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INTRODUCTION

Since pre-settlement times, human activities have led to increased concentrations of dissolved and suspended compounds in streams and
rivers, in many cases adversely affecting the health of aquatic ecosystems (e.g., Hart 1991). Two of the most important water quality con-
cerns in surface water bodies are excess nutrients (nitrogen (N) and phosphorus) and salinity (Perry, 1998; Kaushal et al. 2005). One of the
primary reasons for stream impairment in Midwestern U.S. states is high nutrient levels, caused by agricultural activities such as erosion
of soils and leaching of excess fertilizer and livestock manure, as well as direct discharge of treated wastewater (TWW) at some localities
(David and Gentry 2000). Elevated salinity is an issue in northern U.S. and Canadian metropolitan areas due to road salt runoff (Howard
and Haynes 1993; Kaushal et al. 2005), and TWW discharge may also contribute to increased salinity.

Excess concentrations of nutrients in surface water bodies have been linked to conditions harmful to aquatic biota, including toxic algal
blooms, excessive macrophyte growth, fish kills, and reduction in species richness (Carpenter et al., 1998). Most of the N in surface water
bodies in the Midwestern U.S. is from agricultural sources, primarily soil organic matter (SOM) and synthetic fertilizers. For example,
Goolsby et al. (1999) estimated that, as of the mid-1990s, about 60% of the N input into the Mississippi River Basin was from synthetic
fertilizer and mineralized soil N. The remaining 40% comes from legumes (N, fixation), manure, atmospheric deposition, and point sources
such as effluent from wastewater treatment plants (WWTPs). Howarth et al. (1996) estimated that about 9% of the total N load in the Mis-
sissippi River basin was derived from sewage. Policy makers are using estimated contributions of these N sources, typically calculated by
mass balance approaches, to develop strategies to reduce N inputs to the Mississippi River in hopes of decreasing the hypoxic zone in the
Gulf of Mexico. However, there is a great deal of uncertainty in these estimates, and there has actually been a significant decrease in the
N load in the Mississippi-Atchafalaya River Basin in recent years without a concomitant decrease in the size of the hypoxic zone (USGS,
2007). When comparing the input and outputs of the N mass balance calculations for various river systems, there is typically a significant
deficit in the output portion, most of which is generally attributed to denitrification (David and Gentry, 2000).

Road salt has been linked to groundwater degradation in many urban and roadside areas in snowy climes (Huling and Hollocher 1972;
Pilon and Howard 1987; Amrhein et al. 1992; Williams et al. 2000; Bester et al. 2006). Road salt runoff reaches streams via direct runoff
during snowmelts and also from groundwater discharge, and can cause large spikes in sodium (Na) and chloride (CI”) concentrations in the
winter and early spring (Howard and Haynes 1993). Significant application of road salt began after World War I, and accelerated rapidly
from the 1960s (Salt Institute 2006). Salinity levels have been increasing in surface waters in the northeastern U.S. since the 1960s, causing
an adverse effect on aquatic life (Kaushal et al. 2005).

The Illinois River watershed drains approximately 78,000 km? or 44% of the land area of Illinois (plus small areas of Wisconsin and
Indiana) (Figure 1). The headwaters are in the Chicago region, where the hydrology has been highly modified, including the building of
canals and reversing the flow of the Chicago River. The primary streams in Chicago are the Des Plaines River, the Chicago Sanitary & Ship
Canal (SSC), and the Calumet Sag Channel. Downstream of Channahon, the Kankakee River flows into the Des Plaines River, forming the
Illinois River. Downstream of the Chicago region, land use is dominated by row crop agriculture; slightly more than 70% of the land in the
lower Illinois River basin was in agricultural production in 2004, predominantly corn and soybeans (Illinois Agricultural Statistics Service,
20006).

Surface runoff and diffuse groundwater discharge are the primary sources of water to most rivers and streams. The Illinois River, however,
has additional sources. The headwaters receive substantial volumes of TWW, over 5 billion L per day, and industrial discharge. Approxi-
mately 40% of the flow in the Des Plaines River at the Brandon Lock & Dam in Joliet is from TWW or industrial discharge (Singh and Ra-
mamurthy 1991; Illinois State Water Survey 2006). At low flow, TWW can account for almost 100% of the flow in these tributaries. Treated
wastewater can contribute significantly to the flux of some constituents; for example, David and Gentry (2000) estimated 21% of total N in
the Illinois River comes from TWW. The SSC and Calumet Sag Channel also receive a small amount of water from Lake Michigan (< 5%).
Downstream of Chicago, tile drains are common in agricultural areas and provide the bulk of water to tributaries discharging into the II-
linois River. While tile drainage is shallow groundwater, it passes through the subsurface at much greater rates than typical for groundwater
so there is less time for chemical, physical, and biological reactions to modify the chemical composition of the discharging water.

This report presents the data obtained during a two-year investigation of dissolved constituents in the Illinois River. The objective of that
two-year investigation was to indentify the major sources of nitrate (NO,"), chloride (CI"), and other inorganic constituents present in the Il-
linois River Watershed from the Chicago area to its confluence with the Mississippi River. The results of that investigation yielded valuable
information about the major sources of these nutrients that are exported from the state and transported down the Mississippi River to the
Gulf of Mexico. We also gained an understanding of the seasonal variability of NO,"and CI” concentrations and sources, the likely role of
denitrification within the subsurface and the river, and the contributions of road salt and sewage to the nutrient load of the Illinois River and
its tributaries (Panno et al. 2008; Kelly et al. submitted).

METHODS

A total of 131 water samples were collected during this investigation, 93 river samples and 38 from potential NO,™ and CI” sources. River
samples were collected seasonally from 14 locations in the Illinois River basin: three in the upper Illinois River and four in tributaries (one
each in the Fox River and SSC, and two in the Des Plaines River) in 2003/2004, and six in the lower Illinois River and one in the Sangam-
on River in 2004/2005 (Figure 1). For this investigation, the upper Illinois River is defined as the stretch from the Chicago area to Peoria,
and the lower Illinois River from Peoria to its confluence with the Mississippi River. The main stem of the Illinois River is also defined here
to include the the SSC at Willow Springs and the Des Plaines River at Brandon Road Lock & Dam near Joliet (Figures 1-4). Samples were
collected approximately quarterly, in August, October, February, and May, and additionally in April and late November/early December fol-
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Figure 1. Map of the lllinois River Basin, including major tributaries and sampling locations. Mississippi River locations sampled by Panno et

al. (2006a).



Figure 2. View of the Des Plaines River near Western Springs, Figure 3. ISWS scientist pollecting water samples from the west
showing ISGS and ISWS scientists sampling the centroid of the river ~ bank of the Sanitary & Ship Canal.
from an abandoned bridge.

Figure 4. River water samples were collected from the upstream side of the Brandon Road Lock and Dam near Joliet.



lowing the main periods of synthetic fertilizer application. Samples were collected from all 14 sampling locations during one sampling trip
during a drought in August 2005; river stage was below its 5th percentile value at that time. Due to access problems, Fuller Lake was only
sampled three times, August and October 2004, and August 2005. The Fox River was not sampled in August 2003.

Potential NO,™ and CI” sources in the watershed that were sampled included TWW, an agricultural drain tile, and precipitation. Treated
wastewater samples were collected on three separate occasions from the outfalls of three municipal sewage treatment plants, two in the
Chicago area (Stickney and Calumet) and Peoria (Figures 1, 5, and 6). On two occasions wastewater samples were collected from 3 dif-
ferent points along the aeration batteries at Stickney. A continuously flowing field tile draining 1.82 km? (450 acres) of land planted in row
crops (corn and soybeans) near Ludlow in central Illinois was sampled seven times between September 2003 and September 2004 (Figures
1 and 7). Because most tiles do not flow continuously, it is likely that this tile also has a component from a shallow sand aquifer. Compos-
ite precipitation samples were collected approximately monthly for one year periods from two locations, one in an industrial area in south
Chicago (Wolf Lake) and the other in a rural cropland area near Bondville in east central Illinois (Figures 1 and 8). Some months there was
insufficient sample for analysis, and samples from Wolf Lake were not collected between December 2003 and March 2004 due to logistical
problems.

Data collected in other studies were also considered in this study to help interpret our data. Additional source samples included livestock
manure (Panno et al. 2005), shallow groundwater in central Illinois collected from monitoring wells located in untiled fields (Beaumont,
2003; Kelly, unpublished data), drain tiles that flowed only during wet periods (Beaumont, 2003), and soil water samples from a tilled, un-
fertilized plot in a row crop area (Kelly, unpublished data). Soil water samples from a seep in Mammoth Cave, KY, beneath an uninhabited
wooded area (Panno et al. 2005), and from an undisturbed area in
the Carter Cave region of Kentucky (collected by J. Angel, Illinois
State University, and analyzed as part of this investigation) were
assumed to be representative of pristine soil water in the Midwest.

Figure 5. Discharge of TWW entered the Sanitary & Ship Canal Figure 6. Discharge of TWW entered the lllinois River (looking north)
(looking south) from the Stickney WWTP. from the Peoria WWTP.

. ) ) ) . Figure 8. Month-long composite rainwater and snow melt samples
Figure 7. Tile drain near Ludlow. The tile drained an area that was were collected in clean plastic buckets with automatic lids at the
exclusively row crop agriculture. NADP site at Bondville, IL.



Samples from the Mississippi River that were collected quarterly for one year from three locations adjacent to Illinois (Panno et al., 2006a)
were also considered. The additional well, tile, and Mississippi River locations are included in Figure 1.

In sampling the rivers, our aim was to collect representative samples from the main channel. Samples from the Illinois and Fox Rivers were
collected from a boat, except at the two lock and dam sites, near the centroid of the river flow using a peristaltic pump and a weighted sam-
pling tube (Figure 9). This method has been shown to yield water samples whose dissolved chemical and isotopic compositions are repre-
sentative of the bulk of the water in the river (Antweiler et al., 1995; Panno et al., 2006a). Samples at the lock and dam sites (Brandon Road
and La Grange) were collected from walkways located just upstream of the dam spillways (Figure 4). The Des Plaines River at Willow
Springs was sampled at the centroid of the river from a bridge (Figure 2). The SSC and Sangamon River were sampled by placing tubing at
approximately one half the depth of the channel from the bank (Figure 3). Field parameters, including temperature, specific conductance,
pH, Eh, and dissolved oxygen (DO), were measured in situ using temperature compensated meters. Samples for cation, anion, and isotope
analysis were passed through 0.45- wm membrane filters and stored in polyethylene bottles. Unfiltered samples were collected in amber
glass bottles for the determination of total Kjeldahl nitrogen (TKN). Because the majority of TKN is typically associated with particulate
matter, grab samples in rivers do not give accurate TKN results (Meade et al. 1995). Samples collected from the centroid of the river where
flow is at a maximum probably yield overly
large TKN concentrations. Cation samples were
acidified in the field with ultra-pure nitric acid

to a pH of < 2. Samples were transported in ice-
filled coolers, and kept refrigerated at approxi-
mately 4° C until analysis.

Major anions were determined by ion chroma-
tography, following U.S. EPA Method 300.0
(Pfaft, 1993). TKN was determined by convert-
ing organic N to ammonium (NH,") by digestion
with H,SO, ; the resultant solution was analyzed
for NH,-N using a titrimetric procedure (Brem-
ner and Mulvaney, 1982). Ammonium-N was
determined using semi-automated colorimetry
(USEPA, 1993). Seventy-one of the samples
were analyzed with neutron activation in order
to determine concentrations of Na, C17, bromide

Figure 9. ISGS and ISWS scientists collecting
water samples from the lllinois River.

(Br7), and iodide (I") at low detection limits
(Strellis et al., 1996; Landsberger et al., 20006).
Appropriate QA/QC procedures were followed
in the field and analytical laboratories, including
analysis of blanks, duplicates, calibration check
standards, and reference standards. Approxi-
mately seven samples per trip were collected in
addition to one blank and one duplicate sample.
All instruments were calibrated at the begin-
ning of the day and rechecked at the end of the
day. All laboratory instruments were calibrated
before analizing each set of samples and blank
and duplicate samples were included in each run
(approximately nine samples).

Nitrogen and oxygen isotopic analyses of NO,™ were conducted following the methods of Silva et al. (1994; 2000), Wassenaar (1995), and
Hwang et al. (1999). Briefly, hydrochloric acid was added to samples to reach a pH of 4, then the samples were boiled to remove bicarbon-
ate (HCO,") and dissolved CO,. Sulfate (SO,*) was removed by precipitation of BaSO,. Dissolved organic carbon (DOC) was removed

by a cation exchange column packed with Bio-Rad AG 50W-X8 resin. Nitrate was extracted using a pre-packed BioRad AG 1-X8 anion-
exchange column, eluted with HBr solution, converted to AgNO, by adding silver oxide, and precipitated by freeze-drying in a vacuum
system. The dried AgNO, was converted to N, gas by quartz tube combustion. The N, gas was analyzed for 3N on a Finnigan Mat Delta-E
Isotope Ratio Mass Spectrometer. The 3'%0 of NO,” was determined by a Finnigan thermal conversion elemental analyzer (TC/EA). Inter-

5



national isotope standards TAEA-N1, TAEA-N2, TAEA-N3, USGS 25, and USGS 26 were used for 3"°N calibration; standards TAEA-N3,
USGS 34 and USGS 35 were used for 'O calibration. Reproducibility of duplicate analyses were equal to or better than 0.5 %o for 8N
and 1.0 %o for 5'%0.

RESULTS

Characterization of Major Nutrient and Ion Sources

The chemical composition of potential sources of NO,™ and CI” in the Illinois River are found in Tables 1 and 2. Rainwater and snow melt
samples collected from the Chicago area (Wolf Lake) and Bondville were dilute calcium (Ca) -HCO,™ type waters with a pH that typically
ranged from 6.0 to 6.9 and a total dissolved solids (TDS) concentration of between 4.7 and 25 mg/L. Kim et al. (2005) showed that fine
particles containing NO,™ aerosols at the Bondville site are responsible for most of the NO,™ concentrations in the rainfall and snow melt
samples. Sodium concentrations in rainwater and snow melt samples ranged from <0.1 to 1.3 mg/L at Wolf Lake and 0.08 to 0.19 mg/L in
Bondville, suggesting an industrial component in the Chicago area could have been added to the original marine acrosol component. Ex-
ceptionally high Na concentrations were found in spring-time runoff of road salt from a bridge (Figure 10) with Na and CI~ concentrations
0f 6,270 and 8,930 mg/L, respectively.

Soil water samples from Mammoth Cave (Panno et al. 2005) and an area in the Carter Cave region of Kentucky were assumed to approxi-
mate the composition of pristine soil water in the Midwestern U.S. These soil water samples were dilute Ca-HCO," type waters similar to
rainwater (Tables 1 and 2 in Panno et al. 2005). Nitrate-N and CI™ concentrations were very low, < 0.5 and < 2 mg/L, respectively. Analyses
of soil water from an agricultural field near Lexington, IL had significantly higher NO,-N concentrations, between 15 and 21 mg/L, and CI”
concentrations between 16 and 21 mg/L (W.R. Kelly, unpublished data).

Tile drain samples were Ca-Mg HCO, -type waters that contained relatively high concentrations of agriculture-related nutrients potassium
(K) (1-11 mg/L), NO,-N (9.52-15.3 mg/L) and TKN (1.18-4.31 mg/L). However, these tiles flowed year round indicating that the tile was
in or above a sand deposit which provided water from much larger distances than normal. Tile drain data from tiles that flowed only during
wet periods (Beaumont 2003) had elevated spring-time concentrations of NO,-N that ranged from 11.9 to 33.1 mg/L, with a median of 17.1
mg/L. The tile drain samples from Ludlow, IL had low CI” (10 to 18 mg/L) and Na concentrations (6.8 to 9.4 mg/L) but elevated C17/Na
ratios, relative to all other samples (Figure 11), suggesting either significant ion exchange within the soil zone and/or contributions from
fertilizer (KCI). Potassium chloride is applied to crop lands in Illinois at a rate of about 90 kg/acre every 2 years (Panno et al. 2006b), and
some of this could leach to tile drains.

Ammonium-N (< 0.01 to 0.03 mg/L), phosphate-P (PO,-P) (< 1 mg/L), fluoride (F7) (0.1 to 0.2 mg/L) and boron (B) (median = < 0.02
mg/L) concentrations were relatively low in our tile drain samples. Tile drain samples sometimes had relatively elevated TKN values (as
high as 4.3 mg/L).

Nitrate isotopes of tile water fall along a denitrification vector that project back to the synthetic fertilizer/soil organic matter domains.
Those samples falling closest to the synthetic fertilizer/soil organic matter domains (the least denitrified) were collected primarily in the
spring; those samples falling farthest from the fertilizer/soil organic matter domain (the most denitrified) were collected primarily in the
summer and early fall (Figure 12).

Treated wastewater from the outfalls of municipal WWTPs in the Chicago area and Peoria were mixed cation-HCO, -type waters with
high TDS contents and enriched in many ions, including Na, K, B, CI', F, NO, N, NH, N, TKN, PO,-P and DOC (Table 1). Sodium ranged
from 83 to 294 mg/L, CI” from 150 to 300 mg/L, and F~ from 0.6 to 1.3 mg/L. Boron concentrations were higher in TWW than any other
sources, ranging from 0.06 to 0.56 mg/L. All nutrients except NH, N were elevated in TWW, with NO, N between 3.3 and 11.5 mg/L, TKN
ranging from 0.16 to 6.2 mg/L, and PO,-P concentrations between < 0.01 and 12.1 mg/L. Ammonium-N concentrations ranged from 0.1 to
0.3 mg/L. Potassium ranged from 9 to 11 mg/L and DOC from 4.4 to 12 mg/L. The pH of TWW was near neutral, while the alkalinity was
typically less than 200 mg/L. All of the headwaters and many tributaries had TWW components. The Stickney WWT facility discharges

to the SSC and the Calumet WWT facility to the Calumet-Sag Channel. Flow in the Fox River was on average about 8% TWW (Knapp
and Myers 1999; Illinois State Water Survey 2006). The Springfield WWT facility discharges its wastewater to the Sangamon River. The
PeoriaWWT facility outfall discharges directly to the Illinois River.

Composition of Illinois River Water

The chemical composition of river water samples is shown in Table 1. In general, samples of Illinois River water can be characterized as

a well-oxygenated, mixed cation-HCO,™ type water with concentrations of CI”, NO,-N, and SO,>~ and associated cations elevated above
natural background. The specific conductance decreased from a high of about 2100 puS/cm in the Chicago area to between 600 and 900 uS/
cm near the confluence with the Mississippi River (similar to that of the local shallow groundwater). Many of the dissolved solids of the
Illinois River are due to both urban and rural sources of contamination. Water samples from the tributaries of the Chicago area (i.e., the Des
Plaines River and the SSC) had elevated concentrations of a number of analytes, including Na, K, B, CI', F, NO,-N, NH -N, TKN, PO,-P,
and DOC relative to the lower Illinois River and its tributaries, and low levels of DO (Table 2). Because these tributaries receive TWW
along their reaches, the analyte concentrations in samples from the tributaries at low flow are consistent with those of the outfall samples
from sampled WWTPs (Table 2). Concentrations of these parameters and their ranges generally decreased with distance from the Chicago
area.

Dissolved oxygen was lowest in the waterways of the Chicago area and greater downstream of Joliet (Figure 13). The low DO in the
headwaters was likely due to TWW, which was generally depleted in DO (as low as 3.1 mg/L) and discharged high levels of nutrients that
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Figure 10. Saline water runoff from a bridge crossing the Des
Plaines River in Western Springs, February 2005.

Figure 11. Chloride vs. Cl/Na molar ratio showing that most river
water samples cluster around a vertical line defined by halite. Tile
drain samples tend to have greater Cl/Na ratios and fall to the right of

the halite line.
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Figure 13. Dissolved oxygen in river water, TWW, and tile samples.
Figure 12. Nitrate isotope values for tile drain samples showing rela-
tive to denitrification vectors. Samples identified by sample date.

promote algal blooms that consume DO (Table 1). Degradation of organic matter from TWW would also consume DO. Continual or peri-
odic low DO concentrations are known to be deleterious to aquatic organisms; concentrations less than 3 mg/L are stressful and less than 2
mg/L are defined as hypoxic (SCDNR 2004), potentially killing all aquatic vertebrates and invertebrates. The sampling site at the Brandon
Road Lock and Dam in Joliet was located just above the spillway; the spillway itself is probably responsible for significant aeration of the
river. Substantially higher DO concentrations were measured downstream at Morris. The highest DO concentrations measured in this study
were in the Sangamon River during the summer, when benthic algae production of oxygen can exceed respiration resulting in the water
being supersaturated with DO.

Alkalinity and pH tend to covary (as would be expected) in the Illinois River samples (Figure 14), and both increased with distance from
the Chicago area to Pekin after which the values seems to level off to the confluence with the Mississippi River (Figure 15). The lowest pH
and alkalinity values were in Lake Michigan water and, especially, rainwater/snow melt. Most of the TWW originates as Lake Michigan
water, thus accounting for the relatively low values in the SSC. The addition of groundwater from tributaries and from groundwater dis-
charge into the main stem of the Illinois River is probably responsible for the increases in pH and alkalinity in the river water with distance
from the Chicago area.

Chloride concentrations in the Illinois River ranged from 70 to 488 mg/L and generally decreased with distance from the Chicago area (Fig-
ure 16); CI” concentrations were greatest in February 2004. Just prior to our February sampling, there had been a warming trend following a
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Figure 14. Alkalinity vs. pH graph showing a distinct separation of
the chemical composition of the Upper lllinois River Basin from the
Lower lllinois River Basin.

very cold and snowy winter in northeastern Illinois; CI~ concentra-
tions were as high as 488 mg/L, and the dominant source of CI”
during that time was road salt (Kelly et al. submitted). During
August 2005, when drought conditions dominated, C1” concentra-
tions for the Illinois River were typically over 100 mg/L, including
in the lower Illinois. This was in part due to the lack of dilution by
low-CI” water downstream of Chicago and in part due to in-stream
evaporation (Kelly et al. submitted). Chloride concentrations in the
Mississippi River were much lower than the Illinois River, ranging
from 9.3 to 34 mg/L (similar to that of tile drains). Halide ratios
were used to help evaluate the Cl- data. Panno et al. (2006b) found
that different C1” sources tended to plot in distinct domains for
several different ratio plots, including CI” vs. C17/Br- and Br™ vs.
I"/Na. Consequently, with these plots, it was possible to identify
each of the multiple sources of CI” that entered the watershed,

and isolate those sources that dominated seasonally (Kelly et al.
submitted).

Sodium concentrations in the Illinois River ranged from 20 to
335 mg/L, and Na concentrations were greatest in February 2004,
with a high of 335 mg/L, due to road salt runoff (Kelly et al.
submitted). During the summer of 2005, when drought conditions
dominated, Na concentrations for the Illinois River were typically
around 80 mg/L. As with CI”, the dominant sources of Na in the
Illinois River were TWW and road salt. Sodium was lower in the
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Figure 15. Alkalinity concentrations in river water, TWW, and tile
samples.
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Figure 16. Chloride concentrations in river water, TWW, and tile
samples. Concentrations from the Mississippi River at Quincy (Panno
et al., 2006a) also shown.

Sangamon River samples (12 to 100 mg/L) than the Illinois River, and much lower in the Mississippi River (8.3 to 31 mg/L) (Panno et al.

2006a), similar to that of tile drains.

The relationship between Na and CI” was stoichiometrically 1:1, suggesting halite (NaCl) as the dominant source of the ions. A plot of CI”
vs. C1/Na ratios suggests that the source of most of the Illinois River water and TWW was road salt (Figure 11).

Potassium in the Illinois River ranged from 4 to 15 mg/L and decreased with distance from the Chicago area (Figure 17). Possible sources
of K include soil amendments, TWW, and industrial wastes. There was a clear enrichment of K in the Chicago area (up to 20 mg/L in the
Des Plaines River, Table 1). The source of the additional K is unclear. Because none of our TWW samples had K concentrations as high as
those of the Des Plaines River and SSC, there must be other sources (e.g., industrial outfalls).

Because the greatest concentrations of K coincided with the influx of Na and CI” during melting near the end of winter of 2004, and
because there is some correlation between K and CI”™ (Figure 18), it is possible that the elevated K concentrations in the winter of 2004
(as high as 20 mg/L) are due, at least indirectly (e.g., ion exchange), to road deicers. The K concentration in a deicing brine running off a
bridge in Pekin was 225 mg/L (Table 1). Concentrations of K in the Mississippi River were typically lower that those of the Illinois River,

18



25
N River Mile S
300 250 200 150 100 50 0
25 . : i ! ! :
v Tww 20 | ° v B
® Aug
2L ® oct ] °
v Nov/Dec [ ] [ ]
A Feb v L
m Apr 15} v A ° 4
B May a
15 -
3 v @ Aug05 >
g o E e ooy oy
v v v ~ [ A}
< ot for .i‘... 4a |
v ‘ ® Upper lllinois R.
o n’ %o " @ Lower lllinois R.
5t V1 sl aw Vv Des Plaines R. (Willow Spr) J
g A Fox R. (Ottawa)
v N
B Sangamon R. (Chandlerville)
0 — ! ! < T X © 8 = F—
F?3 5 2 g8 z Fa s 2 £ £ 2 s 5 & 0
g @ 2 o T s 9 2 2 9 3 0 100 200 300 400 500
g 3 g s 2 3 g « i
£ = a » g -
S =z % CI" (mg/L)
3
®
s

Figure 18. Potassium vs. chloride concentrations.
Figure 17. Potassium concentrations in river water, TWW, and tile
samples.

usually ranging from 2 to 6 mg/L and, during flooding, as high N River Mile S
as 13 mg/L. The Sangamon and Fox Rivers had slightly higher 300 250 200 150 100 50 0
concentrations of K ranging from 5 to 10 mg/L and 6 to 15 mg/L,
respectively. 12b
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Fluoride was typically enriched in river water samples from the 1ok
Chicago tributaries to Henry, decreasing with distance from the
Chicago area (Figure 19). The greatest concentrations in the I1-
linois River were found in the SSC at levels as high as 1.2 mg/L.
There is little doubt that the source of the F~is TWW (0.6 to 1.3
mg/L), most likely from fluoridated tooth paste and the adjusted 04l
levels of F~ in municipal water in the Chicago area (0.90 to 1.2
mg/L, by law). Fluoride concentrations in our Mississippi River
samples ranged from < 0.1 to 0.5 mg/L. Because F~ was so low

in tile drains (0.1 to 0.4 mg/L), enriched in TWW, and because it
probably does not undergo ion exchange or uptake along the river,
it may be a useful proxy for estimating the amount of dilution

of TWW as it flows down the river. Fluoride was compared to
discharge measurements (Kelly et al. submitted) and was found

to be reduced in concentration by dilution from tributaries and
groundwater along the Illinois River (Figure 19). Also, there ap- Figure 19. Fluoride concentrations in river water, TWW, and tile
pears to be a relationship between F~ and NO,-N, being positively samples.

correlated when F~ concentrations were greater than 0.5 mg/L

(Figure 20) suggesting a common source (i.e., TWW).
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Boron concentrations were greatest in the Des Plaines and SSC (median = 0.16 mg/L). Boron is present in detergents; however, there is
little change in B with distance from the Chicago area. The lowest B concentrations were found in the Fox and Sangamon Rivers (median =
0.08 mg/L) and tile drain samples (median = < 0.02 mg/L).

Nitrate-N concentrations in river water samples varied seasonally and ranged from <0.01 to 9.36 mg/L with a median concentration of 3.51
mg/L. This is consistent with Moody and Battaglin (1995) who found that the median NO,-N concentration for the Illinois River from 1970
to 1991 was 3.5 mg/L. The greatest concentrations of NO,-N in the Illinois River Basin were in the Des Plaines River and SSC; concen-
trations ranged between 4 and 10 mg/L in the SSC, Des Plalnes River, and Illinois River at Joliet. In general, concentrations of NO,-N
decreased with distance from the Chicago area (Figures 21). Sources of NO,-N near Chicago are primarily TWW discharged into the SSC
and Des Plaines River.

Farther down river, the primary source of NO,-N entering the Illinois River (based on land use) is row-crop agriculture (Panno et al. 2008).
The tile drain samples from near Rantoul had the highest NO,-N concentrations (as high as 15 mg/L); Beaumont (2003) found (in other
tile drains in the same area) concentrations as high as 33 mg/L. The source of NO,-N in the Sangamon River should also be predominantly
agricultural; NO,-N concentrations in the Sangamon River ranged from <0.01 to 10.5 mg/L. In comparison, NO,-N levels in Mississippi
River samples at Quincy were relatively low, ranging from 0.4 to 4.1 mg/L (Panno et al. 2006a).
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Figure 20. Nitrate vs. fluoride concentrations. The correlation be-
tween the two ions in the upper reaches of the lllinois River Basin is
due to outfall from the WWTPs.

Ammonium-N concentrations were greatest in the Des Plaines River
and SSC, ranging from 0.24 to 1.19 mg/L. These concentrations
dropped dramatically downstream to typically less than 0.1 mg/L
(similar to what was found in the Mississippi River by Panno et al.
2006a) (Figure 22). The NH,-N concentrations of the TWW were
relatively low (0.1 to 0.3 mg/L), consequently, there appeared

to be another source entering the SSC (e.g., industrial-waste
discharge).

Total Kjeldahl Nitrogen (TKN) concentrations steadily decreased
with distance from Chicago from a high of 5.1 mg/L to a low of
0.41 mg/L near the Mississippi River. The TKN concentrations
remained low in the lower part of the Illinois River in spite of the
fact that tile drain samples can be relatively enriched (observed in
this study as high as 4.3 mg/L). Mississippi River samples ranged
from 0.2 to 2.0 mg/L (Panno et al. 2006a). However, because we
did not collect an integrated water sample that spanned the width
and depth of the river, the TKN data are not completely reliable.

Phosphate-P concentrations ranged from 1 to 7 mg/L in the SSC
and decreased in range and concentration with distance down river
to levels ranging from 0.01 to 1.0 mg/L (Figure 23). The tile drains
and Fox River had the lowest PO,-P concentrations of less than 1
mg/L. Concentrations of PO,-P as high as 7 mg/L were observed
in water samples from the SSC, presumably due to TWW. The
decrease in P-concentrations down river for most sampling events
(the exception was August 2005) was maybe due to dilution (Kelly
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Figure 21. Nitrate concentrations in river water, TWW, and tile
samples. Concentrations from the Mississippi River at Quincy (Panno
et al. 2006a) also shown.

N River Mile S
300 250 200 150 100 50 0
25 T T T T T T
v v TWW
® Aug
20 F ® oct ]
v Nov/Dec
A Feb
" Apr
15k B  May B
& Aug 05

NH-N (mg/L)

05 |

['4
3
o
E
©
=
c
©

2}

5

0.0

Chicago TWw ¢ <
Willow Springs
Brandon Rd B
Peoria TWW
Pekin
Florencerd
Kampsville
Fuller Lk.
Field Tiles:

Mississippi R.-Quincyq

Figure 22. Ammonium concentrations in river water, TWW, and tile
samples. Concentrations from the Mississippi River at Quincy (Panno
et al. 2006a) also shown.

et al. submitted). This statement is based on PO,-P concentrations in August 2005 when concentrations decreased dramatically from the
Chicago area, but were consistently above 1 mg/L from the Chicago area to the Illinois River’s confluence with the Mississippi River (Fig-
ure 23). Concentrations of PO,-P in the Mississippi River were all less than 0.1 mg/L, the same as tile drain samples.

Dissolved organic carbon concentrations in the Illinois River ranged from 3.9 to 11 mg/L. In general, the greatest concentrations of DOC
were found in the Chicago area, particularly during the spring, and they decreased to between 4 and 7 mg/L down river (Figure 24). A pos-
sible source of DOC in this area is TWW (4.4 to 12 mg/L). The greatest concentrations of DOC within the Illinois River Basin were found
in the Fox River (6.5 to 12.4 mg/L), and the lowest were found in the Sangamon River (2.6 to 5.5 mg/L). Land use in the Sangamon River
watershed is dominated by row-crop agriculture and DOC in tiles were very low and ranged from 1.1 to 2.9 mg/L. Water samples from the
Mississippi River had DOC concentrations that were similar, ranging from 2.2 to 8.6 mg/L (Panno et al. 2006a).

8D and §"0 plotted along the meteoric water line (Figure 25) with linear excursions along the lower side of the line indicating the isotopic

fractionation effects of evaporation within the river.
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Figure 23. Phosphate concentrations in river water, TWW, and tile Figure 24. Dissolved organic carbon concentrations in river water,
samples. TWW, and tile samples. Concentrations from the Mississippi River at
Quincy (Panno et al. 2006a) also shown.
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Figure 25. 3D vs. 880 for water. Mean water line (MWL) also shown.
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Figure 26. 8N vs. 80 for all samples.

8""N and 5'*0 of NO,™ are plotted in Figure 26. Those data for tile water samples plotted in and around the domains of N-fertilizer and/or
SOM (6.0-12.4 (median = 10.0) and 6.9-4.8 (median = 9.0), respectively). The isotopic composition of NO,™ in TWW typically had light
880 values (0.6-8.1, median = 3.4) and a relatively broad range of 8"°N values (3.6—15.5, median = 8.6). Most of the data fell outside the
expected sewage/manure domain; this is discussed in detail in Panno et al. (2008).

8N and 8'*0 of NO,™ in the SSC samples ranged from 3.9-8.7 (median = 6.9) and 3.6-9.6 (median = 5.1), respectively, and generally had
light 8N and 3'*0 values relative to downstream samples, except in the springtime and September 2003. Samples from the Des Plaines
River at Willow Springs (8.2—13.4 (median = 10.3) and 3.0-10.9 (median = 6.8), respectively), which drains urban and suburban areas and
whose flow is on average about 30% TWW, often had isotopic signatures different from those of TWW.

8N and 80 values were significantly higher in the lower Illinois compared to the upper Illinois (Panno et al. 2008). Downstream of
Chicago, the NO,™ isotopic values of samples from the main tributary of the Illinois River tended to cluster in fairly tight groups, especially
between late fall and April when NO,-N concentrations were often near their highest (Figure 21). For the tributaries, the only significant
difference in 8'°N values was for the Des Plaines at Willow Springs, which was higher than the upper Illinois. For 80, values were sub-
stantially higher in the Sangamon (6.4—-18.5 (median = 7.7), respectively) than both reaches of the Illinois and the Des Plaines, and higher
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in the Fox (6.6-11.5 (median = 7.9)) than Figure 27. Piper diagram show-

the upper Illinois. ing major ion data for all river and
o source samples. Gray symbols

There were significant seasonal and stage show upper and lower lllinois River

effects on the isotope values for all the samples collected in August 2005.

Lower lllinois R.
Upper lllinois R.
Des Plaines R.

rivers and reaches (Panno et al. 2008),
although the effects were opposite for 6N

vs. 8'%0. 8'°N values were significantly FoxR.
. Sangamon R.
greater in the summer compared to the other angam
X oo Tile drain
seasons, while 8'*0 values were signifi- TWW

¢ > > mBOe@O0Jd

Road salt runoff

cantly lower in the summer. The 3'30 sea-
sonal differences were greater in the upper
Illinois than the lower Illinois. 8'"N values
decreased as the river stage increased from
low to intermediate to high. For the Illinois
River, 8'%0 values were significantly lower
when the river stage was low; this relation-
ship was not significant for the other rivers
(Table 1).

Major ion data plotted on a piper diagram
show significant differences among the dif-
ferent sources, river reaches, and tributar-
ies (Figure 27). In general, the Sangamon
River samples are most similar to the tile
drain samples, while upper Illinois and
Des Plaines River samples are most similar 100 50 50 20 2 0 o 2 0 0 50 100
to road salt runoff and TWW. Fox River Ca Na+K HCO,+CO, Cl
samples, which have a mixed urban-rural

watershed, are intermediate between the

Des Plaines (mainly urban) and Sangamon (mainly rural) river samples.
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