STATE OF ILLINOIS HENRY HORNER, Governor DEPARTMENT OF REGISTRATION AND EDUCATION JOHN J. HALLIHAN, Director

DIVISION OF THE STATE GEOLOGICAL SURVEY M. M. LEIGHTON, Chief URBANA

REPORT OF INVESTIGATIONS-NO. 55

EFFECT OF PREPARATION ON ASH FUSIBILITY OF SELECTED ILLINOIS COALS

ΒY

L. C. McCABE and O. W. REES

PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS

URBANA, ILLINOIS

1939

STATE OF ILLINOIS Hon. Henry Horner, Governor DEPARTMENT OF REGISTRATION AND EDUCATION Hon. John J. Hallihan, Director

BOARD OF

NATURAL RESOURCES AND CONSERVATION

HON. JOHN J. HALLIHAN, Chairman

EDSON S. BASTIN, Ph.D., Geology WILLIAM A. NOVES, Ph.D., LL.D., Chem. D., D.Sc., Chemistry LOUIS R. HOWSON, C.E., Engineering

WILLIAM TRELEASE, D.Sc., LL.D., Biology HENRY C. COWLES, Ph.D., D.Sc., Forestry ARTHUR CUTTS WILLARD, D.Engr., LL.D., President of the University of Illinois

STATE GEOLOGICAL SURVEY DIVISION

Urbana

M. M. LEIGHTON, Ph.D., Chief ENID TOWNLEY, M.S., Assistant to the Chief JANE TITCOMB, M.A., Geological Assistant

GEOLOGICAL RESOURCES

Coal G. H. CADY, Ph.D., Senior Geologist L. C. MCCABE, Ph.D. JAMES M. SCHOPF, Ph.D. EARLE F. TAYLOR, M.S. CHARLES C. BOLEY, M.S. Industrial Minerals J. E. Lamar, B.S. H. B. Willman, Ph.D. Robert M. Grogan, M.S. J. S. TEMPLETON, A.B. Oil and Gas A. H. Bell, Ph.D. G. V. COHEE, Ph.D. FREDERICK SQUIRES, B.S. CHARLES W. CARTER, Ph.D. F. C. МасКліднт, Рh.D. JAMES L. CARLTON, B.S. FRANK E. TIPPIE, B.S. ROY B. RALSTON, B.A. Areal and Engineering Geology George E. Ekblaw, Ph.D. Richard F. Fisher, B.A. Subsurface Geology L. E. Workman, M.S. J. Norman Payne, Ph.D. Elwood Atherton, Ph.D. Merlyn B. Buhle, M.S. Gordon Prescott, B.S. Stratigraphy and Paleontology J. MARVIN WELLER, Ph.D. CHALMER L. COOPER, M.S. Petrography RALPH É. GRIM, Ph.D. RICHARDS A. ROWLAND, Ph.D. Physics Ř. J. Piersol, Ph.D. M. C. Watson, Ph.D. DONALD O. HOLLAND, M.S.

GEOCHEMISTRY

FRANK H. REED, Ph.D., Chief Chemist W. F. BRADLEY, Ph.D. G. C. FINGER, Ph.D. HELEN F. AUSTIN, B.S.

Fuels

G. R. YOHE, Ph.D. CARL HARMAN, B.S.

Non-Fuels J. S. Machin, Ph.D. JAMES F. VANECEK, M.S.

Analytical

O. W. REES, Ph.D. George W. Land, B. Ed. P. W. Henline, B.S. Mathew Kalinowski, B.S. A. J. Veraguth, M.S.

MINERAL ECONOMICS

W. H. VOSKUIL, Ph.D., Mineral Economist GRACE N. OLIVER, A.B.

EDUCATIONAL EXTENSION

DON L. CARROLL, B.S.

PUBLICATIONS AND RECORDS

GEORGE E. EKBLAW, Ph.D. CHALMER L. COOPER, M.S. DOROTHY ROSE, B.S. ALMA R. SWEENEY, A.B. M. FRANCES HARPER, M.S. MEREDITH M. CALKINS

Consultants: Ceramics, CULLEN WARNER PARMELEE, M.S., D.Sc., University of Illinois; Pleistocene Invertebrate Paleontology, FRANK COLLINS BAKER, B.S., University of Illinois. Topographic Mapping in Cooperation with the United States Geological Survey.

This Report is a Contribution of the Section of Geological Resources, Coal Division.

(A4188-1500-8-39)

August 1, 1939

CONTENTS

Р	AGE
Introduction	5
Acknowledgments	5
Other studies	5
Present studies	7
Conclusions	10

ILLUSTRATIONS

Fig	URE	Page
1.	Map of Illinois showing location of mines where screenings were sampled	6
2.	Relationship of ash softening temperature to size, coals C and E	10
3.	Relationship of ash softening temperature to size, coals I and A	11
4.	Relationship of ash softening temperature to size, coals G and H	11
5.	Relationship of ash softening temperature to size, coals B, D, F, and J	12
6.	Relationship of ash softening temperature to specific gravity fractions of a narrow range, coal E	26
7.	Relationship of ash softening temperature to specific gravity fractions of a narrow range, coal I	27
8.	Relationship of ash softening temperature to cumulative specific gravity, coals A, B, and C.	28
9.	Relationship of ash softening temperature to cumulative specific gravity, coals D, E, and F.	29
10.	Relationship of ash softening temperature to cumulative specific gravity, coals G, H, and I.	30

TABLES _____

Page

		AGE
1.	Location, coal beds worked, thickness of beds, mining methods, and tonnages of mines	
4	sampled	7
2.	Ash fusion data for sized and cumulative gravity samples, Mine A	13
3.	Ash fusion data for sized and cumulative gravity samples, Mine B	14
4.	Ash fusion data for sized and cumulative gravity samples, Mine C	15
5.	Ash fusion data for sized and cumulative gravity samples, Mine D	16
6.	Ash fusion data for sized and cumulative gravity samples, Mine E	17
7.	Ash fusion data for sized and cumulative gravity samples, Mine F	18
8.	Ash fusion data for sized and cumulative gravity samples, Mine G	19
9.	Ash fusion data for sized and cumulative gravity samples, Mine H	20
10.	Ash fusion data for sized and cumulative gravity samples, Mine I	21
11.	Ash fusion data for sized and cumulative gravity samples, Mine J	22
12.	Ash fusion data for sized and individual gravity samples, Mine E	23
13.	Ash fusion data for sized and individual gravity samples, Mine J	24
14.	Ash analyses of screening samples $(1\frac{1}{4})$ to 0) from Mines E and I	25

ų.

EFFECT OF PREPARATION ON ASH FUSIBILITY OF

SELECTED ILLINOIS COALS*

ВY

L. C. MCCABE AND O. W. REES

INTRODUCTION

 $\mathbf{S}^{ ext{TUDIES}}$ of the characteristics of the ash of coal have increased in recent years in the hope that they may provide criteria for establishing the particular suitability of the coal for specific uses. Ash fusibility tests have been made as part of the ordinary commercial analysis, but uncertainty as to the significance of these values has encouraged other investigations such as those of Nicholls, Selvig and Ricketts1 into the relation between ash fusibility and clinkering tendencies. The relation of ash composition to ash fusibility² and the influence of the mineral components of the coal upon ash fusion³ have also received some attention. These and other investigations are providing a basis for a better understanding of the complicated relationship between ash composition and ash fusibility and between ash fusibility and clinkering tendencies.

The investigation herein reported was concerned with the effect of preparation upon the softening temperature of coal ash.

Acknowledgments

The writers are glad to acknowledge the cooperation and assistance of the management of the mines in collecting samples. Dr. F. H. Reed and Dr. G. H. Cady made many helpful suggestions during the course of the investigation and preparation of this report. L. G. Hazen and C. C. Boley assisted in preparing samples and J. W. Robinson, C. S. Westerberg, L. D. McVicker, J. A. Mc-Hard, L. H. McCreery, and G. W. Land assisted in obtaining analytical data.

OTHER STUDIES

Few records of similar investigations have come to the attention of the authors. Ball⁴ studied the amount and character of mineral matter of No. 6 bed coal from Franklin County, Illinois. Estep et al⁵ studied the effect of mixing coals on softening temperature of the ash. Yancey and Fraser⁶, in a report on some coal washing studies, referred briefly to the effect of washing on ash fusibility. Selvig et al,⁷ in discussing the relationship of

⁴Ball, Clayton G., Mineral matter of No. 6 bed coal at West Frankfort, Franklin County, Illinois: Illinois State Geol. Survey Rept. Inv. 33, 1935.

*Estep, Thomas G., Seltz., Harry, Bunker, Henry L. Jr. and Strickler, Herbert S., The effect of mixing coals on the ash fusion temperature of the mixture: Carnegie Inst. Tech. and Min. and Met. Advisory Boards, Mining and Metallurgical Investigations, Bull. 62, 1934.

"Yancey, H. F., and Fraser, Thomas, Coal-washing investigations, methods and tests: U. S. Bur. Mines, Bull. 300, 1929.

⁷Selvig, W. A., Nicholls, P., Gardner, W. L., and Muntz, W. E., Fusibility of coal ash as related to clinker formation: Carnegie Inst. Tech. Mining and Metallurgical Investigations, Bull. 29, 1926.

^{*}Presented at the Joint A.I.M.E. Coal and A.S.M.E. Fuels Meeting, Chicago, Ill. October 13-15, 1938. 'Nicholls, P., Selvig, W. A., and Ricketts, E. B., Clinker formation as related to the fusibility of coal ash: U. S. Bur. Mines Bull. 364, 1934.

²Estep, Thomas G., Seltz, Harry, and Osborn, Willard J., Determination of the effect of oxides of sodium, calcium, and magnesium on ash fusion temperatures by the use of synthetic coal ash: Carnegie Inst. Tech. and Min. Met. Advisory Boards, Mining and Metallurgical Investigations, Bull. 74, 1937.

³Thiessen, G., Ball, C. G., and Grotts, P. E., Coal ash and coal mineral matter: Ind. Eng. Chem. vol. 28, p. 355,

FIG. 1.—Map of Illinois showing location of mines where screenings were sampled.

6

Mine	County	Coal Av bed thic number Ft.		rage cness in.	Mining methods	Daily average (Tons)
А	Henry	1	4	1	Room-and-pillar, coal shot from solid, hand loading	450
В	Woodford	2	2	9	Longwall, hand mining, hand loading	425
С	Peoria	5	4	2	Room-and-pillar, machine min- ing, hand loading	3,000
D	Vermilion	(Grape Creek)	5	0	Room-and-pillar, machine min- ing, hand loading	3,000
E	Sangamon	5 (Springfield)	5	9	Room-and-pillar, coal shot from solid, hand loading	1,500
F	Christian	6	7	6	Room-and-pillar, coal shot from solid, hand loading	700
G	St. Clair	6	7	0	Room-and-pillar, machine mining, machine loading	1,300
Н	Marion	6	6	4	Room-and-pillar, machine mining, hand loading	1,700
I	Williamson	6	10	0	Room-and-pillar, machine mining, mechanical loading	4,000
ì	Saline	5 (Harrisburg)	5	3	Room-and-pillar, machine mining, hand loading	2,000

TABLE 1.--LOCATION, COAL BEDS WORKED, THICKNESS OF BEDS, MINING METHODS, AND TONNAGES OF MINES SAMPLED

ash fusibility to clinker formation commented on the effect of washing upon the fusibility and the clinkering characteristics of the coal. The only generalizations of present interest that can be drawn from the last three papers are that ash fusion characteristics vary with the extent to which washing eliminates certain mineral substances. Furthermore, according to these authors, elimination of pyrite usually tends to raise the temperature of fusibility of the washed coal as compared with that of the raw coal.

PRESENT STUDIES

This study of the effect of preparation on ash fusibility of coal screenings from Illinois mines is part of an investigation of washability characteristics, size-range, petrographic, and chemical nature of coal screenings begun by the Illinois Geological Survey in 1935. Ten mines were sampled so that each of the commercially important coal beds as well as the different producing districts in the State was represented (table 1 and fig. 1).

Increments of 12 to 15 pounds were taken from the loading chute at each mine at intervals throughout a day's run. One quarter of the gross sample of 1000 to 1500 pounds was sized and used in float-and-sink tests. Water solutions of zinc chloride were used in the float-andsink tests of $\frac{3}{4}$ to $\frac{3}{8}$ -inch and larger coal, and organic solutions, carbontetrachloride, benzene and bromoform mixtures were used for the sizes smaller than $\frac{3}{8}$ inch. Results and details of procedure of the sizing⁸ and washability tests⁹ have been published.

From the float-and-sink fractions, samples were taken which have furnished a fund of data on the ash fusion character-

^sMcCabe, L. C., Mitchell, D. R., and Cady, G. H., Proximate analyses and screen tests of coal mine screenings produced in Illinois: Illinois State Geol. Survey, Rept. Inv. 38, 1935.

⁹Mitchell, D. R., and McCabe, L. C., Washability characteristics of Illinois coal screenings: Illinois State Geol. Survey, Rept. Inv. 48, 1937.

istics and ash composition of these coals. Only the data pertaining to the effect of sizing and heavy liquid separation on ash fusion temperatures are presented here. Ash composition and its relation to ash fusion characteristics will be treated in another publication.

The screenings sample from each mine was sized as follows:

1¼ to ¾-inch ¾ to ¾-inch ¾ inch to 10-mesh 10 to 48-mesh minus 48-mesh

Round-hole screens were used in sizing at ³/₈-inch and above and Tyler standard sieves for sizing below ³/₈-inch.

Each size was separated by heavy liquids of 1.30, 1.35, 1.40, 1.50 and 1.70 specific gravity into the following fractions:

1.30 Specific gravity float 1.30 to 1.35 Specific gravity float 1.35 to 1.40 Specific gravity float 1.40 to 1.50 Specific gravity float 1.50 to 1.70 Specific gravity float 1.70 Specific gravity sink

The ash and sulfur values for the coals were obtained according to American Society for Testing Materials procedures D 271-33.¹⁰

The ash fusion data were obtained according to A.S.T.M. specifications D $271-33^{11}$ (modified 1938) in a Barrett ash fusion furnace. The ash analyses were made in accordance with procedures outlined by Hillebrand and Lundell¹² and Washington¹³ for the analysis of silicate rocks.

Ash fusion values, together with values for ash, sulfur, and weight per cent are given in tables 2 to 13 and figures 2 to 11.

A graph, on which the ash softening temperatures of the individual sizes are plotted, aids in comparing these values for the different sizes in the same mine, and the curves formed by connecting the points make it possible to place the mines in characteristic groups.

The graphs showing the effect of sizing upon ash softening temperatures for the

¹⁰Standard Methods of Laboratory Sampling and Analysis of Coal and Coke: A.S.T.M. Standards on Coal and Coke, D 271-33, pp. 17 and 21, 1936.

coals from the ten mines may be divided into four groups each of which contains two or more similar curves. In Group 1, which includes coals from mines C and E (fig. 2), the highest ash softening temperatures are in the minus 48-mesh size. In Group 2, representing coals from mines I and A (fig. 3), the lowest softening temperatures occur in the 3/8-inch to 10-mesh size, followed by an increase of 100° to 150° F. in the 10- to 48-mesh size, and a drop to a lower softening temperature for the minus 48-mesh dust. In Group 3 for coals from mines G and H (fig. 4), the ash softening temperature is rather uniform for all sizes except the 10- to 48-mesh size which is consistently lowest. In Group 4, representing coals from mines B, D, F, and J (fig. 5), the highest softening temperatures are in the $\frac{3}{4}$ to $\frac{3}{8}$ -inch size. Curves D, F, and J show the lowest ash softening temperature in the 10- to 48-mesh size with a slightly higher softening temperature in the ash from the minus 48-mesh coal. In curve B no such reversal is shown.

The number of mines represented is too small to be conclusive, but there appears to be a relationship between the geographical location of the mines and the groupings indicated above. Mines C and E of Group 1 are in No. 5 coal in the western part of the coal basin (fig. 1). Mines G and H of Group 3 are in No. 6 coal in the Belleville district of southwestern Illinois. Mines B, D, F, and J of Group 4 are in the Grape Creek No. 2, the No. 5 and the No. 6 coals, all near the center or east of the center of the coal basin. Only Group 2 embraces two widely separated mines, Mine A in No. 1 coal in northern Illinois and Mine I in No. 6 coal in Williamson county.

Coals E and I were selected for an exhaustive study of ash composition in relation to ash fusion characteristics because of the extremes of sulfur content. Coal from Mine E has 5.3 per cent sulfur in $1\frac{1}{4}$ to 0-inch screenings and screenings from Mine I have 1.9 per cent sulfur.

Samples of each of the five sizes of coals from Mine E and Mine I were separated by heavy solutions into 1.30, 1.35, 1.40, 1.50 and 1.70 float, and 1.70 sink fractions. Chemical analyses of the ashes of the $1\frac{1}{4}$ to 0-inch samples of these two coals appear in table 14, and

¹¹Idem. p. 27. (Revised 1938).

¹²Hillebrand, W. F., and Lundell, G. E. F., Applied inorganic analysis, John Wiley and Sons, Inc., 1929.

¹³Washington, H. S., The chemical analysis of rocks, John Wiley and Sons, Inc., 1930.

ash fusion determinations, ash, sulfur, and weight per cent values appear in tables 12 and 13. Table 14 shows the coal from Mine E to be higher in ash and sulfur than that from Mine I. The composition of the two ashes varies also, the SiO_2 and Al_2O_3 are lower in coal ash E and the Fe₂O₃, CaO, and SO₃ are considerably higher.

These closely sized fractions of narrow specific gravity limits cover a wide range of ash softening temperatures but the curves (figs. 6 and 7) show the ash softening temperatures to be quite different for the two coals. In general the lowest ash softening temperatures for coal E are in the fractions of low specific gravity and with the exception of the $\frac{3}{8}$ -inch to 10mesh, the highest ash softening temperatures are in the 1.70 sink fractions. The coal I curves show low ash-softening temperatures in both the low and high specific gravity fractions and high ashsoftening temperatures at intermediate specific gravities.

For coal I the ash softening temperature of the $\frac{3}{4}$ to $\frac{3}{8}$ -inch screenings floating at 1.40 specific gravity is 2547° F. (table 13) and of the 1.70 sink fraction it is 2019° F, a range of 528° between the maximum and minimum softening temperatures in one size. The difference in softening temperature between the 1.50 (2518° F.) and the 1.70 (2048° F.) float fractions in the $1\frac{1}{4}$ to $\frac{3}{4}$ -inch size is 470°. For coal E the $1\frac{1}{4}$ to $\frac{3}{4}$ -inch screenings show a range of 622° in the ash softening temperatures of the 1.50 specific gravity float (1971° F.) and the 1.70 sink (2593° F.) fractions (see table 12).

The head sample, or $1\frac{1}{4}$ to 0-inch screenings, for Mine I has a lower ash softening temperature than do most of the sizes prepared from it.

All ash softening temperatures of float-and-sink fractions derived from Mine E head sample are higher than the softening temperature of the head sample. Data for these two coals indicate that sizing and close gravity separation yield products which have higher ash softening temperatures than the original coal although each coal has individual characteristics.

Tables 2 to 11 and figures 8 to 11 present ash fusion data for size and cumulative gravity samples studied. The composite samples were made up according to weight per cent values obtained by gravity separations of each size. This makes it possible to determine how softening temperature is affected by adding high-ash coal to low-ash coal or by washing at any given specific gravity.

The ash softening temperatures of four of the high specific gravity fractions of coal E are considerably above the softening temperatures of the ash of the fractions of low specific gravity (fig. 6). It is apparent from an examination of the increment curves for this coal (fig. 9) that the addition of increments of high softening temperature ash does not always raise the softening temperature of the composite, rather it tends to lower it. In the curve showing softening temperatures of the individual fractions, of the $\frac{3}{4}$ to $\frac{3}{8}$ -inch size (fig. 6), fractions having specific gravities above 1.30 have higher softening temperatures than does the fraction floating at 1.30 specific gravity, yet when these fractions are combined in the proportion in which they occur in the coal, the effect of each added increment is to lower the softening temperature. The cumulative curve for the minus 48-mesh fraction (fig. 9) roughly follows the curve of individual softening temperatures (fig. 6) in the first five increments added but on the addition of the 1.70 sink fraction, which has a soften-ing temperature 175° higher than that of the nearest increment (table 12), the softening temperature of the composite is lowered 128° (table 6).

Although the cumulative curves for coal from Mine I (fig. 10) conform in a general way to the curves of softening temperature for individual fractions (fig. 7), both high and low points are modified.

At 1.50 specific gravity, the washing gravity of most Illinois coals, the majority of sizes from all mines except B and F have higher ash softening temperatures than the $1\frac{1}{4}$ to 0-inch head sample (figs. 8-11). However, it does not follow that if these sizes were combined and washed the fusion temperature would be higher than in the unwashed screenings. It might be higher or it might be lower.

The cumulative ash softening curves for coal from Mines G and H (fig. 10) are similar, and the curves for the various sizes occupy the same relative positions. These relations are not apparent for the coals of the other eight mines (figs. 8, 9, 10 and 11).

Sulfur values for all samples are listed (tables 2 to 13), but no definite relationship between these values and ash softening temperature values is apparent. Undoubtedly any such relationship depends on the nature and quantity of other minerals in the coal. These relationships will be discussed in a later publication.

CONCLUSIONS

(1) On the basis of sizing the ten coals studied may be divided into four groups within which the ash fusion relationships are similar.

(2) With the possible exception of coals from mines G and H whose ash

fusion relationships are similar, no groupings similar to those derived from sizing appear possible on the basis of cumulative specific gravity separations.

(3) The greatest difference in ash softening temperature was obtained in sized coals of narrow specific gravity range. This may explain clinkering difficulties experienced with stoker coals when changes are made in sizing or in washing procedure.

(4) The effect, in general, of combining portions of narrow specific gravity range is to lower high softening temperature values and to raise low softening temperature values of the component portions.

FIG. 2.—Relationship of ash softening temperature to size, coals C and E.

FIG. 3.-Relationship of ash softening temperature to size, coals I and A.

FIG. 4.-Relationship of ash softening temperature to size, coals G and H.

FIG. 5.-Relationship of ash softening temperature to size, coals B, D, F, and J.

TABLE 2.--ASH FUSION DATA FOR SIZED AND CUMULATIVE GRAVITY SAMPLES

Mine A

Sample	Lab. No.	Weight ¹ Per cent	Ash²	Sulfur ²	Initial Deforma- tion °F	Soften- ing °F	Fluid °F
Head (1¼" to 0). 1¼" to ¾" ¾" to ¾" ¾" to ¾" ¾" to 10 mesh 10 to 48 mesh Minus 48 mesh	C-1155 C-1156 C-1157 C-1158 C-1159 C-1160	$100.0 \\ 25.0 \\ 25.5 \\ 31.8 \\ 12.5 \\ 5.2$	19.617.217.719.525.529.9	$\begin{array}{c} 6 . 1 \\ 6 . 1 \\ 6 . 2 \\ 6 . 2 \\ 6 . 2 \\ 7 . 1 \end{array}$	1880 1965 1902 1879 1913 1913	1924 1987 1969 1908 2071 1981	1960 2026 1984 1974 2111 2017
1¼" to ¾" Sized sample ³ 1.30 Float 1.40 1.50 1.70 Composite head.	C-1156 C-1350 C-1838 C-1839 C-1840 C-1841 C-1842	$100.0 \\ 39.9 \\ 66.7 \\ 79.3 \\ 87.4 \\ 92.2 \\ 100.0$	17.2 6.8 8.5 9.6 11.0 12.4	$\begin{array}{c} 6.1\\ 3.6\\ 4.1\\ 4.4\\ 4.6\\ 4.8\\ \end{array}$	1965 1724 1805 1791 1816 1829 1849	1987 1927 1883 1904 1927 1913 1920	2026 2152 2024 2170 2187 2252 2242
³ 4" to ³ /8" Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C-1157 C-1356 C-1843 C-1844 C-1845 C-1846 C-1846	$100.0 \\ 40.7 \\ 66.0 \\ 77.6 \\ 85.9 \\ 90.1 \\ 100.0$	17.7 5.7 7.7 9.0 10.6 11.9	$\begin{array}{c} 6.2 \\ 3.4 \\ 4.0 \\ 4.3 \\ 4.6 \\ 4.8 \end{array}$	1902 1756 1811 1809 1805 1820 1846	1969 2025 1907 1931 1968 1920 1932	1984 2134 2151 2211 2214 1998 2161
³ / ₈ " to 10 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C-1158 C-1396 C-1848 C-1849 C-1850 C-1851 C-1852	$100.0 \\ 26.5 \\ 54.6 \\ 66.4 \\ 77.5 \\ 84.8 \\ 100.0$	19.5 4.1 5.3 6.5 8.1 10.0	6.2 3.2 3.5 3.8 4.2 4.6	1879 1686 1750 1722 1768 1695 1738	1908 1876 1869 1875 1862 1897 1869	$1974 \\ 2200 \\ 2249 \\ (^4) \\ 2118 \\ 2218 \\ 2114 $
10 to 48 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C-1159 C-1402 C-1853 C-1854 C-1855 C-1856 C-1857	$100.0 \\ 10.2 \\ 42.5 \\ 53.2 \\ 64.7 \\ 72.6 \\ 100.0$	$25.5 \\ 2.6 \\ 3.6 \\ 4.7 \\ 6.4 \\ 8.5$	6.2 3.0 3.2 3.5 3.8 4.2	1913 1722 1668 1628 1744 1731 1791	2071 1885 1893 1901 1898 1893 2011	2111 2182 2234 2196 2209 2218 2057
Minus 48 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head.	C-1160 C-1475 C-1858 C-1859 C-1860 C-1861 C-1862	$100.0 \\ 0.25 \\ 8.9 \\ 19.1 \\ 31.9 \\ 68.6 \\ 100.0$	29.9 3.6 2.8 4.0 6.4 15.0	7.1 3.1 3.0 3.2 3.5 4.6	1913 (5) 1934 1872 1943 1937 1880	$1981 \\ (^5) \\ 2000 \\ 2065 \\ 2073 \\ 2056 \\ 2001 \\$	2017 (§) 2180 2309 2242 2203 2074

¹Individual values for sized samples; cumulative values for gravity samples. ²Dry basis. ³Sub-head sample. ¹Out of range. ³Insufficient sample.

EFFECT OF PREPARATION ON ASH FUSIBILITY

Table 3.—Ash Fusion Data for Sized and Cumulative Gravity Samples $% \left({{{\left({{T_{{\rm{A}}}} \right)}} \right)} \right)$

Mine B

Sample	Lab. No.	Weight ¹ Per cent	Ash²	Sulfur ²	Initial Deforma- tion °F	Soften- ing °F	Fluid °F
Head (11/4" to 0). 11/4" to 34" 34" to 38" 36" to 10 mesh 10 to 48 mesh Minus 48 mesh	C- 993 C- 994 C- 995 C- 996 C- 997 C- 998	$100.0 \\ 20.3 \\ 29.4 \\ 31.0 \\ 13.6 \\ 5.7$	$ 19.4 \\ 11.0 \\ 14.3 \\ 19.7 \\ 30.5 \\ 36.5 $	2.2 1.7 1.8 2.0 2.9 4.0	2030 2053 2077 2077 1958 1947	2092 2118 2153 2150 2046 2048	2316 2373 2187 2365 2139 2091
1¼" to ¾" Sized sample ³ 1.30 Float 1.40 1.50 1.70 Composite head	C- 994 C-1067 C-1705 C-1706 C-1707 C-1708 C-1709	$100.0 \\ 75.6 \\ 86.7 \\ 89.4 \\ 91.8 \\ 93.4 \\ 100.0$	$11.0 \\ 3.8 \\ 4.6 \\ 5.0 \\ 5.5 \\ 6.1 $	$ \begin{array}{c} 1.7\\ 1.0\\ 1.2\\ 1.2\\ 1.3\\ 1.3\\ \end{array} $	2053 1821 1803 1803 1819 1875 1919	2118 2073 2069 2089 2098 2076 2120	$2373 \\ 2514 \\ 2543 \\ 2419 \\ 2144 \\ 2458 \\ 2514$
³ 4" to ³ %" Sized sample ³ 1.30 F 1.35 1.40 1.50 Composite head	C- 995 C-1072 C-1710 C-1711 C-1712 C-1713 C-1714	$100.0 \\ 74.1 \\ 81.7 \\ 84.0 \\ 86.1 \\ 88.3 \\ 100.0$	$14.3 \\ 3.9 \\ 4.5 \\ 4.8 \\ 5.3 \\ 6.1$	$ \begin{array}{c} 1.8\\ 1.0\\ 1.1\\ 1.2\\ 1.2\\ 1.4\\ \end{array} $	2077 1811 1809 1835 1823 1835 1835 1929	2153 2065 2041 2066 2048 2058 2126	$2187 \\ 2428 \\ (^4) \\ 2428 \\ 2090 \\ 2371 \\ 2390$
³ / ₈ " to 10 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head.	C- 996 C-1000 C-1715 C-1716 C-1717 C-1718 C-1719	$100.0 \\ 68.9 \\ 72.8 \\ 75.3 \\ 77.8 \\ 80.1 \\ 100.0$	$ 19.7 \\ 3.3 \\ 3.6 \\ 3.9 \\ 4.6 \\ 5.3 \\ \dots $	2.0 1.0 1.1 1.1 1.2 1.3	2077 1753 1687 1721 1756 1776 1807	2150 1987 1925 1974 1979 1998 2021	2365 2380 2349 2335 2346 2335 2338
10 to 48 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C- 997 C-1034 C-1720 C-1721 C-1722 C-1723 C-1724	$100.0 \\ 47.0 \\ 58.0 \\ 62.2 \\ 65.0 \\ 68.0 \\ 100.0$	30.5 2.5 2.9 3.5 4.0 5.4	2.9 0.90 0.95 1.0 1.1 1.3	1958 1753 1753 1768 1768 1842 1921	2046 1980 2007 2044 2044 2053 2025	2139 2344 2399 2061 2394 2370 2313
Minus 48 mesh Sized sample ⁸ 1.30 F 1.35 1.40 1.50 1.70 Composite head.	C- 998 C-1522 C-1725 C-1726 C-1727 C-1728 C-1729	$100.0 \\ 4.0 \\ 12.0 \\ 28.0 \\ 48.0 \\ 54.0 \\ 100.0$	36.5 2.1 2.6 4.1 7.0 7.9	4.0 0.96 0.89 0.92 1.1 1.1	1947 1930 2008 1990 1915 1882 2030	2048 2140 2175 2200 2175 2175 2175 2124	2091 2469 2432 2432 2400 2424 2337

¹Individual values for sized samples; cumulative values for gravity samples. ²Dry basis. ³Sub-head sample. ⁴Out of range.

Table 4.—Ash Fusion Data for Sized and Cumulative $% \left({{{\rm{A}}_{{\rm{B}}}} \right)$ GRAVITY SAMPLES

Mine C

							-
Sample	Lab. No.	Weight ¹ Per cent	Ash²	Sulfur ²	Initial Deforma- tion °F	Soften- ing °F	Fluid °F
Head (1¼" to 0). 1¼" to 34" 34" to 38" 38" to 10 mesh 10 to 48 mesh Minus 48 mesh	C-1149 C-1150 C-1151 C-1152 C-1153 C-1154	$ \begin{array}{r} 100.0 \\ 34.7 \\ 28.8 \\ 23.5 \\ 9.3 \\ 3.7 \\ \end{array} $	$ \begin{array}{r} 16.5 \\ 14.3 \\ 14.6 \\ 16.3 \\ 18.9 \\ 22.9 \\ \end{array} $	3.3 3.5 3.3 3.2 2.9 2.7	1885 1943 1950 1964 1981 2034	1983 1986 1987 2027 2063 2077	2040 2068 2227 2263 2080 2089
1¼" to ¾" Sized sample ³ 1.30 Float 1.40 1.50 Composite head	$\begin{array}{c} C-1150\\ C-1528\\ C-1730\\ C-1731\\ C-1732\\ C-1733\\ C-1733\\ C-1734 \end{array}$	$ \begin{array}{c} 100.0\\ 20.4\\ 68.9\\ 85.6\\ 92.8\\ 95.9\\ 100.0 \end{array} $	$ \begin{array}{r} 14.3 \\ 7.9 \\ 10.9 \\ 12.2 \\ 13.2 \\ 13.9 \\ \end{array} $	3.5 2.7 2.7 2.9 3.1 3.2	1943 1793 1939 1877 1876 1862 1862	1986 2143 2106 2030 1944 1971 1925	2068 2428 2367 2277 2151 2201 2181
³ 4" to ³ 8" Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C-1151 C-1534 C-1735 C-1736 C-1737 C-1738 C-1739	$100.0 \\ 26.7 \\ 73.0 \\ 85.3 \\ 91.1 \\ 94.3 \\ 100.0$	14.6 7.6 10.7 11.9 12.8 13.6	3.3 2.4 2.6 2.8 2.9 3.0	1950 1891 1891 1913 1918 1927 1936	1987 2148 2068 2014 2011 1968 1970	2227 2452 2388 2290 2134 2016 2167
³ / ₈ " to 10 mesh Sized sample ³ 1.30 F 1.40 1.50 1.70 Composite head	$\begin{array}{c} C-1152\\ C-1412\\ C-1740\\ C-1741\\ C-1742\\ C-1743\\ C-1743\\ C-1744 \end{array}$	$100.0 \\ 21.6 \\ 57.1 \\ 76.4 \\ 85.9 \\ 90.7 \\ 100.0$	16.3 5.7 7.1 8.5 9.6 10.6	3.2 2.4 2.4 2.5 2.7 2.8	1964 1893 1882 1905 1900 1872 1917	2027 2136 2132 2097 2069 2011 1993	2263 2520 2520 2483 2320 2179 2038
10 to 48 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head.	$\begin{array}{c} C{-}1153\\ C{-}1418\\ C{-}1745\\ C{-}1746\\ C{-}1747\\ C{-}1748\\ C{-}1748\\ C{-}1749\end{array}$	$100.0 \\ 6.3 \\ 45.4 \\ 66.4 \\ 77.5 \\ 83.2 \\ 100.0$	$ 18.9 \\ 3.4 \\ 5.1 \\ 6.8 \\ 8.4 \\ 9.6 \\ $	2.9 2.4 2.5 2.6 2.7	1981 1814 1814 1865 1867 1926 1936	2063 2014 2096 2124 2109 2053 2045	2080 2488 2593 2572 2536 2564 2062
Minus 48 mesh Sized sample ² 1.30 F 1.40 1.50 1.70 Composite head	C-1154 C-1521 C-1750 C-1751 C-1752 C-1753 C-1754	$100.0 \\ 0.24 \\ 19.1 \\ 39.4 \\ 58.3 \\ 73.7 \\ 100.0$	22.9 2.7 2.9 5.0 7.4 10.1	2.7 2.5 2.5 2.5 2.5 2.5 2.5	2034 (5) 1830 1866 1879 1913 1990	2077 (*) 2006 2076 2090 2069 2047	$2089 \\ (^{5)} \\ 2457 \\ (^{4)} \\ (^{4)} \\ 2431 \\ 2095 \\ \end{cases}$

¹Individual values for sized samples; cumulative values for gravity samples. ²Dry basis. ³Sub-head sample. ⁴Out of range. ⁶Insufficient sample.

			And and a second s		TT TO A DECISION OF THE OWNER OF		
Sample	Lab. No.	Weight ¹ Per cent	Ash²	Sulfur²	Initial Deforma- tion °F	Soften- ing °F	Fluid °F
Head (1¼" to 0). 1¼" to 34" 34" to 38" 38" to 10 mesh 10 to 48 mesh Minus 48 mesh	C- 975 C- 974 C- 976 C- 973 C- 972 C- 971	$100.0 \\ 18.8 \\ 24.1 \\ 32.2 \\ 16.1 \\ 8.8$	14.612.613.614.717.521.4	2.3 1.9 2.0 2.1 2.5 3.8	2052 2068 2077 2068 1948 1939	2126 2148 2155 2138 2056 2038	2342 2452 2372 2193 2243 2119
1¼" to ¾" Sized sample ³ 1.30 Float 1.40 1.50 1.70 Composite head	$\begin{array}{c} C- \ 974 \\ C-1488 \\ C-1640 \\ C-1641 \\ C-1642 \\ C-1643 \\ C-1644 \end{array}$	$100.0 \\ 51.7 \\ 82.6 \\ 86.2 \\ 89.8 \\ 94.0 \\ 100.0$	12.6 5.8 7.8 8.2 8.9 10.2	1.9 1.2 1.3 1.4 1.4 1.5	2068 1801 1882 1885 1937 1912 1909	2148 2140 2170 2163 2177 2173 2177	2452 2511 $(^4)$ 2185 2189 $(^4)$ $(^4)$
34" to 3/8" Sized sample ³ 1.30 F 1.40 1.50 1.70 Composite head	$\begin{array}{c} C- & 976 \\ C-1495 \\ C-1645 \\ C-1646 \\ C-1647 \\ C-1648 \\ C-1649 \end{array}$	$100.0 \\ 46.9 \\ 71.7 \\ 79.8 \\ 87.4 \\ 93.4 \\ 100.0$	13.6 5.2 7.0 7.8 8.9 10.7	2.0 1.1 1.3 1.4 1.5 1.6	2077 1839 1885 1909 1933 1946 1975	2155 2183 2168 2144 2168 2170 2165	2372 2529 (⁴⁾ 2223 2192 2194 2483
³ / ₈ " to 10 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70: Composite head.	C- 973 C- 984 C-1650 C-1651 C-1652 C-1653 C-1654	$100.0 \\ 63.9 \\ 76.0 \\ 80.6 \\ 86.2 \\ 90.3 \\ 100.0$	14.7 4.4 5.6 6.2 7.3 8.7	2.1 1.3 1.5 1.6 1.7 1.8	2068 1767 1850 1816 1847 1897 1954	2138 2061 2112 2119 2142 2143 2143 2145	2193 2111 2218 2181 2218 2213 213 2181
10 to 48 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C- 972 C- 978 C-1655 C-1656 C-1657 C-1658 C-1659	$100.0 \\ 58.6 \\ 67.6 \\ 72.9 \\ 79.2 \\ 84.9 \\ 100.0$	$ \begin{array}{c} 17.5\\ 3.7\\ 4.5\\ 5.1\\ 6.2\\ 8.0\\ \end{array} $	2.5 1.3 1.4 1.5 1.6 1.7	1948 1821 1854 1864 1889 1861 1945	2056 2022 2058 2071 2065 2088 2052	2243 2228 (⁴) (¹) 2105 2125 2213
Minus 48 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C- 971 C-1006 C-1875 C-1876 C-1877 C-1878 C-1879	$100.0 \\ 5.7 \\ 26.3 \\ 40.3 \\ 58.1 \\ 77.0 \\ 100.0$	21.4 2.0 2.7 4.0 5.9 8.3	3.8 1.1 1.3 1.4 1.6	1939 1710 1840 1991 2041 2041 1931	2038 1996 2071 2047 2079 2089 2144	2119 2355 2345 2329 2362 2448 2400

TABLE 5.—Ash Fusion Data for Sized and Cumulative GRAVITY SAMPLES

Mine D

¹Individual values for sized samples; cumulative values for gravity samples. ²Dry basis. ³Sub-head sample. ⁴Out of range.

TABLE 6.—Ash Fusion Data for Sized and Cumulative GRAVITY SAMPLES

Mine E

Sample	Lab. No.	Weight ⁱ Per cent	Ash²	Sulfur ²	Initial Deforma- tion °F	Soften- ing °F	Fluid °F
Head $(1\frac{1}{4}\frac{4}{4}$ to 0). $1\frac{1}{4}\frac{4}{4}$ to $3\frac{1}{4}\frac{4}{4}$ $3\frac{1}{4}\frac{4}{4}$ to $3\frac{1}{8}\frac{4}{4}$ $3\frac{1}{8}\frac{4}{4}$ to 10 mesh 10 to 48 mesh Minus 48 mesh	C-1085 C-1086 C-1087 C-1088 C-1089 C-1090	$ \begin{array}{r} 100.0 \\ 29.5 \\ 28.6 \\ 26.6 \\ 10.7 \\ 4.6 \end{array} $	13.8 12.8 14.1 13.8 17.3 20.2	5.3 5.2 5.5 5.3 5.4 5.0	1885 1918 1930 1909 1911 1983	1896 1963 1963 1930 1956 2056	2036 2036 2033 1980 1970 2075
1¼" to ¾" Sized sample ³ 1,30 Float 1,40 1,50 1,70 Composite head	C-1086 C-1219 C-1755 C-1756 C-1757 C-1758 C-1759	$100.0 \\ 42.8 \\ 71.9 \\ 86.1 \\ 93.9 \\ 97.7 \\ 100.0$	12.8 7.0 9.0 10.2 11.2 12.0	5.2 3.5 3.8 4.1 4.4 4.7	1918 1712 1735 1773 1769 1782 1807	1963 2019 1984 1964 1925 1906 1918	2036 (4)22992470213124422288
34" to 38" Sized sample ⁸ 1.30 F 1.40 1.50 1.70 Composite head	C-1087 C-1225 C-1760 C-1761 C-1762 C-1763 C-1764	$100.0 \\ 38.7 \\ 68.8 \\ 83.3 \\ 92.3 \\ 96.3 \\ 100.0$	14.1 6.2 8.3 9.6 10.8 11.7	5.53.43.74.04.44.6	1930 1678 1705 1729 1737 1737 1756	1963 1951 1940 1907 1878 1858 1849	2033 2509 2454 2460 2392 2376 2138
³ / ₈ " to 10 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C-1088 C-1198 C-1765 C-1766 C-1767 C-1768 C-1769	$100.0 \\ 61.9 \\ 68.7 \\ 75.8 \\ 87.5 \\ 92.4 \\ 100.0$	13.8 6.5 6.8 7.3 8.8 9.9	5.33.53.63.74.04.2	1909 1829 1771 1726 1756 1771 1784	1930 1984 2008 2017 1999 1968 1883	1980 2434 2481 2317 2280 2188 2153
10 to 48 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C-1089 C-1192 C-1770 C-1771 C-1772 C-1773 C-1774	$100.0 \\ 34.4 \\ 54.4 \\ 65.9 \\ 78.8 \\ 84.8 \\ 100.0$	17.3 3.5 4.3 5.4 7.1 8.5	5.4 3.2 3.2 3.3 3.6 3.8	$ 1911 \\ 1844 \\ 1844 \\ 1844 \\ 1844 \\ 1854 \\ 1854 \\ 1854 $	1956 1985 1999 2008 1992 1948 1920	1970 2492 2484 2398 2249 2226 1933
Minus 48 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head.	C-1090 C-1508 C-1880 C-1881 C-1882 C-1883 C-1884	$100.0 \\ 1.5 \\ 17.3 \\ 41.0 \\ 63.3 \\ 78.1 \\ 100.0$	20.2 2.2 2.5 4.1 6.4 8.7	5.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1	1983 1747 1702 1729 1729 1920 1839	2056 1918 1957 2033 2040 2139 2011	2075 2183 2238 2547 2518 2445 2171

¹Individual values for sized samples; cumulative values for gravity samples. ²Dry basis. ³Sub-head sample. ¹Out of range.

17

EFFECT OF PREPARATION ON ASH FUSIBILITY

Sample	Lab. No.	Weight ¹ Per cent	Ash²	Sulfur ²	Initial Deforma- tion °F	Soften- ing °F	Fluid °F
Head (1¼" to 0). 1¼" to 34" 34" to 38" 38" to 10 mesh 10 to 48 mesh Minus 48 mesh	C-1120 C-1121 C-1122 C-1123 C-1123 C-1124 C-1125	$ \begin{array}{r} 100.0 \\ 28.3 \\ 28.7 \\ 27.3 \\ 10.2 \\ 5.5 \end{array} $	$17.8 \\ 14.2 \\ 17.0 \\ 18.7 \\ 25.3 \\ 21.1$	$\begin{array}{r} 4.7 \\ 4.7 \\ 4.8 \\ 4.7 \\ 4.7 \\ 4.7 \\ 3.5 \end{array}$	1900 1898 1898 1972 1927 1943	2044 2088 2139 2131 2030 2089	2316 2453 2458 2458 2458 2262 2262
1¼" to ¾" Sized sample ³ 1.30 Float 1.40 1.50 1.70 Composite head	C-1121 C-1296 C-1818 C-1819 C-1820 C-1821 C-1822	$100.0 \\ 37.9 \\ 67.9 \\ 78.6 \\ 85.4 \\ 88.9 \\ 100.0$	$14.2 \\ 4.8 \\ 6.9 \\ 7.8 \\ 8.8 \\ 9.8 \\ \dots $	$\begin{array}{c} 4.7\\ 3.6\\ 3.6\\ 3.8\\ 3.9\\ 4.1\\ \end{array}$	1898 1633 1659 1670 1659 1677 1689	2088 1912 1939 1936 1958 1958 1958	2453 2347 2424 2363 2334 2381 2363
³ ⁄ ₄ " to ³ ⁄ ₈ " Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C-1122 C-1302 C-1823 C-1824 C-1825 C-1826 C-1827	$100.0 \\ 35.5 \\ 65.2 \\ 77.0 \\ 84.8 \\ 88.2 \\ 100.0$	17.0 4.4 6.7 7.8 8.9 9.9	$\begin{array}{c} 4.8\\ 3.5\\ 3.6\\ 3.7\\ 3.9\\ 4.1 \end{array}$	1898 1691 1711 1696 1736 1714 1748	2139 2026 2018 2051 2058 2035 2058	2458 2322 2344 2367 2404 2446 2518
<pre>% " to 10 mesh Sized sample * 1.30 F 1.35 1.40 1.50 1.70 Composite head</pre>	C-1123 C-1207 C-1828 C-1829 C-1830 C-1831 C-1832	$100.0 \\ 35.9 \\ 60.9 \\ 72.2 \\ 80.2 \\ 85.2 \\ 100.0$	$ 18.7 \\ 4.5 \\ 5.7 \\ 6.7 \\ 7.8 \\ 9.2 \\ \dots $	4.7 3.4 3.5 3.6 3.7 3.9	1972 1819 1780 1780 1811 1802 1820	2131 1953 1947 1942 1999 2027 2027	2458 2020 2211 2263 2330 2312 2385
10 to 48 mesh Sized sample ⁵ 1.30 F 1.35 1.40 1.50 Composite head	C-1124 C-1213 C-1833 C-1834 C-1835 C-1836 C-1837	$100.0 \\ 29.8 \\ 50.2 \\ 61.0 \\ 71.0 \\ 78.2 \\ 100.0$	$25.3 \\ 4.1 \\ 5.4 \\ 6.5 \\ 7.8 \\ 9.8 \\$	4.7 3.3 3.4 3.5 3.6 3.7	$1927 \\ 1715 \\ 1711 \\ 1674 \\ 1682 \\ 1764 \\ 1743 \\$	2030 1906 1962 1910 1877 1938 2028	2262 1936 2053 2260 2312 2322 2305
Minus 48 mesh Sized sample ³ 1.30 F 1.40 1.50 1.70 Composite head	C-1125 PA-6A ⁴ C-1905 C-1906 C-1907 C-1908 C-1909	$100.0 \\ 0.86 \\ 4.5 \\ 14.4 \\ 33.7 \\ 82.2 \\ 100.0$	21.1 2.1 3.0 4.9 7.1 10.6	3.5 3.1 3.1 3.1 2.9 2.6	$1943 \\ (^5) \\ 1678 \\ 1703 \\ 1674 \\ 1775 \\ 1678 \\ 1678 \\ 1678 \\ 1678 \\ 1678 \\ 1678 \\ 1678 \\ 1678 \\ 1000 \\ $	2089 (*) 1909 2005 1980 2091 2056	$2262 \ (^6) \ 2236 \ 2331 \ 2247 \ 2386 \ 2355$

Table 7.—Ash Fusion Data for Sized and Cumulative Gravity Samples $% \left({{{\left({{{T_{{\rm{ASH}}}}} \right)}_{\rm{ASH}}}} \right)$

Mine F

¹Individual values for sized samples; cumulative values for gravity samples. ²Dry basis. ³Sub-head sample. ⁴Sample number. ⁵Insufficient sample.

Table 8.—Ash Fusion Data for Sized and Cumulative Gravity Samples

Mine G

Sample	Lab. No.	Weight ¹ Per cent	Ash²	Sulfur ²	Initial Deforma- tion °F	Soften- ing °F	Fluid °F
Head (114" to 0). 114" to 34" 34" to 38" 35" to 10 mesh 10 to 48 mesh Minus 48 mesh	C-1179 C-1180 C-1181 C-1182 C-1183 C-1183	$100.0 \\ 29.0 \\ 26.5 \\ 26.0 \\ 12.5 \\ 6.0$	$18.1 \\ 15.5 \\ 16.9 \\ 19.3 \\ 25.8 \\ 25.2$	$\begin{array}{r} 4.6\\ 4.7\\ 4.7\\ 4.5\\ 4.2\\ 3.4 \end{array}$	1944 1930 1900 1902 1939 1966	2056 2044 2048 2073 2041 2099	2157 2305 2233 2354 2372 2459
1¼" to ¾" Sized sample ³ 1.30 Float 1.40 1.50 1.70 Composite head	$\begin{array}{c} C-1180\\ C-1308\\ C-1600\\ C-1601\\ C-1602\\ C-1603\\ C-1604 \end{array}$	$100.0 \\ 33.0 \\ 69.1 \\ 81.8 \\ 88.8 \\ 91.4 \\ 100.0$	$ \begin{array}{c} 15.5 \\ 5.6 \\ 7.9 \\ 9.0 \\ 10.0 \\ 10.6 \\ \end{array} $	4.7 3.2 3.3 3.4 3.6 3.7	1930 1862 1829 1863 1820 1876 1876	$\begin{array}{c} 2044 \\ 2081 \\ 2108 \\ 2078 \\ 2074 \\ 2065 \\ 2030 \end{array}$	$2305 \\ 2536 \\ 2460 \\ 2480 \\ 2469 \\ 2413 \\ 2384$
³ / ₄ " to ³ / ₈ " Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	$\begin{array}{c} C-1181\\ C-1314\\ C-1605\\ C-1606\\ C-1607\\ C-1608\\ C-1609\\ \end{array}$	$100.0 \\ 33.1 \\ 69.4 \\ 80.0 \\ 86.8 \\ 90.3 \\ 100.0$	16.9 4.5 7.3 8.4 9.5 10.4	$\begin{array}{c} 4.7\\ 3.1\\ 3.2\\ 3.3\\ 3.5\\ 3.6\\ \end{array}$	1900 1832 1876 1881 1885 1849 1888	2048 2050 2081 2068 2058 2041 2017	2233 2629 2389 2312 2336 2232 2204
³ ⁄ ₈ " to 10 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 Composite head	C-1182 C-1384 C-1610 C-1611 C-1612 C-1613 C-1614	$100.0 \\ 50.0 \\ 66.8 \\ 74.4 \\ 81.0 \\ 85.6 \\ 100.0$	19.3 5.2 6.5 7.3 8.3 9.5	4.5 3.3 3.4 3.5 3.6 3.8	1902 1848 1897 1910 1927 1927 1930	2073 2025 2065 2065 2065 2043 2046	2354 2240 2281 2344 2293 2256 2220
10 to 48 mesh Sized sample ³ 1.30 F 1.40 1.40 1.50 Composite head	C-1183 C-1390 C-1615 C-1616 C-1617 C-1618 C-1619	$100.0 \\ 30.0 \\ 51.6 \\ 61.0 \\ 69.6 \\ 76.1 \\ 100.0$	25.8 3.2 4.8 5.9 7.4 9.2	4.2 3.2 3.3 3.4 3.5 3.6	1939 1848 1860 1860 1882 1920 1963	2041 1984 2028 2055 2056 2051 2025	2372 2141 2264 2271 2247 2229 2251
Minus 48 mesh Sized sample ³ 1.30 F 1.40 1.50 1.70 Composite head	C-1184 C-1433 C-1885 C-1886 C-1887 C-1888 C-1889	$100.0 \\ 2.3 \\ 16.7 \\ 26.7 \\ 43.0 \\ 69.3 \\ 100.0$	25.2 1.4 2.9 4.2 6.6 10.0	3.4 3.1 3.1 3.1 3.1 2.7	1966 1934 1766 1751 1712 1727 1920	2099 1973 1990 2002 2032 2085 2109	2459 2180 2405 2397 2406 2420 2200

¹Individual values for sized samples; cumulative values for gravity samples. ²Dry basis. ³Sub-head sample.

Sample	Lab. No.	Weight ¹ Per cent	Ash²	Sulfur ²	Initial Deforma- tion °F	Soften- ing °F	Fluid °F
Head $(1\frac{1}{4}$ " to 0). $1\frac{1}{4}$ " to $3\frac{3}{4}$ " $3\frac{4}{4}$ " to $3\frac{3}{8}$ " $3\frac{8}{8}$ " to 10 mesh 10 to 48 mesh	C-1186 C-1187 C-1188 C-1189 C-1190	$ \begin{array}{r} 100.0\\ 33.0\\ 23.5\\ 26.7\\ 11.8 \end{array} $	16.3 15.4 15.5 15.0 17.3	$ \begin{array}{r} 4.6\\ 4.7\\ 4.9\\ 4.7\\ 4.2 \end{array} $	1928 1966 1947 1916 1902	1990 2027 1990 1989 1933	2118 2272 2255
Minus 48 mesh 1¼" to ¾" Sized sample ⁸ 1.30 Float 1.40 1.50 1.70 Composite head	C-1191 C-1187 C-1263 C-1580 C-1581 C-1582 C-1583 C-1583 C-1584	5.0 100.0 36.4 63.7 77.8 86.6 89.9 100.0	$ \begin{array}{c} 20.4 \\ 15.4 \\ 5.1 \\ 7.2 \\ 8.6 \\ 9.9 \\ 10.7 \\ \end{array} $	$\begin{array}{c} 3.7\\ 4.7\\ 2.9\\ 3.0\\ 3.1\\ 3.3\\ 3.4\end{array}$	1914 1966 1847 1877 1877 1877 1877 1847 1847 1886	1984 2027 2045 2084 2112 2090 2057 2037	2017 2272 2319 2366 2379 2366 2319 2319
34" to 38" Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head.	C-1188 C-1269 C-1585 C-1586 C-1587 C-1588 C-1588 C-1589	100.0 42.8 67.8 78.3 86.0 90.2 100.0	15.5 5.1 6.9 8.0 9.2 10.3	4.9 2.8 2.9 3.0 3.2 3.3	1947 1858 1886 1867 1774 1861 1880	1990 2038 2068 2068 2068 2062 2062 2032	2255 2291 2388 2380 2319 2391 2228
36" to 10 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head.	C-1189 C-1281 C-1590 C-1591 C-1592 C-1593 C-1594	$100.0 \\ 65.3 \\ 75.3 \\ 80.1 \\ 85.1 \\ 89.7 \\ 100.0$	15.0 5.5 6.4 7.0 7.9 9.1	4.7 2.9 3.0 3.1 3.2 3.3	1916 1774 1867 1867 1900 1870 1932	1989 2022 2019 2044 2047 2046 2030	2389 2391 2232 2290 2334 2273
10 to 48 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 Composite head	C-1190 C-1287 C-1595 C-1596 C-1597 C-1598 C-1599	$100.0 \\ 43.7 \\ 61.3 \\ 71.7 \\ 78.9 \\ 85.3 \\ 100.0$	17.3 3.6 4.6 5.6 6.7 8.3	4.2 2.8 2.9 2.9 3.0 3.2	1902 1763 1813 1754 1722 1898 1898	1933 1898 1959 2008 2030 1994 1950	2383 2288 2184 2193 2383 1966
Minus 48 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head.	C-1191 C-1515 C-1890 C-1891 C-1892 C-1893 C-1894	$100.0 \\ 5.1 \\ 33.1 \\ 45.2 \\ 59.9 \\ 77.7 \\ 100.0 $	20.4 3.3 3.6 4.5 5.9 7.5	3.7 2.6 2.5 2.6 2.6 2.5	1914 1694 1729 1752 1737 1794 1839	1984 1911 1848 1888 1934 1996 1986	2017 2074 2358 2358 2415 2399 2377

TABLE 9.—Ash Fusion Data for Sized and Cumulative Gravity Samples

Mine H

¹Individual values for sized samples; cumulative values for gravity samples. ²Dry basis. ³Sub-head sample.

Table 10. Ash Fusion Data for Sized and Cumulative Gravity Samples $% \left({{\left[{{{T_{\rm{A}}} \right]_{\rm{A}}}} \right]_{\rm{A}}} \right)$

Mine I

Sample	Lab. No.	Weight ¹ Per cent	Ash ²	Sulfur ²	Initial Deforma- tion °F	Soften- ing °F	Fluid °F
Head (114" to 0). 114" to 34" 34" to 38" 38" to 10 mesh 10 to 48 mesh Minus 48 mesh	C-1689 C-1163 C-1164 C-1165 C-1166 C-1167	$100.0 \\ 28.6 \\ 25.6 \\ 27.0 \\ 12.9 \\ 5.9$	$10.4 \\ 9.8 \\ 9.9 \\ 10.8 \\ 14.4 \\ 14.6$	$ \begin{array}{r} 1.9 \\ 1.7 \\ 1.9 \\ 2.2 \\ 2.3 \\ 2.2 \\ 2.3 \\ 2.2 \\ \end{array} $	1921 2081 1953 1887 2014 2008	2054 2205 2097 2036 2141 2130	2260 2451 2450 2311 2411 2381
1¼" to ¾" Sized sample ³ 1.30 Float 1.40 1.50 1.70 Composite head	C-1163 C-1245 C-1660 C-1661 C-1662 C-1663 C-1664	$100.0 \\ 54.1 \\ 86.4 \\ 92.1 \\ 96.1 \\ 97.4 \\ 100.0$	9.8 4.4 6.0 6.5 7.2 7.5	1.7 1.3 1.4 1.4 1.5 1.5	2081 1856 1856 1876 1891 1911 1864	2205 2122 2180 2200 2304 2255 2179	$2451 \\ 2460 \\ 2452 \\ 2526 \\ 2544 \\ 2534 \\ 2453$
³ ⁄ ₄ " to ³ ⁄ ₈ " Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C-1164 C-1257 C-1665 C-1666 C-1667 C-1668 C-1669	$100.0 \\ 53.6 \\ 83.8 \\ 99.4 \\ 93.3 \\ 95.8 \\ 100.0$	9.9 3.7 5.5 6.1 6.7 7.4	1.9 1.3 1.4 1.4 1.4 1.5	1953 1829 1867 1867 1908 1913 1936	2097 2064 2134 2169 2174 2134 2114	$2450 \\ 2421 \\ 2400 \\ 2441 \\ 2451 \\ 2416 \\ 2379$
³ / ₈ " to 10 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C-1165 C-1502 C-1670 C-1671 C-1672 C-1673 C-1674	$100.0 \\ 77.7 \\ 86.4 \\ 89.4 \\ 92.1 \\ 94.2 \\ 100.0$	10.8 4.6 5.3 5.7 6.2 6.8	2.2 1.4 1.5 1.5 1.5 1.5	1887 1865 1874 1903 1909 1856 1934	2036 2093 2143 2156 2113 2125 2078	2311 2312 2382 2381 2390 2335 2259
10 to 48 mesh Sized sample ³ 1.30 F 1.40 1.50 1.70 Composite head	C-1166 C-1239 C-1675 C-1676 C-1677 C-1678 C-1679	$100.0 \\ 69.3 \\ 76.5 \\ 80.3 \\ 84.9 \\ 88.1 \\ 100.0$	$14.4 \\ 3.5 \\ 4.1 \\ 4.6 \\ 5.3 \\ 6.2$	2.3 1.1 1.2 1.2 1.3	2014 1855 1898 1898 1862 1862 1942	2141 2058 2091 2116 2126 2132 2098	2411 2268 2230 2307 2405 2383 2277
Minus 48 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C-1167 C-1427 C-1680 C-1681 C-1682 C-1683 C-1684	$100.0 \\ 17.9 \\ 31.5 \\ 45.4 \\ 57.6 \\ 87.3 \\ 100.0$	14.6 1.7 2.6 3.8 4.8 6.7	2.2 0.89 0.97 1.0 0.99 0.98	2008 1856 1856 1896 1927 1956 1991	2130 2025 2048 2085 2106 2177 2119	2381 2192 2264 2294 2278 2508 2281

¹Individual values for sized samples; cumulative values for gravity samples. ²Dry basis. ⁸Sub-head sample.

21

TABLE 11.—Ash Fusion Data for Sized and Cumulative
GRAVITY SAMPLES

Mine J

				interior de la companya de la compa			
Sample	Lab. No.	Weight ⁱ Per cent	Ash²	Sulfur ²	Initial Deforma- tion °F	Soften- ing °F	Fluid °F
Head (1 ¹ / ₄ " to 0) 1 ¹ / ₄ " to ³ / ₄ " ³ / ₄ " to ³ / ₈ " ³ / ₈ " to 10 mesh 10 to 48 mesh Minus 48 mesh	C-1172 C-1174 C-1175 C-1176 C-1177 C-1178	$ \begin{array}{r} 100.0 \\ 30.7 \\ 26.0 \\ 25.4 \\ 12.3 \\ 5.6 \end{array} $	$ \begin{array}{c} 11.8\\ 9.7\\ 10.2\\ 11.7\\ 18.5\\ 16.8 \end{array} $	3.0 2.8 2.7 2.9 3.3 3.7	1928 1893 1876 1915 1931 1945	2028 2036 2072 2022 1996 2017	2193 2385 2376 2214 2061 2138
1¼" to ¾" Sized sample ³ 1.30 Float 1.40 1.50 1.70 Composite head	$\begin{array}{c} C-1174\\ C-1336\\ C-1620\\ C-1621\\ C-1622\\ C-1622\\ C-1623\\ C-1624 \end{array}$	$100.0 \\ 50.5 \\ 86.3 \\ 92.1 \\ 95.0 \\ 96.5 \\ 100.0$	9.7 5.3 7.0 7.4 7.8 8.1	2.8 1.5 1.7 1.9 2.0 2.2	1893 1849 1902 1919 1919 1832 1833	2036 2155 2118 2068 2075 2065 2047	2385 2529 2496 2100 2148 2151 2107
³ 4" to ³ 8" Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	$\begin{array}{c} C-1175\\ C-1342\\ C-1625\\ C-1626\\ C-1626\\ C-1627\\ C-1628\\ C-1629\end{array}$	$100.0 \\ 50.1 \\ 85.4 \\ 91.0 \\ 93.9 \\ 95.2 \\ 100.0$	10.2 4.8 6.5 6.9 7.3 7.6	2.7 1.5 1.7 1.8 2.0 2.1	1876 1877 1832 1822 1822 1859 1900	2061 2120 2118 2077 2054 2080 2059	2376 2539 2157 2088 2073 2464 2415
³ %" to 10 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	$\begin{array}{c} C-1176\\ C-1372\\ C-1630\\ C-1631\\ C-1632\\ C-1633\\ C-1633\\ C-1634 \end{array}$	$100.0 \\ 59.0 \\ 82.6 \\ 87.5 \\ 90.4 \\ 92.3 \\ 100.0$	$ \begin{array}{c} 11.7\\ 4.5\\ 5.9\\ 6.3\\ 6.6\\ 7.0\\ \end{array} $	2.9 1.5 1.7 1,8 1.9 2.1	1915 1869 1902 1881 1923 1858 1942	2014 2080 2127 2127 2086 2047 2046	2230 2424 2452 2469 2468 2412 2219
10 to 48 mesh Sized sample ³ 1.30 F 1.35 1.40 1.50 1.70 Composite head	C-1177 C-1378 C-1635 C-1636 C-1637 C-1638 C-1639	$100.0 \\ 50.1 \\ 68.3 \\ 73.9 \\ 79.4 \\ 82.5 \\ 100.0$	$ 18.5 \\ 3.2 \\ 4.6 \\ 5.1 \\ 5.9 \\ 6.5 \\ \dots $	3.3 1.4 1.5 1.6 1.7 1.9	1931 1824 1869 1878 1898 1886 1912	1996 2013 2064 2068 2078 2070 1980	2061 2244 2416 2418 2424 2392 2039
Minus 48 mesh Sized sample ³ 1.30 F 1.40 1.50 1.70 Composite head	C-1178 C-1447 C-1895 C-1896 C-1897 C-1898 C-1899	$100.0 \\ 15.9 \\ 30.8 \\ 39.8 \\ 51.0 \\ 82.1 \\ 100.0$	16.8 2.0 3.2 4.1 5.2 7.1	$3.7 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.4 \\ 1.6$	$1945 \\1936 \\1703 \\1683 \\1678 \\1753 \\1846$	2017 2122 1942 1955 1984 2040 1948	2138 2358 2345 2354 2342 2304 2202

+

¹Individual values for sized samples; cumulative values for gravity samples. ²Dry basis. ³Sub-head sample.

TABLE 12 .--- ASH FUSION DATA FOR SIZED AND INDIVIDUAL GRAVITY SAMPLES

Mine E

Sample	Lab. No.	WEIGHT Per cent	Ash ¹	Sulfur ¹	Initial Deforma- tion °F	Soften- ing °F	Fluid °F
Head (114" to 0). 114" to 34" 34" to 38" 38" to 10 mesh 10 to 48 mesh Minus 48 mesh	C-1085 C-1086 C-1087 C-1088 C-1089 C-1090	$100.0 \\ 29.5 \\ 28.6 \\ 26.6 \\ 10.7 \\ 4.6$	13.8 12.8 14.1 13.8 17.3 20.2	5.3 5.2 5.5 5.3 5.4 5.0	1885 1918 1930 1909 1911 1983	1896 1963 1963 1930 1956 2056	2036 2036 2033 1980 1970 2075
1¼" to ¾" Sized sample ² 1.30 Float 1.35–1.40. 1.40–1.50 1.50–1.70 1.70 Sink	C-1086 C-1219 C-1220 C-1221 C-1222 C-1223 C-1223	$100.0 \\ 42.8 \\ 29.1 \\ 14.2 \\ 7.8 \\ 3.8 \\ 2.3$	$12.8 \\ 7.0 \\ 12.0 \\ 16.3 \\ 22.1 \\ 31.0 \\ 51.2$	5.23.54.25.87.111.625.0	1918 1712 1864 1882 1852 2098 1909	1963 2019 2003 2142 1971 2164 2593	2036 (3) 2197 2334 2133 2425 2644
³ 4" to ³ 8" Sized sample ² 1.30 F 1.35–1.40. 1.40–1.50. 1.50–1.70. 1.70 S	C-1087 C-1225 C-1226 C-1227 C-1228 C-1229 C-1230	$100.0 \\ 38.7 \\ 30.1 \\ 14.6 \\ 9.0 \\ 4.0 \\ 3.6$	$14.1 \\ 6.2 \\ 11.0 \\ 16.0 \\ 21.6 \\ 31.9 \\ 54.4$	5.53.44.05.77.510.025.6	1930 1678 1947 1903 1925 1893 1882	1963 1951 2165 2007 2070 2023 2376	2033 2509 2432 2271 2405 2259 2471
³ / ₈ " to 10 mesh Sized sample ² 1.30 F 1.35–1.40. 1.40–1.50. 1.50–1.70. 1.70 S	C-1088 C-1198 C-1199 C-1200 C-1201 C-1202 C-1203	$100.0 \\ 61.9 \\ 6.8 \\ 7.1 \\ 11.7 \\ 4.8 \\ 7.7$	$ \begin{array}{c} 13.8\\ 6.5\\ 9.2\\ 12.8\\ 18.1\\ 29.4\\ 60.3 \end{array} $	5.33.53.94.66.18.515.5	1909 1829 1877 1904 1998 1864 1886	1930 1984 2003 2037 2085 1942 1959	1980 2434 2210 2538 2215 1960 1959
10 to 48 mesh Sized sample ² 1.30 F 1.35–1.40. 1.40–1.50. 1.50–1.70. 1.70 S	C-1089 C-1192 C-1193 C-1194 C-1195 C-1196 C-1197	$100.0 \\ 34.4 \\ 20.0 \\ 11.5 \\ 12.9 \\ 6.0 \\ 15.2$	17.33.55.710.415.827.561.7	5.43.23.33.94.97.112.7	1911 1844 2019 1856 1926 1985 2093	1956 1985 2149 2110 2082 2102 2395	$ 1970 \\ 2492 \\ 2681 \\ 2468 \\ 2349 \\ 2215 \\ 2548 $
Minus 48 mesh Sized sample ² 1.30 F 1.35–1.40 1.40–1.50 1.50–1.70 1.70 S	C1090 C-1508 C-1509 C-1510 C-1511 C-1512 C-1513	$100.0 \\ 1.5 \\ 15.8 \\ 23.7 \\ 22.4 \\ 14.7 \\ 21.9$	$\begin{array}{c} 20.2 \\ 2.2 \\ 2.5 \\ 5.2 \\ 10.7 \\ 18.8 \\ 58.6 \end{array}$	5.03.13.03.12.93.211.6	1983 1747 1882 1912 1912 1976 2005	2056 1918 2118 2044 2125 2150 2325	2075 2183 2639 2259 2381 2417 2355

¹Dry basis. ²Sub-head sample. ³Out of range.

TABLE 13 - ASH FUSION DATA FOR SIZED AND INDIVIDUAL GRAVITY SAMPLES

30.	-
VIIIA	
TATTIC	

Sample	Lab. No.	WEIGHT Per cent	Ash'	Sulfur ¹	Initial Deforma- tion °F	Soften- ing °F	Fluid °F
Head (1¼4" to 0). 1¼4" to 34" 34" to 38" 36" to 10 mesh 10 to 48 mesh Minus 48 mesh	C-1689 C-1163 C-1164 C-1165 C-1166 C-1167	$ \begin{array}{r} 100.0 \\ 28.6 \\ 25.6 \\ 27.0 \\ 12.9 \\ 5.9 \end{array} $	$ \begin{array}{r} 10.4 \\ 9.8 \\ 9.9 \\ 10.8 \\ 14.4 \\ 14.6 \end{array} $	1.9 1.7 1.9 2.2 2.3 2.2	1921 2081 1953 1887 2014 2008	2054 2205 2097 2036 2141 2130	2260 2451 2450 2311 2411 2381
1¼" to ¾" Sized sample ² 1.30 Float 1.35–1.40 1.40–1.50 1.50–1.70 1.70 Sink	C-1163 C-1245 C-1246 C-1247 C-1248 C-1249 C-1250	$100.0 \\ 54.1 \\ 32.2 \\ 5.7 \\ 4.0 \\ 1.3 \\ 2.7$	9.8 4.4 8.7 14.9 21.1 34.3 67.5	$ \begin{array}{c} 1.7\\ 1.3\\ 1.6\\ 1.7\\ 2.1\\ 3.5\\ 10.3 \end{array} $	2081 1856 1996 1893 2309 1900 2054	2205 2122 2311 2309 2518 2048 2139	2451 2460 2503 2631 2696 2433 2334
³ 4" to ³ 8" Sized sample ² 1.30 F 1.35–1.40. 1.40–1.50. 1.50–1.70. 1.70 S	C-1164 C-1257 C-1258 C-1259 C-1260 C-1261 C-1262	$100.0 \\ 53.6 \\ 30.3 \\ 5.6 \\ 4.0 \\ 2.5 \\ 4.0 \\ 2.5 \\ 4.0 \\ 1.0 \\ $	9.93.78.814.520.735.267.7	$ \begin{array}{c} 1.9\\ 1.3\\ 1.6\\ 1.7\\ 2.2\\ 3.1\\ 10.4 \end{array} $	1953 1829 1890 2039 1920 2054 1878	2097 2064 2290 2547 2224 2220 2019	2450 2421 2554 2736 2437 2408 2370
³ / ₈ " to 10 mesh Sized sample ² 1.30 F 1.35–1.40. 1.40–1.50. 1.50–1.70. 1.70 S	C-1165 C-1502 C-1503 C-1504 C-1505 C-1506 C-1507	$100.0 \\ 77.7 \\ 8.7 \\ 3.0 \\ 2.7 \\ 2.1 \\ 5.8 $	$10.8 \\ 4.6 \\ 11.8 \\ 16.5 \\ 22.3 \\ 35.2 \\ 67.9$	2.2 1.4 1.8 2.0 2.0 2.9 12.1	1887 1865 1886 1851 1942 1912 1877	2036 2093 2268 2289 2151 2186 1994	2311 2312 2562 2454 2547 2267 2230
10 to 48 mesh Sized sample ² 1.30 F 1.35–1.40 1.40–1.50 1.40–1.50 1.50–1.70 1.70 S	C-1166 C-1239 C-1240 C-1241 C-1242 C-1243 C-1243	100.0 69.3 7.2 3.8 4.6 3.2 11.9	14.43.510.114.118.130.371.1	2.3 1.1 1.5 1.7 1.7 2.1 10.5	2014 1855 1872 1924 2053 2021 2035	2141 2058 2230* 2224 2445 2192 2107	$2411 \\ 2268 \\ 2587 \\ 2431 \\ 2575 \\ 2448 \\ 2361^3$
Minus 48 mesh Sized sample ² 1.30 F 1.30–1.35 1.35–1.40. 1.40–1.50. 1.50–1.70 1 70 S	C-1167 C-1427 C-1428 C-1429 C-1429 C-1430 C-1431 C-1432	$100.0 \\ 17.9 \\ 13.7 \\ 13.9 \\ 12.2 \\ 29.7 \\ 12.6 $	14.61.73.86.48.610.462.5	$\begin{array}{c} 2 \cdot 2 \\ 0 \cdot 89 \\ 1 \cdot 1 \\ 1 \cdot 1 \\ 0 \cdot 90 \\ 0 \cdot 92 \\ 9 \cdot 3 \end{array}$	2008 1856 2049 1936 1978 1900	2130 2025 2153 2125 2178 2043	2381 2192 2503 2401 2556 2219

¹Dry basis. ²Sub-head sample. ³Single determination.

Ash Constituents	Mine E	Mine I
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ MgO CaO Na ₂ O K ₂ O P ₂ O ₅ Total sulfur as SO ₃ .	Per cent 40.15 .77 11.81 26.20 .88 8.37 .92 1.35 .00 9.09 99.54	Per cent 46.94 .93 20.19 18.82 1.24 4.62 .50 2.12 .00 4.69 100.05
Ash in coal (dry basis) Sulfur in coal (dry basis)	$\begin{array}{c}13.8\\5.3\end{array}$	10.4 1.9

Table 14.—Ash Analyses of Screening Samples $(1\frac{1}{4}^{\prime\prime}$ to 0) from Mines E and I

FIG. 8.—Relationship of ash softening temperature to cumulative specific gravity, coals A, B, and C.

F1G. 9.—Relationship of ash softening temperature to cumulative specific gravity, coals D, E, and F.

FIG. 10.—Relationship of ash softening temperature to cumulative specific gravity, coals G, H, and I.

FIG. 11.—Relationship of ash softening temperature to cumulative specific gravity, coal J.