in
the mid-1950s and then gradually declined again, but at a slightly higher level than
would be projected from the pre-1952 curve. This suggests that the flood was
improving recovery rates within the Cypress. Many of the Cypress wells were
temporarily shut-in during the early 1970s for pressure maintenance purposes,
leading to a dramatic drop in production inthose years. Cypress production resumed
in 1975 under a coordinated fieldwide flood and a few more wells were drilled to
enhance efficiency. Production decline rates from that period to the present were
noticeably more gradual and suggest that the waterflood efficiency had increased

Injection of approximately 7.2 MMBW resulted in the production of about 1.25
MMBO and 5.25 MMBW from Cypress reservoirs. Injection water has consisted of
a 50% mixture of produced Cypress and Bethel brines. No data or analyses have
been published pertaining to the compatibility of this mixture with formation fluids in
the Cypress.
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Table 2 Analyses of Cypress oil samples from Bartelso Field.

Year APl gravity Sulfur content Viscosity
1940 36.2° 0.2% NA
1953 36.9° 0.2% 6.3cp@71°F

The Kerwin waterflood (fig. 3) involved 40 acres with five injection and five produc-
tion wells. The flood injected 1 MMBW and produced 132,100 BO and 186,500 BW
between 1952 and 1963. The Robben waterflood (fig. 3) involved 200 acres with 14
injectionand 19 production wells. The flood produced 619,200 BO and approximate-
ly 1 MMBW between 1953 and 1963. The Woodard waterflood (fig. 3) is currently
operating and involves 80 acres with five injection and three production wells. The
flood has injected 3.2 MMBW and produced 500,000 BO and 3.5 MMBW since 1954.
Apparently, the injection pattern adequately waterflooded the sandstones from the
red interval (fig. 8). This is not to suggest that this pattern would be effective in all
cases because the geometry of the shingled sandstones may not be so well suited
to such symmetrical spacing. Downdip parts of the purple and gray intervals were
not sufficiently subjected to secondary recovery methods (figs. 6 and 7) and
probably still contain some movable hydrocarbon reserves. The viability of extract-
ing any remaining hydrocarbons from the purple or gray intervals depends on the
operator's economics.

Oil Characteristics

Carlton (1940) sampled oil from Bartelso and the Robben waterflood project
reported oil characteristics before the flooding began in 1953. The results of these
two analyses are summarized in table 2.

Analyses of three oil samples gathered in 1990 from Bartelso Field are shown in
appendix A. Chromatograms of analyses from the saturated parts of these samples
are presented in appendix B. These samples are all from reservoirs within the red
interval that have been subjected to waterfloods. The sample characteristics are
consistent with lllinois Basin samples that were sourced from the New Albany Shale
(Upper Devonian). Sample EOR-69 contains more than 1% ashpaltenes, sig-
nificantly different from other samples in the field. Asphaltenes can cause some
production problems, particularly when acidizing with HCL, when adding low surface
tension fluids such as diesel fuel, and when using CO2 injection for enhanced oil
recovery projects (Newberry and Barker 1985).

Water Characteristics

Seven samples of the formation brine from Cypress reservoirs at Bartelso are
summarized in appendix A. Because of the mixtures of Bethel and Cypress brines
for waterflooding, these samples do not indicate true Cypress brine characteristics.

One interesting observation is the relatively low concentrations of chlorine in these
brines.

Original Volumetrics

Volumetrics were calculated for three of the Cypress reservoirs in Bartelso Field.
We used the standard formula:

7758 x reservoir acre-feet x porosity x (1-water saturation).

We calculated the values of reservoir acre-feet from the isopach maps, assigned
porosity by using average values obtained from core analyses in the area, and
calculated water saturation from wireline logs. The results are as follows:
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purple interval: shoreface 7758 X 2954 x 0.20 X 0.6 = 2,979,000 BO

gray interval: coastal plain 7758 x 551 x0.20 x 0.7 = 592,000 BO

red "A" interval: marine bar 7758 x 588 x 0.20 x 0.8 = 729,000 BO

red "B" interval-north: marine bar 7758 x 782 x 0.20 x 0.8 = 971,000 BO
red "B" interval-south: marine bar 7758 x 443 x 0.20x 0.8 = 550,000 BO
Original oil in place = 5,821,000 BO

The commonly used formation volume factor for Cypress reservoirs in the basin is
1.15 (B. Podolsky, personal communication, 1991). We therefore calculated the
original stock tank barrels of oil in place for the Cypress to be 5.062 MMBO.

Estimated primary recovery from the Cypress at Bartelso, based on operator
estimates, was 1.25 MMBO. Secondary recovery accounts for another 1.25 MMBO.
The recovery factor for combined primary and secondary methods is therefore
approximately 49%. This extraordinarily high recovery rate may be a result of an
erroneously optimistic estimation of the Cypress portion of the total reserves
produced, inaccurate assumptions on the volumetric calculations leading to
erroneously low estimates of reserves, or the high efficiency of the primary and
secondary recovery methods used. We believe that the recovery efficiency figures
are relatively accurate and, if anything, are slightly conservative. The combination
of the coordinated flood and other recovery methods used in the field were more
effective than is commonly the case in the lllinois Basin.

DEVELOPMENT AND PRODUCTION STRATEGY

The lack of existing cores from the field precludes obtaining engineering data on
flow measurements or flow modeling. Therefore, we limit our discussion on develop-
ment and production strategy to conclusions and observations made on the existing
data.

The production practices used at Bartelso Field lead to an overall recovery efficiency
for the Cypress of more than 49%. Assuming that the calculations are relatively
accurate, these observations indicate that a 10-acre well spacing and a five-spot
waterflood program with infill drilling were adequate to effectively drainthe Cypress
red interval at Bartelso. The recovery rate probably would have been higher had the
sandstones within the purple and gray intervals been waterflooded adequately.

Recommendations

A standard 10-acre well spacing apparently is not adequate to efficiently drain all of
the sandstones within the Cypress Formation, if they are distributed as at Bartelso
Field. In the red interval, the bar complexes exhibited reservoir shingling (fig. 8a, b),
indicating the potential benefits of closer spacing in this environment. Off-pattern
producers drilled for the waterflood project almost certainly encountered compart-
ments that would otherwise not have been effectively drained. In addition, the
western limit of the reservoir within the gray interval at Bartelso (fig. 7) is of a peculiar
geometry that may not lend itself to efficient drainage by a 10-acre well spacing. It
is always important to recognize the Cypress reservoir type to plan an optimum
recovery strategy.

Secondary recovery methods should likewise be influenced by the type of reservoir
that is being exploited. Separate waterflood projects may be required for each
reservoir. Sweep efficiencies will obviously be affected by the geometries and
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internal architecture of the individual reservoir. As a result, uniformly spaced wells
on a secondary recovery project would probably not efficiently drain multiple
reservoir types. This was probably the case at Bartelso.

Although clays did not apparently pose a significant threat to production at Bartelso,
attention must be paid to the presence of clays to ensure that excessive formation
damage does not result from improper drilling or completion practices.

The best way to plan an effective production program is to obtain cores from each
reservoir and have a thorough analysis performed to determine optimum methods.
The lack of engineering data from Bartelso makes more specific recommendations
impossible.
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APPENDIX A RESERVOIR FLUID ANALYSIS

API Number 1202703143

Operator Newton

Well Name Gross No. 5

Location C SE SW, Sec. 5, TIN-R3W

Perforations Depth 987-997 ft (open hole) Cypress red interval
Surface Elevation 470 ft (Kelly bushing)

Waterflooded yes, presently inactive

Brine Analysis
Brine sample humber EOR-B17
Temperature (C) 25
Resistlvity 0.166 ohm-m

Eh (mV) -279

pH 6.72

Anion chemistry (mg/L)
Br <1 | <1
Cl 33980 NH4 179
COs «1 NOs 140
HCOs 416 SOs4 44

Catlion chemistry (mg/L)
Al 1.26 Co 0.2 Mo <0.08
As 3.2 Cr 0.5 Na 17810
B 3.51 Cu <0.06 Ni <0.15
Ba 248 Fe 0.42 Pb <0.4
Be 0.0007 K 65 Rb <10
Ca 856 Mg 556 Sb 0.5
Cd. <0.05 Mn 0.15 Se 1.5

Oll Analysis

Oll sample humber EOR 16
Hydrocarbon fraction (%)
saturated hydrocarbons  63.47
aromatic hydrocarbons  32.49

resins 3.71
asphaltenes 0.33
Selected hydrocarbon ratios
C17/C18 1.175
pristane/phytane 1.448
pristane/C17 1.240
phytane/C18 1.529
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Si
Sr
Ti

Zn
Zr

4.47
102
0.07
0.27
<0.02
0.04



APPENDIX A continued

APl Number 1202704175
Operator Kerwin
Well Name C.P. Maddux No. 9

Location SW NE SW, Sec. 4, TIN-R3W

Perforations Depth 991-996 ft Cypress red interval

Surface Elevation 460 ft (Kelly bushing)

Waterfiooded yes

Brine Analysis
Brine sample nhumber EOR-B19
Temperature (C) 25
Resistivity 0.136 ohm-m

Eh (mV) -111

pH 6.98

Anion chemistry (mg/L)
Br <1 | <1
Cl 35340 NHs4 155
CO3 «i NOs 118
HCO3 144 S04 «1

Cation chemistry (mg/L)
Al 1.44 Co <0.07
As 2.7 Cr 0.53
B 2.82 Cu <0.06
Ba 26.1 Fe 37.6
Be 0.0028 K 66
Ca 1013 Mg 586
Cd <0.05 Mn 1.07

Oil Analysis

Oil sample humber EOR-17
Hydrocarbon fraction (%)
saturated hydrocarbons 69.99
aromatic hydrocarbons  24.77

resins 4.58
asphaltenes 0.66
Selected hydrocarbon ratios
C17/C18 1.209
pristane/phytane 1.358
pristane/C17 1.545
phytane/C18 1.736

Mo <0.08
Na 18620

Ni <0.15
Pb <0.4
Rb <10
Sb 1.2
Se 1.3

Si
Sr
Ti

Zn
Zr

3.81
103
0.07
0.33
<0.02
0.05
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APPENDIX A continued

API Number 1202701157

Operator Robben

Well Name Schlarmann No. 0,7

Location SW SE SE, Sec. 5, TIN-R3W

Perforations Depth 985-985.5 ft Cypress red interval
Surface Elevatlon not reported

Waterflooded yes

Brine Analysis
Brine sample humber EOR-B28
Temperature (C) 25
Resistivity 0.155 ohm-m

Eh (mV) -271

pH 6.9

Anion chemistry (mg/L)
Br <1 | 3
Cl 23750 NH4 112
COs 290 NOs 87
HCO3 «1 S04 «i

Cation chemistry (mg/L)
Al 1.45 Co <0.05 Mo <0.05 Si
As 24 Cr 0.44 Na 17650 Sr
B 2.97 Cu 0.11 Ni <0.15 Ti
Ba 140 Fe 0.25 Pb <0.4 \'
Be 0.0 K 70 Rb <10 Zn
Ca 935 Mg 545 Sb <0.3 Zr

Cd <0.05 Mn 0.25 Se 1.8
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5.1
92
0.09
0.30
0.02
0.05




APPENDIX A continued

APl Number 1202701127

Operator Robben

Well Name Kormann No. 5

Location SW NE SE, Sec. 5, TIN-R3W

Perforations Depth 979.5-980.5 ft Cypress red interval
Surface Elevation not reported

Waterflooded yes, presently inactive

Brine Analysis
Brine sample humber EOR-B29
Temperature (C) 25
Resistivity 0.168 ohm-m

Eh (mV) -275

pH 7.2

Anion chemistry (mg/L)
Br <1 | <1
Cl 28850 NH4 164
CO3 172 NO3 128
HCO3 <1 S04 <1

Cation chemistry (mg/L)
Al 1.45 Co <0.05 Mo <0.05 Si
As 1.8 Cr 0.53 Na 18000 Sr
B 2.62 Cu 0.11 Ni <0.15 Ti
Ba 3.15 Fe 0.2 Pb <0.4 \'
Be 0.0 K 70 Rb <10 Zn
Ca 980 Mg 585 Sb <0.3 Zr

Cd <0.056 Mn 0.33 Se 1.8

4.65
92
0.09
0.30
<0.02
0.05

33



APPENDIX A continued

APl Number 1202701106

Operator Robben

Well Name Schlarmann No. 3

Location NW SE SE, Sec. 5, TIN-R3W
Perforations Depth 973-974 ft Cypress red interval
Surface Elevation not reported

Waterflooded yes, presently inactive

Brine Analysis
Brine sample number EOR-B30
Temperature (C) 25
Resistivity 0.175 ohm-m

Eh (mV) -120

pH 7.08

Anion chemistry (mg/L)
Br 3 | <1
Cl 29915 NH4 192
CO3 258 NO3 149
HCOs3 «1 S04 <1

Cation chemistry (mg/L)
Al 1.35 Co <0.05 Mo <0.05 Si 6.1
As 1.9 Cr 0.44 Na 16850 Sr 92
B 3.22 Cu 0.1 Ni <0.15 Ti 0.09
Ba 32.4 Fe 21.6 Pb <0.4 Vv 0.30
Be 0.0 K 70 Rb <10 Zn <0.02
Ca 935 Mg 550 Sb <0.3 Zr 0.05

Cd <0.05 Mn 0.48 Se 1.3
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APPENDIX A continued

APl Number 1202701105

Operator Robben

Well Name Schlarmann 0-4

Location NE SE SE, Sec. 5, TIN-R3W

Perforations Depth 978.5-979 ft Cypress red interval
Surface Elevation not reported

Waterflooded yes, presently inactive

Brine Analysis
Brine sample number EOR-B31
Temperature (C) 25
Resistivity 0.158 ohm-m

Eh (mV) -338

pH 6.87

Anion chemistry (mg/L)
Br <1 | <1

- Cl 25135 NHg 175
COs 416 NOs 136
HCO3 <1 S04 «1

Cation chemistry (mg/L)
Al 1.45 Co <0.05 Mo <0.05 Si
As 2.3 Cr 0.42 Na 18550 Sr
B 3.43 Cu 0.1 Ni <0.15 Ti
Ba 92 Fe 0.25 Pb <0.4 Y
Be 0.0 K 70 Rb <10 Zn
Ca 995 Mg 590 Sb <0.3 Zr

Cd <0.05 Mn 0.18 Se 1.2

5.35

0.09
0.30
<0.02
0.05

35



APPENDIX A continued

APl Number 1202701560

Operator H.S. Woodard Sr.

Well Name Trame No. 1

Location NE NE NW, Sec. 8, TIN-R3W
Perforations Depth 955-990 ft Cypress red interval
Surface Elevation 472 ft (Kelly bushing)
Waterflooded yes, presently inactive

Brine Analysis
Brine sample humber EOR-B18
Temperature (C) 25
Resistivity 0.165

Eh (mV) -197

pH 7.05

Anion chemistry (mg/L)
Br |
Cl 35000 NHs 150
COs NOs 116
HCOs 232 S04

Cation chemistry (mg/L)
Al 1.33 Co <0.07 Mo <0.08 Si
As 238 Cr 0.48 Na 17870 Sr
B 2.87 Cu <0.06 Ni <0.15 Ti
Ba 65.4 Fe 6.41 Pb <0.4 \)
Be 0.0018 K 62 Rb <10 Zn
Ca 936 Mg 556 Sb 1.3 Zr
Cd - <0.05 Mn 0.8 Se 1.5
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3.90
96
0.07
0.29
<0.02
0.05



APPENDIX A continued

API Number 1202724590

Operator Oelze

Well Name Robben No. 1

Location SE SW SE, Sec. 5, TIN-R3W

Perforations Depth 966-970 ft; 999-1003 ft Cypress red interval
Surface Elevation 472 ft (Kelly bushing)

Waterflooded yes, presently inactive

Oil Analysis
Oil sample humber EOR-69
Hydrocarbon fraction (%)
saturated hydrocarbons 74.91
aromatic hydrocarbons  18.15

resins _ 5.60
asphaltenes 1.34
Selected hydrocarbon ratios
C17/C18 0.983
pristane/phytane 2.613
pristane/C17 1.350
phytane/C18 3.589
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APPENDIX B GAS CHROMATOGRAMS OF SATURATED

HYDROCARBONS
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APPENDIX C CYPRESS RESERVOIR SUMMARY

Field Bartelso

Location Clinton County, lliinois; Secs. 4, 5, 8, and 9, TIN-R3W
Tectonic/Regional Setting intracratonic basin

Geologic Structure drape over a Silurian pinnacle reef

Trap Type structural/stratigraphic

Reservoir Drive gas dissolution

Orlginal Reservoir Pressure NA

Reservoir Rocks
Age Mississippian (Chesterian)
Stratigraphic unit Cypress
Lithology quartz arenite-subarkose
Wetting characteristics red interval, oil-wet; all other intervals water-wet
Depositional environments red interval, tidal shoaltidal bar; gray interval,
delta plain to lagoonal; purple interval, upper shoreface; pink interval, delta
front/delta fringe
Productive facies sandstones of the red, gray, and purple intervals
Petrophysics (¢7 and k from unstressed conventional core; Sw from logs)

Porosity Type: (¢ total 20%: primary 15%; secondary 5%)

Average Range Cutoff
¢ 20% 16-26% 16%
k air (md) 200 16-620 100
k liquid . NA NA NA
Sw 30% 10-95% 50%
Sor 70% 5-90% 50%
Sqr NA NA NA
Cementation factor NA NA NA

Source Rocks
Lithology and stratigraphic unit shale; New Albany Group
Time of hydrocarbon maturation Permo-Triassic
Time of trap formation Chesterian (stratigraphic); Penn./Perm. (structural)

Reservoir Dimensions
Depth 970-1100 ft
Areal dimensions 560 acres
Productive area 440 acres
Number of pay zones 3
Hydrocarbon column 70 ft
Initial fluid contacts gas/oil, -492 ft; oil/water, -550 ft (purple); -540 ft (gray)
Average net sand thickness red 'A’ interval, 4 ft; red 'B’ interval, 4 ft; gray
interval, 2 ft; purple interval, 6 ft
Average gross sand thickness red ‘A’ interval, 5 ft; red 'B’ interval, 6 ft; gray
interval, 4 ft; purple interval, 8 ft
Net/gross red 'A’, 4/5; red 'B’, 4/6; gray, 2/4; purple, 6/8
Initial reservoir temperature 100°F (estimated from logs)
Fractured natural, NA; artificial, nitroglycerin induced

Wells
Spacing 10-acre primary; no spacing on waterflood
Pattern normal primary with 5-spot injection program
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Total 136 (producers 43; water source 2; observation 0; suspended 0; injection 24;
disposal 3; abandoned 37; dry holes 27)

Reservoir Fluid Properties
Hydrocarbons
Type oil and gas
GOR NA
API gravity 36°
FVF 1.15
Viscosity 6.3 cp @ 71°F
Bubble point pressure NA
Formation water
Resistivity 0.16 @ 77°F
Total dissolved solids 55,000 ppm

Volumetrics
In-place 5,062,000 BBLS STOOIP
Cumulative production 2.5 MMBO
Ultimate recovery
Primary 1.25 MMBO
Secondary 1.25 MMBO
Tertiary NA
Recovery efficiency
Primary 25%
Secondary 25%
Tertiary NA

Typical Drilling/Completion/Production Practices
Completions open hole or cased
Drilling fluld fresh water mud
Fracture treatment 20-40 quarts of nitroglycerin
Acidization none
Producing mechanism
Primary pump
Secondary pump

Typical Well Production (to date)
Average dally IP 74 BOPD (red interval); 27 BOPD (gray interval); 66 BOPD
(purple interval); 80 BOPD (commingled)
Cumulative productlon 33,000 BO (primary and secondary)
Water/oli ratio (Initial) NA
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ERRATA
1992

llinois Petroleum 137
llinois State Geological Survey

Reservoir Heterogeneity and Potential for
Improved Oil Recovery within the Cypress Formation
at Bartelso Field, Clinton County, lllinois

Stephen T. Whitaker and Andrew K. Finley

Page 21, paragraph 6, last line:
for  Minor shifts in the

read  Minor shifts in the clastic influx and/or changes in marine currents would
account for the shingled nature of the bars.



