STATE OF ILLINOIS ADLAI E. STEVENSON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION NOBLE J. PUFFER, Director

DIVISION OF THE STATE GEOLOGICAL SURVEY M. M. LEIGHTON, Chief URBANA

REPORT OF INVESTIGATIONS-NO. 148

SUBSURFACE GEOLOGY AND COAL RESOURCES OF THE PENNSYLVANIAN SYSTEM IN CERTAIN COUNTIES OF THE ILLINOIS BASIN

> INTRODUCTION GILBERT H. CADY

CLAY COUNTY Heinz A. Lowenstam

EDWARDS COUNTY HENRY L. SMITH AND GILBERT H. CADY

> GALLATIN COUNTY M. WILLIAM PULLEN

HAMILTON COUNTY Mary Barnes Rolley

RICHLAND COUNTY Raymond Siever and Gilbert H. Cady

PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS

URBANA, ILLINOIS

1951

STATE OF ILLINOIS ADLAI E. STEVENSON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION NOBLE J. PUFFER, Director

DIVISION OF THE STATE GEOLOGICAL SURVEY M. M. LEIGHTON, Chief URBANA

REPORT OF INVESTIGATIONS-No. 148

SUBSURFACE GEOLOGY AND COAL RESOURCES OF THE PENNSYLVANIAN SYSTEM IN CERTAIN COUNTIES OF THE ILLINOIS BASIN

PRINTED BY AUTHORITY OF THE STATE OF ILLINOIS

URBANA, ILLINOIS

1951 MANUSCRIPT COMPLETED AUGUST 1946

ORGANIZATION

STATE OF ILLINOIS HON. ADLAI E. STEVENSON, Governor

DEPARTMENT OF REGISTRATION AND EDUCATION HON. NOBLE J. PUFFER, Director

BOARD OF NATURAL RESOURCES AND CONSERVATION

HON. NOBLE J. PUFFER, M.A., LITT.D., Chairman
W. H. NEWHOUSE, PH.D., Geology
ROGER ADAMS, PH.D., D.Sc., Chemistry
LOUIS R. HOWSON, C.E., Engineering
A. E. EMERSON, PH.D., Biology
LEWIS H. TIFFANY, PH.D., Forestry
GEORGE D. STODDARD, PH.D., LITT.D., LL.D., L.H.D.
President of the University of Illinois

GEOLOGICAL SURVEY DIVISION

M. M. LEIGHTON, PH.D., Chief

(14152-2M-7-50) 2

SCIENTIFIC AND TECHNICAL STAFF OF THE - STATE GEOLOGICAL SURVEY DIVISION

121 Natural Resources Building, Urbana

M. M. LEIGHTON, Ph.D., Chief

ENID TOWNLEY, M.S., Assistant to the Chief ELIZABETH STEPHENS, B.S., Geological Assistant

VELDA A. MILLARD, Junior Asst. to the Chief HELEN E. MCMORRIS, Secretary to the Chief BERENICE REED. Supervisory Technical Assistant

GEOLOGICAL RESOURCES

ARTHUR BEVAN, PH.D., D.Sc., Principal Geologist

Coal

0al G. H. CADY, PH.D., Senior Geologist and Head ERNEST P. DUBOIS, PH.D., Geologist R. J. HELFINSTINE, M.S., Mechanical Engineer GEORGE M. WILSON, M.S., Geologist JOHN A. HARRISON, M.S., Assistant Geologist JACK A. SIMON, M.S., Assistant Geologist MARY BARNES ROLLEY, M.S., Assistant Geologist MARY BARNES ROLLEY, M.S., Assistant Geologist ADABELL KARSTROM, B.A., Research Assistant KENNETH E. CLEGG, B.S., Technical Assistant

Oil and Gas

A. H. BELL, PH.D., Geologist and Head FREDERICK SQUIRES, A.B., B.S., Petroleum Engineer DAVID H. SWANN, PH.D., Geologist VIGGINIA KLINE, PH.D., Associate Geologist WAYNE F. MEENTS, Assistant Geologist RICHARD J. CASSIN, M.S., Assistant Petroleum Engineer LESTER W. CLUTTER, B.S., Research Assistant

Industrial Minerals

J. E. LAMAR, B.S., Geologist and Head ROBERT M. GROGAN, PH.D., Geologist DONALD L. GRAF, M.A., Associate Geologist JAMES C. BRADBURY, M.A., Assistant Geologist RAYMOND S. SHRODE, B.S., Assistant Geologist

Clay Resources and Clay Mineral Technology RALPH E. GRIM, PH.D., Petrographer and Head WILLIAM A. WHITE, M.S., Associate Geologist HERBERT D. GLASS, M.A., Associate Geologist WILLIAM JOHNS, B.A., Special Research Assistant

Groundwater Geology and Geophysical Exploration NUMAWART GEODOGY AND GEOPHYSICAI EXPlora ARTHUR BEVAN, PH.D., D.SC., Acting Head MERLYN B. BUHLE, M.S., Associate Geologist JOHN F. MANN, JR., PH.D., Associate Geologist JOHN F. MANN, JR., M.S., Assistant Geologist RICHARD F. FISHER, M.S., Assistant Geologist MARGARET J. CASTLE, Assistant Geologist JOHN W. FOSTER, B.A., Assistant Geologist

Engineering Geology and Topographic Mapping GEORGE E. EKBLAW, PH.D., Geologist and Head

Areal Geology and Paleontology

H. B. WILLMAN, PH.D., Geologist and Head J. S. TEMPLETON, PH.D., Geologist

Subsurface Geology

L. B. WORKMAN, M.S., Geologist and Head ELWOOD ATHERTON, PH.D., Associate Geologist DONALD B. SAXBY, M.S., Assistant Geologist ROBERT C. MCDONALD, B.S., Research Assistant W. W. HALLSTEIN, B.S., Research Assistant

Mineral Resource Records

VIVIAN GORDON, Head DOROTHY GORE, B.S., Research Assistant BEVERLY SOLLIDAY, Research Assistant ZORA M. KAMINSKY, B.E., Technical Assistant JANICE J. POHLMAN, B.A., Technical Assistant BERNADETTE M. NETZER, B.A., Technical Assistant WANDA L. SPARR, Technical Assistant

Consultants: Geology, GEORGE W. WHITE, PH.D., University of Illinois Ceramics, RALPH K. HURSH, B.S., University of Illinois Mechanical Engineering, SEICHI KONZO, M.S., University of Illinois

Topographic Mapping in Cooperation with the United States Geological Survey. This report is a contribution of the Coal Division.

GEOCHEMISTRY

FRANK H. REED, PH.D., Chief Chemist GRACE C. JOHNSON, B.S., Research Assistant

JANE TELLER, A.B., Technical Assistant

Coal

G. R. YOHE, PH.D., Chemist and Head DONALD R. HILL, B.S., Research Assistant JOSEPH E. DUNBAR, B.S., Research Assistant

Industrial Minerals J. S. Machin, Ph.D., Chemist and Head Tin Boo Yée, M.S., Assistant Chemist Grace C. Moulton, M.S., Research Assistant

Fluorspar

G. C. FINGER, PH.D., Chemist and Head ROBERT E. OESTERLING, B.A., Research Assistant JAMES L. FINNERTY, B.S., Special Research Assistant

Chemical Engineering

H. W. JACKMAN, M.S.E., Chemical Engineer and Head P. W. HENLINE, M.S. Chemical Engineer B. J. GREENWOOD, B.S., Mechanical Engineer JAMES C. MCCULOUGH, Research Associate GLENN L. CALCAMUGGIO, B.Engr., Research Assistant

X-ray

W. F. BRADLEY, PH.D., Chemist and Head.

Physics

KENNETH B. THOMSON, PH.D., Physicist R. J. PIERSOL, PH.D., Physicist Emeritus JANICE HELEN HOWARD, B.S., Research Assistant

Analytical Chemistry

Inalytical Chemistry
O. W. REES, PH.D., Chemist and Head
L. D. McVickEF, B.S., Chemist
HOWARD S. CLARK, A.B., Associate Chemist
EMILE D. PIERRON, M.S., Assistant Chemist
PRANCIS A. COOLICAN, B.S., Research Assistant
ALICE M. HELMUTH, B.S., Research Assistant
MARGARET M. CAREY, M.S., Research Assistant
RICHARD F. ORGANIST, B.S., Research Assistant
RICHARD H. ORGANIST, B.S., Research Assistant
RICHARD H. OESTERLING, B.S., Technical Assis
ANN HARRISON, A.B., Technical Assistant Technical Assistant

MINERAL ECONOMICS

W. H. VOSKUIL, PH.D., Mineral Economist W. L. BUSCH, Assistant Mineral Economist ETHEL M. KING, Research Assistant

EDUCATIONAL EXTENSION

GILBERT O. RAASCH, PH.D., Associate Geologist in Charge

MARGARET ANN HAYES, B.S., Research Assistant

LIBRARY

ANNE E. KOVANDA, B.S., B.L.S., Librarian RUBY D. FRISON, Technical Assistant MARJORIE ROEPKE, B.S., Technical Assistant

PUBLICATIONS

JANE O. RUDOLPH, B.A., Associate Technical Editor DOROTHY E. ROSE, B.S., Consulting Technical Editor HAZEL S. MORGENSTERN, B.A., Assistant Editor MEREDITH M. CALKINS, Geologic Draftsman ARDIS D. PYE, Assistart Geologic Draftsman KATHRYN C. IRVING, Technical Assistant WAYNE W. NOFFTZ, Technical Assistant LESLIE D. VAUGHAN, Associate Photographer BEULAH M. UNFER, Technical Assistant

May 15, 1950

CONTENTS

Page

INTRODUCTION

BY GILBERT H. CADY

Key beds	
Structure maps	11
Construction of structure maps	11
Structure of the Pennsylvanian beds	12
Workable coal beds	
Use of electric logs in determining coal-bed thickness	14
Acknowledgments	14

SUBSURFACE GEOLOGY OF CLAY COUNTY

By Heinz A. Lowenstam

Introduction	27
Key Beds	27
Shoal Creek limestone	27
West Franklin limestone	28
"No. 7" coal bed	29
No. 6 coal bed	30
Harrisburg (No. 5) coal bed	
Other prominent Pennsylvanian beds	32
McLeansboro group	32
Carbondale group	38
Tradewater-Caseyville group	39
Structure of No. 6 coal bed	
Divergence of Pennsylvanian key beds	41
Interval between the Shoal Creek limestone and No. 6 coal bed	42
Interval between the West Franklin limestone and No. 6 coal bed	42
Interval between No. 5 and No. 6 coal beds	43
Stratigraphic relations of the basal Pennsylvanian	44
Exploration for oil and gas	46
Coal resources	46
McLeansboro group	47
"No. 7" coal bed	47
Carbondale group	47
No. 6 coal bed	47
No. 5 coal bed	49
Tradewater-Caseyville groups	50
Protection of coal beds	50

SUBSURFACE GEOLOGY OF EDWARDS COUNTY

By Henry L. Smith and Gilbert H. Cady

Pennsylvanian key beds West Franklin limestone	51
West Franklin limestone	55
"No. 7" coal bed	57
Herrin limestone and Herrin (No. 6) coal bed	57
Harrisburg (No. 5) coal bed	58
Other prominent Pennsylvanian beds	58
McLeansboro group	58
Beds above the West Franklin limestone	58
Beds below the West Franklin limestone	59
Carbondale group	·60
No. 5A coal bed	60
Beds below No. 5 coal bed	60
Tradewater and Carbondale groups	61
Structure of the Pennsylvanian beds	61
Herrin (No. 6) coal bed	61
Albion fault zone	62

arallelism of Pennsylvanian beds. West Franklin limestone.	62 62
Position of the Palzo sandstone	52
Vorkable coal beds	
oal resources	63 63
No. 6 coal bed. Harrisburg (No. 5) coal bed. Coal beds below No. 5.	66 67
Coal beds below No. 5	67
uality of the coal	67
il and gas resources	68
onclusion	68

Page

SUBSURFACE GEOLOGY OF GALLATIN COUNTY By M. William Pullen

	(0
Introduction	69
Purpose of the report	59
Acknowledgments	
Pennsylvanian key beds	70
McLeansboro group	70
Shoal Creek limestone	-70
West Franklin limestone	71
"No. 7" coal bed	74
Herrin limestone	/4
Carbondale group	74
Herrin (No. 6) coal bed.	/4
Harrisburg (No. 5) coal bed	
Other beds of stratigraphic interest	75
McLeansboro group	75
Limestones between Shoal Creek and West Franklin	75
Bankston Fork and Jamestown limestones and Anvil Rock sandstone	
Carbondale group	77
Briar Hill (No. 5A) coal bed and the Absher sandstone	-77
"No. 4" coal bed	77
Tradewater and Caseyville groups	80
Structure	81
Structure of the No. 6 coal bed	84
General parallelism of Pennsylvanian beds and of Pennsylvanian and Chester beds	84
Faults	85
Igneous intrusions	90
Coal resources	02
Coal resources.	04
Protection of coal beds	94
Oil and gas resources	94
Oil or gas producing formations in Gallatin County	95

SUBSURFACE GEOLOGY OF HAMILTON COUNTY

BY MARY BARNES ROLLEY

Tabulated data	. 96
Key beds Shoal Creek limestone	. 96
Shoal Creek limestone	, 96
Cutler coal bed	. 99
Bankston Fork limestone	. 99
	Q'/
Herrin (No. 6) coal bed	. 97
Harrisburg (No. 5) coal bed.	
"No. 4" coal bed	. 99
Interpreting electric logs	100
Beds in the lower part of the Pennsylvanian	
Other Pennsylvanian strata	. 100
McLeansboro group	100
Carbondale group	103
Tradewater and Caseyville groups	108

	FAGE
Structure of Herrin (No. 6) coal bed	
Coal beds of mineable thickness	
Protection of coal beds	
Oil and gas resources	

SUBSURFACE GEOLOGY OF RICHLAND COUNTY By Raymond Siever and Gilbert H. Cady

Introduction	111
Key beds	
Shoal Creek limestone	, 111
West Franklin limestone	
"No. 7" coal bed	
Herrin limestone and No. 6 coal bed	
No. 5A coal bed.	
Harrisburg (No. 5) coal bed	116
Other beds	
Coal bed 80 to 100 feet below No. 5 ("No. 4")	118
Coal bed 150 feet below No. 5 ("No. 2")	
Coal beds 235 and 270 feet below No. 5 ("Dekoven" and "Davis" beds)	
Limestone 300 to 320 feet below No. 5 coal bed	
Limestone 350 feet below No. 5 coal bed	120
Structure of the formations	120
Exploration for oil and gas	121
Coal resources	123

APPENDIX

Tabulated data on key beds for Clay County	
Tabulated data on key beds for Edwards County	. 45
Tabulated data on key beds for Gallatin County	. 65
Tabulated data on key beds for Hamilton County	. 84
Tabulated data on key beds for Richland County	.117

ILLUSTRATIONS

FIG	URE P.	AGE
1.	Index map of areas studied in this report	9
2.	Distribution of outcrops of Omega limestone in Clay County in relation to drill hole No. 377	33
3.	Distribution of West Franklin limestone in Clay County	42
4.	Interval between No. 5 and No. 6 coal beds in Clay County	43
5.	Interval between No. 6 coal bed and base of Pennsylvanian, and pre-Pennsylvanian areal geology in Clay County	44
6.	Caseyville conglomerate from a drill core in Clay County	46
7.	Variations in estimated thickness of No. 6 coal bed in Clay County	49
8.	Graphic logs of control drill holes in the northern part of Edwards County	52
9.	Graphic logs of control drill holes in the central part of Edwards County	
10.	Graphic logs of control drill holes in the southern part of Edwards County	54
11.	Albion fault zone in Edwards County	64
12.	Graphic logs of two drill holes on either side of the northern part of Ridgeway fault, showing dis- placement in southern White County	72
13.	Graphic logs of three drill holes adjacent to the Inman East fault in Gallatin County	76
14.		
15.	Interval between No. 6 and No. 5 coal beds in Gallatin County	86
16.	Interval between No. 6 coal bed and the base of the Lower Kincaid limestone in Gallatin County	88
17.	Comparison of diamond-drill log and drilling time, cuttings study, electric, and driller's logs in Gallatin County.	·
18.	Graphic log of Exchange Oil Co., Opal Evans No. 1 in Gallatin County	93
19.	Comparison of electric log and diamond drill hole log in Hamilton County	
20.	One-foot drilling time log of Magnolia-Matheny No. 1 drill hole in Hamilton County	99

FIG	JRE PAGE
21.	East-west cross section of Hamilton County
22.	North-south cross section of Hamilton County
23.	Interval between No. 6 and No. 5 coal beds in Hamilton County
24.	Interval between No. 6 coal bed and the "Little Menard" limestone in Hamilton County106
25.	Richland County index map
26.	Partial section of the Pennsylvanian system showing certain key beds of the lower part of the Mc- Leansboro, of the Carbondale, and of the upper part of the Tradewater groups in Richland County
27.	Partial succession and corresponding electric logs for seven drill holes above West Franklin lime- stone to below No. 6 coal bed in Richland County
28.	The succession from 30 feet above to about 20 feet below the top of the lower bench of West Franklin limestone in eight control drill holes in Richland County
29.	The succession and electric logs of eight drill holes in Richland County from above West Franklin limestone to below "No. 4" coal bed
30.	Stratigraphic and electric logs of rotary-drill hole Sohio-Heap No. 1 (Richland County No. 9) from 150 to 2000 feet

TABLES

Тав	Pagi	Ξ
1.	Analyses of coal cuttings from rotary-drill holes in Illinois basin and in Crawford and Lawrence counties	5
2.	Control rotary-drill holes in Clay, Edwards, Gallatin, Hamilton, and Richland counties 12	7
3.	Data on workable coal beds present in rotary-drill holes studied by the Coal Division, June 1, 1943, to October 1, 1945)
4.	Data on possibly workable coal beds in Clay County	3
5.	Depths of possibly workable coal beds in Clay County)
6.	Intervals between top of No. 6 coal bed and top of various other key beds in Edwards County 56	5
7.	Data on possibly workable coal beds in Edwards County	5
8.	Intervals between top of No. 6 coal bed and top of certain Pennsylvanian limestones and coal beds and the base of the lower Kinkaid and top of Vienna limestone of the Chester series in Gallatin	
	County	3
9.	Oil and gas producing formations in Gallatin County	5
10.	Data on intervals between No. 6 and No. 5 coal beds and between No. 6 and "Little Menard" limestone of Chester series	7
11.	Data on possibly workable coal beds in Richland County)

PLATES

PLATE

(In pocket)

1. North-south cross section of rotary-drill holes in Clay County

2. East-west cross section of rotary-drill holes in Clay County

3. Structure map of the top of Herrin (No. 6) coal bed in Clay County

4. Structure map of the top of Herrin (No. 6) coal bed in Edwards County

Structure map of West Franklin limestone in Edwards County 5.

Typical Pennsylvanian succession in Gallatin County 6.

7. Ridgeway fault, Gallatin County

Structure map of the top of Herrin (No. 6) coal bed in Gallatin County 8.

Structure map of the top of Herrin (No. 6) coal bed in Hamilton County 9.

10. Structure map of the top of Herrin (No. 6) coal bed in Richland County

11. Structure map of the West Franklin limestone in Richland County

May 31, 1951

Dr. Leighton:

In footnote 2, line 4 McLeansboro should be changed to Carbondale.

ACB

SUBSURFACE GEOLOGY AND COAL RESOURCES OF THE PENNSYLVANIAN SYSTEM IN CERTAIN COUNTIES OF THE ILLINOIS BASIN

INTRODUCTION

BY

GILBERT H. CADY

[9]

T HE PRESENT VOLUME contains the second of a series of reports that deal with the subsurface geology and coal resources of the Pennsylvanian strata in the various counties (fig. 1) in the Illinois basin. The first report was issued in 1944.¹ The general history and purposes of the investigation were set forth by M. M. Leighton in the introduction to the first series of papers. The methods used in the studies were also described in a separate paper in that report.

FIG. 1.—Index map of areas studied in this report.

¹ Progress reports on subsurface studies of the Pennsylvanian system in the Illinois basin: Illinois Geol. Survey Rept. Inv. 93, 87 pp., 1944. It seems desirable to present here certain general explanations in regard to items that otherwise would have to be explained in each paper. These have to do particularly with the matter of key beds, the selection and use of beds as a basis for structure maps, the methods of construction of such maps for this series of reports, and acknowledgments to those who assisted in the work of the project.

KEY BEDS

In these investigations a key bed signifies one whose identity is reasonably definite over large areas in the Illinois basin. It is a bed by reference to which the position of other less widespread beds can be conveniently defined.

The stratum which satisfies this definition of a key bed most satisfactorily in the Illinois coal field as a whole, as well as in the Illinois basin, is the Herrin (No. 6) coal bed, the top of which is used in this report as the boundary between the Mc-Leansboro and Carbondale groups, the coal bed being in the Carbondale group.² This coal bed is not universally present in the Illinois coal field but it is present in a large portion of the field, particularly in the southern part.

Where No. 6 coal bed is not present there is generally no other bed of comparable usefulness for reference, and its absence makes

² Because the cyclothem division as used by the Illinois State Geological Survey has not been considered appropriate to the plan of description in this report, the top of the McLeansborg group has been placed at the top of the Herrin (No. 6) coal in the present publication, rather than at the top of the cyclothem containing the Herrin (No. 6) coal, as accepted by the Survey.

ļ

difficult the stratigraphic correlation and classification in such areas. The No. 6 coal bed is very nearly continuous in the Illinois basin, particularly in the southern half of the basin which includes the counties represented in the accompanying series of re-This coal bed is used in all the ports. accompanying reports as the predominant kev bed.

The Herrin limestone, the caprock of the No. 6 coal bed, is commonly so closely associated with the coal bed that together they constitute what might be regarded as dual key beds. This limestone is known as the Brereton limestone in western Illinois³ and as the Providence limestone in western Kentucky,4 from which area the use has spread more or less into southwestern Indiana and southeastern Illinois.

In some parts of southern Illinois, particularly in western Franklin and Williamson counties, the No. 6 coal bed and the caprock are separated by as much as 60 feet of shale or siltstone, and this separation of the beds may make the identification of both somewhat uncertain.

Other stratigraphic units that are used as key beds in the Illinois basin, or in large portions of the basin, lack the widespread distribution of the dual key beds, Herrin (No. 6) coal bed and limestone. Four such units are the Millersville limestone, the Shoal Creek limestone, the West Franklin limestone, and Harrisburg (No. 5) coal bed. Another unit of somewhat less certain position and identity is the "No. 7" coal bed.

The Millersville limestone⁵ is one of the thickest (30 to 50 feet) Pennsylvanian limestones in the northern part of the Illinois basin. South of Effingham County it becomes thinner or disappears entirely, thus losing its value as a key bed. Its position is approximately 600 feet above No. 6 coal bed.

The limestone designated as Shoal Creek is believed to be the same as the Shoal Creek limestone that crops out along the stream of that name in Clinton County.⁶ It ranges from 450 feet above No. 6 coal bed in the southern part of the basin to about 280 feet in Clay County, and lies 150 to 200 feet below the Millersville limestone. There are fairly wide variations in these intervals, probably in the order of 50 feet. The Shoal Creek limestone underlies the west side of the Illinois basin fairly continuously, but toward the east side of Clay, Wayne, and Hamilton counties it becomes thin or disappears. In the areas where the Shoal Creek limestone is only locally present it does not provide a satisfactory key bed. Where characteristically developed in the Illinois basin, it is usually 5 to 10 feet thick. It generally overlies a black shale. with a thin coal bed commonly present 20 to 40 feet below.

The West Franklin limestone lies about 250 feet above the No. 6 coal bed and about 200 feet below the position of the Shoal Creek limestone. However, the two limestones do not appear to be coextensive, the western margin of the recognizable West Franklin limestone being not far from the eastern margin of the recognizable Shoal Creek limestone. Consequently both limestones are not usually available as key beds in the same counties, or at least not in the same parts of an individual county. The West Franklin limestone thickens to the east, and in southern Indiana it commonly consists of three beds with intervening shale of variegated coloring.7

In drill holes in the Illinois basin one, two, or three benches may be penetrated or reported in the logs, and when only one or two benches are reported it is impossible to know with certainty which ones are represented. The middle bench is usually the thickest where three benches are present, so a single bench or the thickest of two benches is generally regarded as representing the middle bench. Red shale is thought to be more characteristic of the interval between the two lower benches than of the interval between the two upper benches or

n 69.

 ³ Savage, T. E., Significant breaks and overlaps in the Pennsylvanian rocks of Illinois: Amer. Jour. Science, 5th ser., vol. 14, pp. 307-316, 1927.
 ⁴ Glenn, L. C., Geology and coals of Webster County: Kentucky Geol. Survey, ser. 6, vol. 5, p. 98, 1922.
 ⁵ Tavlor, Earle F., and Cady, Gilbert H., Structure of the Millersville limestone in the north part of the Illinois basin: Illinois Geol. Survey Rept. Inv. 93, p. 22, 1944.

⁶ Udden, Jon A., Notes on the Shoal Creek limestone: Illinois Geol. Survey Bull. 8, pp. 117-126, 1907. ⁷ See "Subsurface geology of Gallatin County." for de-scription at two localities in southern Indiana, this report,

of the strata below the lower bench, but this criterion should be used cautiously.

The "No. 7" coal bed is a thin stratum lying within 75 feet—usually less—of the No. 6 coal bed. It usually lies at the base of a monotonous succession of shales and siltstones that give, in the electric log, a shale pattern of prevailing low relief, usually rising to less than 30 ohm-meters in the "normal" curve. At the top of this succession is the West Franklin limestone mem-Between "No. 7" and No. 6 coal ber. beds are several relatively thin beds of limestone, shale, "slate," and sandstone which produce a markedly irregular electric log pattern, as described in the earlier report of this series.8 The position of the "No. 7" coal bed, when electric logs are correlated with carefully prepared stratigraphic logs, is usually found to mark the position of change from a condition of prevailing low resistivity to one of variable resistivity (10 to 50 ohm-meters, AM =18") extending down to the position of Herrin limestone and No. 6 coal bed. The actual position of the bed is usually marked by a definite fluctuation in the pattern, but there is no uniformity, the normal curve indicating a resistivity in some logs less, in others greater, than the average shale value.

The coal bed is designated "No. 7" because its correlation with the Danville (No. 7) bed, although it seems probable, has not been definitely established. The Danville (No. 7) bed is thought to be the same as the bed known as Indiana VII. It is hoped that studies of coal spores as index fossils, now under way, will result in definitely establishing the relationship of these beds, as well as the relative position of the Cutler⁹ coal bed of southern Illinois which also may represent the Danville (No. 7) bed.

Harrisburg (No. 5) coal bed seems to have a wide but not a continuous distribution in the Illinois basin. In places it seems to be thicker than No. 6 coal bed.10 It ⁸ Taylor, Earle F., Pullen, M. William, Jr., Sims, Paul K., and Payne, J. Norman, Methods of subsurface study of the Pennsylvanian strata encountered in rotary-drill holes: Illi-nois Geol. Survey Rept. Inv. 93, pp. 16-19, 1944.
 ⁹ Bell, Alfred H., Ball, Clayton, and McCabe, Louis, Geology of the Pinckneyville and Jamestown areas, Perry County, Illinois: Illinois Geol. Survey Illinois Petroleum 19, p. 3, 1931.
 ¹⁰ Sims, Paul K., Payne, J. Norman, and Cady, Gilbert H., Pennsylvanian key beds in Wayne County, etc.: Illinois Geol. Survey Rept. Inv. 93, pp. 28-29, 1944.

commonly lies about 100 feet below No. 6 coal bed but it may be as near as 25 feet below and as far as 125 feet below the upper bed. In the electric logs its position is usually marked by a fairly strong pattern in the normal curve (AM = 18'') consisting of a single symmetrical peak (see footnote 8) extending to about the 50 ohm-meter line.

Between No. 5 and No. 6 coal beds, the thin Briar Hill (No. 5A) coal bed usually occupies a position midway to two-thirds of the distance below No. 6 bed. This is not regarded as a typical key bed, however.

At the present time no beds other than those described above can be regarded as suitable widespread key beds in the Pennsylvanian system. Outcrops of beds below No. 5 coal bed in southern Illinois are relatively poor down to the top of the Tradewater formation. Below that position, although there are numerous outcrops, the structural relationships are difficult to decipher so as to produce a clear picture of the stratigraphic succession, a difficulty which is enhanced by the lenticular nature of most of the beds of the Tradewater and Casevville groups. There has been relatively little core drilling through this part of the Pennsylvanian succession. Further studies of the cuttings obtained from drill holes logged in the course of this investigation will be necessary before it will be suitable to use any of these beds as key horizons.

STRUCTURE MAPS

Construction of structure maps.-In this series of reports the structure maps are constructed with close adherence to the engineering limitations provided by irregularly distributed datum points represented by drill holes. Because the key beds do not crop out, the delineation of structure is based upon information supplied by drilling, and it is assumed, except where faults are known to exist, that the slope of the datum bed is uniform between any two adjacent drill holes. The contours are spaced on the basis of this assumption.

The data upon which the reports are based consist of occasional limestone or coal

bed outcrops, mine shaft records, and drill hole records of four kinds: diamond-drill hole records, in most instances compiled by the driller; a few churn-drill hole records; the electric logs of rotary-drill holes; and records compiled by Survey field parties of control drill holes. A Survey field party recorded one- or two-foot drilling time logs for each of the control drill holes and collected cuttings at two- or five-foot or rarely ten-foot intervals. These cuttings were studied in the laboratory and the resulting descriptions, combined with the drilling time records and occasionally with the electric logs, comprise the record of the control drill holes. These records and the records of diamond-drill holes particularly provided a basis for interpreting electric logs of other rotary-drill holes in the immediate vicinity.

The resulting maps, in spite of considerable smoothing, have a somewhat mechanical aspect, but the author believes that this method gives closer adherence to actuality than attempting to forecast the actual form of irregular slopes. In some places a local structural pattern may be known which justifies some modification of the contour lines from a pattern representing strict adherence to engineering relationships; but in general the contours have been determined in accordance with the conditions indicated.

Data are available in the tabulations accompanying the reports to enable geologists and engineers to construct maps with more liberal interpretations.

Structure of the Pennsylvanian beds.— The primary purpose of these subsurface studies of the Pennsylvanian system is the determination of the position of the workable coal beds underlying the Illinois basin so that they can be properly protected when drill holes and oil wells are abandoned. Because No. 6 coal bed is important in its own right and is also important as a key bed in determining the position of other coal beds, the position of this bed throughout the basin is of prime importance. Its position in each county is therefore indicated by a structure contour map showing the altitude of the top of the coal bed with respect to sea level. In several counties the No. 6 coal bed is continuously below sea level, so that contour designations are all negative. When this is so, the depth to the coal bed is obtained by adding the surface altitude to the figure representing the negative altitude of the coal bed. If the contour designation is positive, the altitude of the coal bed is subtracted from the surface altitude to obtain the depth of the bed.

Structure contour maps, such as those prepared for No. 6 coal bed and other key beds, are also useful in the search for geological structural conditions favorable for the accumulation of oil and gas. In general, however, maps made primarily for this purpose tend to be more interpretive of structural conditions than maps in which there is close adherence to engineering limitations.

Structure maps are also useful in various other ways, such as assisting in the interpretation and identification of isolated exposures of surface beds known to lie at definite distances above key beds, and in the planning of coal exploration and development projects.

To improve the understanding of the Pennsylvanian system, structure maps have also been prepared for some counties using the Shoal Creek or West Franklin limestones as datum beds. These maps, when compared with the structure map of No. 6 coal bed, may reveal departures from parallelism. Although it seems probable that the map of No. 6 coal bed delineates the structure of the Pennsylvanian beds more accurately than the maps of higher beds, allowance must be made for the possibility that some of the irregularities in this coal bed may be of depositional origin. Certainly not all the differences between the structure of two beds separated by 200 to 400 or more feet of strata can be assigned to structural deformation.

WORKABLE COAL BEDS

Since October 18, 1945, workable coal beds that require protection when oil wells are abandoned have been defined as "beds or seams 30 inches or more in thickness, less than 1000 feet below the surface."11 Earlier editions of the Rules and Regulations defined the lower limits of workability of a coal bed as a bed 30 inches thick at a depth of 1000 feet, but extended the limits of workability of beds 36 inches or more thick indefinitely. Plugging has presumably been carried on in line with these definitions. Actually coal beds 3 feet or more in thickness have not been found in the Illinois basin below depths of 1523 feet.

In the first report of this series,12 an estimate of the coal resources in the Illinois basin was presented based upon observations on 140 rotary-drill holes, the so-called "control" wells or drill holes partially logged by the Survey (table 2). The total reserve in the 17 counties represented was estimated at about 30 billion tons. Only the No. 5 and No. 6 coal beds were considered in the estimate.

Because a considerable part of the Illinois coal field has a surface altitude between 500 and 600 feet, the structure contour line representing 500 feet below sea level for the No. 6 coal bed shown on any of the maps becomes a critical line in determining the areas in which it is necessary to provide protection for coal beds of workable thick-In general such workable beds lie ness below No. 6 coal bed but rarely more than 400 feet lower. Occasional coal beds 30 inches or more in thickness are found at various positions above No. 6 coal bed. In much of the Illinois basin the No. 6 coal bed lies more than 500 feet below sea level.

Since the first estimate was made, 78 additional drill holes¹⁸ have been logged by the Survey (table 3). Fifty of these drill holes were located in one or another of the following counties of the Illinois basin: Clay, Coles, Cumberland, Edwards, Effingham, Hamilton, Jasper, Jefferson, Richland, Wayne, and White. Four holes were located in Lawrence County. Many encountered one or more coal beds between 3, 9, and possibly 12 feet thick at depths below 1000 feet. Coal 4 feet thick was encountered in 34 drill holes; 5 feet thick in 20; ¹¹ Rules and Regulations, Illinois Department of Mines-and Minerals, adopted and approved Oct. 18, 1945. Rule 15, p. 15. Mimeographed. ¹² Rept. Inv. 93, p. 44, 1944 (as of May 30, 1943). ¹³ As of Sept. 30, 1945.

6 feet thick in 5; 7 feet thick in two; and 8 to 10 feet in five drill holes. In the first 140 wells drilled (the basis of the estimate of reserves), coal beds 4 feet or more in thickness were encountered at a depth below 1000 feet in 49 wells.

In general, logging of the first 140 drill holes was not continued below No. 5 coal bed, whereas in the last 66 wells logging commonly was continued to the base of the Pennsylvanian system. Hence the earlier data do not include figures on lower beds which subsequent observation discovered. Had observation continued to the base of the Pennsylvanian system, undoubtedly beds lying below 1000 feet would have been reported many more than 49 times. At any rate it is quite apparent that a very large reserve of coal is present in the Pennsvlvanian rocks at depths between about 1000 and 1500 feet.

The assumption that a coal bed becomes unworkable at a depth exceeding 1000 feet, irrespective of its thickness, needs the thoughtful consideration of those interested in conserving the coal resources of the State. Undoubtedly mining men will have a very respectful attitude toward the great difficulties involved in large-scale mining operations 1000 to 1500 feet in depth, particularly so long as considerable supplies of average-grade coal are available at much shallower depths. Yet if evidence should indicate that relatively thick low-ash and low-sulfur coal is available at the greater depths, the relative scarcity of such coal in the State would tend to attract serious attention to the deeply buried reserves. Unfortunately the information available concerning the ash and sulfur content of the deep-lying coal beds is not very satisfactory, because of the difficulty of obtaining samples of such coal beds that are truly representative. In most cases, but not in all, such samples appear to indicate that the coal beds are relatively high in ash and sulfur rather than otherwise (table 1). However, it is possible that the cuttings collected tend to represent the denser portions of the coal because the lighter portions are more apt to escape in the overflow.

In the accompanying analyses (table 1), moisture values are not representative because the samples were subjected to high gravity separation liquids to remove rock impurities and to several stages of washing and drving to remove traces of the drilling mud. In general these coals display a relatively high fixed carbon content which is associated with a fairly high unit coal heat value. These are characteristics that might indicate coal of relatively high rank, particularly when unit coal B.t.u. values exceed 14,700 which is generally higher than the B.t.u. value of the coal mined anywhere in the State except in Saline and Gallatin counties.

Because of the very small amount of information available in regard to the coal beds penetrated in the Illinois basin, the Survey would be glad, so far as our facilities allow, to analyze samples of coal cuttings representing beds of workable thickness, irrespective of depth, penetrated in cabletool or rotary-drill holes in the Illinois basin or in Edgar, Crawford, Clark, or Lawrence counties. The sample should weigh not less than about one-half pound, consisting of coal that will float on liquid having a specific gravity of 1.5.

Use of electric logs in determining coalbed thickness.-After much study of the electric logs of rotary-drill holes of the standard form, including normal and third resistivity curves and potential curves, and of the records of the cores of diamond-drill holes and electric logs of the same holes, it is apparent that the electric logs do not generally provide a satisfactory record of coal-bed thickness or of the thickness of accompanying thin beds of black shale, limestone, and underclay. In the present series of reports, therefore, estimates of coalbed thickness are based solely upon information obtained at the drill holes logged by the Survey field parties. Detailed mapping of variations in thickness of No. 6 and/or No. 5 bed, as was done for Wayne County,¹⁴ is not attempted.

¹⁴ Rept. Inv. 93, pp. 30, 31, 1944.

ACKNOWLEDGMENTS

The task of logging the 66 drill holes located in Clay, Edwards, Gallatin, Hamilton, and Richland counties, since the start of this project early in 1942, has been shared by 24 individuals, all but one of whom were members of the Coal Division of the Survey staff. The field parties consisted of from two to four men, and different observers have assisted in the logging of from one to 30 drill holes. Of the group, only M. William Pullen has been in continuous employment with the Survey during the period. The following persons have assisted in logging the drill holes in these counties, the number of holes observed being indicated in parenthesis (see also table 2): A. F. Agnew (12); A. L. Brokaw (11); M. G. Caplan (1); E. P. DuBois (1); A. L. Eddings (11); R. W. Ellingwood (5); K. Gutschick (1); T. V. N. Karlstrom (7); D. F. Kent (8); R. M. Kosanke (3); H. A. Lowenstam (9); J. N. Payne (5); M. W. Pullen (30); R. R. Revnolds (8); J. M. Schopf (2); R. Siever (8); J. A. Simon (1); P. K. Sims (15); H. L. Smith (22); R. F. Smith (5); R. F. Strete (4); and G. M. Wilson (7). Their assistance in this important part of the project is gratefully acknowledged.

The study of the drill cuttings was carried on to a large extent by one or more of the persons who logged the drill holes, but numerous sets of cuttings were examined and logs compiled by Margaret A. Parker and Mary Barnes Rolley. One set was studied by R. C. Honea, Jr.

In the preparation of base maps of the various counties and in the drafting of maps and charts the authors were assisted by Arnold Eddings, Elizabeth P. Lohmann, Flo Nel Ozelsel, Robert W. Ellingwood, and George E. Ekblaw. Topographic maps were used so far as available in the preparation of base maps, and beyond this, much help was obtained by using aerial photographs made by the Agricultural Adjustment Administration loaned by the Library of the University of Illinois. Grateful acknowledgment is made of the generous assistance supplied by members of the Oil Division, particularly to C. W. Carter and D. H. Swann, in the interpretation of drill data, especially with respect to pre-Pennsylvanian stratigraphy, and in the delineation of fault zones.

All the members of the Survey who were engaged in these studies have a sincere and grateful appreciation of the invariably generous cooperation of the drilling crews, contractors, and representatives of the oil companies at the individual drill holes. Without this assistance the project could not have been carried on.

Tabulation of surface and other data, including determination of stratigraphic intervals and other statistical information, was carried on first by Mrs. H. E. Kramers and later by Margaret A. Parker by the use of the International Business Machines punched-card system.

Lab. No. (See below)	Moisture %	Vol. matter %	Fixed carbon %	Ash %	Sulfur %	B.t.u. as received	B.t.u. dry
C-2698 C-2699 C-2755 C-2756 C-2857	7.1 9.5 5.0 6.1 12.8	35.6 36.9 39.8 39.8 32.0	44.1 45.9 48.4 44.7 38.0	13.2 7.7 6.8 9.4 17.2	2.71 2.69 2.45 2.32 2.43	11,609 12,071 12,803 12,405 10,071	12,498 13,332 13,477 13,211 11,546
C-2858 C-2866 C-2906 C-3710 C-3842	13.2 5:3 2.5 3.6 8.0	31.8 40.4 39.0 35.8 32.2	37.4 ~45.8 47.0 53.3 54.3	17.6 8.5 11.5 7.3 5.5	1.90 3.57 3.74 2.67 0.86	9,956 12,651 12,713 12,496 12,375	11,468 13,363 13,039 12,959 13,458
C-4288 C-4289 C-4290 C-4291 C-4430	5.1 3.8 4.2 3.0 3.1	33.7 33.1 34.9 36.6	52.3 47.3 53.3 51.7	8.9 15.8 7.6 8.7 11.2	3.54 2.43 2.01 2.54 2.72	12,175 11,445 12,816 12,966 12,272	12,829 12,897 13,378 13,367 12,665
C-4431 C-4432 C-4433 C-4434 C-4435	4.8 2.4 2.1 1.7 1.9			7.9 7.9 7.8 8.8 8.4	3.00 2.38 3.18 2.77 3.59	12,529 13,087 13,148 13,241 13,125	13,161 13,409 13,430 13,470 13,379
C-4436 C-4437 C-4438	$ \begin{array}{c} 1.8 \\ 2.1 \\ 1.7 \end{array} $			9.0 12.8 9.7	4.17 3.09 4.07	13,057 12,365 13,014	13,296 12,630 13,239

TABLE 1.—ANALYSES OF COAL CUTTINGS FROM ROTARY DRILL HOLES IN ILLINOIS BASIN AND IN CRAWFORD AND LAWRENCE COUNTIES

Key to Table 1

	Source of coal analyzed	Coal at depth feet
C-2698 C-2699	Hole No. 111. Roy-Lee Miller No. 1, Sec. 11, T. 14 N., R. 14 W., Richland Co Hole No. 111	1,000-1,006 1,013-1,018
C-2755 C-2756	Hole No. 121. Ralph C. Halbert-Proctor No. 1, Sec. 17, T. 3 S., R. 14 W., Edwards Co	855-858 796-798½
C-2857	Hole No. 145. Ohio Oil CoConrad No. 25, Sec. 15, T. 5 N., R. 11 W., Crawford Co	498-508
C-2858 C-2866 C-2906	Hole No. 145. Hole No. 147. Livingston-Holtz No. 1, Sec. 17, T. 2 N., R. 14 W., Richland Co. Hole No. 160. Lloyd-Stevenson No. 1, Sec. 8, T. 9 N., R. 9 E., Cumberland Co.	566-573 1,363-1,372 1,457-1,462
C-3710	Hole No. 34. Carter Oil CoCrawford No. 14, Sec. 11, T. 8 S., R. 10 E., Galla- tin Co	311-316
C-3842 C-4288	Hole No. 189. Engle-Waddle No. 1, Sec. 27, T. 2 S., R. 13 W., Wabash Co Hole No. 204. Pure Oil CoBergbower No. B-1 Sec. 3, T. 6 N., R. 10 E., Jasper Co	704–708 517–521
C-4289 C-4290	Hole No. 204	557-562 992-996
C-4291 C-4430 C-4431	Hole No. 213. Big Four-Smith No. 1, Sec. 18, T. 3 N., R. 12 W., Lawrence Co. Hole No. 213.	1,266–1,272 571–573 598–608
C-4432 C-4433 C-4434		683–688 793–795 867–872
C-4434 C-4435 C-4436		875–872 875–880 886–890
C-4437 C-4438	« « « « « «	1,006-1,010 1,059-1,063

TABLE 2.—CONTROL	DRILL HOLES IN	CLAY, EDWARDS,	GALLATIN,	, HAMILTON,	AND
	Richi	AND COUNTIES			··· ·

		1			KICHLAND COUNTIE.	1	
County No.	Control well No.	Sec.	т.	R.	Company and farm	Crew on well	Cuttings studied by
					Clay County		
25	18	4	2N	5E	Carter Oil Walker No. 1	P. K. Sims A. F. Agnew A. L. Brokaw	A. L. Brokaw
30	. 87	23	5N	5E	National Petr. John Smith No. 1	D. F. Kent R. R. Reynolds A. Eddings	D. F. Kent R. R. Reynolds
59	5	5	5N	7E	Gulf Ref. Storck	R. F. Smith E. F. Taylor P. K. Sims A. L. Brokaw	E. F. Taylor H. L. Smith
60	90	20	5N	7E	Texas Co.	D. F. Kent	D. F. Kent
61	78	26	4N	· 6E	A. L. Hardin Gulf Ref.	R. R. Reynolds D. F. Kent	D. F. Kent
62	45	25	3N	5E	McCollum Lain Oil Co.	R. R. Reynolds P. K. Sims	
63	47	3	3N	7E	Haynes Con. McBride Inc.	A. L. Brokaw A. F. Agnew	P. K. Sims
64	9	1	2N	6E	McNeely A. H. Gibson	D. F. Kent E. F. Taylor	
65	54	10	2N	7E	Valbert Pure	P. K. Sims A. L. Brokaw D. F. Kent	A. L. Brokaw
66	17	3	2N	8E	P. Baylor Pure Mosely	P. K. Sims A. L. Brokaw	A. F. Agnew
119	148	4	4N	8E	Sinclair-Wyoming	A. F. Agnew J. N. Payne	M. A. Parker
120	166	34	4N	7E	Hinterscher McBride Busby, G.	A. Eddings H. L. Smith T. Karlstrom	H. A. Lowenstam
121	179	14	5N	5E	Shell L. Moss	R. Siever M. W. Pullen R. Siever	H. A. Lowenstam
377	191	10	4N	5E	Krohn C. Smith	H. A. Lowenstam M. W. Pullen H. L. Smith	M. E. Barnes
378	205	20	4N	5E	Wm. Krohn King	H. A. Lowenstam M. W. Pullen H. A. Lowenstam	H. A. Lowenstam
402	200	3	5N	7E	Ohio Oil Webster	R. Ellingwood M. W. Pullen G. Wilson	H. A. Lowenstam
403	203	5	2N	6E	Sinclair-Wyoming L. C. Haupt	H. A. Lowenstam M. W. Pullen G. Wilson	M. E. Barnes
495	197	30	3N	6E	J. J. Lynn Deain	H. A. Lowenstam M. W. Pullen H. L. Smith H. A. Lowenstam	H. A. Lowenstam
1	30	6	1N	14W	Edwards County Sinclair-Wyoming Bierhaus No. 1	M. W. Pullen J. A. Simon G. M. Wilson	M. W. Pullen Allen Agnew
2	118	16	1S	10E	Stanolind-Reid No. 1	Allen Agnew M. W. Pullen E. F. Taylor	M. W. Pullen H. L. Smith
3	33	7	1S	11E	Magnolia-Gould	R. R. Reynolds Allen Agnew	A. L. Brokaw
4	123	8	2S	10E	Nelson Dev. Co. Cam Bunting No. 1	D. F. Kent M. W. Pullen R. R. Reynolds H. L. Smith	Allen Agnew H. L. Smith

ILLINOIS BASIN COAL RESOURCES

					TABLE 2.—Continued		
County No.	Control well No.	Sec.	Т.	R.	Company and farm	Crew on well	Cuttings studied by
5	15	19	5S	10E	Sun-McKibben	P. K. Sims	P. K. Sims
6	51	8	3S	10E	No. 1 Sinclair-Wyoming	A. L. Brokaw A. L. Brokaw	A. L. Brokaw A. L. Brokaw
7	121	17 -	3S	14W	Perkins No. 1 Halbert-Proctor No. 1	P. K. Sims M. W. Pullen E. F. Taylor H. L. Smith	H. L. Smith
8	162	20	2S	14W	Kingwood- Cowling No. 1	R. M. Kosanke M. W. Pullen A. L. Smith	M. E. Barnes
9	151	18	1N	10E	Midstates- McKinley No. 1	T.N.V. Karlstrom A. L. Eddings G. M. Wilson	H. L. Smith
10	143	13	38	10E	Ashland-Midstate Coal No. 1	N. Payne M. W. Pullen T.N.V. Karlstrom	H. L. Smith
11	156	10	1N	14W	Magnolia-Matthes No. 1	H. L. Smith J. N. Payne A. L. Eddings T.N.V. Karlstrom	H. L. Smith
34	172	35	2N	10E	Texas Densmore No. 2	M. W. Pullen R. Siever H. L. Smith	H. L. Smith
91	177	28	1S	14W	Superior-L. Lippon No. 4	H. A. Lowenstam R. Siever H. L. Smith	M. E. Barnes
106	171	36	2S	10E	Lewis Ina Dunk No. 1-A	M. W. Pullen M. W. Pullen R. Siever H. L. Smith G. M. Wilson	H. I., Smith M. E. Barnes
					Gallatin County		
119	55	21	7S	8E	Carter Oil Co.	P. K. Sims	P. K. Sims
123	22	24	7S	8E	Vinyard No. 2 Sinclair Wyoming	A. F. Agnew J. N. Payne	J. N. Payne
133	56	22	7S	9E	Cox, Isaac No. 1 Duncan Inc.	J. M. Schopf P. K. Sims	A. F. Agnew
136	58	33	7S	10E	Knight No. 1 Kinkaid	A. F. Agnew A. F. Agnew	A. F. Agnew
169	95	15	8S	9E	Schmidt No. 1 Gulf Ref. Co.	M. W. Pullen	M. W. Pullen
200	34	11	85	10E	Bahl, L. No. 1 Carter Oil Co. Crawford No. 1-A	R. R. Reynolds M. W. Pullen J. M. Schopf	M. W. Pullen
292	155	30	8S	10E	Ryan Oil Co. Tate No. 1	K. Gutschick M. W. Pullen A. Eddings	M. A. Parker
314	146	1	9S	10E	Magnolia Logsdon No. 1	H. L. Smith M. W. Pullen H. L. Smith T. Karlstrom	M. A. Parker R. Siever
341	193	15	<u>9</u> S	9E	Phillips Ford No. 1	R. Siever M. W. Pullen H. L. Smith	
342	195	35	8S	9E	Continental Maloney No. 1	R. Ellingwood M. W. Pullen H. L. Smith	R. C. Honea
361	202	24	9S	9E	Rucker-Boehn Oldhem No. 1	H. A. Lowenstam M. W. Pullen E. P. DuBois	M. W. Pullen

TABLE 2.—Continued

INTRODUCTION

County No.	Control well No.	Sec.	Т.	R.	Company and farm	Crew on well	Cuttings studied by
	1	1			Hamilton County	1	· · · · · ·
42	8	30	3S	5E	Seaboard Kiefer No. 1	E. F. Taylor M. W. Pullen	P. K. Sims
43	96	22	3S	6E	Midcontinent Rubin No. 1	R. F. Smith P. K. Sims	P. K. Sims
44	93	24	38	7E	Cherry Kidd Gardner No. 3	A. Eddings M. W. Pullen R. R. Reynolds	R. R. Reynolds
45	130	1	4S	5E	Texas Co. Rawls No. 1	M. W. Pullen A. Eddings	M. A. Parker
46	137	33	4S	6E	Wiser Oil Co. Echols No. 1	R. M. Kosanke M. W. Pullen G. M. Wilson	M. A. Parker
47	32	20	4S	7E	Texas Co. Minton No. 1	A. Eddings E. F. Taylor D. F. Kent	E. F. Taylor
48	69	11	6S	6E	Texas Co. McDonald No. 6	A. F. Agnew M. G. Caplan	A. F. Agnew
49	52	5	6S	7E	Shell Oil Co.	A. F. Agnew	P. K. Sims
50	71	35	6S	5E	Kern No. 1 Ohio Oil Co. Moore No. 6	D. F. Kent P. K. Sims A. L. Brokaw	P. K. Sims
51	107	34	6 S	6E	Texas Co. Johnson No. 5	R. R. Reynolds R. F. Smith A. Eddings	
52	149	27	6S	6E	Pierson Lee No. 3	R. Kelly M. W. Pullen H. L. Smith T. Karlstrom	M. A. Parker
478	183	26	4S	7E	Ohio Oil Co. York No. 2	R. Siever G. Wilson H. L. Smith R. Ellingwood	M. E. Barnes
479	184	19	5S	5E	Magnolia Pet. Matheney No. 1	R. F. Strete H. A. Lowenstam R. Ellingwood R. F. Strete	M. E. Barnes
498	194	15	5S	7E	Nat. Assoc. PC Rubenacker No. 1	M. W. Pullen H. L. Smith	M. E. Barnes
499	196	33	6S	7E	Indiana Farm Seymour No. 1	R. F. Strete H. L. Smith R. Ellingwood R. F. Strete	M. E. Barnes
					Richland County		
1	40 💊	35	5N	10E	Gulf Refining Co. Ritter No. 1	P. K. Sims A. L. Brokaw	A. L. Brokaw
2	20	27	4N	9E	Pure Oil Co. Murvin No. b-2	P. K. Sims A. L. Brokaw	A. L. Brokaw
3	39	. 22	4N	10E	Texas Company Hasslinger No. 1	A. F. Agnew M. W. Pullen A. F. Agnew	A. F. Agnew
4	111	11	4N	14W	Lee R., Trustee Miller No. 1	P. K. Sims R. R. Reynolds R. F. Smith	R. R. Reynolds
5	135	31	3N	9E .	Pure Oil Co. Myers No. 1	R. Kelly M. W. Pullen R. M. Kosanke	M. A. Parker
6	88	10	3N	9E	Carter Oil Co. Winters No. 2	H. L. Smith D. F. Kent R. F. Smith A. Eddings	D. F. Kent
7	7	32	3N	14W	Seaboard	P. K. Sims	
8	147	17	2N	14W	Kimmel No. 1 Livingston	A. L. Brokaw J. N. Payne	M. A. Parker
9	168	19	3N	11E	Holtz No. 1 Sohio Oil Co. Heap No. 1	A. Eddings H. L. Smith T. Karlstrom R. Siever	R. Siever

TABLE 2.—Concluded

Coal	Surface elevation		Depth	Elevation	Sedimentary succession ^{b, o} based on laboratory study of drill cuttings				
Divi- sion No.	(instru- mental) Datum sea level ft.	Coal No.	to top coal bed ft.	top coal bed Datum sea level ft.	Above coal bed (thickness in ft.) ft. in. Below coal bed (thickness in ft.)				
165	Christian County 165 608 466 142			142	Christian County Gray shale 17; black shale 3 3 0 Gray shale 19				
198	581	Clark Cou	353 anty		Clark County Siltstone 48; black shale 1				
		Clay Cou	ntv		Clay County				
148	469	(₇ , 204)	1056		Gray shale 19; black shale 1				
166	445	,	478	- 33	Limestone and shale 2; black shale 1				
100	110	6	986	541	Gray shale 3; black shale 1; shale and limestone. 5 0 Underclay 4				
179	524	Ŭ	450	74	Gray shale 44; limestone 1; black shale 1 2 6 Underclay 3; sandstone 20				
		"7"	855		Shale 44; black shale 1				
		5	916		Limestone 6: black shale 1 3 0 Underclay 1: gray shale 7				
			1141	617	Sandy shale 6; black shale 1,, 3 0 Underclay 2; sandy shale 14				
191	529	5.	982	453	Limestone 4: black shale 2				
197	513	6	950	437	Limestone 2; black shale 5				
200	521	6	1026	505	Limestone 5-7; black shale 3				
203	518	5	1071	553	Gray shale 3; black shale 2 3 0 Underclay 1; calcareous shale 4				
205	527		1362		Carbonaceous shale 7; sandstone 5; black shale 2. 3 6 Underclay and clay shale 5				
			1448	921	Gray shale 5; black shale 7 3 0 Underclay 5				
	C	linton Co	11111111		Clinton County				
214	432	unton Go	336	96	Gray shale 9; black shale 4				
214	132		362	70	Gray shale 6; pyritic shale 2				
a182	468		372	96	Gray share 0, pyrite share 2				
102	100		429	39					
			509	- 41					
		7.1 							
144	733	Coles Cou	426	307	Coles County				
152	733		426 948	204	Gray shale 4; black shale 1				
152									
	Cr	awford Co		0.6	Crawford County				
145	550	6	454	96	Gray shale 14; black shale 1				
		6 5	498	52	Shale 13; black shale 110 0 Underclay 2; gray shale 2				
176	515	5	566 801	-16 -286	Sandstone 5; shale 5				
1/0	212		001		Gray shale 17; black shale 1 5 0 Shale 4; siltstone 7				

TABLE 3.-DATA ON WORKABLE COAL BEDS PRESENT IN ROTARY-DRILL HOLES STUDIED BY THE COAL DIVISION, JUNE 1, 1943, TO OCTOBER 1, 1945

160	Cum 585	berland	County 725 731 1130 1458	-140 -146 -545 -873	Cumberland CountyGray shale 23; black shale 130Shale 2; black shale 1Gray shale 2; black shale 130Underclay 2; siltstone 4Limestone 4; ? 440Underclay 2; shale 24Shale 10; black shale 140Shale 12; black shale 2
	Eđ	wards C	ounty		Edwards County
143	483	in ar do o	964	481	Limestone 2; black shale 2
	1. Contract (1997)		971	488	Sandstone 3: black slate 1
151	394		1317	923	Siltstone 11; shale 2
156	413	6	800		Limestone 5; black shale 1 4 0 Underclay 2; sandstone 10
		-	916		Shale 4; black shale 230Underclay 2; sandstone 47Siltstone 30; black shale 140Underclay 1; sandstone 6Limestone 4; black shale 330Underclay 3; shale 3Gray shale 11; black shale 540Underclay 3; sandstone 78
1/0	1.17	5	1163	750	Siltstone 30; black shale 1
162	467		927 1021	460 554	Limestone 4; black shale 3
171	518		1021	-534 -511	Limestone 7; black shale 1
1/1	510		1029	-593	Limestone 7; black shale 1
172	460	6	1000	-540	Gray shale 10; limestone 2
1/2	100	6 5	1081	621	Limestone 2; black shale 2
177	398	5	791		Shale 39; black shale 1
			828	-430	Shale 39; black shale 1
			930		Shale 9: black shale 1
			1208		Shale 9; black shale 140Underclay 1; gray shale 21Gray shale 13; black shale 339Underclay 1; gray shale 19
	Effi	ngham (County		Effingham County
150	543	115114111 • 6	1043	500	Limestone 3; black shale 5
153	573	0		able coals	Linestone 5, black shale 5
173	555		1045	-490	Limestone 1; black shale 1
1/0	555		1083		Limestone 3; black shale 1
			1419		Limestone 2; black shale 4
185	564		963		Gray shale 8; black shale 1
			1015	-451	Gray shale 8; black shale 130Underclay 1; shale 5Gray shale 14; black shale 130Underclay 1; shale 4
201	576		1052	476	Gray shale 42 3 0 Underclay 3; shale 7
			1074	-498	Limestone 2; black shale 1 4 6 Underclay 1; shale 6
			1109	533	Sandstone 6; black shale 1
215	603		1041	-438	Limestone 4; black shale 2 4 0 Clay shale 3; sandstone 2
			1069	466	Gray shale 16; black shale 3 5 0 Underclay 3; calcareous shale 23
	,		1272	669	Limestone 2; calcareous shale 12
	\mathbf{F}	ayette C	ounty		Fayette County
154	541		564	- 23	Shale 1; black shale 1
-			820	279	Limestone 2; black shale 2
			884	343	Limestone 2; black shale 1
			899	<u> </u>	Limestone 6; shale 5

^a Drill cuttings studied in field only.

^b Black shale includes black "slate."

° Siltstone is a very fine-grained sandstone.

INTRODUCTION

- 1.454					TABLE 3.—Continued				
Coal	Surface elevation (instru-	Depth top			Sedimentary succession based on laboratory study of drill cuttings				
Divi- sion No.	(Instru- mental) Datum sea level ft.	No.	to top coal bed ft.	coal bed	Above coal bed (thickness in ft.) ft. in. Coal bed ft. Below coal bed (thickness in ft.)				
Franklin County					Franklin County				
178	411	6	680		Limestone 8; black shale 1				
209	438	5 6	756 636 694	345 198 256	Gray shale 7; black shale 40Underclay 3; limestone 1; siltstone 6Limestone 8; black shale 2 (black shale parting)80Underclay 2; sandstone 4Black shale 6; gray shale 2; black shale 240Underclay 2; sandstone 7				
	Gal	llatin Co	unty		Gallatin County				
146	351	6 5	302 430 675 696	49 79 324 345	Limestone 5; gray shale 2; black shale 230Underclay 2; gray shale 3Gray shale 30; black shale 3				
155	346	5	461	-115	Gray shale 27; black shale 1				
ª193	356	dDa	739 263 538	393 93 182	Gray shale 13; black shale 3				
195	370	6 5	372 482	-2 -112	Limestone 1; gray shale 3				
ª202	401		750 165 286	380 236 115	Black shale 6; black slate 2				
	Han	nilton Co	ounty		Hamilton County				
149	385	6 5	643 745		Limestone 5; black shale 2				
183	421	6 5	870 956 1046	485 535 625	Gray shale 26; black shale 1				
184	447	6 5 "4" •DK	870 960 1057 1303	423 513 610 856	Siltstone 4; gray shale 2; black shale 2				
194	488	6	988 1085		Limestone 5; gray shale 3; black shale 3 4 0 Underclay 1; sandstone 12 Silty shale 25: black shale 3 5 0 Underclay 1; gray shale 5				
196	366	6 5	651 764		Sandstone 34; limestone 3; black shale 3				

ILLINOIS BASIN COAL RESOURCES

	Jas	sper Co	unty		Jasper C	County
159	584		554 719 768 1160	30 134 184 576	Gray shale 14; black shale 1	 Underclay 2; shale 5 Underclay 1; shale 14 Underclay 1; gray shale 4; sandstone 4 Underclay 1; sandstone 1; limestone 1
169	567		1253 1524		Limestone 4; black shale 3 3	0 Underclay 1; sandy siltstone 4 6 Underclay 1; gray shale 4; limestone 1
181	528		1168 1279	640 751	Limestone 6; gray shale 1; black shale 2 3	0 Underclay 3; shale 11 0 Underclay 3; siltstone 12
204	502		340 516 556	$162 \\ - 14 \\ - 54$	Siltstone 3; limestone 1	 Underclay 3; siltstone 18 Underclay 4; shale 30 Underclay 2; siltstone 4
1. j. *			938 992 1027 1117	436 490 525 615	Shale 34	 Underclay 1; siltstone 4 Underclay 3; siltstone 4 Underclay 1; shale 23 Underclay 2; shale 5 Underclay 2; shale 5
208	557	6 5	1266 1087 1118 1340 1972	764 530 561 783 1415	Limestone 3; gray shale 7; black shale 3 4 Black shale 2; limestone 5; black shale 1 4 Siltstone 14; black shale 1 3	 Underclay 1; shale 28 Underclay 1; gray shale 17 Underclay 2; shale 6 Underclay 2; gray shale 16 Underclay 1; siltstone 14
210	478	6? 5?	1972 1133 1178 1241 1412	-1413 -655 -700 -763 -934	Limestone 7; black shale 1	 Underclay 1; shi schola 12 Underclay 1; gray shale 12 Underclay 1; gray shale 7 Underclay 1; gray shale 5 Underclay 1; shale 17
<u>∞211</u>	523		$ \begin{array}{r} 1620 \\ 426 \\ 454 \\ 497 \\ 538 \\ 558 \\ 670 \\ \end{array} $	$ \begin{array}{r}1142 \\ 97 \\ 69 \\ 26 \\15 \\35 \\147 \end{array} $	Sandy shale 11; black shale 2 5	0 Underclav 2; sandv shale 25
	Jeff	erson C	ounty		Leffermer	Country
192	531			able coals	Jefferson	•
174 190	517 513	6	960 *648 684	443 135 171	Limestone 7; gray shale 5; black shale 1 5 Sandstone 13; black shale 1 3	0 Underclay 1; siltstone 13 0 Underclay 3; shale 8
199	520	6	1008 725 758	495 205 238		 Underclay 1; shale 28 Underclay 1; limestone 1; underclay 2 Underclay 3; sandstone 6

^a Drill cuttings studied in field only.

d Davis coal.

^e Dekoven coal.

INTRODUCTION

Coal Divi- Coal elevat (instr			Flowation						
Divi- (instr	vation Depth Elevation		vation Depth top Sedimentary succession based on laboratory study of drill cuttings						
sion Datu No. sea le ft.		to top coal bed ft.	coal bed Datum sea level ft.	Above coal bed (thickness in ft.)	Coal ft.	bed in.	Below coal bed (thickness in ft.)		
	Lawrence C	County		Lawı	rence	e Co	ounty		
142 436 186 492		421 433 735 1419	15 3 299 927	Limestone 4; shale 5 (clay partings) Underclay 4; limestone 4 Gray shale 9; black shale 1	3	0	Underclay 4; limestone 4 Underclay 2; shale 8 Underclay 1; gray shale 13		
187 406 213 500		No work 189 599 682 866 874 886	able coals 311 99 182 366 374 386	Shale 24; black shale 1. Limestone 2; limey shale 18. Limestone 3; shale 2. Shale 7; black shale 1. Underclay 1; shale 2. Shale 4; black shale 1.	9 5 5 6	0 0 0 0	Underclay 2; shale 18 Underclay 2; shale 4; sandstone 6 Underclay 2; shale 2 Underclay 1; shale 2 Underclay 1; gray shale 4; black shale 1 Underclay 1; siltstone 12		
	Madison C	ounty		Madison County					
180 534	6	410	124	Limestone 4; black shale 2	3	0	Underclay 1; shale 5		
217 571	5	480 No work	54 able coals	Gray shale 16; black shale 1	4	0	Underclay 1; siltstone 9; sandstone 2		
	Marion Co	ounty	-	Marion County					
141 542		No work	able coals						
М	ontgomery	County		Montg	gome	ery (County		
206 687		No work	able coals						
	Richland C	County		Ri	chla	nd	County		
147 490	"7" 6	938 1000 1368	448 510 878	Gray shale 44; black shale 2 Gray shale 4; limestone 7; black shale 1 Gray shale 21; black shale 5	4 4 4	0 0 0	Underclay 2; gray shale 8 Underclay 2; gray shale 1; siltstone 10 Underclay 3; siltstone 3		
168 493	6	1073 1359		Limestone 4; black shale 3 Gray shale 17; black shale 2 Sandstone 11; black shale 3	$\frac{3}{3}$	0	Underclay 3; linestone 3; sandstone 4 Underclay 2; graÿ shale 5; sandstone 11 Underclay 1; gray shale 4		

 $^{24}_{-}$

	Sai	igamon (County		Sangamo	n C	County		
212	580	5	390	190	Gray shale 14; black shale 1 3	0	Underclay 1; gray shale 6		
	W	abash Co	ounty		Wabash County				
164	4 67	"7" 6 5	782 760 850	261 293 383	Gray shale 24; black shale 1		Underclay 1; shale 3; limestone 3 Underclay 4; shale 10 Underclay 2; gray shale 6		
188	498	"7"	691 1106		Gray shale 22; black shale 1 3 Sandstone and siltstone 13; black shale 1 4	0	Underclay 1; gray shale 12 Siltstone 17		
189	388	"7" 5	546 705 948	-158 -317 -560	Gray shale 16; black shale 1	0 0 0	Gray shale 11 Siltstone 6; sandstone 6 Shale 10		
	Was	shington	County		Washingto	on	County		
175 207	447 455		No work 304	able coals 151	Gray shale 1; black shale 4 3	0	Underclay 4; limestone 6		
	v	Vayne Co	unty		Wayne	Co	unty		
158	449		921 981	472 532	Gray shale 40; black shale 2	0	Underclay 1; gray shale 8 Underclay 1; gray shale 1; sandstone 33		
167 170	380 383		904 1221 1275	524 838 892	Gray shale 12; underclay 1; gray shale 4 4 Siltstone 19; black shale 1 5 Gray shale 12; black shale 1 3	$\begin{array}{c} 0\\ 0\\ 0\end{array}$	Shale and limestone 1; sandstone 10 Underclay 2; siltstone 4; sandstone 8 Underclay 3; siltstone 10		
	Y	White Co	unty		White County				
157	375			able coals					
161	372	6 5	693 770	321 398	Shale 2; limestone 3; black shale 27Shale 23; black shale 5	$\begin{array}{c} 0\\ 0\end{array}$	Sandstone 10; siltstone 5 Underclay 2; limestone 4; sandstone 20		
163	446	6	870 944	424 498	Shale 3; limestone 5; gray shale 2	0	Underclay 4; sandstone 16 Underclay 1; shale 24		
		°DK	1031	585	Limestone 1: limey shale 3; black shale 1 3	0	Shale 6; sandstone 20		
			$1060 \\ 1366$	-614 -920	Sandstone 20 3 Gray shale 2; limestone 2; black shale 1 3	0 0	Gray shale 4; sandstone 2 Sandstone 2; gray shale 20		
216	382		911 1019	529 637	Limestone 6; black shale 1	0	Underclay 1; sandstone 10 Shale 2; sandy shale 8		
218	504	''7'' 6	1238 798 848	856 294 344	Gray shale 33; black shale 1	0 0 0	Underclay 2; siltstone 2; sandstone 20 Underclay 1; gray shale 6; limestone 2 Gray shale 2; sandstone 12		
		^{d}Da	1176	672	Siltstone 10; black shale 1 3	0	Gray shale 2; siltstone 4		

^d Davis coal.

^e Dekoven coal.

SUBSURFACE GEOLOGY OF CLAY COUNTY

BY

HEINZ A. LOWENSTAM

INTRODUCTION

The Clay County investigation is based entirely on information from drill holes. A total of 508 drill records have been examined, most of which consisted of, or were accompanied by, electric logs. A small number of records based on the study of drill cuttings by company geologists and a few driller's logs were also used.

Stratigraphic control was established with the aid of the records of 15 drill holes, designated as control drill holes, for which drilling time was obtained and cuttings were secured and studied by various members of the Coal Division. Of the seven holes logged by the Coal Division since the first progress report¹ was prepared, three provide records for the entire Pennsylvanian sequence at the positions of the holes, but the remaining logs extend through the major coal-bearing strata only as far down as either the Caseyville or the Tradewater groups.

The tabulated data showing location and altitude of datum points, depth and altitude of certain coal beds and limestones, and thicknesses of the coal beds, are given in the appendix.

Acknowledgments

The writer wishes to acknowledge his indebtedness to G. H. Cady, D. H. Swann, C. L. Horberg, and M. W. Pullen for the discussion of stratigraphic and structural problems on the maps prepared.

KEY BEDS

Because of the dominant reliance on electric logs in subsurface studies in the Illinois basin, stratigraphic markers must be thick enough to produce an identifying pattern in the electric logs, as well as essentially continuous beds of uniform and distinctive lithology.

Of the established useful key beds,² the Shoal Creek limestone and "No. 7" coal bed in the McLeansboro group and No. 6 and No. 5 coal beds in the Carbondale group can be considered as reliable stratigraphic markers in Clay County.

The Millersville limestone, which forms a prominent key bed in the upper part of the McLeansboro group in the northern part of the Illinois basin,3 is known to thin rapidly southward and has not been definitely identified in Clay County. A limestone at the approximate position of the Millersville limestone, and possibly this bed, lies about 572 to 656 feet above Coal No. 6 and is well developed in the northwestern part of Clay County (T. 5 N., R. 5 E.). It thins rapidly to the south and east, or becomes argillaceous and sandy, so that it cannot be recognized in electric logs over most of Clay County and consequently cannot be regarded as a key bed.

The West Franklin limestone in the lower part of the McLeansboro group is a persistent stratigraphic marker along the eastern border of the state from Gallatin to Richland County, but it is quite variable in lithology and thickness in Clay County. It can be recognized in electric logs of drill holes only in scattered, widely separated areas of limited extent where the West Franklin has typical thickness and lithology. The West Franklin limestone has been included among the key beds because it is recognizable in electric logs in several oil pool areas.

SHOAL CREEK LIMESTONE

The Shoal Creek limestone forms the uppermost key bed of the Pennsylvanian strata of Clay County. It occurs from 520

2 I dam

¹ Progress report on subsurface studies of the Pennsylvanian system in the Illinois basin: Illinois Geological Survey Rept. Inv. 93, pp. 9-21, 1944.

^a Taylor, F. F., and Cady, G. H., Structure of the Millersville limestone in the northern part of the Illinois havin: Illinois Geol. Survey Rept. Inv. No. 93, pp. 22-26, 1944.

to 730 feet below the surface but is generally encountered in wells at depths between 550 and 650 feet. The interval between the Shoal Creek limestone and No. 6 coal bed ranges from 283 to 455 feet. The Shoal Creek limestone is continuous except in the southeastern part of the county where it is cut out in small areas by a sandstone which, in the immediate area, commonly overlies the limestone.

In drill cuttings the Shoal Creek limestone appears white to buff, finely crystalline, and dense. In several drill holes, the basal part of the limestone is gravish brown to light brown and in one hole was found to be slightly glauconitic. Fossils, distributed sparingly through the cuttings, commonly consist of calcareous foraminifera, skeletal elements of crinoids and occasionally of fenestelloid bryozoa. The thickness of the limestone ranges from 5 to 8 feet. It is always underlain by 1 to 4 feet of black sheety shale, which in turn rests on underclay or clay shale that is gray to greenish gray in color, slip-fractured, and occasionally slightly pyritic. A thin coal, as much as one foot thick, lies between the underclay and black shale in several wells.

The Shoal Creek limestone is readily recognizable in electric logs by a narrow high peak in the normal resistivity curve and a high negative self-potential. A re-entrant in the normal resistivity curve is commonly shown in the position of the black shale and underlying underclay which represents an additional feature in the recognition of the Shoal Creek pattern. At some drill holes in the cut-out areas the electric logs indicate that a locally developed sandstone, noted above, rests directly on the black shale.

West Franklin Limestone

The West Franklin limestone occurs generally from 180 to 230 feet below the Shoal Creek limestone. The interval between the West Franklin and No. 6 coal bed ranges from 103 to 233 feet. The West Franklin limestone is a less reliable stratigraphic marker than the Shoal Creek limestone because its identification is possible only in electric logs of drill holes in scattered, widely separated areas.

Drill cuttings from areas where the West Franklin limestone cannot be identified in electric logs reveal the presence, at its appropriate position, of a thin limestone or of a marine shale which may contain abundant limestone nodules. The lithologic variability at the West Franklin horizon in Clay County is well illustrated in the two cross-sections (pls. 1 and 2). Despite the limited areal development of the typical West Franklin sequence, the horizon is continuous over most of the county. The lithologic variations represent marginal facies changes along the western border of the main area in which the limestone is characteristically developed.

In the areas of characteristic West Franklin development, the electric logs show the presence of one, rarely of two, well-developed limestone benches. In several drill holes logged by the Coal Division in these areas, the sequence consists of a single upper bench, 6 to 13 feet thick, which is separated by shale from a lower bench only one foot thick. Only the position of the upper bench is distinguishable in the electric logs.

The local presence of a double rather than a single upper bench is indicated by drilling time and by cuttings from wells in the Iola oil pool. A slight drop in the drilling time within the formation, combined with the occurrence of some black shale in hole No. 30 and greenish argillaceous limestone in hole No. 121, suggests that the West Franklin limestone may consist in places of as many as three benches. In drill cuttings the lithology of the limestone is similar throughout and cannot be used to identify the individual benches.

In the drill cuttings the limestones are commonly buff to white, finely crystalline, dense, rarely light brown or gray and more coarsely crystalline, or greenish gray and argillaceous. Fossils, distributed sparingly, consist of calcareous foraminifera, crinoidal skeleton remains, brachiopod fragments, and gastropods.

The interbedded shales are variable in lithology and range from 2 to 10 feet in

thickness. The shales are commonly variegated green, red, and orange; they are commonly calcareous and resemble in physical appearance typical underclays. In the cuttings from one well, limestone nodules were found in the shale, and both the shale and the limestone nodules contain marine fossils. In one of the control drill holes (No. 121) in the Iola oil pool, the interbedded shale is dark gray to black, noncalcareous and nonfossiliferous.

The lithologic sequence underneath the limestones is also variable. It consists either of marine variegated shales, which are dominantly red and contain occasional limestone nodules, or of gray noncalcareous shales. In drill hole No. 25 the variegated shale underlying a single limestone bench was found to be 40 feet thick. A thin coal bed capped by black sheety shale occurs sporadically about 6 feet below the limestone where the variegated shales are absent.

The West Franklin limestone is commonly overlain by a prominent sandstone of variable thickness (pls. 1 and 2). In a drill hole in the Bible Grove oil pool (No. 402) where the sandstone is thin, a coal streak capped by a marine fossiliferous shale and a limestone stringer occur 30 feet above the West Franklin limestone. In the Krohn-Smith No. 1 well (No. 377, sec. 10, T. 4 N., R. 5 E.), one foot of black shale and coal underlain by a streak of underclay were encountered 11 feet above the West Franklin horizon. These are the only records in Clay County of a coal bed that may represent the Ditney bed.

Outside the area of prominent limestone development, the West Franklin is represented by strata varying from a single thin limestone bed to calcareous shales. In holes located marginally to the prominently developed limestones, a single one-foot bench of dark gray to grayish brown argillaceous limestone is commonly present. In places this limestone is capped by variegated shales up to 35 feet thick. With increasing distance from the areas of recognizable West Franklin, the limestone was found to be represented more and more commonly by light green and gray, red and purple calcareous shales with thin interbedded limestone stringers or limestone nodules. The limestones are buff to light gray, finely crystalline, dense, having the usual lithology of the West Franklin limestone. In some drill holes the shales and limestone nodules are fairly fossiliferous, containing calcareous foraminifera, crinoidal remains, bryozoa and ostracods. The shale zones range from 5 to 25 feet in thickness.

In its extreme marginal aspect, the West Franklin limestone is thought to consist either of a localized calcareous shale zone (as encountered in some drill holes) or a marine calcareous caprock of a thin coal bed which in other holes occurs at the stratigraphic position of the West Franklin. This interpretation has been tentatively adopted in the north-south cross-section through the western part of the county (pl. 1), but needs further corroboration. In order to work out the trends of lateral facies changes, it will be necessary to carry out a systematic study of all available sample sets from wells in the areas where the West Franklin cannot be identified in the electric logs.

Where well-developed, the limestone benches are identified in electric logs by a high peak in the normal resistivity curve and a moderately high negative self-potential. For the West Franklin, the self-potential negative peak is commonly slightly less than that of the Shoal Creek limestone. An unusually high negative self-potential is shown, however, in most of the electric logs of drill holes in T. 5 N., R. 7 E., and T. 5 N., R. 8 E. Had the drill cuttings not been studied the limestone benches in these townships might have been incorrectly identified as calcareous sandstones (pl. 2, Nos. 165, 402, 139).

"No. 7" Coal Bed

"No. 7" coal bed forms the lowest key bed in the McLeansboro group and is a persistent stratigraphic marker throughout the county. The bed lies from 796 to 1096 feet below the surface. The interval between "No. 7" and No. 6 coal beds ranges from 20 to 50 feet, being least along the northwestern border of the county and widening progressively to the south (pls. 1 and 2). Drilling-time logs and sample studies indicate that the coal bed and overlying black sheety shale combined are from 1 to 6 feet thick. The drilling time as a rule shows no appreciable change as a basis for estimating the shale and coal-bed ratio. In only one hole (No. 108) did the drilling time provide a satisfactory basis for separating the two strata, to show a coal-bed thickness of 2 feet.

The beds between the West Franklin limestone and "No. 7" coal bed range from 80 to 180 feet in thickness; they consist predominantly of shale and subordinately of interbedded siltstones and sandstones. Coal beds are usually absent. In a single well logged by the Coal Division (No. 495) a thin plant-bearing shale with coal partings and an underclay were noted 46 feet above "No. 7" coal bed.

Absence of a caprock limestone is a usual characteristic of the succession above "No. 7" coal bed in this county.

In electric logs the position of "No. 7" coal bed is commonly indicated by a small but abrupt increase in resistivity as shown in the normal resistivity curve as compared with the overlying low-resistivity shales. Because of its relative thinness, the "No. 7" coal bed is always indicated by a negative deflection of the third resistivity curve. A negative self-potential peak is common. For many holes in which the coal and black shale are less than 18 inches thick, the electric logs show a negative peak in the normal resistivity curve. This bed is tentatively correlated with the Danville (No. 7) coal bed.

NO. 6 COAL BED

Herrin (No. 6) coal bed forms the youngest key bed of the Carbondale group. It lies from 816 to 1143 feet below the surface in Clay County. Because of its relative ease of identification and commercial importance, No. 6 coal bed has been used as a principal stratigraphic marker in most of the previous stratigraphic and structural studies of the Pennsylvanian deposits in the Illinois basin. It also forms the datum plane for reference to other key beds in the overlying and underlying Pennsylvanian strata.

No. 6 coal bed is widespread in Clay County except in T. 5 N., R. 5 E., where it is almost wholly absent. The two control drill holes in this township encountered in one well a thin streak of black shale less than one foot thick, and in the other a streak of coal probably 6 inches thick. Electric logs indicate the sporadic development of black shale and coal from less than 18 inches up to 4 feet thick in this area. The position of the horizon throughout the township can be determined, however, from the position of the persistent Herrin limestone, the base of this limestone being used as the datum plane in the structure map of No. 6 coal bed (pl. 3) in the township.

Because No. 6 coal bed forms the principal datum plane for reference to other key beds, the evidence on which its identification is based is briefly summarized. Control was established by matching the logs secured and compiled by the Coal Division in southern Clay County with those of northern Wayne County, where the horizon had been definitely identified⁴ by subsurface tracing from the southern Illinois mining districts. Furthermore, the examination⁵ of the microspore assemblages found in coal cuttings from two drill holes (Nos. 377 and 30) definitely identified Nos. "7", 5A, and 5 coal beds. The spore assemblage from a thin coal bed thought to be No. 6 in sec. 10, T. 4 N., R. 5 E. (No. 377), although not quite characteristic, was nevertheless thought best referable to No. 6 coal. The stratigraphic position of this coal bed with reference to "No. 7" above and Nos. 5A and 5 coal beds below is in agreement with the interpretation adopted. This correlation substantiates the interpretation that No. 6 coal bed is cut out in most of T. 5 N., R. 5 E., and is thinly developed in a large part of the adjacent township to the south (T. 4 N., R. 5 E.) (fig. 7).

In all of the control drill holes situated outside the cut-out area, the coal is overlain by black shale. In the few holes in which the drilling time permitted separation of

⁴ Sim⁻. Paul K., et al. Rept. Inv. 93. ⁵ By R. M. Kosanke.

the two strata, the thickness of the coal bed ranged from 1 foot to $41/_{2}$ feet. In others, the combined thickness of coal and roof shale ranges from 2 to 8 feet.

In electric logs the coal bed thickness was estimated in the following way: If the caprock limestone was distinguishable by a separate peak (pls. 1 and 2) in the normal resistivity and self-potential curves, the total thickness indicated by the single peak immediately below was divided equally between the roof shale and the coal bed. If the pattern consisted of a single peak across the positions of both the caprock and the coal bed in normal and "third" resistivity curves and also in the self-potential curve, the thickness indicated by the peak was equally divided between the limestone and the coal bed. This procedure seemed generally justifiable, as it was found in the control drill holes that an undifferentiated electric pattern normally marked either the absence of the caprock or its presence as only a thin layer not more than one foot thick. The thicknesses obtained from electric logs by this method are roughly similar to those determined in the nearest control drill holes.

The Herrin limestone, which forms the caprock of the coal, is widely distributed but discontinuous. It ranges in thickness from 1 to 5 feet. As shown in drill cuttings the lithology is quite variable. The limestone is brown, brownish gray to dark gray, rarely buff or black, slightly granular, comargillaceous, carbonaceous, monly and slightly pyritic. Glauconite is rarely present. Fossils, occasionally pyritized, occur abundantly in the cuttings and consist of fusulines, brachiopods including productids, and crinoidal skeleton elements.

The roof shale of the coal bed is commonly dark gray to black, pyritic and sparingly fossiliferous at the top, and becomes black and sheety immediately above the coal.

Underclay is always present beneath the coal bed and is from 2 to 5 feet thick. The underclavs are medium to light gray, slipfractured, slightly pyritic, and are commonly calcareous near the base. Carbonaceous plant fragments of the stigmaria type are occasionally present. The underclays commonly grade downward into greenish-gray clay, shale, or gray calcareous siltstones.

An underclay limestone is rarely developed at the base of the underclay; where present it consists of one to 2 feet of light grav dense nonfossiliferous limestone.

The patterns by which coal No. 6 is determined in electric logs are the same as those described in the Wayne County report.6

Black shale and a thin coal bed up to 2 feet thick rest locally on the Herrin limestone. In one control well (No. 402) the coal is capped by 2 feet of brown finely crystalline fossiliferous limestone which carries fusulines and is underlain by a thin streak of underclay. This sporadic coal lies at the position of the Jamestown coal of southwestern Illinois.7

HARRISBURG (No. 5) COAL BED

Harrisburg (No. 5) coal bed is widespread in Clay County. Its identification is definite in practically all electric logs so that it can be considered as the most reliable key horizon of the Pennsylvanian strata in the area studied, being preferred even to No. 6 coal bed in this respect. The No. 5 coal bed lies from 855 to 1184 feet below the surface: it is from 34 to 74 feet below No. 6 bed, and is commonly encountered between 38 and 65 feet below No. 6.

A black roof shale was penetrated in all control wells. The drilling-time logs show that the combined thickness of the coal bed and roof shale ranges from 2 to 7 feet. It was not possible to differentiate the coal thickness except in two control wells where it is at least 2 or 3 feet thick (table 4).

The caprock of No. 5 coal bed, the St. David limestone, is only locally developed. Where present it is from 2 to 8 feet thick. In drill cuttings the limestone is dark brown, rarely dark gray, granular, slightly argillaceous, pyritic, and glauconitic. In the five control wells studied by the writer the St. David limestone was found to be glauconitic, which makes it appear that in Clay County this lithologic feature may aid

⁶ Sims, Paul K. et al, op. cit., p. 29. ⁷ Bell, A. H., Ball, C., and McCabe, L., Geology of the Pinckneyville and Jamestown areas, Perry County, Illinois: Illinois Geol. Survey, Ill. Pet. 19, p. 3, 1931.

to distinguish the caprock of No. 5 coal bed from the Herrin limestone, which was found to be slightly glauconitic in only one of the wells. Fossils, fairly abundant in the cuttings, consist of calcareous foraminifera, including fusulines, crinoidal remains, brachiopods, and ostracods.

The roof shale is black, sheety, and pyritic. The upper part of the roof shale is locally calcareous, and occasionally pyritic, or glauconitic, and commonly carries fusulines.

The coal bed is underlain by 1 to 4 feet of underclay, which is light gray to greenish gray, commonly calcareous, partly pyritic, and contains siderite in the form of individual spherules or spherulitic aggregates. An underclay limestone is occasionally developed either in the form of nodules or as a solid bed. The limestone is buff to white, dense, and reaches a thickness of 2 feet. Ostracods were observed in some of the limestone cuttings.

The electric log pattern of No. 5 coal bed is characterized by a fairly high peak in the normal resistivity curve, a reverse peak in the third resistivity curve, and a fairly high negative self-potential. The presence of the caprock is commonly indicated by a more pronounced peak in the normal-resistivity curve which is separated either by a reverse peak or by only a slight negative indentation from the coal bed peak (pls. 1 and 2).

OTHER PROMINENT BEDS

In the control drill holes, particularly those which penetrated all Pennsylvanian deposits, a number of coal beds or coal-bed markers and some limestones were encountered in addition to the prominent key beds. As a rule they are thin, ranging from 6 inches to 2 feet thick, and rarely as thick as the prominent stratigraphic markers. Most of these thinly developed beds occur either above the Shoal Creek limestone in the Mc-Leansboro group or below "No. 2" coal bed in the Tradewater and probably uppermost Caseyville groups.

In order to determine their areal persistence and identification in electric logs, two cross-sections were prepared for those parts of the county where either the entire or the greater part of Pennsylvanian sequence had been logged and samples had been studied. The drill holes represented in the northsouth cross-section (pl. 1) are located in the western tiers of townships, T. 5 N., R. 5 E., to T. 2 N., R. 6 E., and those in the east-west cross-section (pl. 2) are in the northern tiers of townships, T. 5 N., R. 5 E., to T. 5 N., R. 7 E. The control drill hole Shell-Moss No. 5 in sec. 14, T. 5 N., R. 5 E. (No. 121) is common to both diagrams.

Five closely spaced control drill holes, extending with one exception through the entire local McLeansboro succession, permit the tracing from north to south (pl. 1) of coal beds above the Millersville (?) The correlations in the eastlimestone. west cross-section (pl. 2) are based on the logs of two control drill holes (Nos. 121, 402), of which only one included the upper beds of the local McLeansboro succession (No. 402). For this reason no attempt has been made to correlate beds higher than the Millersville (?) limestone in this crosssection. Although the correlations shown in the two cross-sections are only tentative, they indicate the possibilities of a better stratigraphic analysis using the sort of information made available as a result of these investigations.

The following data on the stratigraphic position, lithologic character, thicknesses, and distribution of the beds discussed are in general obtained from the records upon which the cross-sections are based.

McLeansbord Group

1.) The Omega limestone, found in scattered exposures in northwestern Clay County, has previously been used as a structure datum.⁸ It has been penetrated in a single control drill hole in sec. 10, T. 4 N., R. 5 E. (No. 377), where logging was started at a depth of 70 feet below the surface. According to the driller, a 5-foot limestone was encountered at a depth of

⁸ Weller, J. M., and Bell, A. H., The geology and oil and gas possibilities of parts of Marion and Clay counties: Illinois Geol. Survey Rept. Inv. 40, pp. 29-32, 1937.

CLAY COUNTY

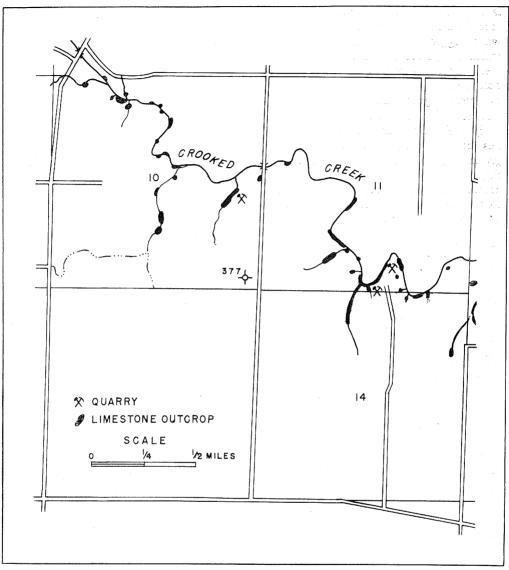


FIG. 2.—Distribution of outcrops of Omega limestone in secs. 10, 11, 14, T. 4 N., R. 5 E., Clay County, in relation to position of drill hole No. 377. (From Illinois Geol. Survey Rept. Inv. 65.)

60 feet. The character of the cuttings from the limestone and its position in the drill hole point to identity with the Omega limestone, which is exposed in numerous outcrops along Crooked Creek and its tributaries with a radius of 1/3 to 1/2 mile⁰ (fig. 2). The Omega limestone in this drill hole lies 552 feet above the Shoal Creek limestone and 875 feet above No. 6 coal bed. 2.) The highest recognizable group of strata in the McLeansboro group consists of a thin coal bed, an underclay, and a prominent underclay limestone, which occur persistently in all but the most northern of the drill holes in the north-south cross-section (pl. 1) at a position from 448 to 472 feet above the Shoal Creek limestone. However, this group of strata, if present, cannot be identified in the east-west cross-section.

The coal bed ranges from a few inches to 2 feet in thickness and is commonly over-

⁹ Grogan, R. M., and Lamar, J. E., Agricultural limestone resources of Cumberland, Efingham, Clay, Richland, and Jasper counties: Illinois Geol. Survey Rept. Inv. 65, pp. 26-32, fig. 6, 1940.

lain by black sheety roof shale less than a foot thick in three out of the four control The underclay limestone, wells logged. which ranges from 3 to 7 feet thick, immediately underlies the coal bed except at hole (No. 377) where 4 feet of light gray to greenish gray calcareous underclay intervenes. The limestone is light gray to buff, finely crystalline to sublithographic. less commonly light brown, or mottled greenish gray from clay inclusions, and slightly granular. Ostracods, which according to C. L. Cooper are freshwater forms, are sparingly distributed through the cuttings. In one control well (No. 378) the coal bed is capped by a marine limestone that is 2 feet thick, buff to light brown, mottled greenish gray, dense, argillaceous, and contains marine invertebrate fossils.

3.) A thin coal bed, 75 to 96 feet below the prominent underclay limestone described in paragraph 2, is present in the control drill holes of the north-south cross-section (pl. 1). The coal bed is less than a foot thick and, like the bed above, is capped by black sheety shale up to 1 foot thick. In one of the control wells (No. 403) the coal bed appears to be absent but black roof shale is present. An underclay is sporadically developed and is light gray to greenish gray, calcareous, pyritic, and slightly silty.

In the Kenner oil pool (pl. 1, Nos. 495, 398), correlation from well to well is uncertain because of the local presence in this general zone of three coal beds lying about 10 feet apart. The upper bed is represented by 1 foot of bony coal and black shale, the lower one by 2 feet of coal with a thin light gray silty clay shale underneath, and the intermediate bed has the appearance of the single bed usually present in this zone. The close spacing, limited areal extent, and the absence of evidence of intervening marine deposits suggest local splitting of a single bed.

4.) Also in the same north-south section (pl. 1) a coal bed was encountered in drill holes from 56 to 78 feet below the bed described in paragraph 3. This bed ranges from 1 to 2 feet in thickness and is also commonly overlain by 1 foot of black sheety

roof shale. A marine impure caprock limestone and an underclay were noted in one drill hole (No. 378). The caprock consisted of $3\frac{1}{2}$ feet of dark gray to black calcareous pyritic and glauconitic shale in which densely crowded fossil aggregates form limestone lenses. The fossils include crinoidal skeleton elements and brachiopods. The underclay is gray, soft, and smooth, and apparently less than 2 feet thick.

A coal bed 2 to $2\frac{1}{2}$ feet thick with black roof shale was found from 41 to 44 feet above the last described coal horizon in drill holes Nos. 377, 378, T. 4 N., R. 5 E., but not elsewhere. In one of the holes (No. 378) the coal bed is from 18 inches to 2 feet thick and is underlain by light to dark gray slip-fractured underclay which contains carbonaceous plant rootlets.

In the three southernmost wells (Nos. 495, 398, 403) of the north-south crosssection (pl. 1), a Cordaites-shale 1 foot thick, with coaly laminae and coal streaks, which lies from 14 to 19 feet below the main coal horizon described in this section, possibly represents a coal bed.

5.) The next lower horizon that can usually be recognized is represented by beds lying below the coal bed described in paragraph 4. The larger interval is believed to be due to the local presence of a thick relatively non-compactable sandstone in the intervening strata. In four logs (Nos. 377, 378, 495, 403) of the north-south crosssection (pl. 1), 6 inches to 1 foot of coal is present, the bed being capped in two wells by a black shale from 6 inches to 2 feet in thickness. In one of the control wells (No. 495) the sandstone overlying the coal bed is calcareous, conglomeratic in the basal five feet, and contains marine fossils, as is indicated by the presence of crinoidal columnals and articulate brachiopods. The pebbles of the conglomerate consist of buff dense fossiliferous limestone, green clay, and siderite. In another drill hole (No. 378) the coal bed is underlain by a limestone two feet thick, which is buff to gray, earthy, and contains ostracods of the fresh-water type. In the southernmost well (No. 403) a buff finely crystalline fossiliferous limestone 3 feet thick is believed to represent this general stratigraphic position.

6.) The highest stratigraphic marker which was generally penetrated in the control drill holes of both cross-sections is a thin limestone bed which is correlated with some doubt as Millersville.10 In the drill holes of the north-south cross-section (pl. 1), this limestone is encountered between 16 and 33 feet below the coal horizon described in the preceding paragraph. In the control drill hole No. 377 in sec. 10, T. 4 N., R. 5 E., the Millersville (?) limestone occurs 300 feet below the Omega limestone. In general the interval between the Millersville (?) limestone and the Shoal Creek limestone ranges between 189 and 253 feet. The average interval in the north-south cross-section (pl. 1) is 250 feet; in the east-west section (pl. 2) the interval decreases progressively although irregularly eastward from 250 to 189 feet.

The limestone is 2 to 6 feet thick in the northwest part of the county, and it produces a moderately prominent peak in the normal-resistivity curve in electric logs. It cannot be traced eastward in electric logs beyond the center of T. 5 N., R. 6 E., and in the next tier of townships south to beyond the northern half of T. 4 N., R. 5 E. Eastward the limestone becomes progressively thinner, and its position in the electric logs is probably obscured by overlying or underlying sandstones. Studies of cuttings from the closely spaced control wells of the north-south cross-section reveal a gradual southward thinning of the bed.

In the two control wells in T. 4 N., R. 5 E. (Nos. 378 and 377) the Millersville (?) limestone is represented by a bed 2 feet thick in one and 6 feet thick in the other, and is overlain by 18 and 10 feet, respectively, of marine fossiliferous shale with sideritic and calcareous concretions. This variation in thickness appears to represent a southward thinning of the limestone as a result of a lateral facies change, the greater part of the limestone bench being replaced by shale. The lateral transition of prominently developed, but areally limited, limestones (such as the Millersville (9) and West Franklin) into shale is a common phenomenon among Pennsylvanian limestones. A typical example of such a lateral facies change can be seen in outcrops of the LaSalle limestone and has been described in detail by G. H. Cady.¹¹ In the wells to the south and east of the shaly transition zone the Millersville (?) limestone is represented by a limestone bed 2 to 3 feet thick.

In drill cuttings the limestone is commonly gray to buff, occasionally light brown, and finely crystalline. Where the limestone is thin, it was found to be ferruginous, sandy or slightly argillaceous, and pyritic. Fossils are common and consist of calcareous foraminifera, corals, crinoids, and ostracods. The overlying shale is light to dark gray, calcareous, micaceous, and has commonly the consistency of a clay shale. Fossils, abundant in the shale, include crinoids, fenestelloid bryozoa, minute gastropods, and ostracods.

A coal bed 1 foot thick was found beneath the limestone in one of the control wells (No. 378).

7.) A coal bed of variable thickness, lying 34 to 53 feet below the Millersville (?) limestone, appears in both cross-sec-The interval to the limestone is tions. quite irregular in the northern part of the county (pl. 2), ranging from 16 to 45 feet, but widens progressively to the south from 34 to 53 feet on the west side of the county (pl. 1). The coal bed is always capped by black shale. The combined thicknesses of the coal and black shale range from less than 1 foot to 30 inches. Underclay, locally present beneath the coal bed, consists of 2 to 3 feet of light gray micaceous clay which is locally calcareous and contains sideritic spherules. In one of the control wells (No. 377) a marine fossiliferous limestone 1 foot thick immediately underlies the underclay. The limestone cuttings are light gray to buff, finely crystalline, and glauconitic. A caprock 1 foot thick was encountered in one well (No. 378). The limestone is dark

¹⁰ Taylor, E. F., and Cady, G. H., Structure of the Millersville limestone in the north part of the Illinois basin: Illinois Geol. Survey Rept. Inv. 93, p. 22, 1944.

¹¹ Cady, G. H., Geology and mineral resources of the Hennepin and LaSalle quadrangles: Illinois Geol. Survey Bull. 37, p. 67, 1919.

gray, very argillaceous, and contains crinoidal skeleton elements and bryozoa in abundance. These beds display no consistent pattern on electric logs.

8.) In the Ohio-Webster No. 3 drill hole (sec. 3, T. 5 N., R. 7 E., No. 402) a caprock limestone, marine shale, black shale, coal bed, and underclay were found in the order named beginning 23 feet below the coal bed described in paragraph 7. These beds can be identified in all electric logs represented in the east-west cross-section for they produce (at the appropriate position) a pronounced peak opposed by a small re-entrant in the normal resistivity curve (pl. 2).

The caprock consists of 3 feet of limestone which in the upper part is buff to brown, finely crystalline, and highly fossiliferous. The fossils consist of encrusting calcareous algae and crinoidal skeleton elements which are crowded together in coquina-like fashion. The basal part of the limestone is gray to greenish gray, argillaceous, and includes bryozoa in addition to algae and crinoids. The limestone is underlain by 3 feet of gray, calcareous, and very fossiliferous shale that contains trilobite fragments and crinoidal remains. This is followed below by 3 feet of dark gray to black sheety roof shale with pyritic trails and ganoid scales, which is underlain by 2 to 3 feet of bony and then clean coal. The coal bed is underlain by 2 feet of medium to dark gray calcareous micaceous and pyritic clay shale that contains medium to dark gray pyritic limestone nodules. In the southernmost well of the north-south cross-section (pl. 1), in which this zone was identified (No. 377) a total of less than 18 inches of black shale and coal was logged. The black shale and coal bed can be traced in the northsouth cross-section southward to the center of T. 4 N., R. 5 E. (pl. 1, Nos. 121, 377). It may be represented in the Kenner oil pool wells (pl. 1, Nos. 495, 398) by a shale 2 feet thick with coaly plant remains found 38 feet below the coal horizon described in paragraph 7.

9.) A coal bed with overlying black shale is widespread throughout the areas covered by the two cross-sections (pls. 1 and 2), lying generally between 60 to 80 feet below the bed described in paragraph 8, and 130-140 feet below the Millersville (?) limestone. In the east-west cross-section the interval decreases to the east. In the northsouth cross-section the interval to the next coal bed above (Paragraph 8) widens to the south in the area underlain by the overlying coal zone, as far as the coal zone extends. The black shale and coal bed together range in thickness from 1 to 3 feet. In one well (No. 495), however, the combined thickness of the coal and roof shale amounts to 4 feet, of which 2 feet appear to be coal, judged on the basis of the drilling time. A thin caprock limestone 1 foot thick is locally present, being encountered in three of the six control wells. The limestone is buff, brown or gray, finely crystalline, and locally argillaceous. Fossils, noted in the cuttings from all three drill holes, consist of calcareous foraminifera, corals, brachiopods, and ostracods. The coal bed is commonly underlain by an underclay or clay shale which is from 2 to 10 feet thick, gray to greenish gray, locally calcareous, and occasionally contains limestone nodules and siderite spherules.

A limestone 1 to 6 feet thick is found in three of the drill holes (Nos. 377, 495, 403) of the north-south cross-section (pl. 1) from 10 to 16 feet below the coal. The limestone is buff, light gray to greenish gray, rarely orange, finely granular in some cuttings and coarsely crystalline in others, and occasionally argillaceous. The lithologic character of the cuttings studied by the writer from one of the wells is that of underclay limestones, an identification substantiated by the absence of fossils.

10.) A thin coal bed occurs from 36 to 66 feet below the coal bed described above (paragraph 9). In the east-west crosssection (pl. 2), the interval widens progressively to the west from 36 to 52 feet, and in the north-south cross-section (pl. 1), it increases quite irregularly to the south from 52 to 66 feet. This coal bed is better identified as the first one above the Shoal Creek limestone, from which it is separated by an interval ranging from 43 to 65 feet. In four of the six control drill holes, the coal and black roof shale have a combined thickness of 1 foot. Of the two remaining drill holes, 1 foot of coal and 1 foot of black shale were logged in one (No. 403), and in the other (No. 402) the combined thickness of the coal and black shale amounted to 3 feet; the thickness of the coal bed alone could not be determined.

Underclay ranging from 1 to 10 feet thick commonly underlies the coal bed. The underclay is light gray, greenish gray and green, micaceous, and although rarely calcareous locally contains limestone nodules. In one drill hole (No. 377) the underclay is separated from the coal by 10 feet of gray shale that is very micaceous and slightly carbonaceous. In the electric logs of the east-west cross-section (pl. 2) a narrow unusually high peak in the self-potential curve commonly marks the position of the coal bed. The identification of this coal bed in the three southernmost drill holes of the northsouth cross-section (pl. 1) is somewhat uncertain because of the presence in these holes of two coal beds about 14 feet apart, each 1 foot thick and each with an associated black shale, in what is believed to be the general correlated zone. The correlation indicated (pl. 1) is the one that seems most probable. This occurrence and the presence of a black shale and coal bed 1 foot thick underlain by a foot of underclay 18 feet above the correlated horizon in one of the control drill holes to the north (pl. 1, No. 377) indicate that there are actually two beds, one of which is discontinuous.

11.) The first distinctive strata below the Shoal Creek limestone consist of a thin black shale and an underlying thin coal bed which are present in most of the control drill holes. These beds, lying between the Shoal Creek and the West Franklin limestones, can be recognized in all drill holes in both cross-sections (pls. 1 and 2). The interval between the Shoal Creek and the black shale ranges from 33 to 82 feet. The interval widens with much irregularity to the east from 33 to 73 feet (pl. 2) but remains essentially uniform between 35 and 40 feet from north to south (pl. 1). The

cuttings from five of the six control holes consisted of black sheety shale that drilling time indicated is 1 to 2 feet thick. In all but one well (No. 121) a coal bed, believed to be less than a foot in thickness, was penetrated. In this hole, coal partings through two feet of shale mark the stratigraphic position of this coal bed. A gray to greenish-gray slip-fractured underclay, 2 feet thick, commonly underlies the coal bed. In one drill hole (No. 402) the underclay was found to be calcareous and 8 feet thick. In the same well, a caprock limestone 1 foot thick overlies the black shale. The limestone is brown to brownish gray, finely crystalline, argillaceous, and fossiliferous.

12.) The next traceable bed consists of a black shale zone rarely as much as 2 feet thick which lies from 19 to 40 feet below the black shale described in paragraph 11. This shale zone, although less widespread than some of those described, can be recognized in logs in the east-west cross-section (pl. 2) as far east as the east line of T. 5 N., R. 6 E. (No. 133), and in logs in the north-south cross-section (pl. 1) as far south as the north half of T. 4 N., R 5 E. It then becomes discontinuous, as is shown by its local appearance in two additional control wells (Nos. 495, 403) in T. 3 N., R. 6 E., and T. 2 N., R. 6 E. A coal bed 1 foot thick is found at the position in one of the control wells (No. 121).

Along the west border of the county south of T. 5 N. a black shale, locally with a thin coal bed 6 inches in maximum thickness, lies between 20 and 28 feet below the black shale just described. This lower shale and coal are more continuous than the upper black shale in this part of the county. The two range from 6 inches to 2 feet in thickness and lie 57-64 feet below the black shale described in paragraph 11. Coal was found at this position in control wells Nos. 378 and 495. A light gray and greenish underclay or clay shale with sideritic granules and aggregates is commonly developed (Nos. 377, 378 and 495). Beneath these beds and continuing to or nearly to the West Franklin limestone is generally a massive widespread sandstone.

13.) "Bankston Fork" limestone. A limestone averaging 2 feet in thickness is commonly encountered between "No. 7" coal and the Herrin limestone; where the Tamestown coal bed is developed, it lies between the Jamestown and "No. 7" coal beds. The limestone zone is discontinuous but occurs in widely scattered drill holes throughout the area studied. This limestone is thought to be equivalent to the Bankston Fork, since "No. 7" coal bed has been tentatively correlated with the Cutler coal bed of southwestern Illinois. The interval between the "Bankston Fork" limestone and "No. 7" coal bed ranges from 3 to 14 feet. The limestone lies from 8 to 28 feet above coal No. 6. This interval widens locally, owing to the presence of a lenticular sandstone, thought to represent the Anvil Rock sandstone of southern Illinois.

In well cuttings the limestone is buff, less commonly light gray to brown, finely crystalline or slightly granular, and contains calcareous foraminifera including fusulines, brachiopods, and ostracods.

CARBONDALE GROUP

1.) No. 5A coal bed is commonly encountered between coal No. 6 and coal No. 5. The combined thickness of the coal and black roof shale ranges between 1 and 2 feet. A thin light to greenish-gray underclay is always present below the coal. In the control drill hole No. 377 (sec. 10, T. 4 W., R. 5 E.) a split of the No. 5A coal bed is possibly represented by two thin beds separated by 5 feet of light gray shale (pl. The upper bed consists of undif-1). ferentiated coal and black shale roof, 1 foot thick, which rests on underclay 2 feet thick. The lower bed consists of a coal bed, 1 foot thick, accompanied by overlying black shale 1 foot thick and underclay 3 feet thick. The underclay rests immediately on top of the St. David limestone. This is the only drill hole where two beds have been found at this position. The relative position of No. 5A coal bed varies considerably, ranging from 2 to 20 feet above No. 5. Where the coal bed is close to the top of the St. David limestone, the sequence from No. 5A

through No. 5 coal bed closely resembles the succession from the Jamestown through No. 6 coal bed. In T. 2 N., R. 6 E., the interval between No. 5A and No. 5 coal beds reaches 42 feet, part of which is represented by a lenticular sandstone 25 feet thick. In the Krohn-King No. 1 well (sec. 20, T. 4 N., R. 5 E., No. 378) the No. 5A coal bed is capped by dark gray calcareous shale containing glauconite pseudomorphs of foraminifera, crinoid columnals, and ostracods.

2.) Sixty to 85 feet below No. 5 coal bed a thin coal bed, "No. 4," was encountered in all six control wells of the two cross-sections (pls. 1, 2). The widespread extent of this coal bed in Clay County is further indicated by its presence in the eight additional control drill holes which have been logged to sufficient depth. In general the interval between No. 5 and "No. 4" coal beds ranges from 60 to 90 feet. Black shale, 6 inches to 2 feet thick, is found in all control wells; the shale is underlain by a coal bed ranging from 6 to 18 inches thick in 12 of the 15 drill holes logged. In drill hole No. 261 (sec. 3, T. 3 N., R. 7 E.), drilling time indicated the presence of $21/_2$ feet of coal. One to 2 feet of white to grav underclay, occasionally sideritic, calcareous, and slightly pyritic, is commonly present. In control drill hole No. 402, the underclay is 8 feet thick and is underlain by 2 feet of buff, finely crystalline, slightly pyritic, underclay limestone. An underclay limestone was noted in two additional control wells. A caprock limestone is unusual. but in drill holes Nos. 495 and 199 such a limestone is 1 to 2 feet thick. The limestone cuttings from drill hole No. 495 are brown, fine-grained, slightly ferruginous, glauconitic, and contain calcareous foraminifera, crinoidal skeleton elements, and brachiopods.

This coal bed is correlated with the Summum (No. 4) coal bed of western Illinois¹² only because its general stratigraphic position with reference to No. 5 coal bed is similar. It is the same as the "No. 4" coal bed described in accompanying

¹² Wanless, H. R., Pennsylvanian cycles in western Illinois; Illinois Geol. Survey Bull. 60, pp. 82-184, 1931.

reports on the subsurface Pennsylvanian succession in Gallatin, Hamilton, Edwards, and Richland counties. Where the lithologic sequence includes limestone and black shale and exceeds in thickness the electrode spacing, the normal resistivity curve shows the typical double-peak electric log pattern that is characteristic of the "No. 4" coal bed in Gallatin County (see Gallatin County report).

"No. 4" coal bed cannot be considered as a satisfactory key bed in Clay County because it cannot always be identified in electric logs.

3.) A thin coal bed accompanied by 1 to 2 feet of overlying black shale was penetrated in four control wells, and 1 foot of black shale in the two remaining control wells in a zone 45 to 95 feet below "No. 4" coal bed, and from 110 to 150 feet below No. 5 bed. This coal bed, where present, is not known to be more than 1 foot thick, except in control drill hole No. 109 where the coal bed and roof shale combined were 4 feet thick. One to 2 feet of gray (rarely greenish gray) and calcareous underclay commonly underlie the coal bed. Because the coal bed as a rule is less than 18 inches or only black shale is present, the horizon cannot be satisfactorily identified in many electric logs. In logs of drill holes where the coal bed is known to be present the electric log pattern shows a negative peak in the normal resistivity curve and a slight negative peak in the self-potential curve.

4.) A thin coal bed or black shale or both, which can be traced across both crosssections (pls. 1 and 2), occurs from 28 to 41 feet below the coal bed described above (paragraph 3). The interval between this zone and No. 5 coal bed ranges from 147 to 188 feet, widening progressively from the northwest to the south and east. In three of the six control drill holes (Nos. 377, 495, 403), the position of the zone is indicated only by 1 to 2 feet of black roof shale. In the three remaining drill holes, pyritic coal partings were found in the black shale of one drill hole (No. 378) and a bed of coal less than 6 inches thick beneath the black shale in the two other holes (Nos. 121, 402). Light to medium gray underclay, 1 foot thick, occurs sporadically. There is some uncertainty as to the accuracy of the correlation of these beds from hole to hole in the western half of the east-west cross-section (pl. 2, Nos. 121 and 134), owing to the apparent presence, as indicated by the electric log of drill hole No. 134 at 1144 feet, of a thin coal or black shale bed 18 feet above the correlated zone.

The stratigraphic relationships of the two last described coal beds which underlie "No. 4," and whether either is "No. 2" coal bed, remain uncertain. Hence these beds at present provide no basis for determining the position of the base of the Carbondale group. The boundary between the Carbondale and Tradewater groups has been established at the base of the Palzo sandstone,¹⁸ but it has not been possible to identify as the Palzo any one of the lenticular sandstones found in this general part of the succession (pls. 1 and 2).

TRADEWATER-CASEYVILLE GROUPS

In the strata which intervene between the last described coal horizon and the base of the Pennsylvanian system a total of six to nine coal beds have been logged, nine being the most in any one drill hole (No. 378). Of these, at least seven lie within the upper 200 to 300 feet of this interval. A tentative correlation of these uppermost beds is suggested in the cross-sections (pls. 1 and 2). The correlations are restricted to the individual cross-sections, because the stratigraphic relationship in the single drill hole common to both charts (Shell-Moss No. 5, No. 121) is not fully understood.

The difficulties in matching the prominent beds of the Tradewater and higher Caseyville deposits arise from three causes: 1) The coal beds in places seem to have split into two benches, which may have diverged as much as 9 feet in the wells logged; 2) additional thin coal or black shale beds or both, with or without underclay, may locally appear among the more widespread coal beds, particularly in the upper part of the succession; 3) the strata intervening

¹³ Weller, J. M., Henbest, L. G., and Dunbar, C. O., Pennsylvanian fusulinidae of Illinois: Illinois Geol. Survey Bull. 67, pp. 15, 17, 1942.

between the coal beds, particularly the sandstones, vary laterally in lithologic composition and thickness so that they produce variable electric log patterns which fail to establish the position of coal beds.

Some of these beds appear to have good thickness. The total thickness of the roof shale and the coal combined in four of these coal zones is known to range from 3 to 6 feet (Nos. 121, 378, 402) with coal-bed thicknesses which appear to run up to at least 4 feet. As shown in the cross-sections, however, the thickness of these coal beds is irregular and they appear to have the lenticular characteristic of coal beds of these groups elsewhere, particularly in the outcrop areas in the Eastern Interior province. The coal beds may, in short distances, decrease in thickness to less than 2 feet, and their positions may be indicated simply by roof shale or underclay, or they may be split into thin benches.

The locations, thicknesses, and intervals to coal No. 5 of these thicker beds are as follows: In Shell-Moss No. 5 (No. 121), 5 feet of coal and roof shale were logged, of which 4 are probably referable to the coal proper. This bed occurs 227 feet below coal No. 5 at a depth of 1141 feet. At an additional depth of 102 feet, a bed of coal having a black shale roof, with a combined thickness of $4\frac{1}{2}$ feet, was encountered. The black shale is capped by a fusuline bearing limestone 2 feet thick. This coal bed occurs 329 feet below No. 5 coal bed at a depth of 1243 feet.

In Ohio-Webster No. 3 (No. 402), what is regarded as a split coal occurs 202 feet below No. 5 coal bed at a depth of 1268 feet below the surface. The upper and lower benches are each 3 feet thick and are separated by 3 feet of underclay. On the basis of the drilling time there may be only 1 foot of coal in the upper bench and 2 feet of coal in the lower bench. Twenty-seven feet further down in the same drill hole were beds of black shale and coal which together were 4 feet thick, of which 3 feet represents the coal bed on the basis of the drilling time. This bed occurs 229 feet below coal No. 5 at a depth of 1295 feet.

At a depth of 1522 feet below the surface, a 3-foot layer of undifferentiated roof shale and coal was logged in the same hole. The interval between this coal bed and coal No. 5 is 456 feet.

The tentative correlations of these thicker coal beds encountered in the two control drill holes (Nos. 121 and 402) of the eastwest cross-section are shown in plate 2. The close association of the two coal beds (the upper one at 1118 and 1268 feet respectivelv in holes Nos. 121 and 402, and the lower one at 1141 and 1295 feet), indicates that these may be the Dekoven and Davis beds. Such a correlation is further supported by the occurrence of a marine fusuline-bearing limestone as the caprock of the next underlying coal bed, which occupies a position similar to that of the Stonefort limestone and coal of southeastern Williamson county.14 The eastward widening of the interval between coal No. 5 and the coal beds tentatively correlated with the Dekoven and Davis beds conforms to the regional thickening of the Pennsylvanian deposits in this direction.

The coal and black shale zone 41/2 feet thick which occurs 329 feet below coal No. 5 in drill hole No. 121 (Shell-Moss No. 5) is tentatively correlated with a 1-foot coal and black shale zone 371 feet below coal No. 5 in drill hole No. 402 (Ohio-Webster No. 3) (pl. 2). The lowermost thick coal logged in drill hole No. 402. 456 feet below coal No. 5, was not reached in the Survey logging of drill hole No. 121. A general decrease in thickness of this coal zone between drill holes Nos. 121 and 402 is indicated, however, by the electric logs of intervening drill holes, which in some cases fail to show a prominent coal-bed peak at the appropriate stratigraphic position.

The only other control drill hole of the north-south cross-section (pl. 1) in which coal beds of important thickness were encountered is No. 378 (Krohn-King No. 1). In this drill hole a split coal bed was logged at a depth of $12651/_{2}$ feet below the surface and 238 feet below coal No. 5. The upper

¹⁴ Henbest, L. G., Fusulinellas from the Stonefort limestone member of the Tradewater formation: Jour. Paleo., vol. 2, pp. 70-71, 1928.

18-inch band is separated by 1 foot of shale from the lower 4-foot band. The coal and roof shale ratio cannot be determined from variable drilling time log. At an additional depth of 961/2 feet (total depth of 1362 feet) $51/_{2}$ to 6 feet of roof shale and coal were logged, of which 31/2 to 4 feet can be assigned to the coal on the basis of the drilling time. This coal bed occurs 336 feet below coal No. 5. Some 86 feet deeper another coal bed was encountered at a depth of 1448 The interval between this coal bed feet. and coal No. 5 amounts to 422 feet. According to the undifferentiated drilling time a combined thickness of 3 to 31/2 feet can be assigned to the coal and the roof shale.

The highest of these three coal beds, at $1265\frac{1}{2}$ feet, noted in this drill hole, is tentatively correlated with the "Dekoven" coal of the east-west cross-section (pl. 2). All three coal beds thin laterally or are represented by only black roof shale in the adjoining control wells of the north-south cross-section (pl. 1).

STRUCTURE OF NO. 6 COAL BED

The principal features delineated by the structure map of the No. 6 coal bed (pl. 3) are: (1) a part of the western flank of the Illinois basin; (2) the uneven floor of the deepest part of the Illinois basin.

The western basin flank is shown in the northwestern part of the area by fairly uniform dips to the southeast, and is roughly bounded on the southeast by the -475foot contour line. On the floor of the deep part of the basin two important structures are shown. One is a north-northeast trending syncline, which is roughly bounded by the -600-foot contour line, and which plunges northeastward into Jasper County. This is the most prominent synclinal structure indicated in the Pennsylvanian beds on the basin floor and is here designated the Bogota-Rinard syncline. The syncline extends from the east-central part of Wayne County across the eastern part of Clay and the bordering part of Richland counties into

eastern Jasper County, where it reaches its greatest depth of about 700 feet below sea level in the area of the Bogota oil pool. The other important structure is the Clay City anticlinal belt which parallels the syncline to the southeast. The rise of the coal bed in the southeastern part of the area delineates that part of the western flank of the Clay City anticlinal belt which lies in Clay County. As shown by the regional structure of coal No. 6, this fold forms a prominent plunging anticline that extends from the LaSalle anticline in northeastern Jasper County in a south-southwest direction across the basin floor to about the Cisne oil pool in north-central Wayne County.

The southeastward regional dip of the basin flank and the major trends of the basin floor are modified by numerous minor structures consisting of domes, anticlinal noses, and synclines. The distribution and the axes of the small Xenia, Kenner, and Flora domes and of the large Sailor Springs dome, have a general northeast trend and comprise a secondary minor anticlinal belt of cross folding. The interrupted synclinal basin structures on the north are in general parallel alignment with this belt. Both the anticlinal and synclinal belts appear to transect the Bogota-Rinard syncline.

DIVERGENCE OF PENNSYLVANIAN KEY BEDS

The thickness of the Pennsylvanian deposits in Clay County increases from an average of 1600 feet in the northwestern part of the county to 2050 feet in the southeastern part of the county. These average thicknesses represent only thicknesses where Pennsylvanian deposits overlie lower and middle Kinkaid beds. Thicknesses locally increase to as much as 2165 feet over the troughs in the pre-Pennsylvanian surface. The regional increase in thickness of the Pennsylvanian deposits to the east-southeast is reflected in the divergence of the top and bottom horizons of the intervals mapped.

ILLINOIS BASIN COAL RESOURCES

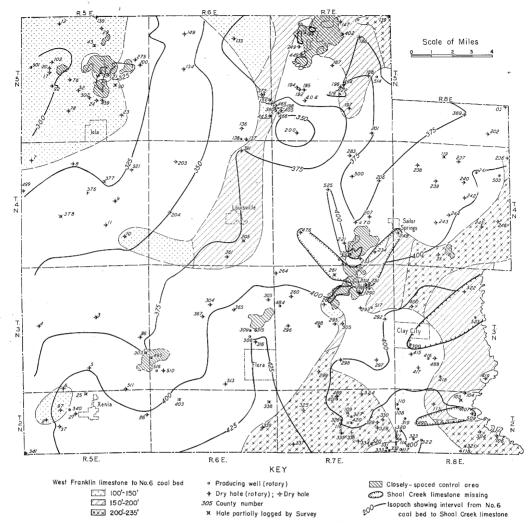


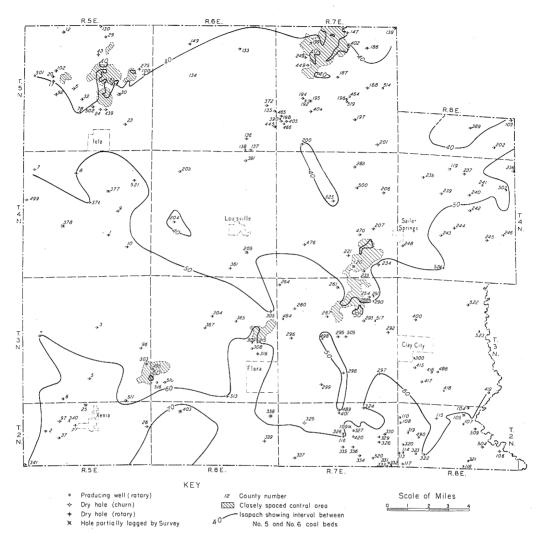
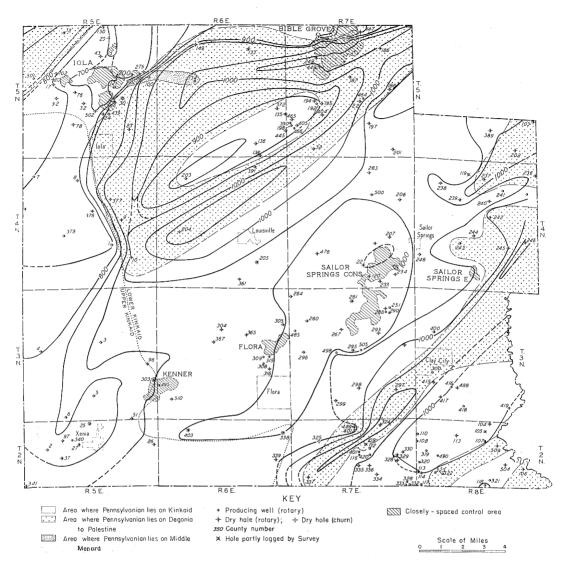
FIG. 3.—Distribution in Clay County of West Franklin limestone where it produces characteristic pattern in electric logs, variations in interval between West Franklin limestone and No. 6 coal bed, and variations in interval between Shoal Creek limestone and No. 6 coal bed.

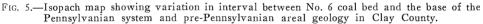
INTERVAL BETWEEN THE SHOAL CREEK LIMESTONE AND NO. 6 COAL BED

The interval between Shoal Creek limestone and No. 6 coal bed ranges from 283 to 455 feet within the county (fig. 3). It is least in the northwestern part of the county and increases fairly uniformly to the southeast across the basin flank. Within the basin floor area the interval increases irregularly to the southeast, with a maximum interval of 455 feet being recorded near the center of the south line of the county. The interval decreases locally and slightly over the Clay City anticline in the southeastern part of the county. In general the local variation in interval appears to be related to the variations in thickness of a prominent sandstone which overlies the West Franklin limestone.

INTERVAL BETWEEN THE WEST FRANKLIN LIMESTONE AND NO. 6 COAL BED

The typical West Franklin limestone is present only in scattered areas in Clay County (fig. 3). In such areas the interval between it and No. 6 coal bed ranges from


FIG. 4.—Isopach map showing variation in interval between No. 5 and No. 6 coal beds in Clay County.

103 to 233 feet, a variation even more pronounced than that of the interval between the Shoal Creek limestone and No. 6 coal bed. The two beds diverge very irregularly to the east, but (like the Shoal Creek-coal No. 6 interval) there is a reversal of trend along the southeastern border of the county with convergence over and near the flank of the Clay City anticline.

Interval Between No. 5 and No. 6 Coal Beds

The interval between No. 6 and No. 5 coal beds ranges from 34 to 74 feet. The direction of maximum divergence trends roughly from north to south, across the county (fig. 4). There is less irregularity in the variations in interval than between overlying key beds and No. 6 coal bed.

STRATIGRAPHIC RELATIONS OF THE BASAL PENNSYLVANIAN

The stratigraphic relations of the basal Pennsylvanian beds are shown by a map which combines the pre-Pennsylvanian areal geology and isopachs showing the variation in interval from the base of the Pennsylvanian to No. 6 coal bed (fig. 5).

The geological map shows the Pennsylvanian beds overlapping Chester beds from the top of the Menard limestone (middle part of the Menard formation) to the upper Kinkaid limestone, with a total relief on the Chester surface of about 280 feet. The Chester formations which occur in contact with the base of the Pennsylvanian have been grouped together on the map as follows: 1) upper Kinkaid, 2) middle and lower Kinkaid, 3) Degonia, Clore, and Palestine, 4) Menard.

Several significant features are revealed. The upper Kinkaid is shown as confined to a narrow continuous area lying along the

western and southwestern margin of the county. To the north and east of this area is a series of roughly parallel northeastsouthwest trending belts of variable width consisting of middle and lower Kinkaid alternating with pre-Kinkaid beds. In the most prominent of the pre-Kinkaid belts which is located in the northern half of the county, a narrow outlying remnant of middle and lower Kinkaid strata trends parallel with and lies just south of the axis of the belt, dividing it roughly into two The southern belt may continue in parts. a southwesterly direction into Marion County where two drill holes, one in sec. 9 and the other in sec. 16, T. 3 N., R. 4 E., show the Pennsylvanian resting on Degonia and Palestine respectively. Drilling between hole No. 378 in T. 4 N., R. 5 E., and holes Nos. 4 and 3 in T. 3 N., R. 5 E., will be necessary to determine whether or not this pre-Kinkaid belt interrupts the upper Kinkaid area as shown on the map.

A small sinkhole-like area of pre-Kinkaid beds along the northeastern border of the Sailor Springs Consolidated pool has an exceptional northwest-southeast trend.

The erosional origin of these pre-Kinkaid belts is clearly indicated by the profiles which show the relation of the base of the Pennsylvanian to the Menard (pls. 1, 2).

The isopachs showing the interval between No. 6 coal bed and the base of the Pennsylvanian reveal variations in thickness of the pre-McLeansboro Pennsylvanian deposits. These arise from two causes: 1) there is a regional thickening to the east-southeast comparable to the thickening noted for the other isopach intervals; and 2) there is a definite relationship between the isopach patterns and the pre-Pennsylvanian surface. The greatest thicknesses of the pre-McLeansboro deposits occur along topographic depressions in the pre-Pennsylvanian surface. The latter relationship is most clearly demonstrated in the northern part of the county where the western border of a prominent topographic depression extends across the southeast edge of the closely spaced wells of the Iola oil pool. The rapid thickening of the pre-McLeansboro beds along the boundary between the Kinkaid and the lower beds shows that the topographic depression is bordered by a steep Kinkaid escarpment. The escarpment-like character of this boundary is further corroborated by the occurrence of displaced lower Kinkaid slump blocks which appear to have originated from undercutting by erosion of the less resistant shales and sandstones underneath the border limestone bench of the lower Kinkaid along the escarpment. Another indication of the presence of the escarpment is found in the abundance of Kinkaid limestone pebbles mixed with red shale in the basal Casevville deposits penetrated in one drill hole (No. 377), which is located less than a mile northeast of the upper Kinkaid escarpment. The Kinkaid detritus which occurs in the depression below the level of the bordering upper Kinkaid escarpment is interpreted as part of the talus fan along the upper escarpment front. The only two depressions where local thickening of the overlying pre-McLeansboro strata have not been discovered occur in the southeastern corner of the county. These comparatively shallow depressions do not yield data on the pre-McLeansboro thicknesses.

The channel-like character of the paralleltrending depression belts which cut across the flats of the lower to middle Kinkaid beds in front of the upper Kinkaid escarpment suggests some form of drainage pattern on the pre-Pennsylvanian surface and attendant depositional facies. The increase in thickness of the pre-McLeansboro strata over the depression belts is largely accounted for by thick sand bodies in the basal Caseyville section which generally occur below the level of the surrounding up-These basal Caseyville sands are land. coarser than the stratigraphically higher widespread sands which blanket both the depressions and upland topography. А quartz pebble conglomerate with metamorphic pebbles has been recovered in cores from the basal Caseyville sandstones in the deepest part of the channel which cuts across the Bible Grove oil pool, sec. 9, T. 5 N., R. 7 E. (fig. 6). This conglomerate is found in well cuttings and its position can be recognized in electric logs (pl. 2, No.

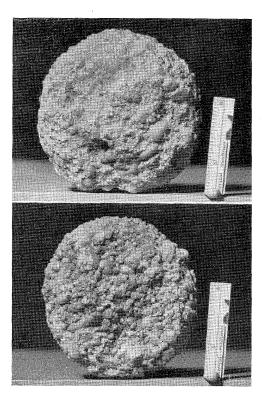


FIG. 6.—Photograph of a core-section of the Caseyville conglomerate between 19.1 and 1999 feet from Kingwood Oil Co., Addison Lewis SWD-1 rotary-drill hole in sec. 9, T. 5 N., R. 7 E., Clay County.

402) by a narrow high peak in the normal resistivity curve. As far as can be ascertained from the isopach pattern, drainage on this pre-Pennsylvanian surface was to the northeast.

The previously mentioned small northwest-trending sinkhole-like area at the northeastern edge of the Sailor Springs Consolidated pool may, however, ultimately prove to be the headwaters of a branch of the major channel to the east.

The data presented establish that the pre-Pennsylvanian surface was modified by erosion, producing a Kinkaid plain, which was traversed by parallel northeast-trending depressions. The suggestion that the direction of the drainage was to the northeast within the county is tentative, and alternative interpretations may be preferred since a study of the pre-Pennsylvanian surface throughout the Illinois basin would be required to clarify regional drainage relations and the importance of pre-Pennsylvanian deformation as a factor controlling pre-Pennsylvanian erosion.

The regional thickening of the pre-Mc-Leansboro deposits from the northwestern part of the county, where they are thinnest over the lower to middle Kinkaid upland (T. 5 N., R. 5 E.), is to the east-southeast. This is shown by the widening of the interval above the middle to lower Kinkaid upland surface segments from 660 to 1040 feet in this direction. The regional thickening from 725 to 880 feet due south along the western border of the county across the upper Kinkaid is less pronounced.

EXPLORATION FOR OIL AND GAS

A certain amount of similarity in the structure of No. 6 coal bed (pl. 3) and that of the deeper-lying Chester beds is indicated by the fact that the closed structural highs and anticlinal noses coincide with the oil pools, even the small ones. However, since the correspondence of the coal bed structure and the structure of the Chester beds is not complete, and, since many more datum points are available in Clay County for Chester than for Pennsylvanian beds, the coal-bed map does not represent a satisfactory substitute for a map of the structure of a Chester bed in the search for oil in this county.

COAL RESOURCES

The occurrence of a considerable number of coal beds in the Pennsylvanian deposits of Clay County has been ascertained from the control wells which have been logged by the Coal Division. In the three drill holes (Nos. 378, 402, and 495) in which the entire Pennsylvanian sequence has been logged, a total of 22 to 31 coal horizons were encountered. The coal horizons are distributed among the Pennsylvanian groups as follows: 11 to 18 in the McLeansboro group, 5 to 6 in the Carbondale group, and from 7 to 9 in the undifferentiated Tradewater-Caseyville groups.¹⁵

¹⁵ See p. 11.

The majority of the coal beds in Clay County are thin, in part locally represented only by black shale and in part discontinuous. The thicknesses of these thin coal beds range from 6 inches to 2 feet. An average thickness of less than 18 inches is indicated in numerous electric logs by the reverse peak of the normal resistivity curve. A small number of these generally thin coal beds attain locally, however, maximum thicknesses of 6 feet for the roof shale and the coal combined. Some coal thicknesses up to 4 feet have been determined from the drilling time (table 4).

Coal beds of possibly mineable thickness are rare and commonly local in occurrence, with the exception of coal No. 6, coal No. 5, and possibly coal "No. 7." As shown in table 4, the latter are developed over wider areas in which the beds appear to attain workable thicknesses. It should be emphasized, however, that of these three coal beds, coal No. 6 is the only one at present for which a workable thickness is reasonably assured by means of the drilling time from two control wells (Nos. 261, Of the remaining coal beds in 402). which the combined thickness of the coal and roof shale logged exceeds 30 inches, the coal thickness proper is uncertain with few exceptions (table 4), because of insufficient differentiation of the drilling time for the coal and roof shale. The value of these coal beds must be regarded as unproved.

McLeansboro group.—In the control wells, a number of coal beds were encountered in the McLeansboro strata above the Shoal Creek limestone which may attain locally workable thicknesses. The drill holes in which these beds were logged, as well as their depth below the surface and their thicknesses, are found in table 4.

In the strata intervening between the Shoal Creek limestone and No. 6 coal bed, "No. 7" coal bed represents the only bed which appears to attain mineable thicknesses at any place.

"No. 7" coal bed.—The areal distribution of the recorded thicknesses of the coal and the roof shale combined of "No. 7" coal bed in the control wells indicates a regional thickening of the bed from the west to the east across the county. In the western half of the county the thickness of the roof shale and the coal combined ranges from 12 to 30 inches in nine of the eleven control wells in which the bed was en-In the eastern half of the countered. county, their combined thickness ranges from 4 to 6 feet in the seven control wells, which are distributed over this area. In the control wells the coal bed occurs here from 942 to 1050 feet below the surface. Because of insufficient differentiation of the drilling time for the roof shale and the coal, the actual coal thickness is not known. Coring will be required to determine whether or not the coal attains workable thicknesses in the eastern half of the county.

Carbondale group—No. 6 and No. 5 coal beds represent the most important coal beds in the county since they possibly maintain mineable thicknesses over wider areas in the county than any other bed. Of the remaining coal beds of the Carbondale group, coal "No. 4" and coal "No. 2" attain (only in a single control well) a combined thickness of 4 feet of coal and black shale (table 4). As previously pointed out, these beds are thin in all the remaining control wells.

No. 6 coal bed .- No. 6 coal bed is the highest coal bed which appears to attain workable thicknesses over considerable areas in the county. The bed is widespread throughout the county except for the "cutout" area in T. 5 N., R. 5 E. Even in this area the bed is locally present in limited areas. In 10 of the 15 control wells which were logged to sufficient depth outside the "cut-out" area, the total thickness of the roof shale and the coal bed combined ranges from 4 to 8 feet, and amounts to more than 5 feet in seven of these wells (table 4). In two of the control drill holes here (Nos. 261 and 402) the drilling time indicates a coal-bed thickness of from 3 to $4\frac{1}{2}$ feet.

The map showing the areal variations of estimated coal thickness (fig. 7) is based on control well data and estimates from electric logs by means of the method previously mentioned. The bed has an estimated thickness of between 3 and $41/_2$ feet over the greater part of eastern Clay County and

ILLINOIS BASIN COAL RESOURCES

									Thick	iness
County No.	Control well No.	T.	ocatic R.	sec.	Company and farm name and No.	Total depth logged	Coal bed No.	Depth ft.	Coal and roof shale ft.	Coal ft.
25	18	2N	5E	4 G1	Carter- Walker	1127	6 5	1053 1115	6 4	_
338	9	2N	6E	1 D4	No. 1 Gibson- Valbert	1010	No coal b thickness		rkable	
403	203	2N	6E	5 E6	No. 1 Sinclair- Haupt	1393	6 5	998 1072	4 4	2-21/2
109	54	2N	7E	10 G3	No. 1 Pure- Bayler No. A-1	1400	"7" 6 "2"?	326 974 1008 1206	4 4 6 4	- - 2
105	17	2N	8E	3 E5	Pure- Moseley No. B-5	1166	"7" 5	942 1040	4 5	2
303	45	3N	5E	25 G2	Lain-Haynes- McConnel No. 1	1110	6 5	967 1023	8 6	_
495	197	3N	6E	30 E8	Lynn- Deain No. 3	1928	6 5	950 1005	6 6	
261	47	3N	7E	3 E7	McBride- McNeely No. 1	1200	"7" 6 5 "4"	970 1006 1058	5 5 7	$\overline{3}$
377	191	4N	5E	10 A1	Krohn- Smith No. 1	1670	5	1150 982	4 4 ∜≈	$2\frac{1}{2}$ 2-3
378	205	4N	5E	20 D2	Krohn- King No. 1	1760	5 ?Dekoven _	$1026 \\ 1265\frac{1}{2} \\ 1362$	4 split 1 ¹ ⁄2–4 5 ¹ ⁄2–6	_ 31⁄2-4
205	78	4N	6E	26 B4	Gulf- McCollum No. 1	1096	_ _ 	1448 384 490 622 1017	$3-3\frac{1}{2}$ 4 4 4 5	 2+
120	166	4N	7E	34 E1	McBride- Busby No. 2	1753	6 "7" 6	1050 502 978 1015 1063	4 5 6 7 312	
119	148	4N	8E	4 C1	Sinclair- Hinterscher No. 1	1180	5 "7" 5	$1050 \\ 1140$	4 5	
121	179	5N	5E	14 B8	Shell- Moss No. 5	1415	5 ?Davis –	914 1141 1243	$3\frac{1}{2}-4$ 5 $4\frac{1}{2}$	4
30	87	5N	5E	23 F5	Nat. Pet Smith No. 1	1074		beds of w	workable	
402	200	5N	7E	3 A3	No. 1 Ohio- Webster No. 3	2058	"7" 6 5	492 990 1026 1066 1295	5-6 4 51/2 5 4	$\begin{array}{c} 2-3\\ \overline{41/2}\\ \overline{3}\end{array}$
199	5	5N	7E	5 B2	Gulf- Storck No. 1	1200	5	1295	4	-
195	90	5N	7E	20 D2	Texas- Hardin No. 1	1184	6 5	1023 1068	6 4	$\bar{2+}$

TABLE 4.—DATA ON POSSIBLY WORKABLE COAL BEDS IN CLAY COUNTY

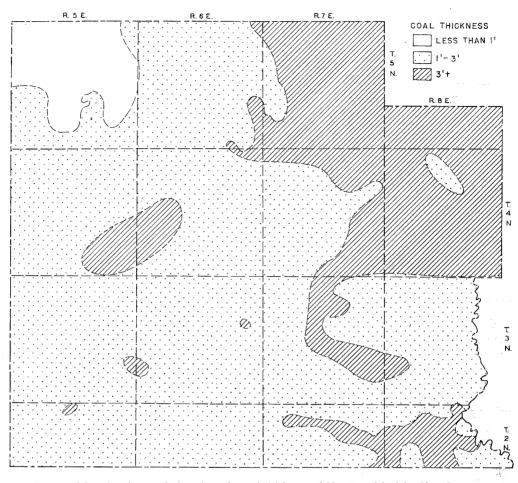


FIG. 7.-Map showing variations in estimated thickness of No. 6 coal bed in Clay County.

in limited areas in the center and western half of the county. In these areas, the bed lies between 950 and 1140 feet below the surface, and is found at a depth of less than 1000 feet in T. 4 N., R. 5 E.; T. 4 N., R. 6 E.; T. 3 N., R. 5 E., sec. 30, T. 3 N., R. 6 E., and in secs. 3 and 11 of T. 2 N., R. 8 E. Assuming that an average of $31/_2$ feet of coal is present in these areas totaling about 120 square miles, the mineable resources of No. 6 coal bed amount to 420 million tons, at the conservative rate of one million tons per square mile per foot of coal.

Elsewhere in the county, the bed is generally less than 30 inches thick. Locally, however, the combined thickness of the roof shale and the coal reaches 5 feet, according to estimates from electric logs. Should future test boring establish that the true coal thickness is more than 30 inches, as estimated by means of the conservative method applied, the areal extent of workable thickness for the bed will be slightly greater than indicated on the map (fig. 7).

No. 5 coal bed.—No. 5 coal occurs from 34 to 74 feet below coal No. 6. The bed is persistently developed throughout the county. The combined thickness of the roof shale and the coal ranges from 2 to 7 feet in the 15 control wells which were logged through coal No. 5. In 14 of these control wells, the combined coal and roofshale thickness is from $3\frac{1}{2}$ to 7 feet and amounts to 5 feet or more in six wells (table 4). In these control wells the coal lies at depths from 914 to 1140 below the

49

Location T. R.	Coal N	Jo. ''7''	Coal	No. 6	Coal No. 5		
5N - 5E	796	906	816	927	855	965	
6E	936	1020	961	1055	1000	1103	
7E	973	1070	1005	1105	1045	1148	
8E	1055	1096	1104	1143	1140	1184	
4N – 5E	895	986	915	1004	965	1063	
6E	898	1017	934	1050	972	1098	
7E	904	1020	992	1059	1040	1103	
8E	1000	1066	1038	1116	1092	1172	
3N - 5E	906	1077	940	1105	997	1170	
6E	913	1034	925	1072	982	1134	
7E	960	1052	997	1088	1043	1143	
8E	923	1090	963	1126	1023	1183	
2N – 5E 6E 7E 8E	954 965 958 922	970 1035 1060	958 998 1001 960	1053 1088 1076 1096	1017 1072 1062 1016	1120 1150 1137 1160	

TABLE 5.—Depths of Possibly Workable Coal Beds in Clay County (In feet)

surface. The actual coal thickness has not been satisfactorily ascertained in any of the control wells because of insufficient differentiation of the drilling time for the roof shale and the coal. In two of the control wells (Nos. 195 and 377), in which the drilling time is slightly differentiated, however, coal thicknesses of at least 2 to 3 feet are indicated. Estimates of coal thicknesses based on the examination of 406 electric logs, by means of the conservative method used for coal No. 6, indicate that the coal reaches thicknesses from 3 to 4 feet in widely scattered limited areas of the county, as in the Iola, Bible Grove, and Sailor Springs Consolidated oil pools. The electric logs show, however, random thinning of the bed to less than 30 inches for the coal and roof shale combined, within the areas of possible workable thickness. Coring will be required to determine true coal thicknesses in order to delineate the areal extent of workable thickness for No. 5 coal bed. Because of great uncertainty in regard to the thickness of No. 5 bed, no estimate is made of the quantity of coal present. Despite the variation in thickness, it is recommended that the bed be protected over the entire county for future possible utilization by means of underground gasification.

Tradewater-Caseyville groups.—The occurrence of four coal beds in the undifferentiated Tradewater and Caseyville deposits, which attain local thicknesses of 3 to 6 feet of combined roof shale and coal, has been discussed in the section on other prominent beds. No additional records of thicker coal beds are available outside the wells noted there. Reference to their occurrence, depth, and thickness will be found in that section and in table 4.

The uncertainty of the coal thickness of practically all beds of possibly mineable thickness does not now warrant an estimate of the total coal reserves of the county.

PROTECTION OF COAL BEDS

No. 6 coal and No. 5 coal are the only coal beds which should be protected by means of plugging of abandoned drill holes in those areas where mineable thicknesses have been established or estimated. The structure map of coal No. 6, the map showing the interval between No. 6 and No. 5 coals, the thickness map of coal No. 6, the tabulations, and tables 4 and 5 are to be used as a guide for the proper placing of the plugs.

SUBSURFACE GEOLOGY OF EDWARDS COUNTY

ΒY

HENRY L. SMITH AND GILBERT H. CADY

THIS REPORT describes the position, distribution, and character of certain key beds and other prominent members of the Pennsylvanian system in Edwards County, presents structure maps of the Herrin (No. 6) coal bed and the West Franklin limestone (pls. 4 and 5), and discusses the structural features and evaluates the resources of workable coal beds. The use of the structure maps in the exploration of the oil resources is considered briefly.

The sources of information upon which the study is based are three logs of cabletool drill holes, 317 electric logs of rotarydrill holes, including among them the logs of 14 control drill holes (figs. 8, 9, 10),¹ the drilling of which through part or all of the Pennsylvanian strata, as the case might be, was observed and timed by Survey field parties. There has been no diamonddrill exploration of the coal beds in this county.

The names of the individuals composing the field parties that observed the drilling of the various holes during the years 1942, 1943, 1944, and 1945, and the names of those persons who studied the cuttings may be found in the table accompanying the introductory paper of this series. (See table 2, page 17.)

The tabulated data for this county will be found in the Appendix.

PENNSYLVANIAN KEY BEDS²

The key beds which can be differentiated most accurately in the logs of drill holes in Edwards County are the West Franklin and Herrin limestones and the "No. 7," No. 6, and No. 5 coal beds. A sedimentary zone about 350 feet thick near the middle of the Pennsylvanian system in this county includes all these beds. The two limestones and "No. 7" coal bed are found in the lower part of the McLeansboro group. which here is about 1100 feet thick; No. 6 and No. 5 coal beds lie in the upper part of the Carbondale group, which in this county is about 300 feet thick, with the Palzo sandstone as the basal member. About 1000 feet of Tradewater and Casevville beds of the Pennsylvanian system underlie the Carbondale group.

Other beds, some at higher and others at lower positions in the succession, may eventually acquire importance as key beds when information about them in this and adjoining counties becomes available. Undoubtedly they will be coal and limestone beds, because of their greater continuity and the usually greater ease of identification, but some sandstone members of the Carbondale and McLeansboro groups appear to be widely present at fairly definitely established positions.

Only about 200 feet of the upper Mc-Leansboro beds are in the eroded zone and outcrops are uncommon, discontinuous, and lithologically monotonous, and hence are difficult to correlate. For the remaining some 2000 feet of beds, knowledge depends on rotary drilling and upon information supplied by inference from observation in counties at some distance where these lower beds may outcrop.

¹ The graphic geological logs shown in these charts were compiled from a study of cuttings, with depth controls determined by reference to the drilling-time logs that were compiled as the holes were being drilled. The electric log was not available as the geological log was being compiled. At many points therefore the two logs may not appear to be in agreement. To obtain such an agreement the geological log must be shifted up at some places and down at others, which would result in uncertain accuracy. For this reason it seems preferable to show both logs as originally recorded, with the correlation lines run to points on the electric log. Corresponding points on the geologic log are usually obvious and suggest correlations between the two types of records without making necessary adjustments in thickness on the geological log, the positions of which would be difficult to determine.

² See p. 9 for explanation of key beds,

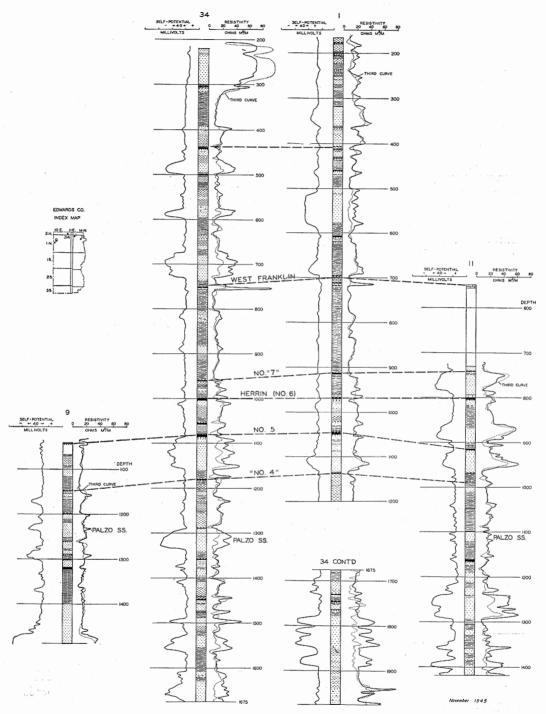


FIG. 8 .- Graphic logs of control drill holes in the northern part of Edwards County.

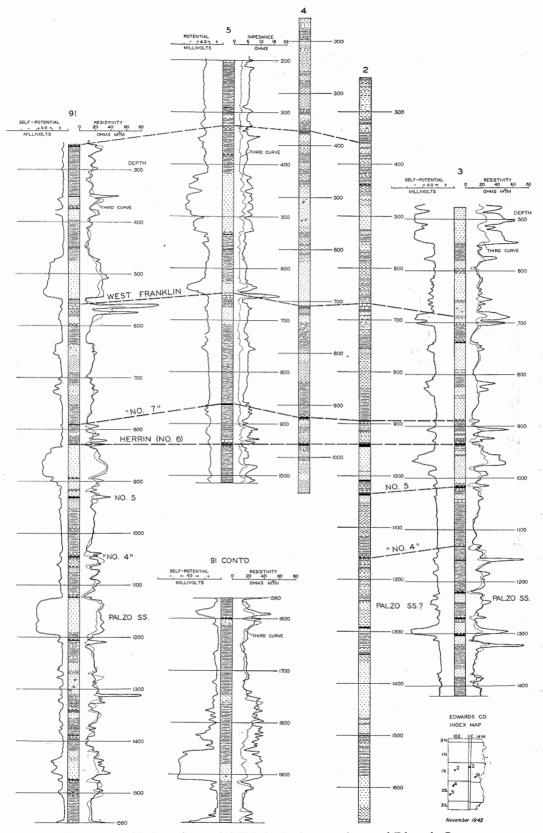


FIG. 9.-Graphic logs of control drill holes in the central part of Edwards County.

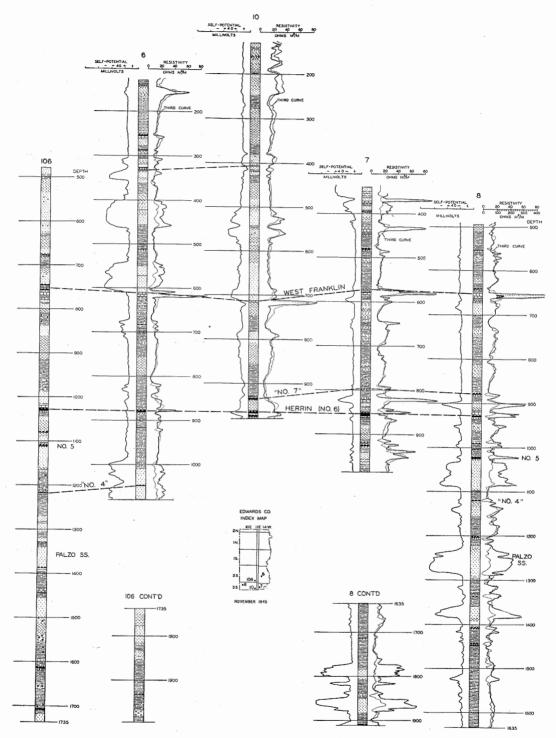


FIG. 10 .- Graphic logs of control drill holes in the southern part of Edwards County.

54

No records of diamond-drill holes in Edwards County are available in the Survey files, although it is probable that structure test core holes have been drilled by oil companies here and there.

Should diamond-drill cores of considerable thickness of the Pennsylvanian system eventually become available for study they would provide a much improved understanding of the stratigraphic succession and also make usable as key beds strata in the upper part of the McLeansboro group above the West Franklin limestone and other strata in the Tradewater and Caseyville groups. Even for the present report certain of these strata are helpful in establishing the position of faults, although they cannot be identified with certainty throughout the county.

West Franklin limestone.-In the 14 control drill holes in this county (figs. 8, 9, 10), the West Franklin member, whether in one, two, or three benches, has been found from an examination of the cuttings to consist of light gray, buff, or brown fossiliferous very finely crystalline limestone, and of various kinds of associated shale, and is not particularly different from several other McLeansboro limestone beds. The upper bench is commonly 3 to 4 feet thick, and is separated from the middle bench by 1 to 2 feet of light gray carbonaceous and micaceous shale. The middle bench has an average thickness of about 10 feet, and the lower bench is usually 3 to 5 feet thick. The interval between the two lower benches is usually 5 to 10 feet and is occupied by shale which, at least in some places, is variegated-reddish, green, gray, and yellow. It is usually of an unctious, slip-fracture type, similar to underclay. Variegated clay shale of much the same character is also present in some places for a few feet below the lower bench of limestone. In one control drill hole (No. 91, fig. 9) variegated shale was reported above the upper of two limestone benches and clay shale between the benches. The position of the red shale is therefore not a completely reliable criterion for the identification of the individual benches of the limestone in this county.

In the logs of two of the control drill holes (No. 3, fig. 9; No. 6, fig. 10) there are indications that the benches of the West Franklin limestone may be more widely separated than usual. In hole No. 3 the distance from the top of the top bench to the base of the bottom bench is 45 feet, and in hole No. 6 possibly as much as 98 feet. In the latter hole a thick shale, variegated near the top and bottom, lies between the two lower benches. It is, of course, possible that this lower limestone actually lies below the West Franklin.

At least seven of the control drill holes (Nos. 1, 34, fig. 8; Nos. 2, 91, fig. 9; Nos. 7, 8, 106, fig. 10) found the Ditney coal bed³ or black shale at the same general horizon, a few feet above the West Franklin limestone. When three limestone benches are reported the Ditney coal bed occurs within about 5 feet above the limestone (Nos. 7 and 106, fig. 10); when two benches of limestone are reported the coal bed is within about 5 feet of the limestone (No. 1, fig. 8), or it may be separated from the limestone by an interval that exceeds 10 feet (No. 34, fig. 8; No. 91, fig. 9; No. 8, fig. 10). The coal bed does not seem to be present in holes in which only one bed of limestone was reported (No. 11, fig. 8; No. 5, fig. 9; No. 6, fig. 10).

At the position of the West Franklin limestone electric logs usually show one pronounced resistivity peak in the normal curve, with minor peaks above and below, one or both of which may be absent. Four logs (Nos. 1, 3, 5, 8, figs. 8, 9, 10) show a single peak, although in holes Nos. 1 and 9 two benches of limestone were reported. Two holes (Nos. 34, 91, fig. 8) show two peaks corresponding to the two limestones recorded. In one hole (No. 34, fig. 8) the lower peak is the higher, and in No. 91 the upper peak is the higher. In both holes the higher peak is opposite the position of the thicker limestone. Hole No. 8 (fig. 10) shows a single peak opposite the thicker of two limestone benches. For the single hole with the three limestone benches (No. 9 fig. 10) for which an electric log is available, there are three peaks on the normal curve with the highest peak opposite the thickest limestone bench. In general the

³ Fuller, M. L., and Ashley, G. H., U. S. Geol. Survey Geol. Atlas, Folio No. 84, Ditney, Ind., p. 2, 1902.

		W	est Franklin	Limestone		"No. 7" Coal				No. 5 Coal			
Locatio	on R.	Range of interval, bed to top of No. 6 coal, ft.	Average interval, bed to top of No. 6 coal, ft.	No. datum points	No. wells within 10 ft. ± av.	Range of interval, bed to top of No. 6 coal, ft.	Average interval, bed to top of No. 6 coal, ft.	No. datum points	No. wells within 10 ft. ± av.	Range of interval, bed to top of No. 6 coal, ft.	Average interval, bed to top of No. 6 coal, ft.	No. datum points	No. wells within 10 ft. ± av.
1N 11 1N 14 2N 10	0E 1E 4W 0E 4W	241–281 257–268 234–264 251–252 238–249	257 263 251 252 245	39 2 19 2 18	32 2 14 2 18	$\begin{array}{r} 34-51 \\ 35-36 \\ 36-62 \\ 40 \\ 50-60 \end{array}$	39 36 51 40 55	42 2 19 2 18	39 2 14 2 18	75–116 84– 85 80–118 80– 81 80– 90	82 85 94 81 84	41 2 18 2 17	38 2 9 2 17
1S 11 1S 14 2S 10 2S 11 2S 14 3S 10 3S 11	0E 1E 4W 0E 1E 4W 0E 1E 4W	265–296 226–296 254–293 226–300 190–289 244–283 242–299 275–282 264–281	276 271 265 276 274 267 278 279 272	9 22 20 •44 •40 26 •15 2 9	7 10 16 38 35 15 7 2 9	42–50 35–55 28–54 26–80 26–62 33–50 30–82 55–83 40–55	47 45 36 55 48 44 62 69 49	9 22 20 39 40 26 15 2 8	9 22 16 23 33 25 9 0 8	70-112 84-118 76-120 74-122 78-103 83-144 90-141 90-108 74-111	94 96 99 92 93 103 105 99 91	10 23 20 41 31 21 b13 2 9	$ \begin{array}{r} 7 \\ 18 \\ 10 \\ 33 \\ 29 \\ 12 \\ 10 \\ 2 \\ 6 \\ \end{array} $

.

TABLE 6.—INTERVALS BETWEEN TOP OF NO. 6 COAL BED AND TOP OF VARIOUS OTHER KEY BEDS IN EDWARDS COUNTY

^a 1 in fault zone. ^b 2 in fault zone.

electric logs indicate the position of the thicker or thickest limestone bench when two or three benches are present. The thicker of two benches may be at the top or at the bottom.

Where there has not been stratigraphic shortening as a result of faulting, the top of the West Franklin limestone is between 234 and 299 feet above the Herrin (No. 6) coal bed—that is, the base of the Mc-Leansboro group (table 6). In the northern two tiers of townships the township average interval declines to between 245 and 263 feet, as compared with 268 and 279 feet in the part of the county south of the base line.

"No. 7" coal bed .- The thin coal designated as "No. 7" lies 200 to 225 feet below the West Franklin limestone. The intervening beds are a more or less monotonous succession of dark gray, carbonaceous and micaceous siltstones and shales in the control drill holes (figs. 8, 9, 10). Across this part of the succession electric logs usually show low resistivity, indicative of uniformly shaly beds. At the position of the "No. 7" bed there is usually a slight peak in the normal curve and a recession of the third curve. The opposing patterns of the normal and third curves combine characteristically at this postion and are in evidence in several of the logs of the control drill holes (Nos. 1, 34, fig. 8; Nos. 3, 9, fig. 9; Nos. 8, 10, fig. 10). On the basis of observations at control drill holes and from the study of the pattern of electric logs, the "No. 7" coal bed is in general believed to be not more than 2 to 3 feet thick. Black shale or "slate" 1 to 3 feet thick is reported above the coal bed in 6 of the control drill holes.

The interval between "No. 7" and No. 6 coal beds in the twelve townships of the county from which information is available is between 26 and 83 feet, with township averages varying from 36 to 69 feet, being slightly greater south of the base line (table 6). "No. 7" coal bed was not reported in control drill hole No. 106 (fig. 10), perhaps because the observer failed to discover it. Occasionally, however, it appears to be missing in drill holes for which electric logs are the best records available.

Herrin limestone and Herrin (No. 6) coal bed.—The recorded depth to the Herrin (No. 6) coal bed in 320 drill holes in Edwards County is generally between 766 and 1024 feet, depending upon the surface altitude and the altitude of the coal bed. The thickness of this bed, as determined from drilling-time observations and cuttings studies of the 14 control drill holes, is believed to be between 3 and 5 feet. The bed appears generally to be overlain by 1 to 3 feet of black shale "slate," above which lies usually 3 to 5 feet of impure, dark gray to black, earthy limestone, the Herrin limestone. It is ordinarily impossible, on the basis of the rate of drilling, to differentiate the black "slate" and the coal bed. In general, thicknesses must be estimated roughly by the amount of coal obtained in the cuttings, but at best the estimate is not satisfactory. In an electric log, it is generally assumed that a swing to the right of the third curve indicates a thickness of the bed greater than the electrode spacing of 53 inches. In most electric logs of drill holes in Edwards County the third curve shows a peak pointing to the right. There is an area of about two square miles in sec. 36, T. 2 S., R. 10 E., and in secs. 1, 2, 11, and 12, T. 3 S., R. 10 E., where No. 6 coal bed appears to be absent (pl. 4).

The electric-log pattern is variable.⁴ Two peaks on the resistivity curve of some logs (Nos. 3, 5, 91, fig. 9; Nos. 7, 8, fig. 10) made it possible to differentiate the limestone above and the black "slate" and coal bed below. On the other hand in some logs (Nos. 1, 34, fig. 8; No. 8, fig. 10) a single peak appears to mark the position of the combined limestone, black "slate," and coal bed. In such logs the base of the limestone is placed at a depth representing a reasonable compromise between the position of maximum resistance (the peak of the normal curve) and the position of the maximum millivolts of negative self-potential (the peak of the opposed self-potential curve) if the two points are not at the same depth. If the two depths agree, the position of the base of the limestone is known.

⁴ Taylor, Earle F., Pullen, M. William, Sims, Paul K., and Payne, J. Norman, Methods of subsurface study of the Pennsylvanian strata encountered in rotary-drill holes: Illinois Geol. Survey Rept. Inv. 93, pp. 16-19, 1944.

Harrisburg (No. 5) coal bed.-No. 5 and No. 6 coal beds are separated by 74 to 144 feet (table 6) of strata, consisting mainly of shale and sandstone and commonly including one bed of coal. The township average interval varies from 81 to 105 feet, the average being below 95 feet north and above 91 feet south of the base line. The No. 5 coal bed varies from about 2 to about 4 feet in thickness in the control drill holes. A brownish to brownish-gray, finely textured limestone, the St. David (or Absher) limestone, 2 to 5 feet thick, lies on or a short distance above No. 5 coal bed, usually with a bed of black "slate" intervening between the limestone and the coal bed. The St. David limestone is not present at the position of two control drill holes (Nos. 7, 8, fig. 10) or was not recognized by the observers.

In the electric logs the position of No. 5 coal bed is generally marked by a relatively conspicuous resistivity peak in the normal curve (No. 9, fig. 8; Nos. 5, 91, fig. 9; No. 8, fig. 10), which, however, is not as pronounced as that at the position of the Herrin limestone and coal beds. It is usually opposed by a small negative peak on the self-potential curve. The "third" curve may follow the normal curve or be reversed, presumably because the bed is thinner than the electrode spacing of 53 This is not usually the case, as inches. probably in most drill holes the limestone, black "slate," and coal bed are all represented by the pattern. In some of the control drill holes (Nos. 1, 11, 34, fig. 8; No. 3, fig. 9) the position of the highest resistivity peak at this general position fails to occur at the recorded depth of the No. 5 coal bed. In some holes this may be due to inaccurate depth measurement during drilling (Nos. 11, 34, fig. 8; No. 3, fig. 9; No. 7, fig. 10), and in other holes to the presence of a resistant bed below the underclay, probably an underclay limestone (No. 1, fig. 8). In interpreting electric logs the position of No. 5 coal is generally regarded as coincident with at least the lower part of the prominent peak in the normal curve at the appropriate interval below No. 6 coal

bed, with suitable consideration of the records of adjacent control drill holes.

The underclay of No. 5 bed appears to have the usual low resistivity of such beds.

OTHER PROMINENT PENNSYLVANIAN BEDS McLeansbord Group

Beds above the West Franklin limestone.—The limestone member of the Mc-Leansboro group referred to as Shoal Creek in the present series of studies is probably an equivalent of the one designated as Shoal Creek and used as a key bed in neighboring Wayne County.⁵ In parts of that county it lies 450 to 475 feet above No. 6 coal bed (200-225 feet above the West Franklin limestone), but on the east side of the county it becomes unrecognizable in the drill records.

Of the 14 control drill holes in Edwards County only three (No. 91, fig. 9; Nos. 6, 7, fig. 10) are reported to have penetrated a limestone between 450 and 475 feet above No. 6 bed. Correlation of these limestones with the Shoal Creek limestone of Wayne County is not too remote a possibility.

All of the control drill holes passed through thin limestones, black shales, coal beds, and underclays above the West Franklin limestone. In some holes only one member of such a group was penetrated, in others two, and in still others an entire "cyclical" sequence, but usually at only one or two positions. In general the beds are thin, and it is quite possible that some occurrences might have escaped observation during logging of the well and also in the examination of drill cuttings.

At a position about 565 feet (\pm 25 feet) above No. 6 coal bed and about 200 feet above the West Franklin limestone, most of the control drill holes (Nos. 1, 34, fig. 8; Nos. 2, 4, 5, 9, fig. 9; Nos. 6, 10, fig. 10) penetrated a thin bed of limestone lying on, or a short distance above, a thin coal bed, usually with an intervening black shale. This group of beds appears to be generally present throughout the county. Its position

⁵ Sims, Paul K., Payne, J. Norman, and Cady, Gilbert H., Pennsylvanian key beds in Wavne County, etc.: Illinois Geol. Survey Rept. Inv. 93, p. 27, 1944.

with respect to the No. 6 coal bed and the West Franklin limestone is similar to that of the limestone outcropping near a locality known as Reel's Corners northwest of Mt. Carmel near the center sec. 8, T. 1 S., R. 12 W.⁶ This appears to be the most continuous and characteristically developed group of beds in the control drill holes above the West Franklin limestone in Edwards County. In the electric logs its position is generally indicated by low resistivity peaks in both normal and third curves.

In drill hole No. 7 (fig. 10) what appears to be the same thin limestone noted in the preceding paragraph was encountered only about 475 feet above No. 6 coal bed. A thick bed of limestone (15 feet) was penetrated about 50 feet lower—possibly the Shoal Creek. Such a stratigraphic arrangement is strongly suggestive of shortening by faulting between the West Franklin and Reel limestone, although faulting is not generally suspected in this area.

Of the seven control drill holes which show the geologic succession above the thin limestone noted in the two preceding paragraphs, several show a number of thin limestone, coal, and black shale beds at different positions. Because the records of the cuttings of these drill holes lack uniformity of arrangement, it has not been possible to correlate the beds. Some of the drill holes penetrated beds 700 to 800 feet above No. 6 coal bed, and it seems probable that such members of the McLeansboro group as the Friendsville coal bed and the Millersville (and possibly even the Omega) limestone may be represented.

Electric logs of drill holes in the same pool display a similarity of pattern above the position of the West Franklin limestone that indicates continuity of certain relatively thin layers, but correlation over the entire county and with definite beds encountered in control wells has not been very satisfactory. Usually the surface casing of the drill holes in the Illinois basin extends to some fairly persistent and relatively thick limestone bed, but this does not seem to be the case in Edwards County.

Beds below the West Franklin limestone.-The usual monotonous succession of shale and siltstone beds lying between the West Franklin limestone and "No. 7" coal bed includes in some places beds of sandstone (No. 3, fig. 9), the positions of which are marked by opposite peaks in the normal and potential curves. In four control wells (Nos. 3, 5, fig. 9; Nos. 6, 7, fig. 10) a thin bed of limestone was reported about 150 feet above the base of the McLeansboro group. It is unaccompanied by black shale or a coal bed. The somewhat remote possibility that the limestone at this position in drill hole No. 6 (fig. 10) may represent the lower bench of the West Franklin limestone has been mentioned.

In five control drill holes (Nos. 1, 34, fig. 8; Nos. 2, 3, fig. 9; No. 7, fig. 10) a limestone 5 feet or less in thickness was encountered from 5 to 35 feet below the "No. 7" coal bed. Well cuttings are described as buff to brown, and as dense to argillaceous in texture and composition. The bed is underlain by shale, siltstone, or sandstone, and not by the sequence of black shale and coal beds usually found beneath Pennsylvanian limestones. The position and relationship are those characteristic of the Bankston Fork limestone of Saline County.7 The Bankston Fork limestone is found throughout a wide area in southern Illinois, but it is by no means continuous, for it is known to pinch out within short distances from an area of average thickness. In electric logs its position is usually marked by its relatively high resistivity and low potential strength, a short distance below "No. 7" coal bed.

Between the Bankston Fork limestone and the Herrin limestone (see control drill holes Nos. 11, 34, fig. 8; Nos. 2, 91, fig. 9; Nos. 7, 8, 106, fig. 10) there is commonly a massive sandstone member thought to be the equivalent of the Anvil Rock sandstone of western Kentucky,⁸ which is also widely distributed in Saline and Gallatin counties in Illinois. This sandstone in places rests upon an uneven eroded surface which cuts down into, and even across, the Herrin

⁶ "No. 19. Hard bituminous limestone 1 to 3 feet." A. H. Worthen, Geol. Survey of Illinois, vol. VI, p. 56, 1875.

 ⁷ Cady, G. H., Areal geology of Saline County: Trans. Illinois Acad. Sci. vol. 19, p. 261, 1927.
 ⁸ Owen, D. D., Kentucky Geol. Survey, vol. 1, 1856.

limestone and coal beds. This may account for the local absence of No. 6 coal in Edwards county (T. 2 and 3 S., R. 10 E.), just as it does for local absence of the coal bed in Saline County.9 The electric-log pattern of the Anvil Rock sandstone is typical of Pennsylvanian sandstones, with a fairly high resistivity and potential strength.

The composite pattern produced in electric logs by "No. 7" coal bed, the Bankston Fork limestone, the Anvil Rock sandstone, and the Herrin limestone and coal beds in the Illinois basin has been previously described.10 although the Bankston Fork limestone is shown in none of the diagrams. In control well No. 7 (fig. 8) it is believed that both the Bankston Fork limestone and Anvil Rock sandstone are present.

Since both the Bankston Fork limestone and the Anvil Rock sandstone are discontinuous, their places often being occupied by shale, the pattern of electric logs shows great variability between "No. 7" coal bed and the Herrin limestone.

CARBONDALE GROUP

No. 5A coal bed .- The Briar Hill¹¹ or No. 5A coal bed lies between No. 6 and No. 5 coal beds, usually between 25 and 30 feet above the lower bed, but there is a good deal of variation. It has a thickness of 1 to 3 feet and is overlain by 1 to 2 feet of black "slate." A limestone caprock above this coal bed or "slate" is a rare oc-The No. 5A coal bed is recurrence. corded in 8 control drill holes (No. 34, fig. 8; Nos. 2, 5, 91, fig. 9; Nos. 6, 7, 8, 106, fig. 10). Inspection of available electric logs of these holes shows that the position of the coal bed is commonly marked by a low peak in the third curve, a reverse peak in the third curve opposite a low bulge in the self-potential curve (No. 34, fig. 8; Nos. 7, 8, fig. 10). The recurrence of this combination of patterns at the appropriate position in many electric logs of Edwards County drill holes indicates that

this thin coal bed is rather widespread. In some logs the pattern of the normal curve is less characteristic and may merge with that of beds above and below, but the reentrant of the third curve is almost invariably in evidence (No. 34, fig. 8). The position of No. 5A bed between No. 6 and No. 5 coal beds detracts from its importance as a key bed.

Between No. 6 and No. 5A coal beds there is usually a massive sandstone (Nos. 9, 11, 34, fig. 8; Nos. 3, 91, fig. 9; No. 8, fig. 10) well developed in outcrop at the same stratigraphic position near Absher Post Office in southeast Williamson County and in the town of Equality, Gallatin County.

Beds below No. 5 coal bed .- The graphic logs of the control wells (Nos. 9, 11, 34, fig. 8; Nos. 2, 91, fig. 9; Nos. 8, 106, fig. 10) show at least three fairly prominent beds in the lower part of the Carbondale group. Of these the upper two are thin coal beds. about equally spaced, 75 to 125 and 160 to 220 feet below No. 5 coal bed. The upper of these has been designated "No. 4" in the present series of studies.

The "No. 4" coal bed, which is apparently not over 3 feet thick and probably generally less, is overlain by black "slate" and in some places by a thin bed of limestone. In electric logs these beds usually have a very characteristic double-peak pattern (Nos. 3, 91, fig. 9), apparently because of the association of thin limestone and coal. In some logs the pattern is a single peak on the normal curve and a reverse third curve peak similar to that of coal 5A (No. 34, fig. 8; No. 8, fig. 10). The frequent presence of such a pattern at the appropriate position in electric logs indicates that these beds are generally present in this county. This bed, although occupying a position approximately the same as that of the Summum (No. 4) coal bed of western Illinois and that of No. IV coal bed in Indiana, has not been proved equivalent to either.

The second coal bed, about 50 to 100 feet lower, is characteristically marked. It was encountered in 8 of the control drill holes (Nos. 9, 11, 34, fig. 8; Nos. 2, 3, 91, fig. 9; Nos. 8, 106, fig. 10), and its position in

⁹ Cady, G. H. Coal resources of District V (Saline and Gallatin counties): Illinois Geol. Survey Min. Inv. Bull. 19. n. 21, 1919. ¹⁰ See footnote 4. ¹¹ Lee. Wallace. Geology of the Kentucky part of the Shawneetown quadrangle: Kentucky Geol. Survey, p. 35, 1916

^{1916.}

electric logs is generally indicated by a fairly sharp reverse peak in both the normal and the third resistivity curves (Nos. 9, 11, 34, fig. 8; Nos. 3, 91, fig. 9; No. 8, fig. 10). This coal bed is believed to occupy approximately the stratigraphic position of the LaSalle (No. 2) coal bed of northern and western Illinois,¹² and in these reports it is referred to as "No. 2," with the understanding that it may not always be applied to the same bed. Spores isolated from coal cuttings from coal beds at 1200 feet in hole No. 9 (fig. 8) and at 1125 feet in hole No. 91 (fig. 9) included forms characteristic of the LaSalle (No. 2) coal bed.¹³

The Palzo sandstone is the third of the prominent members of the Carbondale group mentioned above. This sandstone marks the base of the Carbondale group, and is usually 20 to 70 feet thick. In some localities it is so thin as to be difficult to spot, or it may be absent. When the sandstone is very thick it probably possesses channel form with an uneven base that truncates lower beds. At the type locality, the Palzo sandstone extends to, or nearly to, the top of the Dekoven coal bed in the upper part of the Tradewater group.¹⁴ However. in some places it appears to extend below the position of this bed down to, or nearly to, the top of the Davis coal bed. On the other hand, in localities where the Palzo sandstone is thin and less channel-like a considerable thickness of shale intervenes between the base of the sandstone and the Dekoven coal bed. Furthermore, in localities where the Palzo sandstone is thin, additional coal beds seem to occur at one and possibly more positions between the coal bed regarded as "No. 2" and the Dekoven bed. It is not always certain whether or not such beds lie above or below the Palzo sandstone.

Identification of the Palzo sandstone in electric logs is in general based upon the position of a strong indentation of the normal resistivity curve about 100 feet below the "No. 4" coal bed or about 200 feet be-

low the No. 5 bed. In general this indentation in the curve appears to mark the position of the "No. 2" coal bed, but not in all drill holes (see No. 9, fig. 8). The top of the Palzo sandstone lies 525 to 620 feet (average 560-570 feet; see page 63 for detailed data) below the top of the West Franklin limestone, or about 300 feet below No. 6 coal bed. It is usually well defined in the geological records prepared from drill cuttings (see figs. 8, 9, 10), and its presence is usually well marked in electric logs by a relatively conspicuous pattern indicative of sandstone. This sandstone member and the massive sandstone lying between No. 6 and No. 5A coal beds are the two most conspicuous sandstone members of the Carbondale group.

TRADEWATER AND CARBONDALE GROUPS

The base of the Carbondale group has been defined as the base of the Palzo sandstone.¹⁵ No definition has been given for the top of the Tradewater group, and as the Palzo sandstone lies upon an uneven surface of Tradewater beds, these may extend a considerable number of feet above the Dekoven coal bed in some places. It is possible that, like most Pennsylvanian sandstone members, there are localities where there is a complete sedimentary transition from the Tradewater to the Carbondale group.

The Dekoven and Davis coal beds and various other members of the Tradewater and Caseyville groups, including both thin coal and thin limestone members, are not yet definitely identified in Edwards County.

STRUCTURE OF THE PENNSYLVANIAN BEDS

Herrin (No. 6) coal bed.—The accompanying map of Herrin (No. 6) coal bed (pl. 4) shows that the structure of the Pennsylvanian beds in Edwards County is dominated by the regional eastward rise of

 ¹² White, David. Paleobotanical work in Illinois in 1908:
 Illinois Geol. Survey Bull. 14, p. 293, 1909.
 ¹³ Personal communication from R. M. Kosanke.

¹⁴ Weller, J. Marvin, Geology and oil possibilities of extreme southern Illinois: Illinois Geol. Survey Rept. Inv. 71, p. 36 (footnote 13), 1940.

¹⁵ Weller, J. Marvin, Henbest, Lloyd G., and Dunbar, Carl O., Stratigraphy of the Fusuline-bearing beds of Illinois (in Pennsylvanian Fusulinidae of Illinois by Carl O. Dunbar, and Lloyd G. Henbest): Illinois Geol. Survey Bull. 67, p. 10, 1942.

the beds from the trough of the Illinois basin in Wayne County toward the southward extension of the LaSalle anticline. This rise continues beyond the county with some interruptions eastward across Wabash County, as studies in that county have The general regional rise of the shown. strata to the east is modified by a terracelike flattening of the structure in a northsouth belt one to two miles wide that extends along a zone a little east of the center of the county. The terrace is characterized by some reversals in dip, and, at one position, in T. 2 and 3 S., R. 10 and 11 E., differences in altitude are undoubtedly the result of normal faulting.

Albion fault zone.-This fault zone can be traced with considerable certainty by the use of electric logs of drill holes located in secs. 1 and 12, T. 3 S., R. 10 E., in sec. 36, T. 2 S., R. 10 E., and in secs. 30 and 31, T. 2 S., R. 11 E., and possibly as far north as hole No. 138 in the SW1/4, sec. 18, T. 2 S., R. 14 W. The position of the fault zone can be fairly definitely established by noting the variation in altitude of No. 6 coal bed (or No. 5 coal bed where No. 6 is absent) (fig. 11), and by noting the distribution of drill holes in which short intervals occur between West Franklin limestone and Palzo sandstone, or between the Palzo sandstone and the Glen Dean limestone of the Chester series. In general the No. 6 coal bed west of the fault line has an altitude of about 400-410 feet, whereas to the east it lies 75 to 100 feet lower. The faulting is somewhat complex, as in most electric logs evidence of displacement is indicated by shortening of the intervals at more than one level, but in general these positions are fairly closely spaced. The fault plane dips toward the east, the fault zones cutting across the drill holes progressively lower from west to east. In drill holes along the west margin of the fault zone only the upper Pennsylvanian beds are faulted, whereas only the Chester beds, or at least pre-Palzo beds, are faulted in drill holes on the east side of the zone.

The width assigned to the fault zone represents the projection of the fault plane onto the plane of the horizontal down to approximately the position of the Glen Dean formation of the Chester series.

Actual determination could be made if the identity of the individual fault planes could be established from hole to hole. An approximate dip of about 60 degrees and a throw of 125 to 150 feet seem to characterize the displacement in the southern part of the Albion oil pool.

The authors are aware of the presence of a fault having a throw of more than 100 feet, which crosses the NW¹/₄ of sec. 21, T. 3 S., R. 14 W., near Grayville, White County. It may extend northeastward across an intervening portion of Wabash County (sec. 16, T. 3 S., R. 14 W.) and pass into Edwards County somewhere between drill holes Nos. 146 and 7 (secs. 9 and 17), but as there is no definite evidence of the extension of the fault into Edwards County, it is not mapped.

Detailed delineation of the structure of the No. 6 coal bed is possible only where drilling is closely spaced and where the coal bed is present. Undoubtedly the "lay" of the bed in those parts of the county where the drill holes are widely spaced is actually more irregular than can be shown from available information.

PARALLELISM OF PENNSYLVANIAN BEDS

The rough parallelism that characterizes successive groups of coal beds and limestones in the Pennsylvanian system in the Illinois coal field is maintained in Edwards County.

West Franklin limestone.—The West Franklin limestone is continuous enough in Edwards County to be mapped (pl. 5). The structure parallels that of No. 6 coal bed (pl. 4; table 6). By using the position of the West Franklin limestone, the approximate position of the "No. 7," No. 6, and No. 5 coal beds can be fairly closely determined.

Position of the Palzo sandstone.—Studies of the interval between the West Franklin limestone and the Palzo sandstone show variations in interval and average intervals for the various townships as follows:

Tow	nship		Interval	5
Т.	R.	Min.	Max.	Av.
1 N.	10 E.	545	600	573
1 N.	11 E.	570	572	571
1 N.	14 W.	545	598	572
2 N.	10 E.	541	558	554
2 N.	14 W.	542	568	555
1 S.	10 E.	559	590	575
1 S.	11 E.	525	586	556
1 S.	14 W.	526	611	569
2 S.	10 E.	528	605	566
2 S.	11 E.	556	591	574
2 S.	14 W.	548	588	568
3 S.	10 E.	558	620	589
. 3 S.	11 E.	555	556	555
3 S.	14 W.	527	571	549

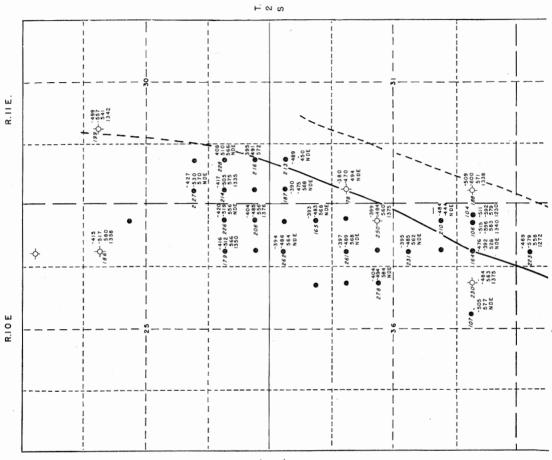
The average interval for the county is between 560 and 570 feet and is about the same both north and south of the base line, but with a slight tendency toward an increase in interval toward the southwest. Variations from the average are in the order of about 40 feet, except for T. 3 S., R. 10 E., in which it is about 50 feet. In spite of some difficulty in identifying the exact position of the top of the Palzo sandstone from electric logs, and of the possibility of important variations in interval between beds more than 600 feet apart, the beds must be considered essentially parallel.

WORKABLE COAL BEDS

In Edwards County the No. 5 and No. 6 coal beds should be protected from danger of invasion by oil, gas, and water by properly placed plugs when dry holes or oil wells are abandoned. The No. 6 coal bed in the 317 drill holes tabulated lies at depths ranging between 766 and 1029 feet. In only 16 holes was this coal bed found at depths of 1000 feet or more. The No. 5 coal bed lies at depths ranging between 886 and 1110 feet, with slightly more than half the holes showing a depth more than 1000 feet.

Because in only one township, T. 2 S., R. 14 W., the interval between the No. 5 and No. 6 coal beds exceeds 122 feet (table 6), both beds can be protected by a plug extending from 50 feet above to 175 feet below No. 6 coal bed. This length of plug is probably sufficient for most drill holes, even in T. 2 S., R. 14 W. Indeed, a plug extending from 50 feet above to 150 feet below No. 6 coal bed will probably be adequate to protect both coal beds in the majority of drill holes.

The structure map of No. 6 coal bed gives the altitude of the bed in feet below sea level. If the hole to be plugged is on or very near a structure contour, the depth to the coal bed is obtained by adding to the surface altitude the altitude shown on the contour line. The altitude of the coal bed at holes lying between structure contour lines can be estimated by assuming an even slope between the two nearest contour lines through the position of the drill hole.


There is some indication of the presence of coal beds $3\frac{1}{2}$ feet or more thick 300 to 400 feet below No. 6 bed. Evidence, however, does not warrant recommendation of their protection.

COAL RESOURCES

In the first report of this series¹⁶ it was estimated, on the basis of information provided by seven control drill holes, that the coal resources of Edwards County represented by No. 5 and No. 6 coal beds amounted to about 1.2 billion tons. Since that estimate was made six additional control wells have been logged by Survey field parties. The data now available in regard to coal beds 3 feet or more thick are summarized in table 7.

"No. 7" coal bed .- In six of the 13 control drill holes the coal bed regarded as "No. 7" was reported as 3 feet thick. The bed ranges from 26 to 83 feet above No. 6 coal bed. It has a black shale cover 1 to 2 feet thick, above which is a considerable thickness of gray shale. The succession is guite similar to that characteristic of the Danville (No. 7) coal bed of Vermilion County, Illinois, and to that of Indiana VII bed in western Indiana. Although the bed is absent, or at least not reported, in about half the control drill holes, and the extent of distribution must therefore be regarded as uncertain, the presence of a coal bed or some stratum that produces a similar pattern at the appropriate position in the elec-

¹⁶ Cady, Gilbert H., Coal resources based upon information obtained from rotary drilling Feb. 1, 1942 to May 31, 1943: Illinois Geol. Survey Rept. Inv. 93, p. 41, 1944.

പ്രവ

64

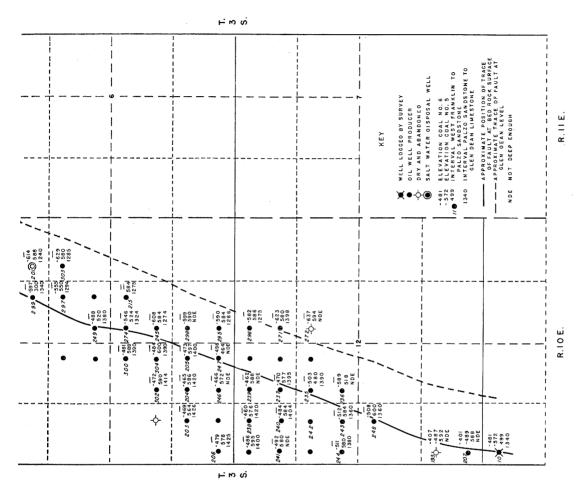


FIG. 11.—Albion fault zone as shown by the altitude of No. 5 and No. 6 coal beds and the interval between West Franklin limestone and Palzo sandstone and between Palzo sandstone and Glen Dean limestone.

ILLINOIS BASIN COAL RESOURCES

	a ar fulad to a					iry 1942 to September 1	J15			
County No.	Control well No.	Т.	Locat R. S		1/64 a sec.	Company and farm name and No.	Coal bed No.	Depth ft.	Total depth logged ft.	Thick- ness ft.
5	15	2S	10E	19	A1	Sun Oil Co. McKibben No. 1	·''7'' 6	862 938	1014	3 5
1	30	1N	14W	6	D3	Sinclair-Wyoming Bierhaus, A No. 1	°'7'' 6	938 913 966	1197	3
3	33	1S	11E	7	G6	Magnolia Gould, E No. 1	5 6 5 "4"	1046 936 1020	1442	4 4 4
6	51	35	10E	8	B2	Sinclair-Wyoming	4 Dekoven Davis	1136 1159 1270 1303	1068	4 3 4 3
2	118	1S	10E		E7	Perkins, H No. 1 Nelson-Develop. Reid, A No. 1	6 "7" 6	878	1737	4 3 5 4
7	121	3S	14W	17	H1	Halbert Proctor No. 1	5 Dekoven 6	1034 1289 855	985	4 4 6
4	123	2S	10E	8	E7	Nelson-Develop. Bunting, C.A. No. 1	"7" 6	918 974	1071	3 4
10 9	143 151	3S 1N	10E 10E		H8 D2	Midstates Oil Co. Coad, M No. 1 Midstates Oil Co.	6 6?	964 971	988 1500	3 4
11	156	1N 1N	16E 14W		D2 F1	McKinley No. 1 Magnolia Matthes No. 1	Davis? 6	1317 800	1426	5 4
8	162	2S	14W (20	A6	Kingwood Cowling No. 1	5 Dekoven? "7" 6	916 1163 878 926	1919	3 5 3 3
106	171	2S	10E .	36	B1	Lewis Prod. Dunk I. No. 1A	6	1021 1029	2277	4
34	172	2N	10E		G6	Texas Co. Densmore No. 1	6 5	1000 1081	2439	5 4
91	177	1S	14W 1	28	D8	Superior Lipper No. 4	"7" 6 5	791 828 930	2157	3 3 4

TABLE 7.—DATA ON POSSIBLY WORKABLE COAL BEDS IN EDWARDS COUNTY February 1942 to September 1945

^a See tabulations in Appendix for explanation of abbreviation designation for 10-acre tracts in section.

tric logs is very general throughout the county. No estimate of the resources in the "No. 7" bed is attempted.

No. 6 coal bed.—The Herrin (No. 6) coal bed was reported in 13 out of the 14 control drill holes (figs. 8, 9, 10). It ap-

pears to be absent in an area of about 2 square miles in sec. 36, T. 2 S., R. 10 E., and secs. 1, 2, 11, and 12, T. 3 S., R. 10 E. In the control drill holes in which the bed was found, the thickness was reported as between 3 and 5 feet. From an inspection

of 300 to 400 electric logs of drill holes located in the county it appears that the No. 6 coal bed is generally present.

Black shale ("slate"), not more than about 2 feet thick, is generally reported above the coal bed. No black shale was reported in the record of the drill hole (No. 34, fig. 8) showing 5 feet of coal. Difficulty in differentiating black "slate" and coal while the holes are being logged is acknowledged. Some of the thickness may be "slate," but the presence of "slate" is usually revealed in the cuttings, and this is considered in the estimates.

Above the black "slate" there is usually a limestone caprock. Aside from the depth and thickness of the bed, mining conditions would probably be favorable. For some time to come these important factors will stand in the way of commercial exploitation of the No. 6 coal bed. Diamond drilling may some day prove that the present estimates are too conservative.

The data at hand seem to indicate that No. 6 coal bed has an average thickness of at least 3 feet for the area of the county (238 square miles), representing a tonnage of approximately 714 million tons, on the basis of one million tons per square mile per foot. The depth of the bed ranges from 800 to 1050 feet.

Harrisburg (No. 5) coal bed.-The No. 5 coal bed was penetrated in eight control drill holes between 82 and 116 feet below No. 6 (figs. 8, 9, 10). In seven of these holes the bed was 4 feet thick, in the remaining one, 3 feet. It was apparently present in all the control drill holes that were logged through the lower McLeansboro and upper Carbondale beds. The thickness of the No. 5 bed seems to be somewhat greater than that of No. 6 and the bed also seems to be more widespread. A caprock limestone is reported only occasionally. Black shale, 1 to 5 feet thick, is usually present above the coal bed, and above this there is usually a considerable thickness of shale or siltstone. Assuming that the bed has an average thickness of at least 3 feet, for which there seems to be good evidence, the reserves represented by this bed amount to almost 714 million tons. Thus the estimated amount for the two beds agrees with the former estimate of 1.2 billion tons.

The depth of the No. 5 coal bed ranges in the control holes from 916 to 1136 feet. At this depth it has been assumed that a coal bed should have a thickness of $3\frac{1}{2}$ feet to be workable. It is possible that the thickness of No. 5 bed usually attains this minimum.

Coal beds below No. 5.—Data have been presented (table 7, figs. 8, 9, 10) showing that beds of coal believed to be 3 to 4 feet thick have been penetrated in drilling at various levels below No. 5 bed. On earlier pages the "No. 4," "No. 2," Dekoven, and Davis beds have been described or mentioned, but better evidence of their thickness and distribution awaits improved methods of drilling or recording thicknesses of Pennsylvanian beds in rotary-drill holes or core drilling. The amount of coal in these deep-lying beds is not estimated.

QUALITY OF THE COAL

Two analyses have been made of coal samples collected from rotary-drill hole No. 121 in Edwards County (table 1). As stated in the introduction, these analyses are not strictly comparable with those made from standard face samples of coal collected in a mine.¹⁷ When delivered to the laboratory, the sample is roughly separated from foreign material by using a separating liquid of 1.50 sp. gr. The float material, which is largely coal, is then washed to remove the film of drilling mud, dried, and then delivered to the chemical laboratory for analysis. The material analyzed is therefore a relatively clean and somewhat air-dried coal and may be equivalent to fairly well-prepared coal. The analysis probably shows somewhat lower moisture, ash, and sulfur contents than are present in the coal beds, and higher "as received" and "moist, mineral-matter-free" B.t.u. values. The unit coal values may be more nearly correct, and these are relatively high, resembling those of No. 5 coal bed in Saline County. Sulfur values are of particular interest and are relatively high. It has been pointed out (p. 13) that

¹⁷ Holmes, J. A., The sampling of coal in the mine: U. S. Bur. Mines, Tech. Paper No. 1, 1918.

the heavier portions of the coal are likely to concentrate in the samples and thus may have a higher sulfur content than the coal as a whole. The fairly high sulfur content of these samples probably indicates a relatively high sulfur content in the bed.

OIL AND GAS RESOURCES

Although the structure maps accompanying this report provide a general picture of the "lay" of the coal-bearing strata in Edwards County, they are not designed to delineate oil and gas structures. In the first place, not all available data were used, and in the second place, the structure has been delineated according to engineering methods, without the liberties in interpretation that usually characterize oil and gas structure maps. Consequently the structural irregularities shown, although they may correspond in some places with the position of oil and gas pools, can scarcely be expected to do so consistently, and the maps are not regarded as particularly suitable for forecasting the position of undiscovered oil and gas accumulations.

CONCLUSION

In this study of the Pennsylvanian beds of Edwards County emphasis has been placed upon the coal beds and limestones in the McLeansboro and Carbondale groups. The stratigraphic logs compiled from cuttings carefully collected from control wells at close intervals and drilling time records. of the same drill holes have been the principal source of information. They have provided a means of interpreting electric logs of adjacent drill holes. Study has been made of about 330 such electric logs and of the logs and cuttings from two cable-tool holes. Much more detailed information in regard to the stratigraphic succession in the McLeansboro and Carbondale groups is available in the cuttings that have been collected from the control wells than was possible or necessary to assemble for the purposes of the present report. This is particularly true of the beds above the West Franklin limestone and those below the Palzo sandstone.

SUBSURFACE GEOLOGY OF GALLATIN COUNTY NORTH OF THE SHAWNEETOWN FAULT

ΒY

M. WILLIAM PULLEN

INTRODUCTION

G ALLATIN COUNTY occupies a position almost at the southeastern tip of the Illinois coal field. Eastward across the Ohio lies the coal field of western Kentucky, and across the Wabash in the northeastern part of the county is the extreme southern end of the Indiana field. The coals of Gallatin County rank highest among the Illinois coals, particularly the coals found in the area south of the Shawneetown fault.

This investigation has been restricted to the approximate five-sevenths of the county north of the Shawneetown fault, because the geology of the southern part of the county has been described before.¹

Gallatin County is composed topographically of about five-sevenths of rolling prairie country of low relief in the north and two-sevenths of hilly country in the south which forms part of the area sometimes designated as the Illinois Ozarks. The southern part is commonly known as Eagle Valley, and it consists of a rather deep structural basin with rocks rising from the basin in a concentric manner to form fairly high hills around its margin. Separating Eagle Valley from the area to its north is the Shawneetown fault, along which a strong dislocation producing an uplift of not less than 3500 feet on the south occurred.¹ When the water is low along the Ohio River the trace of this fault is clearly exposed in the bed of the river.

The northern part of Gallatin County has been a much more important coal-producing region than at present. Several companies formerly shipped by rail from mines located near Equality and near Hickory Hill. Fifty years ago or more a mining village of some importance was located a short distance west of Equality, and a good deal of the coal was used in the evaporation of brine produced from salt wells situated near Equality. Mining fell off by 1920 as a result of the competition created by the development of a large mining industry in Saline, Williamson, and Franklin counties; and there have been no shipping mines in operation for about 20 years.

The same coal beds underlying and mined in Saline County and counties to the west are present in Gallatin County, but in general are somewhat thinner, somewhat higher in ash and sulfur, and of somewhat higher rank than other coals in southern Illinois.²

PURPOSE OF THE REPORT

This report describes the stratigraphic and structural features of the Pennsylvanian or coal-bearing rocks of the northern part of Gallatin County and evaluates the coal resources of the same area. The significance of the structural features of the Pennsylvanian beds and their relationship to oil and gas accumulations are considered briefly. To achieve these ends it was necessary to study and interpret the records of diamond and rotary holes drilled in the A number of control rotary-drill area. holes were logged by Survey field parties, with drilling time recorded at 1-, 2-, or 5minute intervals. Drill cuttings were collected at intervals no greater than 5 feet and subsequently studied and recorded in the laboratory. Control drill holes and a few records of diamond-drill holes provided the key for the interpretation of electric logs, which were the only reliable records of many rotary-drill holes. The stratigraphic studies were based mainly on the recognition of certain key beds. Certain key beds of coal and limestone were used

¹Butts. Charles, Geology and mineral resources of the Equality-Shawneetown area: Illinois Geol. Survey Bull. 47, 1925.

² Cadv. G. H., Classification and selection of Illinois coals: Illinois Geol. Survey Bull. 62, p. 29, 1935.

as datum planes in the delineation of the structure of the Pennsylvanian rocks. It is expected that the information assembled will assist those officials who are responsible for protecting the workable coal beds against encroachment of any kind through abandoned drill holes, that it will be of service to those interested in the exploration and exploitation of the coal resources of the region, and that it will provide structural information which may aid in oil and gas exploration. Finally, and more academically, we hope that it will result in an improvement in the understanding of the stratigraphic succession of the Pennsylvanian system in the southern part of the Illinois coal field.

Acknowledgments

In addition to the individuals mentioned in the introductory paper, special acknowledgment is made of the assistance in correlations and in structural interpretations given by David H. Swann and E. P. Du-Bois of the Oil and Gas Division, H. A. Lowenstam of the Coal Division, and in the interpretation of electric logs by Carl A. Bays of the Groundwater and Geophysical Exploration Division.

PENNSYLVANIAN KEY BEDS

The widespread Pennsylvanian key beds of the Illinois basin discussed in the introductory paper (pp. 9 to 26)—Shoal Creek limestone, West Franklin limestone, "No. 7" coal bed, Herrin limestone and Herrin (No. 6) coal bed, and the Harrisburg (No. 5) coal bed—are all present in that part of Gallatin County described in this report. However, much of the area is underlain only by beds older than the Shoal Creek limestone, so that it is a key bed in only a relatively small part of the area. The West Franklin limestone and "No. 7" coal bed are not continuous and are recognizable only in limited areas, so that they also serve little purpose as key beds. Certain coal beds, particularly "No. 4," "No. 2," and the Davis bed, are sufficiently widespread and definitely recognizable in both control drill holes and in the electric logs of other drill holes to be useful as local key strata.

McLeansbord Group

Shoal Creek limestone.—The Shoal Creek limestone outcrops in the town of New Haven in northwest Gallatin County (Loc. No. 9). It appears equivalent to the limestone outcropping along Shoal Creek in Bond County. ^{3, 4}

The Shoal Creek (New Haven) limestone also outcrops in the northeastern end of the Shawneetown Hills (Sec. 9, T. 10 E., R. 9 S. (No. 89). In addition to a small undetermined portion of the Shawneetown Hills, this limestone underlies a wedgeshaped area between the township line running north from the town of Ridgeway and an imaginary line extending northeast from Ridgeway to New Haven. Drill holes in this area usually encountered the limestone.

The Shoal Creek limestone in outcrop has lithologic characteristics common to several Pennsylvanian limestones, particularly to those of the upper part of the McLeansboro group, and is bluish gray to gray on fresh surfaces and brownish where weathered. The rock itself is mostly close textured and dense, relatively pure, and if crystalline, only very finely so. The usual nodular structure of McLeansboro limestones is evident in certain parts of the member, and thin argillaceous partings give a semblance of irregular bedding in the lower part. The rock exposed at New Haven possesses no physical characteristic that distinguishes it from the West Franklin limestone except possibly its fairly characteristic thickness of only 3 to 7 feet and its occurrence in a single bench. Like many other limestones it is often underlain by black more or less sheety shale or "slate." It is not conspicuously fossiliferous, but brachiopods crinoid stems are present. and The range of the interval between the Shoal Creek limestone and No. 6 coal bed is 500 to 566 feet.

The Shoal Creek limestone (fig. 12) is recorded in electric logs by a pronounced

^a Udden, Jon A., Notes on the Shoal Creek limestone: Illinois Geol. Survey Bull. 8, pp. 117-126, 1907. ⁴ Cady, G. H., Significant uncertainties in Pennsylvanian correlation in the Illinois basin: Bull. Amer. Assoc. Pet. Geol., vol. 20, no. 10, pp. 1507-1524, 1929.

Succession in road cut on Indiana Highway No. 66 in northwest edge of Evansville, Sec. 14, T. 6 S., R. 11 W.

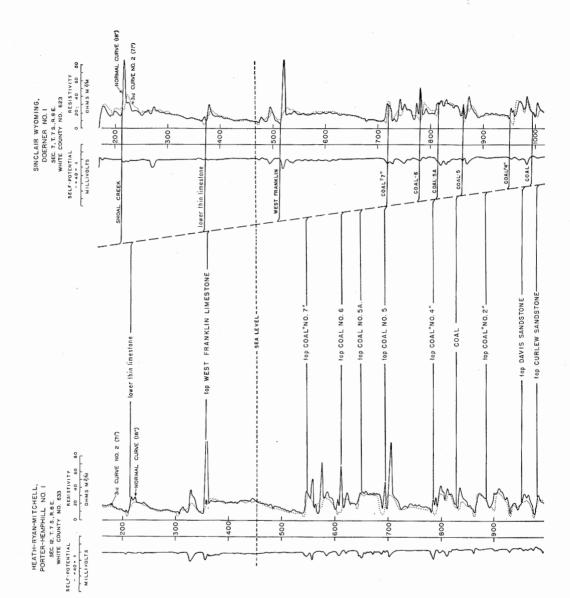
		Ft.	in.
1.	Drift	20	
	Shale, carbonaceous, gray-black	1	2
	Coal (Ditney)		11
	Underclay light gray	3	
	Shale, gray, silty		
5.	Share, gray, shey	1~	
6.	UPPER WEST FRANKLIN LIME- STONE		
	Limestone gray, finely crystalline to		
	dense, ferruginous, massive, weath-		
	ers with fairly smooth surface		11
7.	Clay and clay shale, dark gray-brown	2	1
8.	MIDDLE WEST FRANKLIN		
	LIMESTONE		
	Limestone light gray, finely crystal-		
	line, nodular, argillaceous, weathers to small nodules, very fossiliferous.	6	
0	Clay shale, variegated	-	
	LOWER WEST FRANKLIN	0	
10.	LIMESTONE		
	Limestone gray, very finely crystal-		
	line to dense, waxy, brown-buff with		
	smooth surface weathers slabby, slightly fossiliferous	1	10
11	Shale and siltstone, greenish grav		10
1.1	angle and surstone, greenish grav	41	

"kick" typical of thin limestone. At the position of the Shoal Creek limestone the normal curve is usually off scale (has more than 100 ohm-meters),⁵ and the third curve often behaves much like the normal resistivity curve with only slightly less relief. The potential curve is usually a straight line, but occasionally there is a slight positive potential opposite the resistivity peak at the limestone (fig. 13).

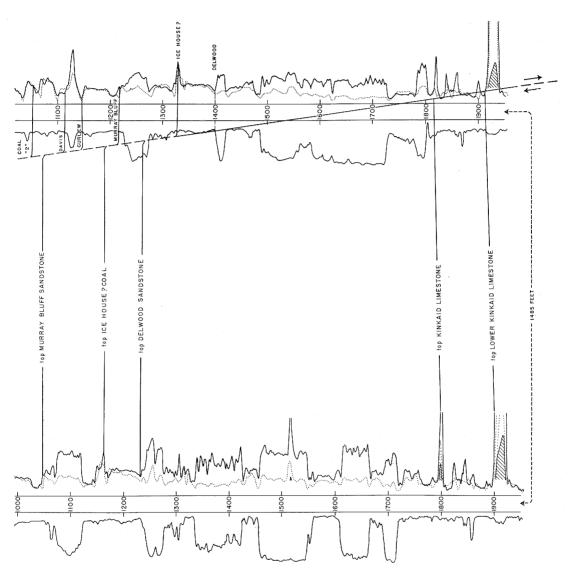
West Franklin limestone.-The West Franklin limestone in Gallatin County lies about 275 feet below the Shoal Creek limestone. The type occurrence of these beds is at West Franklin, Posey County, Indiana, 6, 7 but more complete successions of the beds are to be seen at two localities near Evansville, Indiana, as observed by J. N. Payne and the writer in 1943.

The sequence of beds observed in these two exposures is similar to that occasionally Succession in Standard Brick Manufacturing Company Shale Quarry, Sec. 22, T. 6 S., R. 11 W.

> Ft. in.


Siltstone and sandstone, interbedded, light gray-buff	4
UPPER WEST FRANKLIN LIME- STONE	
Limestone light gray, finely crystalline, ferruginous, sparsely fossiliferous	1
Shale, light green-gray MIDDLE WEST FRANKLIN LIME- STONE	2
Limestone mottled, light gray, nodular, very fossiliferous	4
Clay shale, variegated LOWER WEST FRANKLIN LIME- STONE	3
Limestone light gray, massive, dense, slightly fossilferous	4

Shale and siltstone, light greenish gray.. 54


found in drill holes in Gallatin, White, Edwards, Wabash, Richland, and Clay counties. However, none of the units is continuous, and one or all the limestone beds may be absent locally. If so, the only basis for identification of the West Franklin zone may be the presence of a variegated shale (usually red in wet drill cuttings) at the appropriate position or the Ditney coal bed. There is no known way of identifying the individual limestone benches which make up the three benches of the West Franklin, and it is impossible to tell with certainty which is present when only one or two are penetrated. In these studies the thickest of two benches, or the intermediate of three benches, is regarded as representing the thick middle West Franklin member as developed in the Evansville region, and measurements are made from this bench. This procedure is more or less arbitrary and may not be correct in every case. There is insufficient evidence to justify the assumption that the variegated shale always lies between the two lower benches, al-

6

 ⁵ Ohm-meters described and defined: Mercanton, P. L., Regarding resistivity in electrical prospecting; a practice to be rejected: from a paper presented and distributed at the Int. Assoc. Terrestrial Magnetism and Elec. Wash. Assembly. September 4-15, 1939.
 ⁶ Collett, J., 13th annual report; Indiana Dept. Geol. and Nat. Hist., pp. 51-62, 1884.
 ⁷ Schrock, R. R., and Malott, C. A., Amer. Assoc. Pet. Geol. Bull., vol. 13, pp. 1301-1314, 1929.

ILLINOIS BASIN COAL RESOURCES

though such a shale is common at this position. A limestone outcropping along Saline River about 2 miles northwest of Ridgeway in the NW¹/₄ SW¹/₄, sec. 23, T. 8 S., R. 8 E., is tentatively assigned to the West Franklin rather than to the Shoal Creek, as previously thought.⁸

The West Franklin limestone is recorded by one, two, or three characteristic limestone peaks in the normal resistivity curve. When the presence of three limestone beds is indicated, the middle peak is most prominent, having the greatest relief in both the normal and third resistivity curves, and is the peak most likely to go off scale (greater than 100 ohm-meters) in both resistivity curves. The peaks representing the other two benches rarely extend beyond the 70-ohmmeter value in the case of the normal resistivity curve, and the third resistivity curve usually shows a valley. Small negative potential usually occurs at the positions of the thinner upper and lower beds; whereas the position of the thicker intermediate bed is marked by a negative potential of as much as 50 millivolts. The position of the variegated clay shale between the two lower beds is marked by a prominent valley or re-entrant of the normal curve, which generally characterizes underclay-like shales, and by a positive peak of the potential curve.

"No. 7" coal bed .- The "No. 7" coal bed, usually only 2 to 3 feet thick, is commonly present 150 to 249 feet below the West Franklin limestone and 40 to 50 feet above Herrin (No. 6) coal bed. Its position is generally indicated on the normal resistivity curve by a peak extending about 10 ohm meters and by a re-entrant in the third resistivity curve, and the potential curve shows a slight negative value. The position of the coal bed is fairly definitely indicated because the pattern noted above terminates a rather long and monotonous pattern of low relief below the position of the West Franklin limestone. The coal bed is the first fairly distinct irregularity in the group of irregularities that mark the position of the beds near the No. 6 coal bed,

Herrin limestone.-This is the caprock of the No. 6 coal bed from which it is usually separated in Gallatin County by a black shale a few feet thick. The limestone, 2 to 6 feet thick, often 3 feet, is almost as widespread in this county as the coal bed lying from 1 to 10 feet below. Except for the Jamestown limestone, a few feet higher, which it resembles. Herrin limestone is distinctive in its lithology among Pennsylvanian limestones in this part of the State. It varies in color from gray to brownishgrav to almost black and in texture from earthy to finely granular and dense. The black varieties are particularly fine grained. Bedding is usually poorly developed. The Herrin limestone is usually fossiliferous; Fusulina girtyi is generally present in any outcrop and is common in drill cuttings.9 In a strip pit in sec. 16, T. 9 S., R. 8 E., the rock contains dark gray chert in large irregular masses.

The pattern produced by Herrin limestone in the electric log will be considered in the section on the Herrin (No. 6) coal bed.

CARBONDALE GROUP

Herrin (No. 6) coal bed.—The uppermost member of the Carbondale group is the Herrin (No. 6) coal bed. This bed, 4 to 5 feet thick in Gallatin County, carries here, as elsewhere in the Illinois coal field, a clay band called the blue band about $1\frac{1}{2}$ inches thick, 12 to 15 inches above the base of the bed. This band, however, is not usually picked up in logging rotary-drill holes. Black "slate," 2 to 3 feet thick, commonly separates the coal bed from the Herrin limestone or caprock, and in places an additional few feet of gray shale may intervene between the black "slate" and the caprock. Beneath the coal bed are a few feet of underclay, the lower part of which in places is nodular and calcareous or sandy.

A characteristic pattern in electric logs occurs opposite the No. 6 coal bed, particularly when grouped with the overlying shales and limestones and the underclay.

⁸ Cady, G. H., Structure of Herrin (No. 6) coal bed in Hamilton, Saline, and Gallatin Counties, Illinois, north of Shawneetown fault: Illinois Geol. Survey Cir, 42 (Tabulated Coal Data, Gallatin County, Item No. 102), 1939.

⁹ Dunbar, Carl O., and Henbest, Lloyd G., Pennsylvania *Fusulinidae* of Illinois: Illinois State Geol. Survey Bull. 67, p. 24, plate II, 1942.

Generally the caprock is recorded by a peak with 10 to more than 100 ohm-meters relief on the normal curve. The underlying gray shales are recorded as normal shale curves on both resistance and potential sides. The black "slate" and coal beds are recorded as one unit by a definite peak or peaks in one or both of the resistivity curves. Whether the resistivity peaks are positive or reverse depends on the thickness of the beds. Tf the thickness of the bed exceeds the electrode spacing, a positive peak results; if thinner, a valley or re-entrant results. This spacing is 18 inches for the normal resistivity curve. 53 inches for the third resistivity curve No. 1, and 71 inches for the third resistivity curve No. 2. The underclay generally produces prominent valleys or reentrants in the normal and third resistivity curves. The resistivity curves commonly are lower in value for underclay than the shale base line, and the potential curve has a small positive value.

The limestone, shale, black "slate," coal, and underclay sequence produces a distinctive and readily recognizable pattern.¹⁰ However, in some logs the pattern thought to represent these beds consists of a single positive deflection of the two resistivity curves with a slight break near the middle of the normal resistivity curve (fig. 13). This break probably represents the gray and black shales lying between the limestone and coal beds. The characteristic underclay resistivity curve occurs below this pattern.

Harrisburg (No. 5) coal bed.—This bed lies 90 to 122 feet below No. 6 bed and is 4 to 5 feet thick. The usual interval between the two beds is about 110 feet. Several feet of dark gray shale or black "slate" commonly overlie the coal bed. Usually there is no limestone above the black shale, but if one is present, it is thin and impure. Below the coal bed there is usually 2 to 4 feet of structureless gray underclay containing gray calcareous nodules in the lower part. No. 5 coal bed generally produces a prominent peak on the normal curve with a relief of 10 to 50 ohm-meters (pl. 6). The third resistivity curve produces a similar peak if the bed thickness exceeds the width of the electrode spacing and a sharp reversal when the bed thickness is less than the electrode spacing. The potential curve commonly has some negative value. This may amount to 50 millivolts or more opposite No. 5 coal bed.

OTHER BEDS OF STRATIGRAPHIC INTEREST McLeansbord Group

Limestones between Shoal Creek and West Franklin,-Two thin beds of limestone are usually penetrated in drill holes in the interval between the Shoal Creek (New Haven) and West Franklin lime-They are not known to outcrop stones. and their character is known only from drill cuttings. The pattern of some electric logs suggests the presence of limestone at the appropriate positions (fig. 12). These beds underlie the wedge-shaped area in which the Shoal Creek limestone is found and are also present in other parts of the county wherever the West Franklin limestone is overlain by 175 feet or more of Pennsylvanian strata. The upper limestone is about 1 foot thick and fossiliferous, lying 400 to 460 feet above No. 6 coal bed and 150 to 210 feet above the West Franklin limestone. The second bed, 2 feet thick, lies 15 to 65 feet below the first. These two beds were penetrated in the diamond drill hole, White County (No. 4), near New Haven in sec. 31, T. 7 S., R. 9 E., where the upper bed is 434 feet above No. 6 coal bed and is separated from the lower bed by 50 feet of shale.

The electric log of the control well located in the NE14, NE14, NW14, sec. 22, T. 7 S., R. 9 E. (No. 133) displays a characteristic pattern at the positions of these two limestones. This consists of a small peak in the third resistivity curve, accompanied by a small negative potential. The presence of a similar pattern with similar spacing in electric logs of other drill holes indicates the presence of these limestones.

¹⁹ Taylor, Earle F., Pullen, M. William, Sims, Paul K., and Payne, J. Norman, Methods of subsurface study of the Pennsylvanian strata encountered in rotary-drill holes: Illinois Geol. Survey Rept. Inv. 93, pp. 16-19, 1944.

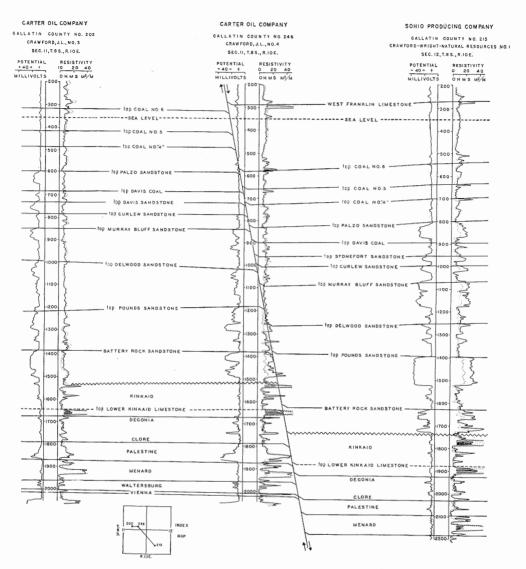


FIG. 13.—Graphic logs of three drill holes adjacent to the Inman East fault in Gallatin County, showing extent and nature of displacement.

Bankston Fork and Jamestown limestones and Anvil Rock sandstone.—The Bankston Fork and Jamestown limestones lie between the "No. 7" coal bed and the Herrin limestone over wide areas in southern Illinois. The Jamestown limestone, not over 4 feet thick and usually less, resembles and lies a few feet above the Herrin limestone. The two limestones are sepa-

rated by the thin Jamestown coal bed which is usually only a few inches thick and accompanied by not more than a few inches of overlying dark gray shale and underlying clay.

The two limestones are so nearly alike and so closely associated that their differentiation in electric logs is impossible. The Bankston Fork limestone is more definitely accentuated electrically by its position above predominately silty or sandy beds up to 25 feet or more thick separating this limestone from the Jamestown and Herrin limestones.

In wide areas in southern Illinois, including parts of Gallatin County, these sandy beds are represented by the Anvil Rock sandstone member, which may occupy the entire interval of 15 to 25 feet between the two limestones, and in some places may even extend to, into, or through the No. 6 coal bed as it does in certain areas in Saline County.11

The Bankston Fork limestone, about 5 feet and rarely more than 8 feet thick, is a dense light gray limestone that weathers to an ochre color. It is sparingly fossiliferous and is the uppermost bed in which Fusulina *girtyi* has been found. Its occurrence, however, is infrequent in contrast with the common occurrence of this fossil form in the Herrin limestone. The Bankston Fork limestone is somewhat unique among limestones in the McLeansboro and Carbondale groups because it is usually underlain by siltstone or sandstone rather than by black shale and a coal bed. There is, however, often a thin coal bed a short distance above the Bankston Fork limestone. The limestone therefore has the position usually occupied by the so-called "freshwater" or underclay limestone of the typical Pennsylvanian cyclical formation.¹² The Bankston Fork limestone is definitely a marine limestone carrying brachiopods and fusulinids.

In electric logs, at the position of the Bankston Fork limestone, the normal resistivity curve shows 10 to 50 ohm-meters relief with the third resistivity curve showing a re-entrant unless the bed is unusually thick (pl. 6). The potential curve usually shows a slight negative potential. A similar pattern a few feet above the position assigned to the Herrin limestone, on the basis of the prominent peak characteristic of that bed, may be ascribed to the effect of the Jamestown limestone and coal bed. However, this bed cannot be differentiated

in most electric logs from the Herrin limestone. A fairly prominent deflection to the right of the normal and third resistivity curves and a corresponding relatively high negative potential generally indicate the presence of the Anvil Rock sandstone.

CARBONDALE GROUP

Briar Hill (No. 5A) coal bed and the Absher sandstone.-The thin No. 5A coal bed, 1 to 2 feet thick in this area, lies 40 to 60 feet below the No. 6 bed. It is usually accompanied by an overlying bed of black shale 1 to 2 feet thick, but rarely by a limestone above the shale. Between No. 5A and No. 6 coal beds there is often a more or less massive sandstone (pl. 6). Like other Pennsylvanian sandstones this one is not continuous in a massive form. Sandstone at this position is well exposed at the Absher Post Office in southeastern Williamson County. When beds other than the sandstone are present, it cannot be assumed that these beds are necessarily contemporaneous. They may be considerably older.

No. 5A coal bed produces a small peak on the normal curve usually with less than 10 ohm-meters of relief, whereas the third resistivity curve shows a re-entrant. Occasionally a small negative potential is indicated, but more often this curve is smooth (pl. 7).

When the sandstone between No. 6 and No. 5A coal beds is present, a sandstone pattern is present in both normal resistivity and potential curves. This and the Palzo sandstone described below are the two most conspicuous sandstones of the Carbondale.

"No. 4" coal bed .- This thin coal bed ranges from a few inches to 3 feet, but is commonly 1 to 2 feet thick and lies 161 to 202 feet below No. 6 in this area. The average interval is 185 feet. The interval to No. 5 coal bed is from 70 to 90 feet. The bed is usually overlain by black shale or "slate"; a thin bed of limestone is commonly present below the coal bed.

These beds produce a fairly distinctive pattern on the electric log. The normal curve usually has 10 to 20 ohm-meters of relief with twin points on the highest resistivity part of the curve. The third

¹¹ Cady, G. H., Coal resources of District V (Saline and Galiatin counties): Illinois Geol. Survey Min. Inv. Bull. 19, pp. 21-25. ¹² Cady, G. H., Areal geology of Saline County: Trans. Illinois Acad. Sci., vol. 19, p. 261, 1926.

TABLE 8 AND THE	INTERVALS F	BETWEEN TOP OF	f No. 6 Coal Bi aid and Top of	ED AND TOP (VIENNA LIM	TABLE 8.—INTERVALS BETWEEN TOP OF NO. 6 COAL BED AND TOP OF CERTAIN PENNSYLVANIAN LIMESTONES AND COAL BEDS AND THE BASE OF THE LOWER KINKAID AND TOP OF VIENNA LIMESTONE OF THE CHESTER SEAIES IN GALLATIN COUNTY	nsylvanian Lim Chester Seales	ESTONES ANI IN GALLATIN	D COAL BEDS V COUNTY	
Bed	Number of datum points	Range of interval, bed to top of No. 6 ft.	Average interval, bed to top of No. 6 coal, ft.	Number of datum points	Range of interval, bed to top of No. 6 coal, ft.	Average interval, bed to top of No. 6 coal, ft.	Number of datum points	Range of interval, bed to top of No. 6 coal, ft.	Average interval, bed to top of No. 6 coal, ft.
T		T. 7 S., R. 8	Å.		T. 7 S., R. 9 E.	E.		T. 7 S., R. 10 E.	E.
New Haven (Shoal Creek?) limestone West Franklin limestone	6	268–270 above	269	N.	241–288 above	257	4	500 277–289 above	500 284
No. 5 coal bed. No. 47" coal bed. Davis coal bed.	23 16 16	below 90-117 175-187 290-352	102 179 338	600	below 95–111 187–202 346–372	102 192 359	000	below 96-98 170-185 314-380	97 177 344
Base: Lower Kinkaid limestone	16	1374-1442	1415		1236-1308	1272	9	1364-1397	1372
Top: Vienna limestone.	11	1706-1807	1768	4	1584-1675	1613	9	1682-1729	1697
		T. 8 S., R. 8	8 E.		T. 8 S., R. 9 E	Е.		T. 8 S., R. 10 E.	Е.
Top: New Haven (Shoal Creek?) limestone West Franklin limestone		255 above	255	2 34	514–566 200–267 above	540 249	a11	250-280 above	266
No. 5 coal bed. No. 41' coal bed. Davis coal bed.	∞ c∂ 4	below 98–126 178–192 338–370	112 183 356	41 40	below 98-120 172-192 344-393	107 180 363	b111 c92 d97	below 91–122 161–192 352–395	102 171 370
Base: Lower Kincaid limestone.	4	1415-1506	1455	22	1302-1378	1334	e92	1315-1468	1396
Top: Vienna limestone	2	1747-1790	1768	40	1606-1718	1673	£78	1680-1785	1746
 ^a Not including holes with intervals 169, a ^b Not including holes with intervals 865, 7 ^e Not including holes with intervals 1465, a Not including holes with intervals 3385, e Not including holes with intervals 1152, f Not including holes with intervals 1444, 	als 169' and 13 als 86', 76', an als 146', 148', als 330', als 1152', 1158 als 1152', 1158 als 1444', 1442	nd 134' which are shortened through faulting. 6', and 70' which are shortened through faulti 148', and 156' which are shortened through faulti 330', 232', 308', 340', 242', and 298' which a 1158', 1150', 1444', 1219', 1086', 1220', 1239' 1442', 1426', 1486', 1488', 1456', 1562', 1433	ened through fault hortened through fault s shortened through fi 42', and 298' which 19', 1086', 1252', 1 88', 1456', 1562', 1	ing. aulting. f aulting. h are shortened 249', 1234', 12 435', 1566', 11	nd 134' which are shortened through faulting. 6', and 70' which are shortened through faulting. 330', 292', 308', 340', 242', and 298' which are shortened through faulting. 1158', 1150', 1414', 1219', 1088', 1220', 1249', 1262', 1249', 1260', 1530', 1548', 1486', 1488', 1456', 1562', 1435', 1566', 1500', 1538', 124	ened through faulti thich are shortened	ng. through faulti	.36	

78

ILLINOIS BASIN COAL RESOURCES

	-								
Bed	Number of datum points	Range of interval, bed to top of No. 6 coal, ft.	Average interval, bed to top of No. 6 coal, ft.	Number of datum points	Range of interval, bed to top of No. 6 ft.	Average interval, bed to top of No. 6 coal, ft.	Number of datum points	Range of interval, bed to top of No. 6 coal, ft.	Average interval, bed to top of No. 6 ft.
	- -	T. 9 S., R. 8 E.	E.		T. 9 S., R. 9 E.	E.		T. 9 S., R. 10 E.	E.
Top: New Haven (Shoal Creek!) limestone West Franklin limestone No 6 coal hed		above	~		above			above	
No. 5 coal bed. No. "4" coal bed. Davis coal.	11 2 2	below 102–125 180–188 373–378	115 184 375	ក្លស្វ័	below 105–118 180–197 363–396	111 186 378	<i>س</i> س س	below 112–128 184–199 320–390	122 191 373
Base: Lower Kinkaid limestone.	5	1453-1507	1482	۴Ś	1398-1433	1416	Ś	i362-1461	1408
Vienna limestone	5	1808-1861	1834	h4	1758-1777	1766	5	1692-1790	1722
L Intervals estimated from No. 5 coal on h Intervals estimated from No. 5 coal on	coal on three coal on two we	three wells in Junction oil pool. two wells in Junction oil pool.	iil pool. pool.						

TABLE 8.—Concluded

GALLATIN COUNTY

.

79

resistivity curve often shows a re-entrant opposite the normal curve, and the potential curve may have up to 20 millivolts of negative potential.

The coal bed designated "No. 2," thought to represent the LaSalle (No. 2) bed, commonly overlies the Palzo sandstone. It is usually thin, less than 3 feet, and is accompanied by several feet of black "slate" without a limestone. In electric logs the position of this coal bed is indicated by an abrupt increase of 10 to 20 ohm-meters on the normal and third resistivity curves, and 5 to 20 millivolts of negative potential. Sandstones immediately above and below "No. 2" coal bed occasionally have shows of oil in this area (pl. 6).

The Palzo sandstone, basal member of the Carbondale group as recently defined,¹³ is a conspicuous but lenticular sandstone. In southeastern Williamson and southern Saline counties it outcrops and forms a line of prominent, although discontinuous. hills extending from Palzo eastward to the vicinity of Mitchellsville, a small hamlet about 8 miles south of Harrisburg on State Route No. 34. Although usually present the sandstone is actually lenticular and may be absent locally. Usually the underclay of "No. 2" coal rests upon this sandstone. Sometimes it rests on shale or siltstone. probably the local equivalent of the sand-The Palzo member is generally 40 stone. to 50 feet thick, but greater thicknesses have been observed (County Nos. 200 and 229). The upper part of the Palzo sandstone locally contains small shows of oil (County No. 200).

TRADEWATER AND CASEYVILLE GROUPS

The designation of the base of the Palzo sandstone as the base of the Carbondale group does not establish the position of the top of the Tradewater group, and this position has not been defined. However, in many places the beds within 25 to 30 feet below the Palzo sandstone include one or two beds of coal. When both are present, the upper one is regarded as the Dekoven bod and is rarely more than 3 feet thick

and usually less. The lower one is the Davis bed, with a maximum thickness of about 4 feet. In western Kentucky the beds have been called respectively the "threefoot" and "four-foot" beds as well as Dekoven and Davis.¹⁴ The thicknesses of the beds are characteristic along the outcrops of the beds in Williamson and Saline counties, but are variable a few miles northward. The interval between the beds varies from about 10 to about 30 feet or more.¹⁵ The lower surface of the Palzo sandstone is very uneven. In several localities it directly overlies the Dekoven coal bed, which is considered the top of the Tradewater group at such places. At some other places it apparently rests on strata below the Dekoven bed and may extend down to the top of the Davis coal bed. Wherever this is the case, the Davis coal bed is locally the uppermost bed of the Tradewater group. However, the base of the sandstone may be some distance above even the top of the Dekoven coal bed, and where this is the case, little is known of the character of the intervening beds. It cannot be definitely stated that one or more thin coal beds may or may not be included in these strata. In most places the Dekoven coal bed lies near the top of the Tradewater.

In subsurface the Davis and Dekoven coal beds often split, making a total of three coal beds. In some places diamond-drill cores reveal the presence of only two underclays, one beneath the middle of three beds and one below the lower bed. The middle bench therefore appears to be a split from the upper bench. There is inadequate evidence to prove whether this is the case in rotary-drill holes showing three coal beds.

The Davis bed is the most persistent and the thickest of the two beds; the Dekoven bed is locally cut out by the Palzo sandstones. Identification is difficult in electric logs, however, and this may account for the wide range of interval between No. 6 and the bed identified as Davis (table 8).

The Dekoven and Davis coal beds produce an electrical log pattern similar to that

¹³ Weller, J. Marvin, Geology and oil possibilities of extreme southern Illinois: Illinois Geol. Survey Rept. Inv. 71, p. 36 (footnote 13), 1940.

¹⁴ Lee. Wallace. Geology of Shawneetown quadrangle in Kentucky: Kentucky Geol. Survey, pp. 28 and 30, 1916. ¹⁵ Cady. G. H., Coal resources of District V (Saline and Gallatin counties): Illinois Geol. Survey Min. Inv. Bull. 19. p. 40 and plate VI, 1919.

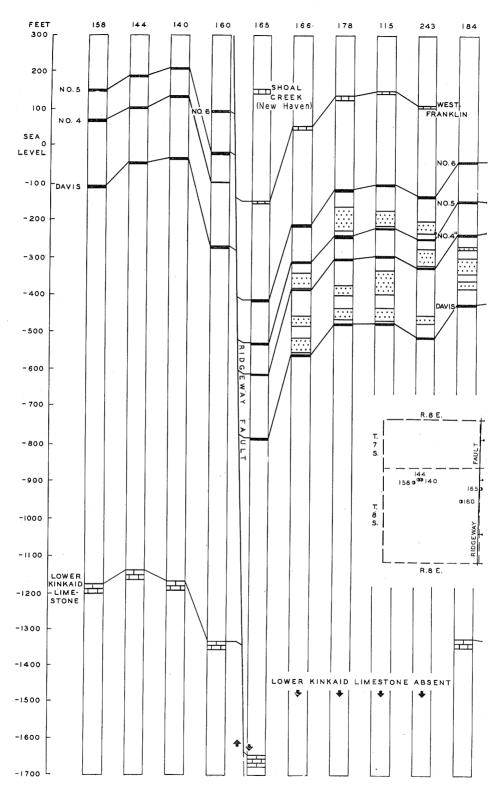
of the Harrisburg (No. 5) coal bed but with less relief on all curves. The third resistivity curve is usually a re-entrant since the coal bed is rarely thick enough to cause a peak pointing to the right. Generally only one curve stands out as representative of a coal bed (pls. 6 and 7; and control wells Nos. 133, 123, and 342). If either of the beds is split or one is absent, it is difficult to arrive at the correct interpretation (pl. 7).

Most of the Tradewater and Caseyville strata below the Davis coal bed follow Weller's designations.¹⁶ The chart (pl. 6) shows the general nature of the succession encountered in drill holes in Gallatin County as now known. The use of definite names, such as Davis, Curlew, Murray Bluff, Delwood, Grindstaff, Pounds, and Battery Rock, for seven fairly thick and persistent sandstone members of the Tradewater and Caseyville groups, and the designation of intervening coal, shale, and limestone beds as Stonefort, Bald Knob, Ice House, Willis, and Battery Rock members, probably oversimplifies conditions as they actually exist. This implies more simplicity in the identification and correlation of individual members than is actually encountered even employing accurate and detailed well logs. The beds are lenticular and the sandstones overlap. Often two or more sandstones coalesce to form a single massive unit, and recognition of the original beds, as such, is impossible.

No diagnostic petrographic, lithologic, or paleontologic characteristics have been found which differentiate the beds, except possibly the occasional quartz pebbles in the sandstones of the Caseyville group. Such pebbles have not been found in beds of Tradewater age. However, the presence of such pebble conglomerate in the lower Pennsylvanian sandstones penetrated in drill holes in the Illinois basin is rarely reported. This may be because broken fragments in the cuttings are seldom recognizable Pebbles have been reported as pebbles. from drill holes as far north as Clay County.17

The thickness of the Tradewater and Caseyville groups in Gallatin County ranges from 830 to 920 feet in the control drill holes logged to the base of the Pennsylvanian system (Nos. 119, 200, 342).

STRUCTURE


Structure of the Pennsylvanian strata in Gallatin County is based on the variations in altitude of No. 6 coal bed. This bed is present in outcrop in the southern part of the county and has been explored with rod drills where it lies at shallow depths and with diamond drills at various places farther north. Within recent years many rotary-drill holes have penetrated the bed; of these, 11 are classified as control drill holes, having been logged through part or all of the Pennsylvanian succession by Survey field parties. Control wells were so located as to extend stratigraphic information into parts of the county where such data were not previously known, where electric logs constituted the only information available, or where interpretation of structural conditions required additional information. The various datum points upon which the structure map is based are fairly well distributed. Diamond-drill and control wells, with reliable lithologic records, provide adequate control of coal beds in drill holes at intervening locations for which only electric logs are available (fig. 17).

The present map (pl. 8) is a revision of an earlier one which included also part or all of Hamilton, White, and Saline counties.18 No. 6 coal bed was selected as a structure datum because of its widespread economic importance in southern and southwestern Illinois, although it is somewhat less important than No. 5 bed in Saline and Gallatin counties. No. 6 coal is identifiable with relative ease where encountered in drill holes because of its exceptional thickness compared to other Illinois coal beds and its association with a fairly thick characteristic limestone caprock.

¹⁶ Weller, J. Marvin, Geology and oil possibilities of treme southern Illinois: Illinois Geol. Survey Rept. Inv. extreme southern Illinois: Illinois Geology and on possibilities of extreme southern Illinois: Illinois Geol. Survey Rept. Inv. 71, pp. 36-42, 1940. ¹⁴ Found by the writer in cuttings from drill holes in the Bible Grove pool in Clay County.

¹⁸ Cady, G. H., Structure of Herrin (No. 6) coal bed in Hamilton, Saline, and Gallatin counties, Illinois, north of Shawneetown Fault: Illinois Geol. Survey Cir. 42 (struc-ture map), 1939.

· · · · ·

GALLATIN COUNTY

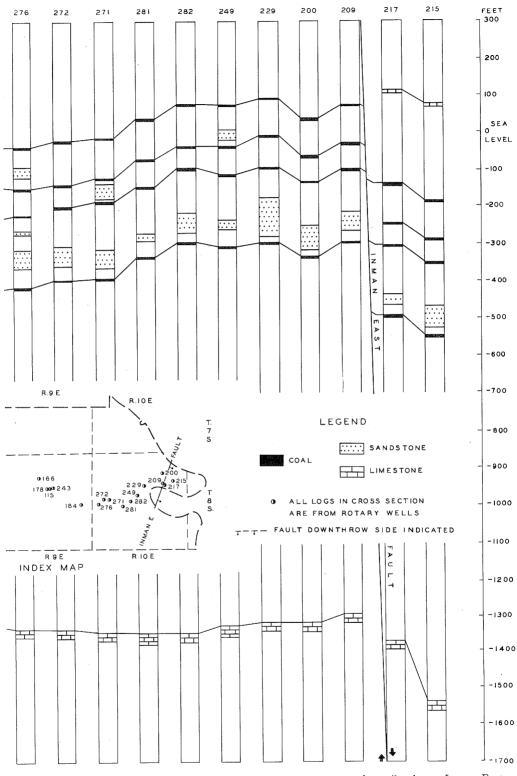


FIG. 14.—Graphic logs of drill holes arranged from west to east, from Omaha to Inman East pools in Gallatin County.

Structure of the No. 6 coal bed.—From its outcrop along the southern margin of the area the bed declines from an altitude of about 400 above to an altitude of 412 feet below sea level, on the downthrow side of the fault block in sec. 7, T. 8 S., R. 9 E. (No. 165). The structure map (pl. 8) shows a regional northward dip of 50 to 100 feet per mile. Interrupting the regional northward dip are important irregularities, including a conspicuous anticlinal dome southwest of the town of Omaha, anticlinal structures at the sites of Inman, Inman West, Junction, and New Haven oil pools, and several normal faults.

General parallelism of Pennsylvanian beds and of Pennsylvanian and Chester beds.—The structure of No. 6 coal bed (pl. 8) is closely parallel to other widespread beds of the Pennsylvanian system and to the Chester series as is shown by the interval between No. 6 coal bed and the New Haven and West Franklin limestones, the No. 5, "No. 4," and Davis coal beds, and the lower Kinkaid and Vienna limestones (table 8).

The isopach map (fig. 15) shows the distribution of variations in interval between No. 6 and No. 5 coal beds. It reveals a slightly smaller interval between the coal beds in the central part of the area as compared with the interval between the beds to the east and west. A thickening of the Absher sandstone, between No. 6 and No. 5A coal beds, generally accompanies an unusual increase in interval between these two coal beds.

A comparison of the structure map of No. 6 coal bed with study structure maps, made on Chester limestones, indicates that in general the interval increases toward the west (fig. 16) (T. 7 and 8 S., R. 8 E.). In local areas the coal and the lower Kinkaid limestone are nearly parallel, as for example, across the Omaha dome.

Table 8 gives the variation of the average interval between No. 6 coal bed and two Chester limestones, by township: 210 feet (1272 to 1482 feet) for the lower Kinkaid and 221 feet (1613 to 1834 feet) for the Vienna limestone. Variations in interval between beds, in both the Pennsylvanian system and between the Pennsylvanian system and Chester series, are on the order of 1 foot in 7 to 1 foot in 10.

Study structure maps of the Kinkaid and Vienna limestones show anticlinal structures close to the same positions as those shown on the structure map of the No. 6 coal bed. The pattern of the contours delineating the Omaha dome is essentially the same for both Pennsylvanian and Chester strata.

The isopach map (fig. 16) shows the distribution of variations in interval between No. 6 coal bed and the base of the lower Kinkaid limestone. The shorter interval occurs near the center of the map with longer intervals shown to the east and west. The area where the shorter interval occurs corresponds to the area of the Wabash Valley (New Harmony) anticlinal graben. It appears necessary, therefore, to postulate either some folding and erosion of the Kinkaid along this anticline before deposition of the Pennsylvanian beds or nondeposition during late Chester seas over high places or islands along the anticline. After deposition of Pennsylvanian beds, subsequent faulting and further folding produced a graben along the axis of the pre-Pennsylvanian anticline. Some drill holes failed to penetrate any Kinkaid, although they reached beds at lower stratigraphic levels (Nos. 132, 369, 115, and 243 in T. 7 and 8 S., R. 9 E.).

In the Kinkaid-No. 6 coal bed isopach map (fig. 16), intervals for the drill holes adjacent to, and east of, the Inman East fault zone in the Inman East pool were disregarded because the holes cross the fault plane. Thus, intervals between No. 6 coal bed and lower Kinkaid do not represent true stratigraphic intervals because of the omission of beds through faulting. Well No. 165, sec. 7, T. 8 S., R. 9 E., is cut by the Ridgeway fault in at least two places. One fault plane crosses the drill hole between the Kinkaid limestone and No. 6 coal bed, thereby making the distance between the two beds about 100 feet less than the normal stratigraphic interval. This shortened interval was taken into account in preparation of the map.

Because the Pennsylvanian beds are all equally involved in the folding which produced the Omaha dome, and because there was little apparent thinning of these strata across the structure, it appears that most of the deformation took place after the deposition of these beds.

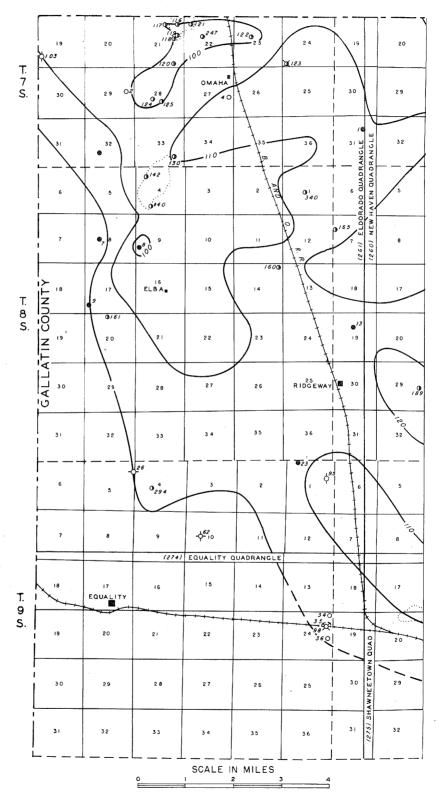
FAULTS

No evidence of displacement has been found in outcrop in this area except along the Shawneetown fault which marks its southern boundary. This fault has been observed when exposed at times of low water in the bed of the Ohio river. The evidence of faulting along other fault lines mapped consists entirely of drilling and mine data.

Besides the Shawneetown fault, which is a zone of major faulting not considered in this report, the faults or fault zones are the Ridgeway, Herald, Maunie, and Inman East, of which only the Ridgeway fault has been described.19 These are all inclined normal faults or fault zones. Along each, drill holes show a shortened section due to omission of beds.

Along the Ridgeway fault, crossing the area from north to south and passing a short distance west of Ridgeway, the strata are downthrown to the east about 440 feet (fig. 12 and pl. 7). Its existence as a fault zone rather than as a sharp monocline²⁰ is established by omission of strata in a drill hole in sec. 7, T. 8 S., R. 9 E. (No. 165), which definitely cuts one fault at about 1560 feet and a second at 2600 feet (pl. 7). The hole starts in Pennsylvanian strata on the downthrown block and at 1560 feet passes into the first upthrow block with 55 feet of throw; between 1910-1950 feet it possibly passes into a second with a throw of

110 feet, and at 2600 feet into the third with a throw of 230 feet. Just above 2600 feet the drill hole is in strata of the Hardinsburg formation, and at 2600 feet it passes into strata of the Paint Creek formation, which is stratigraphically 230 feet lower than the Hardinsburg. The upper and lower faults are definitely determined. The middle fault is inferred because of the short interval between the top of the lower Kinkaid limestone and the base of the Pennsylvanian system.


Because the hole was dry and no others have been drilled nearby to the west, there is no means of direct comparison of the position of Pennsylvanian beds on the two sides of the fault. Scattered drill holes to the west (Nos. 340 and 160) indicate that corresponding key beds are much higher on the west than on the east side of the fault. Thus the altitude of No. 6 coal bed is 412 feet below sea level in drill hole No. 165, whereas in the drill hole in sec. 1, T. 8 S., R. 8 E. (No. 340) the coal lies 35 feet above sea level. What is believed to be the same fault is cut by several drill holes about 11/2 miles north of Gallatin County along the east edge of the Roland pool in southern White County.

Proof of the southward extension of the fault across T. 9 S. is lacking. Earlier maps have indicated a fault zone²¹ in one case, a sharp fold in another,22 and essentially no irregularity in a third,23 depending largely on the interpretation of four inadequate drill hole records in sec. 1 (No. 95) and sec. 24 (Nos. 34-36, and 98). The interpretation adopted here, as shown by the tabulated data, provides the basis for mapping the fault as indicated. The workings of the small mine in sec. 13 (No. 67) extend only a short distance east of the shaft, and terminate about one-quarter mile west of the indicated position of the fault.

 ¹⁹ Cady, G. H., Coal resources of District V (Saline and Gallatin counties): Illinois Geol. Survey Min. Inv. Bull.
 ¹⁹ plate I, 1919.
 ²⁰ Cady, G. H., Structure of Herrin (No. 6) coal bed in Hamilton, White, Saline, and Gallatin counties, Illinois, north of the Shawneetown fault: Illinois Geol. Survey Cir. 42, pp. 6-7, map, 1939.

 ²¹ Cady, G. H., Coal resources of District V (Saline and Gallatin counties): Illinois Geol. Survey Min. Inv. Bull.
 19. plate I, 1919.
 ²² Cady, G. H., Structure of Herrin (No. 6) coal bed in Hamilton, White, Saline, and Gallatin counties, Illinois, north of Shawneetown fault: Illinois Geol. Survey Cir. 42, structure map, 1939.
 ²³ Butts, Charles, Geology and mineral resources of the Equality and Shawneetown area: Illinois Geol. Survey Bull.
 47, plate I, 1925.

GALLATIN COUNTY

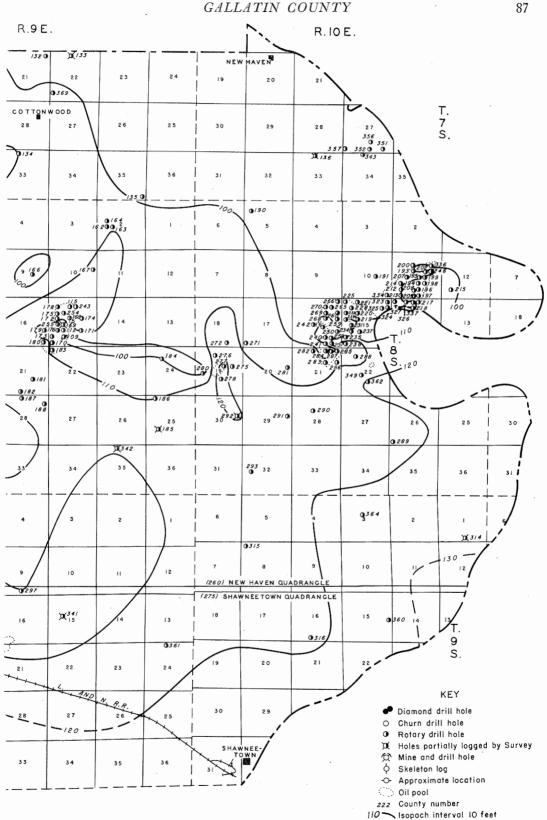
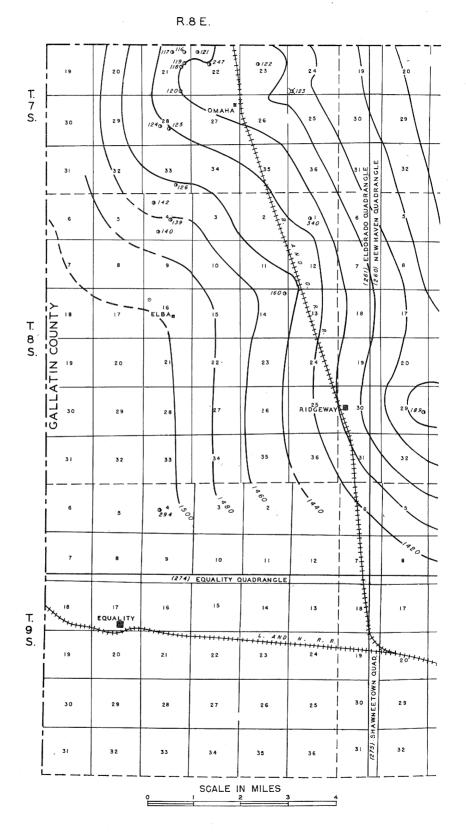



FIG. 15.—Isopach map showing the variation in interval between No. 6 and No. 5 coal beds in Gallatin County.

GALLATIN COUNTY

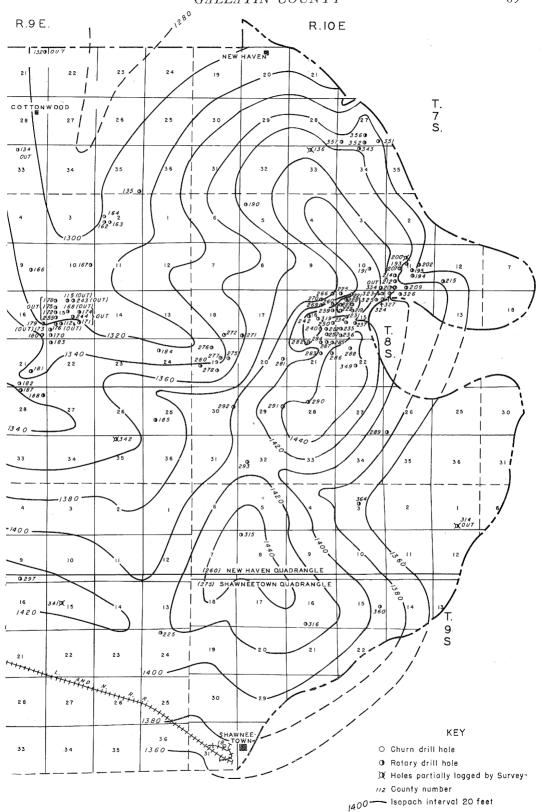


FIG. 16.—Isopach map showing variation in interval between No. 6 coal bed and the base of the Lower Kinkaid limestone in Gallatin County.

In sec. 1 of the same township the altitude of No. 6 coal bed in the two diamonddrill holes (Nos. 24 and 23) is 191 and 208 feet above sea level, respectively, whereas in a third hole (No. 95) to the east, it is 15 feet below sea level, representing a displacement of 206 to 223 feet.

The omission of beds in the drill hole, sec. 7, T. 8 S., R. 9 E. (No. 165), and differences in altitude of strata in secs. 1, 13, and 24, T. 9 S., and R. 8 E., can better be explained by faulting than by folding.

Between the Herald fault on the west and the Maunie fault on the east is a downdropped block or graben to which the names Wabash Valley and the New Harmony graben are applied here.²⁴ The graben has a maximum width of 3 miles in Gallatin County and the boundary faults converge toward a point about 3 miles south of the north line of the county in sec. 15, T. 8 S., R. 9 E. Neither fault has been observed at the surface.

The existence of the Herald fault is indicated by a drill hole (McGraw-Dagley No. 1) in sec. 2, T. 7 S., R. 9 E., White County, where the altitude of No. 6 coal bed is 466 feet below sea level as compared with 240 feet below sea level in sec. 11 (Carter-Dagley No. 1). The Carter-Dagley No. 1 starts in the downthrow block and passes into the upthrow block at a dep'h of 450 feet. The exact position of the fault has not been determined because drill holes to the east are entirely in the downthrow block, drill holes to the west are in the upthrow block, and drill holes adjacent to the fault plane do not penetrate deep enough to yield critical data (Carter-Dagley No. 1, total depth, 1516; McGraw-Dagley No. 1. total depth, 1876).

The southernmost point to which the Herald fault has been traced is in secs. 22, 23, 26, 27. T. 7 S., R. 9 E., Gallatin County, where drilling is indicative of faulting but does not determine the exact position of the fa ilt plane.

The farthest southern extension of the Naunie fault on the basis of present data is in secs. 3 and 10, T. 7 S., R. 10 E., White County. In adjacent drill holes, 660 feet apart, the altitude of No. 6 coal bed is -185 feet (Sohio No. B3—Union Central Life

Ins. Co., sec. 3) and -361 feet (Sohio No. 2A—Union Central Life Ins. Co., sec. 3). In Sohio No. 1A (Union Central Life Ins. Co., sec. 10), 1320 feet south of Sohio No. 2A, the altitude of No. 6 coal bed is -367. The three drill holes, Sohio 1A, 2A, and B3, cut the fault plane at depths of 1130, 1700, and 420 feet respectively. Here the fault plane strikes N. 13 E. and dips 64 degrees N. 77 W. and the displacement of No. 6 coal bed is 176 feet.

The Inman East fault zone runs in a general northeast-southwest direction and cuts the eastern edge of the Inman East pool (figs. 13 and 14). Transections of the major fault plane by drill holes indicate that it dips southeast. In hole No. 199, sec. 11, T. 8 S., R. 10 E., the major fault is cut at an altitude of -210 feet; in hole No. 198 in the same section 660 feet south, it is cut at an altitude of -751 feet; and in hole No. 196 in the same section 940 feet southwest of hole No. 198, it is cut at an altitude of -341 feet. On the basis of these data it is determined that the strike of the major fault is N. 30 degrees E., and the dip required to obtain these differences in altitude is 60 degrees southeast.

A drill hole in the northwest corner of sec. 8, T. 9 S., R. 10 E. (No. 315), cuts the major fault of the Inman East fault zone at approximately 2500 feet and a vertical displacement of No. 6 coal bed of 420 feet is indicated. Here the Tar Springs formation lies in contact with what is probably the Paint Creek formation, and the Glen Dean, Hardinsburg, Golconda, and probably Cypress formations are absent because of faulting.

IGNEOUS INTRUSIONS

Igneous rocks occur fairly frequently in Saline County,²⁵ where they have been encountered in a number of coal mines. Igneous rock occurs closest to Gallatin County in an abandoned mine between Eldorado and Equality on the Louisville and Nashville Railroad (sec. 34, T. 8 S., R. 7 E.). In Saline County the rocks occur in the form of dikes, with a width in one mine of about 300 feet. The dikes are dark

²⁴ Adopting terminology in common use by oil company geologists.

²⁵ Cady, G. H., Coal resources of District V (Saline and Gallatin counties): Illinois Geol. Survey Min. Inv. Bull. 19, pp. 56-61, 1919.

GALLATIN COUNTY

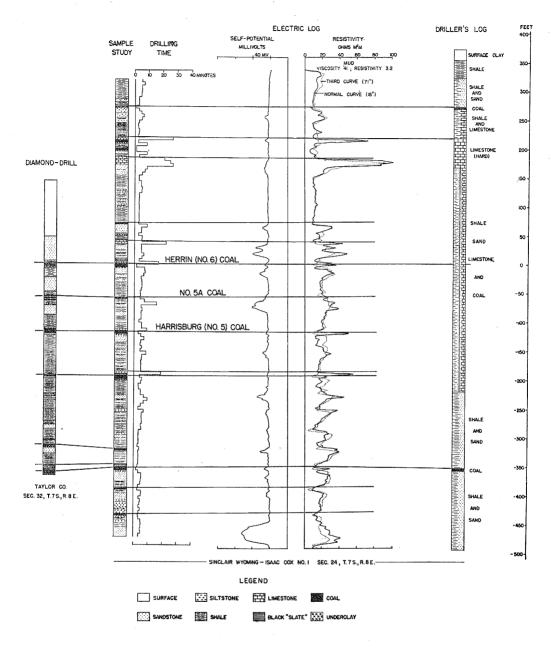


FIG. 17.—Comparison of diamond-drill log and drilling time, cuttings study, electric, and driller's log in Gallatin County. (Fig. 7, Illinois Geol. Survey Rept. Inv. 93, p. 20.)

green to nearly black, fine to fairly coarsely crystalline rocks of the type known as mica peridotite²⁶ or some similar variety of basic igneous rock.

28 Grogan, R. M., Illinois Geol. Survey. Personal communication. In Gallatin County igneous rocks have been encountered in holes drilled on the Omaha dome. They consist of the same type of rock found in Saline County. They do not extend widely at the same strati-

graphic level. In some drill holes many feet of igneous rock have been penetrated (fig. 18). It has not been demonstrated that the Omaha uplift was caused by the arching effect of igneous intrusion in the form of a thick sill or laccolith, although deeper drilling may prove this to be the The relatively shallow occurrences case. appear to be dikes rather than sills. It seems probable that such dikes are not restricted to the area of the uplift, but have been reported there mainly because of the more closely spaced drilling, and because of the alertness of company geologists in correctly interpreting the character of drill cuttings early in the exploration of the Omaha structure. Although dikes are relatively common in Saline County, examination of many drillers' records, both cable-tool and diamond-drill, reveals few that record igneous rock. It is doubtful that Illinois drillers, who are usually unfamiliar with this type of lithology, would recognize and report igneous rocks.

In the Omaha dome area igneous rocks occur at various stratigraphic levels. They are found as deep as 1800 feet where they occur in Chester beds, and as close to the surface as 250 feet in Pennsylvanian beds. The thickness penetrated ranges from a few to 50 or 60 feet (fig. 18). Contact metamorphism of a mild character, sufficient to coke an adjacent coal bed for several feet on either side, but with only very mild alteration on adjacent sedimentary rock, has been observed in mines in Saline County.27 Similar mild contact metamorphism probably attended intrusion in the Omaha dome.

The igneous bodies are represented in electric logs by as much as 400 ohm-meters on the resistivity curves, whereas the potential curve is usually either a straight line or shows a slight positive potential. A more complete description of the igneous rock of the Omaha dome is given by English and Grogan.28

COAL RESOURCES

Coal resources in the No. 5 and No. 6 coal beds in Gallatin County north of the Shawneetown fault have been estimated at 1971 million tons (1919). This estimate was based on an average thickness of 4 feet for each coal bed, 225 square miles underlain by No. 5 and 210 square miles underlain by No. 6.29 The calculations were made on the basis of 1,132,800 tons per square-mile-foot (1770 tons per acre footsp. gr. 1.30). Present studies require some revision of the estimate. The accompanying map indicates about 221 square miles underlain by No. 6 coal bed and about 232 square miles by No. 5, giving a total of 1000 million tons of No. 6 and 1053 million tons of No. 5 or a total of 2053 million tons, assuming an average thickness of 4 feet for each bed.

More recently (1944) the amount of coal in No. 5 and No. 6 beds north of the Shawneetown fault was estimated as approximately 2000 million tons and the resources present in the Davis and Dekoven beds as about 1000 million tons.³⁰

The present studies have thrown additional light on distribution and thickness of the Davis and Dekoven beds in Gallatin The Davis bed underlies ap-County. proximately 250 square miles of the county and represents about 990 million tons of coal with an average thickness of 3.5 feet. The combined thickness of the two beds is in the order of $6\frac{1}{2}$ feet (p. 78), but the Davis bed appears to be the only one that maintains a thickness averaging more than 3 feet. Thus the estimated total amount of coal in the No. 6, No. 5, and Davis beds is in the order of 3000 million tons. Of this quantity less than 1 percent has been mined or rendered unrecoverable by mining processes. However, structural irregularities are probably sufficiently important along the fault lines to prevent the recovery of

²⁷ Ref. 23.

⁴⁴ Kel. 23.
²⁸ English, R. M., and Grogan, R. M., The Omaha pool and mica-peridotite intrusives, Gallatin County, Illinois: Structure of typical American oil fields, vol. III, A.A.P.G., pp. 189-212, April 1948; Illinois Geol. Survey Rept. Inv. 130, August 1948.

 ²⁹ Cady, G. H., Coal resources of District V (Saline and Gallatin counties): Illinois Geol. Survey Min. Inv. Bull.
 19. table 15. p. 106, 1919.
 ³⁰ Cady, G. H., Coal resources based on information obtained from rotary drilling: Illinois Geol. Survey Rept. Inv.
 93, pp. 37-38, 1944.

GALLATIN COUNTY

EXCHANGE OIL COMPANY

GALLATIN COUNTY NO 161

OPAL EVANS NO.1 SEC.20, T.8 S , R.8 E.

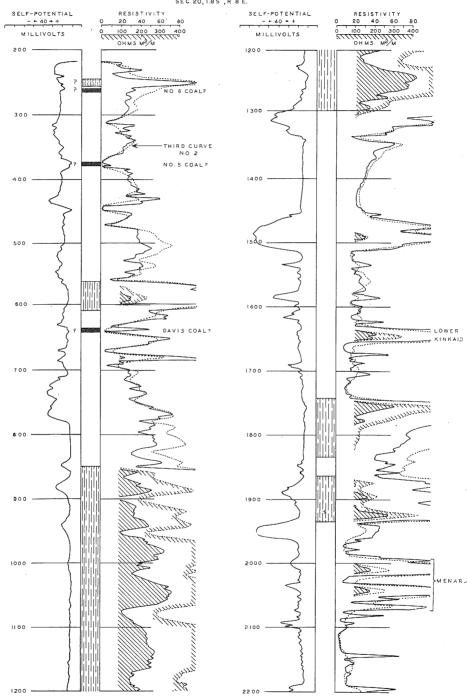


FIG. 18.—Graphic log of Exchange Oil Co., Opal Evans No. 1, Gallatin County, showing igneous bodies as broken vertical lines.

large quantities of coal. Probably damage to the coal beds will result from penetration of the beds by numerous drill holes, particularly where closely spaced in producing oil pools. Additional loss is inevitable from the mining processes. It seems probable that the actual amount of recoverable coal from these beds cannot be more than half the amount given above, or 1500 million tons.

Some of the other coal beds, including "No. 7," "No. 4," "No. 2," the Dekoven, Curlew, and possibly others higher or lower in the section, may be of workable thickness in areas large enough to support mining operations in Gallatin County. However, only additional exploration can provide the data necessary for evaluation of these possible reserves.

PROTECTION OF COAL BEDS

Workable beds of coal were originally defined in the Rules and Regulations of the Oil, Gas, and Coal Conservation Act (effective July 29, 1941) as beds 30 inches or more thick at a depth of 1000 feet or less, and 36 inches or more thick at a depth of more than 1000 feet. This order has been modified to limit workable beds to a thickness of 30 inches at or above 1000 feet.³¹ Three beds need protection in this area: No. 6, No. 5, and the Davis. No drill hole should be abandoned in this county unless provision is made for the protection of these coal beds. With the aid of the structure contour map, showing the altitude of No. 6 coal bed above sea level, the depth to this bed can be calculated from the surface altitude. The average intervals between No. 6 bed and No. 5, and No. 6 bed and the Davis coal bed, for the various townships in the area mapped, appear in table 8. In general, No. 6 and No. 5 beds are separated by about 100 to 110 feet of strata. To protect these beds, a cement

plug should extend from 50 feet above to 150 feet below No. 6 coal bed. To protect the Davis bed, a cement plug should extend for 100 feet from about 290 feet below No. 6 bed in T. 7 S., and about 315 feet below No. 6 bed in T. 8 S. Such a plug should give satisfactory protection for both the Dekoven and the Davis beds.

Placing of plugs at the positions indicated will provide protection for the three beds of special importance in the area. However, this procedure does not release the operator from the obligation of protecting other beds which adjacent diamond drilling or careful logging of any rotary-drill holes indicate are of workable thickness. The present report, particularly the cross-sections, graphic logs, and tabulations, shows the positions where coal beds are likely to be penetrated. Care should be exercised in drilling at these positions so that unusual thicknesses of coal beds that are generally thin may be reported.

OIL AND GAS RESOURCES

Structure of the No. 6 coal bed has a close similarity to the structure of the upper and middle Mississippian beds which contain the oil and gas produced in Gallatin County. Where these accumulations are related to structural features of the producing strata, the structure of No. 6 coal provides a fairly accurate picture of the structure of the reservoir formations. However, this constitutes a post factum relationship which is established after the pools The relationship have been discovered. nevertheless is important because it indicates the value of shallow structure testing to key beds such as No. 6 coal bed.

The structure map of the No. 6 coal bed presents the structural features in sufficient detail to meet the primary objectives of this study. However, a contour interval of 25 feet is probably too large to delineate the smaller structural irregularities that seem to determine positions of some of the oil pools in Gallatin County.

³¹ Oil, Gas, and Coal Conservation Act—Rules and Regulations, Rule 11, p. 12: Illinois Dept. Mines and Minerals, Division of Oil and Gas Conservation, October 18, 1945 (mimeographed).

GALLATIN COUNTY

System or Series	Group or Formation	Producing Strata	Pool	Approx. Depth (feet)
Pennsylvanian	Tradewater	Murray Bluff sandstone	Inman East	780
Chester Series	Degonia	Degonia sandstone	Inman East	1,690
(Upper Missis-	Clore	Clore sandstone	Inman East	1,725
sippian)	Palestine	Palestine sandstone	Inman	1,830
		· · · · · · · · · · · · · · · · · · ·	Omaha	1,670
	Waltersburg	Waltersburg sandstone	Inman	1,990
			Roland	2,170
	Tar Springs	Tar Springs sandstone	Inman East	2,080
			Inman West	2,175
			New Haven West	2,100
			Omaha	1,880
			Roland	2,240
	Hardinsburg	Hardinsburg sandstone	Inman East	2,135
	Cypress	Cypress sandstone	Inman East Inman West	2,430
			Roland	2,480
	$\mathbf{D} \rightarrow \mathbf{C}$, \mathbf{b}	Paint Creek sandstone	Roland	2,570
	Paint Creek Bethel	Bethel sandstone	Roland	2,750
			Inman	2,750
	Aux Vases	Aux Vases sandstone	Inman Inman North	2,740
			Roland	2,815 2,880
			Rotand	2,000
Iowa Series (Lower Missis-	Ste. Genevieve (Rosiclare	Rosiclare sandstone	Inman	3,005
sippian)	member)	"MaCla har" line	Inman	2 720
	Ste. Genevieve	"McClosky" lime	Inman Inman East	2,730
	(Fredonia		Inman East Inman West	2,740
	member)		Inman West Inman North	2,875
			Roland	2,870 3,155
			Rotatiu	0,100

Table 9.—Oil or Gas Producing Formations in Gallatin County 32

³² Oil and Gas Drilling Report, Illinois Geol. Survey, 103, pp. b-h, May 1945.

SUBSURFACE GEOLOGY OF HAMILTON COUNTY

BY

MARY BARNES ROLLEY

THE STRUCTURAL FEATURES of the Herrin (No. 6) coal bed in Hamilton County, as delineated in an accompanying structure contour map, and the more important features of the Pennsylvanian stratigraphy of the county are described in this report.

Hamilton County, an area of about 435 square miles,¹ is in the southern part of the Illinois basin (fig. 1) and at the northern margin of the main southern Illinois coal field of Franklin, Williamson, and Saline counties. No coal mines are present in the county, but in the southern part a large volume of workable coal is present in Herrin (No. 6) and Harrisburg (No. 5) coal beds according to the records of diamonddrill holes.

TABULATED DATA

The data used in compiling the structure map appear in tabulated form in the Appendix. Coal thickness is most reliably recorded in records of diamond-drill holes, and next in the logs of control wells, the drilling of which was observed by a Survey field party. In general thicknesses cannot be accurately determined from electric logs.

Table 10, which follows, gives the interval between the top of No. 6 and the top of No. 5 coal beds, and the top of No. 6 coal bed and the top of the Little Menard limestone, the lowermost limestone member of the Menard formation of the Chester Series, for a number of drill holes fairly evenly spaced over the area of the county.

KEY BEDS

Certain Pennsylvanian beds are traceable from drill hole to drill hole over considerable areas of Hamilton County and are

therefore regarded as key beds in the identification of stratigraphic positions in the Pennsylvanian.

The key beds for Hamilton County are mainly within the McLeansboro group² but also include three beds within the Carbondale group.8 The records of the control wells (figs. 19, 20) are insufficiently definite in regard to the stratigraphic units of the underlying Tradewater and Caseyville groups to identify definitely individual beds in these predominately sandy and shaly strata.

Within the McLeansboro group the following limestone and coal beds are fairly conspicuous and widespread: Shoal Creek limestone, Cutler coal bed, Bankston Fork limestone, and Herrin limestone, the caprock of the Herrin (No. 6) coal bed. Within the Carbondale group three coal beds are commonly recognized in the records of drill holes of sufficient depth. These are Herrin (No. 6) and Harrisburg (No. 5) coal beds, recorded in most of the diamonddrill holes in the county, and the coal bed called "No. 4" lying about 75 to 95 feet below No. 5 coal bed. No diamond-drill hole in the county extended more than a few feet below the No. 5 coal bed, but the "No. 4" bed was picked up in logging seven of the control wells. The presence of "No. 4" in many other rotary wells is indicated by the characteristic pattern of the electric logs at the appropriate position.

Shoal Creek limestone.-This limestone is believed to be continuous into Wayne County⁴ and to be represented by the New Haven limestone outcropping at New

¹ Estimated by D. H. Swann from measurements based on topographic maps.

² DeWolf, F. W., Studies of Illinois coal--Introduction: Illinois Geol. Survey Bull. 16, p. 181, 1910. ³ Cady, G. H., Analysis of Illinois coals: U. S. Bur, Mines Tech. Paper 641, p. 9, 1942. ⁴ Sims, P. K., et al., Pennsylvanian key beds in Wayne County and the structure of the Shoal Creek limestone and the Herrin (No. 6) coal bed: Illinois Geol. Survey Rept. Inv. 93, p. 28, 1944.

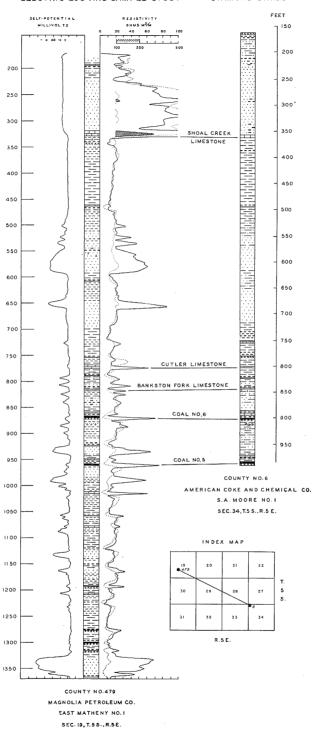
Loc	cation	Inte No. 6 to	o No. 5	Number of drill	Inter No. 6 co	al bed	Number of drill
T. S.	R. E.	coal Range	bed Av.	holes	to ''Little l Range	Menard" Av.	holes
3	5	73–130	107	26	1441–1570	1508	26
3 3 3 4 4 5 5	6	72-100	84	3	1568-1585	1574	3
3	7	83-103	92	11	1500-1571	1539	10
4	5	81-136	99	8	1541-1625	1575	8
4	6	60-108	89	15	1545 - 1615	1571	13
4	/	65-110	87	47	1532-1623	1571 1584	47 7
5	6	55– 97 65–110	80 92	9 26	1565–1612 1534–1635	1584	26
5	7	95-129	102	15	1534 - 1035 1580 - 1706	1629	20 19
6	5	45 - 91	67	. 57	1535-1674	1571	54
6	6	55-118	91	99	1560-1750	1650	91
6	7	85-143	114	53	1576-1750	1659	55
Ž	5	58-106	83	4		1680	1
7	6	70-93	82	7	1608-1683	1645	4
7.	7	107-122	114	3	1722-1730	1726	2

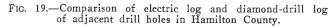
Table 10.—Data on Interval's Between No. 6 and No. 5 Coal Beds and Between No. 6 and "Little Menard" Limestone of Chester Series

Haven, Gallatin County.⁵ It is the first conspicuous limestone encountered in drilling and lies 480 to 580 feet above Herrin (No. 6) coal bed. The interval increases toward the east (fig. 21). The Shoal Creek limestone, about 5 to 12 feet thick, generally forms a single bench but appears locally in two benches. In drill cuttings the rock is white to light tan and finely granular to crystalline. It becomes somewhat sandy near the eastern boundary of the county, and a thick sandstone member lies across the position of the limestone in the southern part of the county. The limestone is generally underlain by shale, described sometimes as black for a few feet, overlying a thin coal bed. In those drill holes where coal was recorded, the interval between the coal bed and the Shoal Creek limestone is about 20 feet.

Cutler coal bed.—A coal bed, 1 to 2 feet thick and about 65 to 75 feet above the Herrin (No. 6) coal bed, underlies most of the county. Locally the interval increases to 85 to 95 feet where a large part of the intervening strata consists of sandstone. The correlation of this coal bed with the Cutler coal bed of Perry County⁶ is tentative, but it occupies the approximate position of a coal bed underlying the Cutler limestone. The Cutler limestone is usually not encountered in drill holes in Hamilton County, but members of the Survey have observed it in drill cores from holes as far east as the vicinity of Eldorado and in outcrops along the Illinois Central Railroad in Saline County.⁷

Bankston Fork limestone.⁸—This limestone, 2 to 6 feet thick, occupies an intermediate position between the Cutler coal bed and the Herrin limestone and lies 40 to 50 feet above the No. 6 coal bed. Well cuttings are light gray to tan with a slightly granular texture, locally becoming somewhat shaly and nodular. It is only sparingly fossiliferous. It is not immediately underlain by black shale or a coal bed


⁵ DeWolf, F. W., Coal investigations in the Saline and Gallatin field: Illinois Geol. Survey Bull. 8, p. 218, 1908.


⁶ Bell, A. H., Ball, C. G., and McCabe, L. C., Geology of the Pinckneyville and Jamestown areas, Perry County, Illinois: Illinois Geol. Survey, Illinois Petroleum 19, p. 3, 1931.

 ^{17911.}
 ⁷ Personal communication from G. H. Cady.
 ⁸ Cady, G. H., The areal geology of Saline County: Trans.
 Illinois Acad. Sci., vol. 19, p. 262, 1926.

ELECTRIC LOG AND SAMPLE STUDY

DIAMOND DRILL

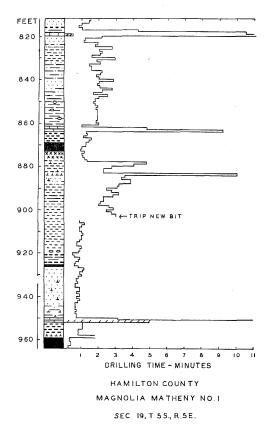


FIG. 20.-One-foot drilling time log of Magnolia-Matheny No. 1 drill hole in Hamilton County, 19-5S-5E.

and thus differs from most Pennsylvanian limestones. Commonly the underlying stratum is a siltstone or silty shale or even a sandstone.

Herrin limestone.-The caprock of No. 6 coal bed is one of the most conspicuous members of the McLeansboro group and is encountered in most drill holes. It is called the Herrin,9 the Brereton10 (western Illinois) or the Providence¹¹ limestone (southeastern Illinois, Indiana and western Kentucky). It is 2 to 6 feet thick, and drill cuttings consist of fragments of dark gray, brown or black, finely granular and sparingly fossiliferous limestone. A characteristic small fossil, fragments of which are occasionally encountered in drill cuttings, is Fusulina girtyi.¹² This limestone is separated from the No. 6 coal bed by black "slate" and gray shale from 1 to 10 feet thick.

Herrin (No. 6) coal bed.—The No. 6 coal bed, 5 to 9 feet thick, is the upper member of the Carbondale group and the most commonly recognized key bed of the Pennsylvanian system in southern Illinois. Because it is easily identified and commercially important, the bed has been selected as the datum for mapping Pennsylvanian structure in the southern half of the State. In electric logs the position of the bed is usually indicated by a characteristic pattern¹³ closely associated with the pattern of the caprock limestone.

Harrisburg (No. 5) coal bed.-Harrisburg (No. 5) coal bed lies 50 to 120 feet below the bottom of No. 6 bed. Diamonddrill records generally show 3 to 7 feet of coal in the No. 5 bed, but a few holes near the eastern county line encountered no coal at this position. A caprock is reported only rarely in the logs; when present it is thin. The position of No. 5 coal bed appears in electric logs of rotary-drill holes as a characteristic fairly prominent peak in the normal resistivity curve.

"No. 4" coal bed .- In the control wells black "slate" and coal were usually present at a depth 140 to 200 feet below No. 6 coal bed. In some wells only black "slate" was found at this position. The thickness of the bed is usually recorded in inches, but 3 feet of coal were reported 185 feet below No. 6 coal bed in a drill hole in sec. 19, T. 5 S., R. 5 E. (County No. 479). Diamonddrill holes in the county have not reached this coal bed. Its thickness and position are determined primarily from data supplied by records of control wells and electric logs of other rotary-drill holes. In general the pattern of "No. 4" coal bed has a fairly prominent peak to the right in the normal curve, less prominent, however, than that produced by the Harrisburg (No. 5) coal

⁹ Idem. ¹⁰ Savage, T. E., Significant breaks and overlaps in the Pennsylvanian rocks of Illinois: Amer. Jour. Sci., 5th Ser., vol. 14, pp. 307-316, 1921. ¹¹ Glenn, L. C., The geology and coals of Webster County: ¹² Survey. Ser. 6, vol. 5, p. 98, 1922.

¹² Dunbar, Carl O., and Henbest, Lloyd G., Pennsyl-vanian Fusulinidea of Illinois: Illinois Geol. Survey Bull. 67. p. 117. 1942. ¹³ Taylor, E. F., et al., Methods of subsurface study of Pennsylvanian strata encountered in rotary-drill holes: Illi-nois Geol. Survey Rept. Inv. 93, pp. 15-19, 1944.

bed. Because actual proof of the presence of this coal bed is not established by diamond drilling, it is a less satisfactory key bed than those described above. Although tentatively designated as "No. 4" coal bed, correlation with either the Summum¹⁴ (No. 4) bed of western Illinois or Indiana No. IV coal bed has not been definitely established. These three coal beds all lie at about the same stratigraphic position.

INTERPRETING ELECTRIC LOGS

A knowledge of the general character and spacing of the key beds in the upper part of the Pennsylvanian succession is necessary to interpret correctly the electric logs. The relatively strong resistivity of the Shoal Creek, Bankston Fork, and Herrin limestones in the McLeansboro group and of the No. 6, No. 5 and "No. 4" coal beds in the Carbondale group makes it possible to identify the position of this series of strata with reasonable accuracy in any electric log.15 The resistivity and potential curves may change somewhat with variation in the thickness of the individual members, but the general pattern remains essentially the same.

Beds in the Lower Part of the Pennsylvanian

Because there has been no diamond drilling below No. 5 coal bed, no individual member of the lower Carbondale, the Tradewater or the Caseyville groups, except "No. 4" coal bed, can be regarded as a key bed. Drilling of seven rotary-drill control wells was observed by Survey field parties and the cuttings were studied in the laboratory. Even these drill holes have not provided information of much value in interpreting electric logs through these lower Pennsylvanian strata.

OTHER PENNSYLVANIAN STRATA OF STRATIGRAPHIC INTEREST McLeansbord Group

Approximately 125 feet above the Shoal Creek limestone in the upper part of the McLeansboro group a thin bed of black shale and an underlying thin coal bed are reported. An overlying limestone bed, 1 to 2 feet thick, is locally present. Drill cuttings indicate that this is a mediumgray shaly fossiliferous limestone. This and other Pennsylvanian beds described in the report are shown graphically in figures 21 and 22.

At varying positions 370 to 420 feet above the No. 6 coal bed a bed of black shale or "slate," accompanied by a coal bed or a thin bed of limestone, or both, is commonly reported in drill records or indicated in electric logs. A similar thin bed of black shale and a coal bed are also commonly reported 270 to 300 feet above the No. 6 bed.¹⁶

The West Franklin limestone¹⁷ is an important member of the lower part of the McLeansboro group in certain counties in southeastern Illinois and in adjacent counties in southwestern Indiana. Limestone beds suggestive of the West Franklin limestone were penetrated in only two control drill holes. In a control drill hole logged by the Survey in sec. 15, T. 5 S., R. 7 E. (County No. 498) a 4-foot limestone was penetrated 270 feet above No. 6 coal bed. The presence of limestone at about the same position in drill holes to the north and south is indicated by electric logs. A control drill hole in sec. 26, T. 4 S., R. 7 E. (County No. 478) penetrated a white to light gray, fine to crystalline, fossiliferous limestone 310 feet above No. 6 coal bed. This limestone bed can be traced westward to a diamond drill hole in sec. 27, T. 4 S., R. 6 E. (County No. 3) in which a 4-foot

¹⁴ Wanless, H. R., Pennsylvanian cycles in western Illinois: Illinois Geol. Survey Bull. 60, pp. 179-193, 1931. ¹⁵ Taylor, op. cit.

¹⁶ Cady, G. H., Coal resources of District VI: Illinois Geol. Survey Min. Inv. Bull. 15, p. 34. ¹⁷ Collett, J., Thirteenth annual report: Ind. Dept. Geol. and Nat. Hist., pp. 61-62, 1884.

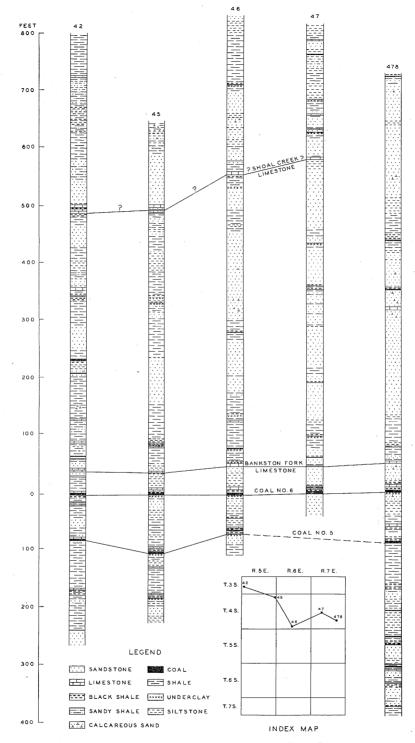
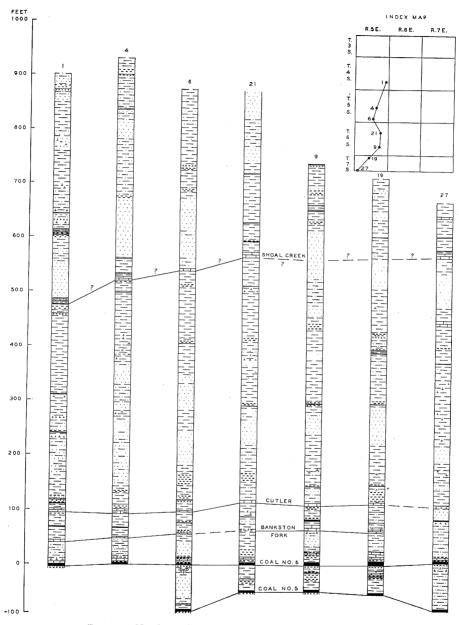
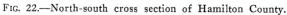




FIG. 21.-East-west cross section of Hamilton County,

bed of limestone was penetrated 290 feet above No. 6 coal bed. Apparently no single drill hole in Hamilton County is known to have penetrated two beds of limestone at the two positions. It is suspected that one or both of these limestones may represent the West Franklin limestone, but this has not been established. The position of these limestones relative to the thin coal beds noted in the preceding paragraph is not evident.

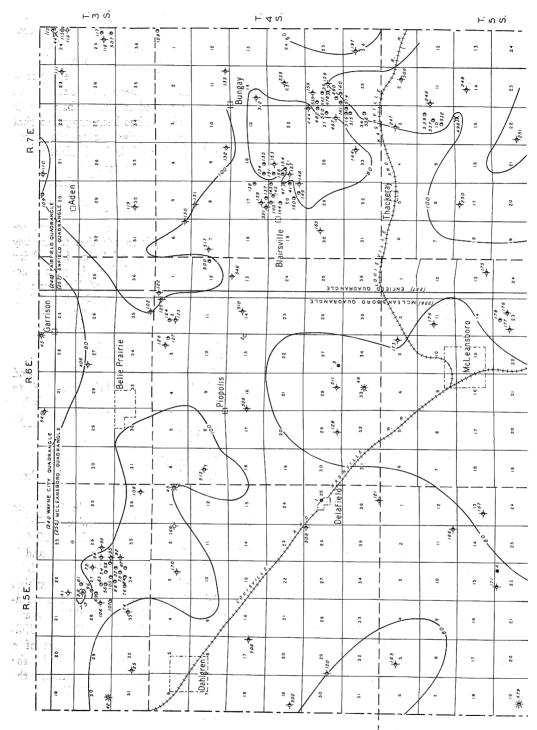
Like the West Franklin limestone to the east, the Cutler limestone is widespread west of Hamilton County. Usually in Franklin County and westward the Cutler limestone lies immediately above a black shale or "slate" which in turn overlies the Cutler coal bed. If the Cutler limestone is present in Hamilton County, it lies at a greater interval above the Cutler coal bed than is usual farther west. In the southwestern half of the county the first limestone lies 15 to 25 feet above the Cutler coal bed (fig. 22, Nos. 1, 4, 6, 9, 19, 21) or 95 to 130 feet above No. 6 coal bed. The variation in interval suggests that more than one lenticular bed of limestone may be present at different stratigraphic levels. As vet definite correlation is impossible. Therefore the Cutler limestone does not have the same value as a key bed in Hamilton County as it has farther west. Cuttings from the limestone or limestones at this general position are light gray to tan, white to light gray to tan, and slightly granular to fine. The recorded thicknesses are from 3 to 6 feet. Limestones at the position of the Cutler are missing from the succession in the northeastern half of Hamilton County.

A thin coal bed lying a short distance above the Bankston Fork limestone, and between this limestone and the Cutler coal bed, is reported in the logs of three drill holes: County No. 6 (sec. 34, T. 5 S., R. 5 E.); County No. 46 (sec. 33, T. 4 S., R. 6 E.); and County No. 478 (sec. 26. T. 4 S., R. 7 E.). The coal bed is overlain by a thin bed of black shale and may represent the Bankston Fork coal bed of Saline County.18

A thin bed of black shale and a thin bed of coal are reported in some records within

a few feet above the Herrin limestone. This is the position of the Jamestown coal bed of Perry County.¹⁹ The Jamestown coal bed is commonly overlain by a bed of limestone up to 2 feet thick closely resembling the Herrin limestone. Usually the Jamestown coal bed is either absent or is not recognized. It has been suggested that this coal bed is equivalent to the much thicker No. 12 coal bed of Kentucky.20 Because it is difficult to recognize, it cannot be regarded as an important key bed.

CARBONDALE GROUP


Within the Carbondale group there are several thinner beds in addition to the key beds No. 6, No. 5, and "No. 4." Briar Hill²¹ (No. 5A) coal bed, in places accompanied by a thin bed of limestone, is generally reported between No. 5 and No. 6 coal beds. On the basis of information obtained from two control drill holes on the Carbondale group, Nos. 42, 478 (fig. 21), it appears that a thin bed of coal lies 50 to 60 feet below "No. 4" and a second coal bed about 100 feet below, or 200 to 260 feet and 240 to 300 feet respectively below the top of No. 6 bed. The upper of these beds may represent the LaSalle "No. 2" coal bed of northern Illinois. The difficulty in recognizing the position of these thin coal beds in electric logs makes them unsatisfactory as key beds.

The base of the Carbondale formation is marked by the fairly conspicuous Palzo sandstone commonly present about 300 feet below No. 6 coal bed. It is porous and is commonly marked in electric logs by a fairly high resistivity and an accompanying high potential. Like most Pennsylvanian sandstones it varies considerably in thickness and cannot always be identified. Further difficulty arises because of the presence of a succession of lenticular sandstones in the underlying Tradewater formation, the upper ones of which may be indistinguishable from the Palzo sandstone.

¹⁸ Cady, op. cit. (Areal geology).

 ¹⁹ Bell. Ball, and McCabe. op. cit.
 ²⁰ Weller, J. M., and Wanless, H. R., Correlation of mineable coals of Illinois, Indiana and western Kentucky: Bull. A.A.P.G., vol. 23, No. 9, p. 1391, Sept. 1939.
 ²¹ Wanless, H. R., Pennsylvania cycles in westeru Illi-nois: Ill. Geol. Survey Bull. 60, pp. 79-83, 1931.

ILLINOIS BASIN COAL RESOURCES

- Polyania (1999)
 - Polyania (1999)

HAMILTON COUNTY

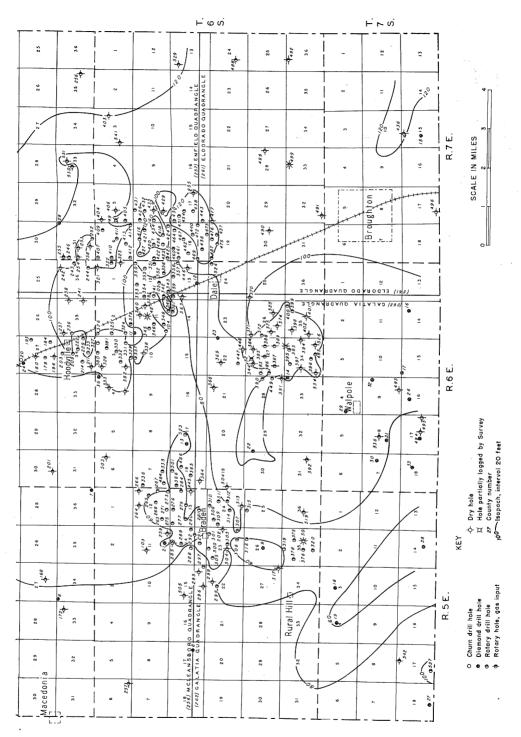
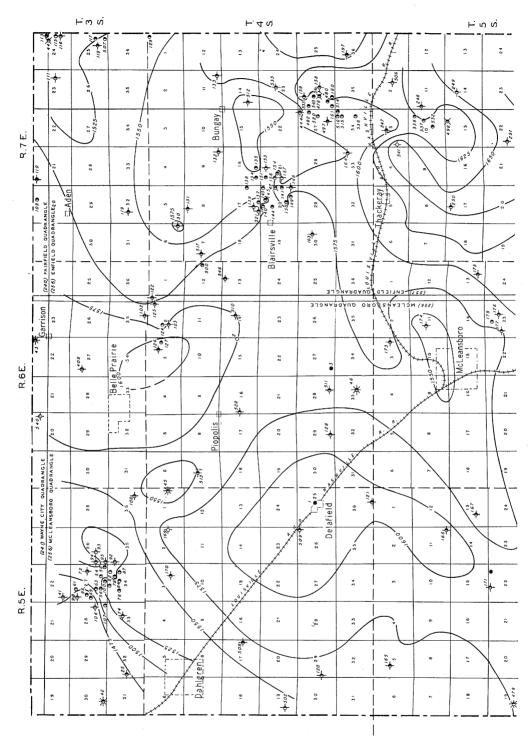
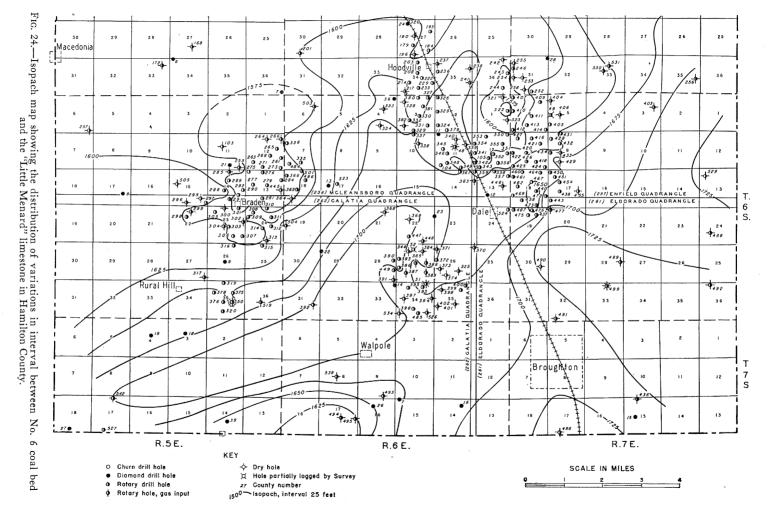




FIG. 23.—Isopach map showing distribution of variations in interval between No. 6 and No. 5 coal beds in Hamilton County.

ILLINOIS BASIN COAL RESOURCES

HAMILTON COUNTY

"Tradewater and Caseyville Groups

In southern Saline and Gallatin counties the base of the Palzo sandstone lies upon, or a short distance above, the Dekoven coal bed, which is a short distance above the Davis coal. Formerly these beds were incorrectly thought to represent the Murphysboro coal bed of Jackson County. In places the Palzo sandstone apparently extends below the level of the Dekoven coal bed so that the Davis coal bed is the first underlying coal bed. In other places thick shale may separate the Palzo sandstone from the Dekoven coal bed.

A coal bed commonly underlies or is a short distance below the Palzo sandstone in drill holes in Hamilton County. It may represent the Davis or the Dekoven coal bed. In one of the seven control drill holes a thin bed of limestone is present a short distance below the coal bed.

Two Hamilton County control drill holes were studied to positions below the top of the Tradewater group; one continued to the base of the Pennsylvanian system. In one drill hole three coal beds were penetrated below the zone of the Dekoven and Davis coal beds, and in the other four coal beds. No correlation of these coal beds is attempted, but one may represent the Murphysboro coal bed.

STRUCTURE OF HERRIN (NO. 6) COAL BED

The structure of the Herrin (No. 6) coal bed in Hamilton County is indicated graphically by the accompanying structure contour map, which shows distribution of variations in the altitude of the top of the coal by contour lines spaced at 25-foot intervals (pl. 9).

The general regional dip of the No. 6 coal bed is at an average rate of 25 feet per mile from the highest recorded altitude, 166 feet below sea level, in sec. 17, T. 7 S., R. 7. E. (County No. 496) to the lowest recorded altitude, 638 feet below sea level, in sec. 16, T. 4 S., R. 6 E., (County No. 528) a distance of about 183/4 miles.

The structure map was constructed from unevenly distributed datum points, so that different parts of the map vary in detail and accuracy depending upon the spacing of the control points. The contours are drawn mechanically assuming a constant slope between adjacent datum points.

Irregularities in the direction and amount of dip of the coal bed produce some reversals of the regional dip. The following structural features are noteworthy: the Dale-Hoodville domes in the south-central part of the county, the Rural Hill anticlinal nose in the southwestern part, the Dahlgren anticline in the northwestern part, the Blairsville and Bungay domes in the northeastern part, and a structural low in the north-central part of the county. Some oil has been produced from each of the structural highs.

Where drilling is closely spaced the regional dip is modified locally to such an extent that local rather than regional conditions dominate the structure. Where datum points are widely spaced, additional drilling would probably change the generalized structure mapping. Unfortunately it has not been possible to discover these structural irregularities from surface outcrops.

The present structure map is a revision of the Hamilton County portion of the blueline print map of No. 6 coal bed in Hamilton and White and parts of Saline and Gallatin counties dated October 1, 1938.²²

COAL BEDS OF MINEABLE THICKNESS

Herrin (No. 6) and Harrisburg (No. 5) coal beds are the only coal beds believed to be of mineable thickness over any great extent of Hamilton County. No. 6 coal bed ranges from 5 to between 9 and 10 feet thick in the 30 diamond-drill holes in the county. In seven holes the thickness is between 5 and 6 feet; in eight holes between 6 and 7 feet; in ten holes between 7 and 8 feet; in two holes 8 feet; and in three holes between 9 and 10 feet. In one of the control rotary-drill holes, the No. 6 coal bed was found to be 6 feet thick in an area

²² Cady, G. H., et al., Structure of No. 6 coal bed in Hamilton and White and parts of Saline and Gallatin counties: Illinois Geol. Survey Cir. 42, 1939.

where a nearby diamond-drill hole penetrated 8 feet of this coal. In other control drill holes the coal varied in thickness from 3 to 6 feet. Attempts to estimate the thickness where only electric logs are available proved unprofitable. The No. 6 coal bed appears to be thickest in the southwest guarter of the county.

The thickness of No. 5 coal bed, as determined by diamond drilling, varies between 3 to 7 feet with an average of about 4 feet. The interval between No. 6 and No. 5 coal beds varies between 50 to 120 feet. The distributions of variations in interval are shown by the accompanying isopach map (fig. 23).

On the basis of approximately 1 million tons per square mile-foot the amount of coal in No. 6 bed, assuming an average thickness of 5 feet over 435 square miles, is 2175 million tons, and in No. 5 bed, assuming an average thickness of 3 feet, 1305 million tons, or a total of 3480 million tons. Previously, a recent estimate for these two beds was 31/2 billion tons.28 Other coal beds are present below No. 5 coal, but none appears to be more than 3 feet thick. The facts about these lower coal beds will not be known until the Carbondale and lower Pennsvlvanian groups are explored with a diamond drill or more accurate methods of logging other types of drilling operations are devised.

PROTECTION OF COAL BEDS

Both No. 6 and No. 5 coal beds require protection when drill holes are abandoned and plugged. The structure map (pl. 9) gives the approximate altitude above sea level of the No. 6 bed in all parts of the county. The altitude of the surface or the drilling floor is available to the person responsible for the plugging of the well. If the altitude of the coal bed is added to the surface altitude, which gives in this county a negative or below-sea-level value, the depth to the coal bed is obtained. Plugging should extend from 50 feet above to 50 feet below the position of the coal bed. However, because the No. 5 coal bed is usually about 100 feet below No. 6, the plug should actually extend for about 200 feet, which would carry it from 50 feet above No. 6 to 50 feet below No. 5 coal bed.

If plugging is not required for coal beds more than 1000 feet in depth, regardless of their thickness, the No. 6 coal bed and lower beds will not require plugging in most of the northern part of the county. This is likely to be true where the No. 6 coal bed lies 600 feet or more below sea level or where the surface altitude exceeds 500 feet. Under this rule plugging will be applied very unevenly because of local irregularities of the surface, and its value, when applied, will be correspondingly diminished.

OIL AND GAS RESOURCES

The extent to which the structure of No. 6 coal bed may reflect the presence of pre-Pennsylvanian structures favorable to oil and gas accumulation is of interest. An isopach map (fig. 24) showing the distribution of variations in interval between No. 6 coal bed and the top of "Little Menard" limestone indicates that these variations are relatively regular. Fairly close agreement between the structure of the coal bed and that of the limestone is to be expected. Almost every oil pool in the county is located on a structural irregularity in the No. 6 coal bed.

The name and location of the oil pools in Hamilton County along with the producing formations for each pool are given on page 110.

The delineation of the detailed structural features in areas occupied by the various oil pools was made possible only by the drilling of the pools. Elsewhere drilling has been widely spaced and delineation of the structure is correspondingly generalized. The presence of what might be regarded as structures favorable for oil accumulation in such sparsley explored areas must be discounted to some extent because the map is generalized. More closely spaced drilling would considerably modify the present interpretation.

²²Cady, G. H., Coal resources based on information obtained from rotary drilling February 1, 1942 to May 31, 1943: Illinois Geol. Survey Rept. Inv. 93, p. 38, 1944.

Pool	Loca Township South	tion Range East	Producting Strata
Aden Consolidated(Wayne and Hamilton counties)	23	7.	Aux Vases "Lower O'Hara" lime Rosiclare lime "McClosky" lime
Belle Prairie	4	6	''McClosky'' lime ''McClosky'' lime
Blairsville	4	7	Aux Vases "Lower O'Hara" lime Rosiclare lime "McClosky" lime
Bungay	4	7	Aux Vases "McClosky" lime
Dahlgren Dale-Hoodville Consolidated	3	5	"McClosky" lime
· · · · · · · · · · · · · · · · · · ·	5–6	6–7	Tar Springs Cypress Paint Creek Bethel Aux Vases "Lower O'Hara" lime Rosiclare lime "McClosky" lime
Hoodville East (abandoned) Mill Shoals (Wayne, White and Hamilton counties)	3-4	7–8	"McClosky" lime Aux Vases "Lower O'Hara" lime Rosiclare lime
			"McClosky" lime
Rural Hill	6	5–6	Paint Creek Aux Vases "Lower O'Hara" lime Rosiclare lime "McClosky" lime
Thackeray	5	7	Aux Vases
Walpole	6	6	Tar Springs Aux Vases
West End	7	5	Aux Vases

Ordinarily, in regions where geological conditions permit, generalized interpretations could be tested by thorough investigations and mapping of outcrops, but the paucity of outcrops and the absence of key beds in the outcropping zone makes such procedure impracticable in Hamilton County. Short of drilling to the oil-bearing formations, the testing of the validity of the structures mapped would be possible only by drilling to one of the key beds, as the Shoal Creek limestone or the No. 6 coal bed, or by some geophysical method.

Except for the dry hole (Texas-Davis) in sec. 7, T. 6 S., R. 7 E., which was drilled to the Devonian at 5358 feet, strata below the Mississippian formations have not been tested in this county.

SUBSURFACE GEOLOGY OF RICHLAND COUNTY

RΫ

RAYMOND SIEVER AND GILBERT H. CADY

INTRODUCTION

`HIS REPORT presents the results of a preliminary study of the Pennsylvanian formations encountered in drilling for oil in Richland County (figs. 1 and 25). The study was undertaken in order to obtain information concerning the depth, thickness, and distribution in the county of mineable coal beds, and concerning the occurrence of key beds that might be useful as stratigraphic markers and as structural datum planes.

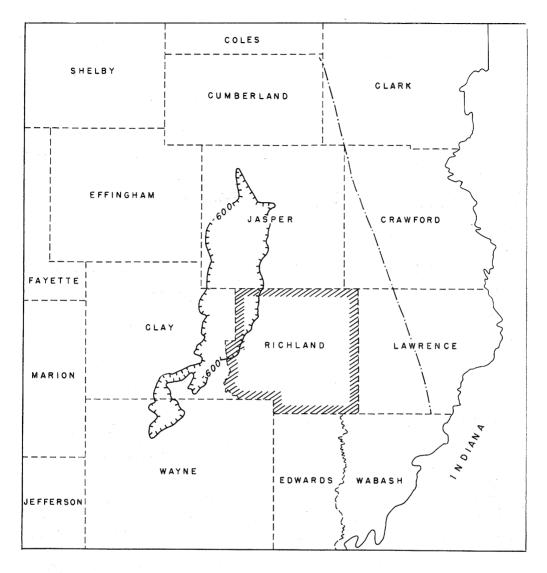
The sources of information were drillingtime and sample-study logs of nine control drill holes compiled by the Coal Division of the Geological Survey, about 350 electric logs of rotary-drill holes, and drillers' logs of two cable-tool holes. Only a few drillers' logs and company sample-study logs were used, as they were generally found to be unsatisfactory for identifying Pennsylvanian formations.

The coal beds generally of mineable thickness (30 inches at 1000 feet or less, 3 feet at more than 1000 feet)¹ are Herrin (No. 6) and Harrisburg (No. 5), which lie at depths between 950 and 1200 feet below the surface (fig. 26). A lower bed which in places at least seems to be 3 feet or more in thickness was penetrated in three control drill holes from 1300 to 1400 feet below the surface. The depth and thickness of all these coal beds make very slight the probability of their being mined in the near future.

KEY BEDS

Shoal Creek limestone .-- The youngest Pennsylvanian sedimentary unit identifiable over a considerable part of Richland County is the one designated here as the Shoal Creek limestone. It appears to be the same limestone as that similarly named in northeastern Wayne County² by Sims and co-authors, who suggested its probable correlation with the type Shoal Creek limestone exposed in Bond County.³ The interval between the Shoal Creek limestone and Herrin (No. 6) coal bed in Richland County is between 338 and 456 feet in the tabulated drill holes.

In six control drill holes, the cuttings consisted of white to buff, very finely crystalline, dense, and fairly pure limestone. Certain zones in which the limestone has a gravish mottled appearance were indicated by the cuttings. Fragments of marine fossils, including crinoid fragments, were sparsely distributed through these mottled cuttings. Directly beneath the limestone is usually 1 to 3 feet of black "slate" underlying which is commonly a thin bed of coal underlain by 1 to 2 feet of light gray underclav.


Because this limestone cannot be definitely recognized in more than forty percent of the logs, it was not satisfactory here as a datum plane for structural delineation as it was in Wayne County.

West Franklin limestone.-More persistent than the Shoal Creek limestone is a second limestone which lies about 180 to 190 feet lower. The position and lithology of this limestone is similar to that of the West Franklin limestone of Indiana.⁴ which outcrops Evansville, Vanderburg near County, and with which it is correlated.

¹Oil, Gas and Coal Conservation Act, Rules and Re-gulations: p. 15 (Rule 15), Illinois Dept. Mines and Minerals, Division of Oil and Gas Conservation, 1941. (New rules adopted October 18, 1945, set 30 inches down to 1000 feet as the limit of mineability.)

² Sims, Paul K., Payne, J. Norman, and Cady, Gilbert H., Pennsylvanian key beds of Wayne County and the structure of the "Shoal Creek" limestone and Herrin (No. 6) coal bed: Illinois Geol. Survey Rept. Inv. 93, p. 28,

⁶⁾ coal bed: Illinois Geol. Survey Rept. Inv. 93, p. 28, 1944. ³ Udden, Jon A., Notes on Shoal Creek limestone: Illinois Geol. Survey Bull. 8, p. 117, 1908. ⁴ Shrock, Robert R., and Malott, Clyde A., Structural features of the West Franklin formation of southwestern Indiana: Bull. Amer. Assoc. Pet. Geol. vol. 13, No. 10, pp. 1301-1315, 1929. See also the report on Gallatin County in present volume, p. 69.

---- AXIS OF LASALLE ANTICLINAL BELT BOUNDARY OF AREA IN WHICH TOP OF NO.6 COAL BED IS MORE THAN 600' BELOW SEA LEVEL.

FIG. 25.—Richland County index map.

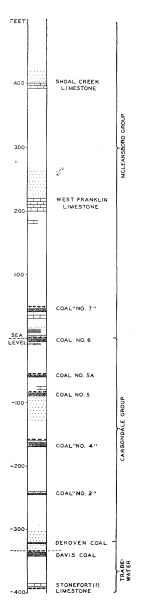
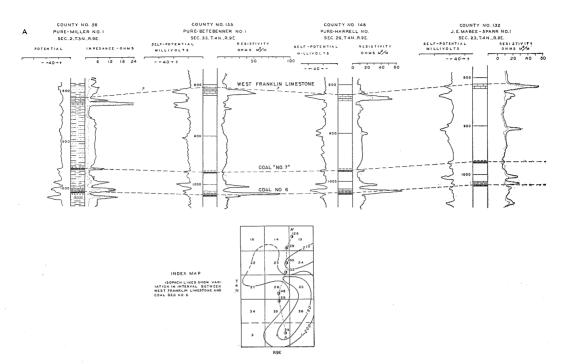



FIG. 26. — Generalized partial section of the Pennsylvanian system showing certain key beds of the lower part of the McLeansboro, of the Carbondale, and of the upper part of the Tradewater groups in Richland County. It is also generally given this name by drill-ers and oil geologists working in this county. The interval between West Franklin limestone and Herrin (No. 6) coal bed in the county varies from 180 to about 250 feet. In most parts of the county the interval is about 225 feet. At one locality at least (drill hole No. 56, sec. 2, T. 3 N., R. 9 E.) only 180 feet of interval is recorded (fig. 27). The limestone and underlying shale cuttings collected by the company from this drill hole were found to correspond closely with the West Franklin limestone and underlying shale as described below.

Drill cuttings and various types of drilling records indicate that the West Franklin limestone in Richland County usually consists of two benches of light gray, finely crystalline, dense, moderately fossiliferous limestone, commonly separated by 1 to 4 feet of light gray micaceous clay shale (fig. 28). Locally 6 inches to 1 foot of black shale is found at the top of the gray shale. The upper bench of limestone averages 5 feet in thickness, but locally this bench is as much as 10 feet thick. The lower bench is fairly uniformly 8 to 10 feet thick. In places only one bench is present, but whether this represents the upper or lower bench or both is not known.

The upper bench shows moderately high resistivity (80-100 ohm-meters) in the normal curve in most logs (fig. 29), the third curve generally having a reverse (negative) peak. The potential of this bench in some holes was high for a limestone (No. 1, fig. 29; Nos. 126 and 128, fig. 27), indicating high permeability, but in many holes the potential was not high. The lower, more massive bed of limestone is distinguished by a very pronounced peak in both the normal resistivity and the third curve, and a potential varying to about the same degree as the upper limestone bench.

As elsewhere when only one bench of limestone is present or only one high resistivity peak is shown, identification of the limestone as the upper or lower bench is highly conjectural. This is the condition in several localities in the county, notably

in the Parkersburg Pool in secs. 29 and 30, T. 2 N., R. 14 W.

A thin coal bed, capped by 1 to 4 feet of black "slate," commonly lies 10 to 15 feet above the upper bed of the West Franklin limestone (fig. 28), with shale and silty shale intervening. This coal bed has the position of the Ditney coal bed of south-Indiana and Wabash County, western Illinois.⁵ It is absent in the west tier of townships in Richland County; there a higher sandstone cuts across the position of the coal bed and extends down to the West Franklin limestone. The coal bed was found in all drill holes logged by the Survey in the eastern part of the county. The Ditney coal bed has not been definitely recognized in electric logs in areas where only a single bench of limestone is present.

Underlying the West Franklin limestone there is commonly 5 to 10 feet of variegated shale, dark red, green, yellow, and gray. In three of the nine control drill holes (Nos. 1, 5, 6, fig. 28) this variegated shale was absent. Generally it is one of the most diagnostic beds in the Pennsylvanian succession. The cuttings resemble underclay, being very soft with poorly defined or no bedding planes and with slip-fracture surfaces.

The West Franklin limestone is one of the best stratigraphic markers or key beds in the Pennsylvanian system in Richland County, because it was absent in only ten drill holes, all in the southwestern part of the county (Ts. 2 and 3 N., Rs. 8 and 9 E.), and was therefore selected as a structural datum plane (pl. 11). Because it is thought to be more persistent, the lower bench is regarded as most suitable to use for this purpose when two benches are reported or are indicated by the electric log pattern. Reference is to the top of this bed.

"No. 7" coal bed.—A coal bed probably rarely as much as 3 feet thick is widespread in the county 40 to 70 feet above No. 6 coal bed. It is overlain by 2 or 3 feet of black "slate" which, together with the coal bed, produces a distinctive pattern, ordinarily consisting of a small normal re-

⁵ Fuller, R. L., Ditney folio. Indiana: U. S. Geol. Survey, Geol. Atlas, Folio 84, p. 2, 1902.

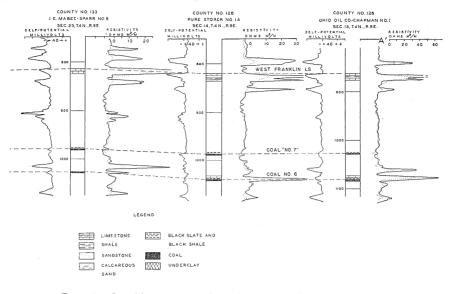


FIG. 27.—Graphic representation of the partial succession and of corresponding electric logs for seven drill holes in Ts. 3 and 4 N., R. 9 E., from a few feet above West Franklin limestone to a few feet below No. 6 coal bed in Richland County,

sistivity peak opposed by a small negative peak in the third curve and usually by a small peak in the potential curve (fig. 29). This bed is tentatively correlated with the Danville (No. 7) coal bed.

From 4 to 10 feet below "No. 7" coal bed there is in most places a bed of limestone 3 to 4 feet thick. Cuttings consist of fragments of buff to brown, dense, slightly argillaceous limestone. No fossils have been observed in the cuttings. There are insufficient data to permit correlation of this limestone with any one of the limestones found elsewhere between "No. 7" coal bed and the Herrin limestone.

Herrin limestone and No. 6 coal bed.— The No. 6 coal bed and its associated caprock, the Herrin limestone, have their usual importance as key beds in Richland County. No. 6 and No. 5 are usually the thickest coal beds found in the county, No. 6 averaging about 3 feet and reaching what is believed to be a maximum of 5 feet. No. 6 coal bed has been traced into the Illinois basin from the mining districts in southern and southwestern Illinois by means of logs of diamond-drill holes on the margins of the

mining districts, by carefully logged rotary holes, and by electric logs. The coal bed is recognized in logs by its unusual thickness and by its association with the Herrin limestone, which has a distinctive lithology.6 It is described as "an impure, earthy, dark-gray to bluish-black limestone, finely granular or sugary, and somewhat fossiliferous. Among the characteristic fossils sometimes seen in the cuttings are fragments of certain fairly large robust fusulinids (Fusulina girtyi Dunbar and Condra)." The electric-log pattern for the limestone and coal beds is quite variable. Some logs show two separate peaks in the normal resistivity curve, others one peak with a reverse indentation, thereby supposedly differentiating the limestone and the coal hed. and in still others there is a combined peak with no separation of limestone and coal hed.

Almost immediately above the Herrin limestone, with 1 or 2 feet of intervening underclay, in the northwest quarter of the county, is a thin bed of coal overlain by 1 to 2 feet of black sheety shale. Locally a

⁶ Sims, Paul K., et al., op. cit., p. 29.

thin limestone, brown to buff, fine to medium grained, and fairly pure, overlies The Jamestown coal bed of the coal bed. southwestern Illinois occupies the same relative position with respect to the Herrin limestone, but the lithological characteristics of this limestone differ somewhat from those of the Jamestown limestone in the type locality in Perry County;⁷ there it closely resembles the Herrin limestone.

No. 6 coal bed invariably has a moderately thick underclay, averaging 2 feet, but in many places as much as 5 feet thick. Like many other Pennsylvanian underclays it is very light gray, slip-fractured and massive, and contains carbonaceous particles and pyritized root remains. In most electric logs the position of the underclay is marked by a negative normal resistivity pattern.

Some drill holes penetrate a limestone 1 to 3 feet thick beneath the underclay, the cuttings from which reveal a light brown, argillaceous, silty, non-fossiliferous, possibly nodular rock. The general appearance of the cuttings indicates that this is possibly an underclay or "freshwater"s type of limestone.

Since No. 6 and No. 5 coal beds are those most likely to be mineable, the determination of their thicknesses is of particular im-Unfortunately the determinaportance. tions cannot be made with desirable precision. Most reliance is placed upon drilling time, particularly when this is taken at short intervals. In some drill holes the difference in rate of drilling of the coal bed and of the black shale that usually overlies it makes it possible to differentiate the coal from the shale (fig. 30). Commonly, however, this is not possible. Nor can the position of the base of the coal bed always be definitely determined, although in general it is believed that the underclay is somewhat harder than the coal, so that the contact of the two is indicated by a slight increase in the drilling time.

The amount of coal delivered to the sample box from each coal bed penetrated is also an important means of estimating

bed thickness. Continuous sieving at the sample box is essential to recover the coal cuttings, which, because of their low specific gravity, tend to float off and get out of the sample box.

Estimates of the thickness of No. 6 and No. 5 coal beds made on the basis of the pattern of electric logs are also unsatisfactory. In some of the control drill holes for which excellent stratigraphic logs are available, the high resistivity peak of the normal curve opposes both the roof shale and the coal bed and, in some logs, even the Herrin limestone; thus an estimate of the thickness of the coal bed based entirely upon the width of the high resistivity pattern would be excessive (Nos. 3 and 9; figs. 29 and 30). Yet in some electric logs irregularities in the pattern appear to coincide with breaks in the sequence and to provide a fairly definite idea of the thicknesses of the various beds (Nos. 8, 9, 59, and 91; fig 29). In this report estimates of the thickness of No. 6 and No. 5 coal beds are based upon data provided by the control drill holes (table 11).

No. 5A coal bed.-With respect to the No. 6 and No. 5 coal beds, the coal bed called No. 5A has a position similar to that of the No. 5A (Briar Hill) bed in southern Illinois.⁹ It is 1 to 2 feet thick, is capped by 1 to 2 feet of black "slate," and lies about 20 to 30 feet above the Harrisburg (No. 5) coal bed.

Harrisburg (No. 5) coal bed.—The position of the No. 5 coal bed varies from 45 feet below No. 6 bed in the northern part of the county to 90 feet in the southern part (fig. 29). In the control holes the No. 5 coal bed was usually as thick as No. 6 bed, averaging 3 feet but attaining a thickness of 5 feet. The bed is not continuous, and where it is absent, 2 or 3 feet of black shale probably marks its approximate position, as 1 to 2 feet of underclay usually underlies the shale. Locally a thin caprock limestone overlies the black shale. Cuttings from the limestone consist in general of brown to grayish, slightly argillaceous, very finely

⁷G. H. Cady, personal communication. ⁸Weller, J. Marvin, Cyclical sedimentation of the Pennsylvanian period and its significance: Jour. Geol., vol. 38, No. 2, p. 102, 1940.

⁹ Butts, Charles, Geology and mineral resources of the Equality-Shawneetown area: Illinois Geol. Survey Bull. 47, 1925.

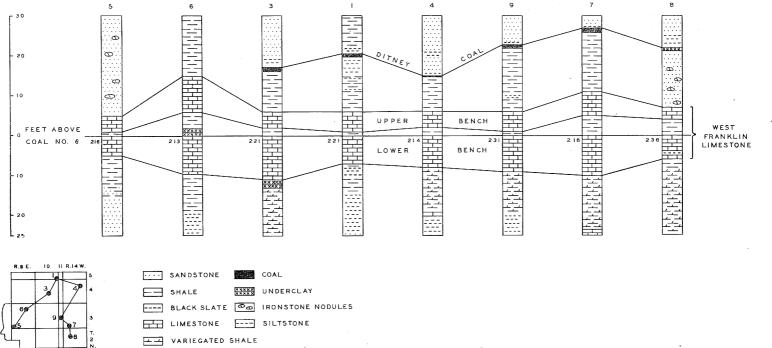
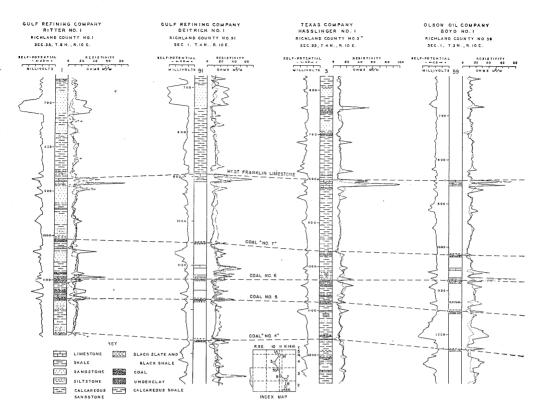



FIG. 28.—Graphic representation of the succession from 30 feet above to about 20 feet below the top of the lower bench of West Franklin limestone in eight control drill holes in Richland County.

RICHLAND COUNTY

textured, pyritic rock. Some fossils have been observed.

About a 1-foot thickness of light gray, plastic, structureless underclay usually underlies No. 5 coal bed. There is no evidence of the presence of an underclay limestone at the base of the underclay in the control drill holes in Richland County.

In electric logs the position of No. 5 coal bed is marked by a relatively prominent single peak of high resistivity in the normal curve, by a reverse peak in the third curve, and by an opposing moderately high potential.

OTHER BEDS

Coal bed 80 to 100 feet below No. 5 ("No. 4").—A thin bed of coal appears in several of the control well logs between 80 and 100 feet below No. 5 coal bed, having a thickness which appears to be not more than 2 feet. This bed is designated

"No. 4" in this report. Five control drill holes in Richland County were logged through this bed (Nos. 1, 3, 7, 8, and 9; fig. 29).

A characteristic pattern of curves is usually found in the electric logs at the position of this coal bed. The normal resistivity curve (fig. 29) usually displays two small peaks, which in some logs are very distinctly separated. On the basis of information supplied by the control drill holes, the lower of these peaks represents the position of the coal bed. The third curve pattern indicates a negative reaction for the whole The potential is moderately succession. high, usually with an indentation in the curve just above the coal bed. That this coal bed is generally present is indicated by the prevalence of this pattern in many of the electric logs that have been examined.

Coal bed 150 feet below No. 5 ("No. 2").—About 150 feet below No. 5 coal bed and approximately 80 feet below the

FIG. 29.-Graphic representation of the complete or partial stratigraphic succession and of electric logs of eight drill holes distributed from north to south across Richland County in Ts. 10 and 11 E., and 14 W., from a short distance above West Franklin limestone to a short distance below "No. 4" coal bed.

"No. 4" coal bed (fig. 30), the few control holes logged to this depth penetrated a thin bed of coal underlying a thin limestone. The cuttings indicate that the limestone is white to light gray, dense, and fairly pure. The coal bed can usually be recognized in electric logs by a pattern which is very similar to that characteristic of the "No. 7" coal bed. This coal bed has a stratigraphic position approximately that of the LaSalle ("No. 2") coal bed of northern Illinois, but existing evidence does not justify more than a tentative correlation with this bed.

Coal beds 235 and 270 feet below No. 5 ("Dekoven" and "Davis" beds).-A coal bed having an average thickness of 3 feet, and locally possibly reaching 6 feet, was encountered 250 to 270 feet below No. 5 coal bed in four control drill holes (Nos. 2, 3, 9, and 11). In two of these holes (Nos. 3 and 9) a thinner coal bed lies 20 to 30 feet higher. The lower coal bed probably represents the Davis coal bed of southern Illinois and the upper one the Dekoven bed,¹⁰ the correlations being tentative pending the possibility of definite verification.

Limestone 300 to 320 feet below No. 5 coal bed.-In three control drill holes (Nos. 3, 8, 106) a limestone 2 to 3 feet thick was penetrated 300 to 320 feet below No. 5 coal bed and about 50 feet below the "Davis" bed. The Stonefort limestone of southern Illinois occupies a similar position with respect to the Davis coal bed.11 Electric logs of borings at various positions in the county show a characteristic pattern indicative of the presence of limestone at the

¹⁰ Butts, Charles, op. cit. ¹¹ Henbest, Lloyd G., Fusulinellas from the Stonefort limestone member of the Tradewater formation: Jour. Paleontology, vol. 2, No. 1, pp. 70-71, 1928.

County No.	Well No. T. R. Sec. name and No. 7 3N 14W 32 Seaboard	Company and farm name and No.	Total depth logged	Coal bed No.	Depth ft.	Thickness of coal ft.			
7	7	3N	14W	32	Seaboard	1500	6?	962	4
				A.5	Kimmel No. 1		5?	1030	
2	20	4N	9E	27	Pure Oil Co.	1170		740	3
				E7	Murvin No. B-2		"7"	1020	4 3 8 3 3
							6	1065	3
								1109	3
							5	1134	4
3	39 ·	4N	10E	22	Texas Co.	1511		385	4 3
				E6	Hasslinger No. 1		6 5	1031	4
					-		5	1082	4
								1435	4
								1459	3
1	40	5N	10E	35	Gulf Refining Co.	1230		566	4
				E1	Ritter No. 1			1009	3
							6	1098	5
6	88	3N	9E	10	Carter Oil Co.	1100	6 5	1015	5
				F7	Winters No. 2		5	1084	3 -
4	111	4N	14W	11	Lee R. Trustees	1100		1002	4
				F7	Miller No. 1		6 5	1013	5
							5	1076	, 5
5	135	3N	9E	31 .	Pure Oil Co.	1077		270	3
				E5	Myers No. 1		6 5	967	3
							5	1031	4
8	147	2N	14W	17	Livingston	1468		938	4
				E3	Holtz No. 1		6	1000 -	4
					5	1087	5		
								1368	4 4 4 3 5 5 5 3 4 5 5 3 3 4 4 4 5 4 4 5 4 4 5 4 4 5 4 4 5 4 5
9	168	3N	11E	19	Sohio Oil Co.	2000	6	1073	4
				A8	Heap No. 1			1359	3

TABLE 11.—DATA ON POSSIBLY WORKABLE COAL BEDS IN RICHLAND COUNTY

appropriate position. The cuttings consist of fragments of white, grayish-brown, and dark gray, argillaceous, and pyritic limestone. Below the limestone, and separated from it by 2 or 3 feet of dark gray shale, is a thin bed of coal.

Limestone 350 feet below No. 5 coal bed.—A thin bed of limestone about 400 feet below No. 6 coal bed (350 feet below No. 5) was penetrated in control drill holes Nos. 3, 34, and 91. What appears to be a limestone at the same position shows up here and there in electric logs of drill holes in various parts of the county. It may possibly represent the Curlew limestone of southern Illinois,¹² but such a correlation is of little more value than simply to indicate the general position of the bed. The cuttings are those of a very dense limestone, brown to buff and mottled white in part.

STRUCTURE OF THE FORMATIONS

Richland County lies west of the LaSalle anticline, the axis of which crosses Lawrence County east of the deepest part of the Pennsylvanian basin (fig. 25). The regional rise to the east on the flank of the LaSalle anticline begins at about the position of the minus 550-foot structure contour showing the altitude of the No. 6 coal bed (pl. 10) in Ts. 5, 4, and 3 N., and at about the position of the minus 500-foot contour in T. 2 N.

In a narrow belt on the east side of the county there is a relatively sharp rise eastward at the rate of about 50 feet per mile for about 2 miles. Westward, on the other hand, the regional dip carries the coal bed downward only about 100 feet in the remaining width of the county. In this distance of 18 to 20 miles the structure is irregular but is dominated by a general

¹² Butts, Charles, op. cit.

north-south strike. An indistinct, interrupted, and indefinitely bounded belt of structural depression extends in a line with a regional trend slightly east of north from between the Calhoun and Parkersburg oil pools to an area south and east of Olney in the southern half of the county. It is closed off on the north by convergence on the LaSalle anticlinal structure.

The beds rise unevenly westward from this rather indefinitely marked trough toward a fairly distinct but mild anticlinal structure, along which are situated the Noble, North Noble, and Dundas Consolidated oil pools, and which has become known as the Clay City anticlinal belt. The Dundas East, Stringtown, Olney, Olney South, and Calhoun pools lie on the east flank of, but somewhat removed from, the Clay City anticline on irregular east-west directed cross folds of minor importance. These minor irregularities fail to develop into definitely aligned and continuous north-south structures parallel to the Noble-Dundas Fairly evenly spaced and relaanticline. tively numerous drill holes in the central north-south belt make possible delineation of the structure in this portion of the county with considerable detail and it seems improbable that there are any important undiscovered "highs" along the Calhoun-Dundas East belt. The general character of the structure in the county is well established.

The Clay City anticline is more abrupt on the west than on the east; the altitude of the coal bed falls off about 125 feet toward a trough-like depression along the boundary between Clay and Richland counties. (See Bogota—Rinard syncline in accompanying report on Clay County, p. 41).

In general throughout most of the county, the structural relief is in the order of about 100 feet in the No. 6 coal bed. Because the "lay" of the beds is relatively even, variations of only a few feet of relief seem to be adequate to determine the position of oil accumulations in the underlying strata.

In the southeast portion of the county, the Parkersburg Consolidated oil pool (pl. 10) lies at the north end of an anticlinal structure which can be traced southward into Edwards County and which converges northward on the LaSalle anticline just as does the Clay City anticline on the west side of the county.

The structure of the West Franklin limestone (pl. 11) is nearly parallel to that of the No. 6 coal bed about 225 feet lower. A comparison of the two structure maps (pls. 10 and 11) reveals no indication of important thickening or thinning of intervening beds. Since the position of the West Franklin limestone is somewhat easier to identify in electric logs than that of No. 6 coal bed, the limestone is useful in picking the probable position of the coal bed in such logs.

EXPLORATION FOR OIL AND GAS

The main structural characteristics of the No. 6 coal bed in Richland County have been fairly completely outlined and the definite relationship between the distribution of oil pools in the Mississippian beds and irregularities in the structure of the coal bed indicated. However, drill holes are too widely spaced in some parts of the county to eliminate the possibility of the existence of small pools.

The easternmost tier of townships (R. 14 W.) has been least thoroughly explored, particularly north of the Bonpas pool, but the generalized structure does not delineate any structures that appear very favorable. A good many of the scattered small producing areas seem as yet to be underdeveloped and additional drilling is to be expected. The present map may provide some suggestions as to most suitable directions of exploration, but in general it is probable that a map using smaller contour intervals should be constructed in order to make the most of the data available.

Attention should be called again to the fact that the full record of exploration for oil is not provided by the present map. Only drill holes for which electric logs are available or those logged by Survey field parties are shown on the map, with the exception of two cable-tool drill holes, the records of which contained some usable information on the coal resources. The

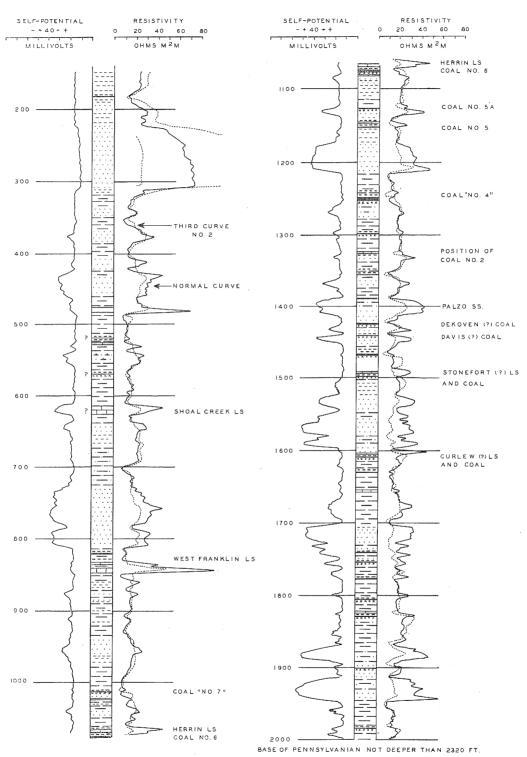


FIG. 30.—Stratigraphic succession and electric logs of rotary-drill hole Sohio-Heap No. 1 (Richland County No. 9) from 150 to 2000 feet. Above \$10 feet stratigraphy is interpreted from electric logs; from \$10 to 2000 feet, stratigraphy is based on drill cuttings and drilling time.

greater part of the drill holes not shown were drilled in the Noble pool.

COAL RESOURCES

The most reliable information in regard to the occurrence of coal beds of workable thickness in Richland County, other than thin beds that outcrop and occupy positions in the upper part of the McLeansboro group, is that supplied by the records of the nine control drill holes. In 194413 a tabulation similar to that presented in table 11 was published, in which data were given for seven control drill holes logged before June 1, 1943. Two other holes in the county have been logged since. In 1944¹⁴ it was stated that No. 6 and No. 5 beds were believed to be essentially widespread in the county at depths between about 1000 and 1100 feet for No. 6 bed with No. 5 bed lying 50 to 75 feet lower. Assuming the average total thickness of these two beds to be about 6 feet, the county (357 square miles) is underlain by approximately 2000 million tons of coal in these two beds (1 million tons per square mile-foot).

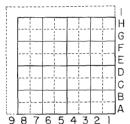
Hole No. 39 penetrated two beds of coal, the upper reported as 5 feet thick and the lower as 3 feet at 1435 and 1459 feet re-

¹³ Illinois Geol. Survey Rept. Inv. 93, p. 57, 1944.

¹⁴ Idem., p. 41.

spectively, 404 and 428 feet below the top of No. 6 bed and 964 and 988 feet below sea level. Hole No. 147 penetrated a 3foot coal bed 368 feet below the top of No. 6 (1368 feet deep; 878 feet below sea level), and hole No. 193 penetrated two 3foot coal beds at 1359 and 1426 feet respectively, 866 and 933 feet below sea level, and 186 and 253 feet below No. 6 coal bed. It seems probable that "No. 4," "No. 2," "Davis," and "Dekoven" coal beds are all represented in one or another of these records, but there is inadequate evidence to establish a condition of widespread distribution for any of these coal beds. For this reason an estimate of the amount of coal present in these beds is not attempted. No. 6 coal bed in Richland County generally lies more than 1000 feet in depth.

The character of the coal, so far as it can be determined from cuttings from drill holes in Richland County, is shown in table 1, page 16, analyses Nos. C-2698, C-2699, and C-2866. The moisture values shown are probably several percent units too low as compared with the actual moisture content of the coal, but even so the heat values are relatively high for Illinois coals, whereas sulfur values are about average. The coal may be slightly better than average Illinois coal, but not as high quality as the highest grade coal mined in the State.


Illinois State Geological Survey Report of Investigations No. 148 1951

APPENDIX OF TABULATED DATA

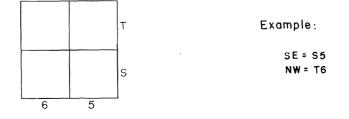
Abbreviations Used in Tabulated Drill Record Data

Location: The location of the drill holes and mines is shown by township, range, section, and location within section. The wells are located in the section as accurately as records permit.

When the location is known to the nearest 10 acres (quarterquarter-quarter section), the position of the drill hole is indicated by the letters A through H and the numbers 1 through 8, starting from the southeast corner of the section. The letter I and the number 9 are used to indicate an oversized section.

Example :

SE - SE - SE = A I NW - NE - SE ≭ D 2


Where the location is known only to the nearest 40 acres (quarter-quarter section) it is indicated by the letters J through M and the numbers 1 through 4, as shown on the section plat below.

				м
				L
				к
				J
4	3	2	1	-

Example :

SE - SE = JINW - SW = K4

Where the location is known only to the nearest 160 acres (quarter section), it is indicated by the letters S and T and the numbers 5 and 6, as shown on the section plat below.

<u>County number</u>: The county number is an identification number assigned to each drill hole or mine within the county. It is also recorded on the structure contour map next to the symbol of the hole or mine.

Type hole: The following symbols have been used to indicate the type of drill hole or mine:

Drill holes (logs are available for examination at the offices of the Survey):

CH = Churn drill	LD = Rotary drill logged by
PT = Oil test by churn drill	the Coal Division as a
DD = Diamond drill	control well
RD = Rod drill	GW = Gas well
TD = Rotary drill	WW = Water well or other drill
	hole

Combination symbols, replacing the second letter of the abbreviations above, have the following meaning:

-S = Skeleton log	-K = Entire log confidential
-C = Thickness of coal confidential	-N = No log in Survey files
Mines:	
SH = Shaft mine	SA = Abandoned mine
SL = Slope mine	OA = Abandoned str i p mine
SD = Drift mine	OU = Outcrop information
ST = Strip mine	

Operator's name and number: Operator and farm names are abbreviated to ten spaces. The operator's name is on the first line, the farm name on the second, each followed by their respective numbers. CC signifies Coal Company; MC, Mining Company; OC, Oil Company; etc.

Surface elevation: Surface elevation is given in feet and tenths of feet, the last digit representing tenths of a foot, as "4326" means "top of hole is 432.6 feet above sea-level." The Level Method for determining elevation of top of hole, shaft, etc., is indicated as follows:

B = Barometer	H = Hand level
C = Company information	P = Plane table
	V . Wass lessel and the second

- D = Company derrick floor Y = Wye level or transit
- F = Field estimate using topographic map
- T = Topographic map estimate not in field
- G = Ground (estimated from instrumentally determined data, recorded depths modified accordingly)

Total depth: The total depth of the hole is given to the nearest foot.

Quadrangle number: This refers to the number of the quadrangle as given on the Index Map (page 52) in the "List of Publications on the Geology, Mineral Resources and Mineral Industries of Illinois," January, 1950.

An asterisk (*) after the quadrangle number indicates that the datum point is not shown on the structural contour map drawn on the No. 6 coal.

Year drilled: Only the last two figures of the year drilled are shown; as '25'' means '1925.''

Doubtful information: A notation here indicates that, although information is available, the accuracy of some part of the data is in doubt. The nature of the doubt is shown by number, as follows:

- 2. Correlation of key coal bed 6. Correlation and elevation

3. Exact location

- 7. Location and elevation 8. Depth to key coal bed
- 4. Surface altitude
- 5. Correlation and location

Datum beds: The names of the beds shown in columns for datum beds are indicated by line at the top of each column.

SC = Shoal Creek limestone WF = West Franklin limestone No. 7 = "No. 7" coal bed No. 6 = Herrin "No. 6" coal bed No. 5 = No. 5 coal bed No. 4 = No. 4'' coal bed Palzo = Palzo sandstone Base Penn = Base of the Pennsylvanian system Little Menard = Little Menard limestone GD = Glen Dean limestone

Depths to datum beds are given to the nearest foot to either the top or bottom of the bed, as indicated in the text. Elevation of the datum bed is in feet above sea-level. An asterisk (*) following this figure indicates the elevation is below sea-level. Thickness is given in feet and inches. *O indicates that the coal bed is eroded or is absent at its horizon for some other reason. Where no coal data are given the information is unreliable or the hole did not reach the coal bed. Where elevation is shown but not depth, the former is estimated from other data.

CLAY COUNTY

Loo	cation of	Hole		County	Type of	Operator	Op'r's	Surface	Total	Quad. Number Year	Doubtful Information	Line	1 — Coal 2 — Shoal			1 — Coal M 2 — West I 3 — Base P	Frankli	in
Twp.	Range	s	iec.	Number	Hole		Number	Altitude	Depth	ŏ⊋ ≻2		Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thick Ft.	ness In.
						CLAY JAN 1 1946	5											
2 N	5 E	4	68	340	τD	CARTER OC Keller A N BASE PENN	a 1	5410 C	3003	41		983 572		106	1042 860 1813	501* 319* 1272*		0 0
2 N	5 E	4	G 1	25	LD	CARTER OC WALKER ID/ BASE PENN	1	5430 D	3097	4 2		1053 635		206	1115 1878	572 1335	: 2	0 0
2 N	5 E	5	A 3	97	ΤĐ	NRTHRN ORE SAPP J E BASE PENN) 1	5420 C	4697	4 3		987 576		206	1052 865 1815	510 323 1273		0 (
2 N	5 E	7	F1	2	סד	ROBINSON (BRYANT BASE PENN	; 1	5450 G	3015	39		999 606	454 61*	2 0 6	1060 885 1839	515* 340* 1294*		
2 N	5 E	8	C 4	37	TD	DELK CORP NEWMAN A I BASE PENN	. 1	5330 D	3071	4 2		1006 603		1 0 6	1074 1846	541* 1313*	2	0
2 N	5 E	9	H 6	27	ΤD	CARTER OC CAMPBELL BASE PENN	1 1	5200 C	2991	4 2		983 578			1046 1795	526 1275		0
2 N	5 E	11	C 7	534	ΤÐ	LYNN J J CAMPBELL BASE PENN	1	5260 C	3004	4 5		985	459*		1045 1840	519 1314	2	
2 N	5 E	12	G 2	26	ΤO	SNCLR WYOI Rose e Base penn	4 1	5320 D	3110	4 2		1006			1075 1936	543* 1404*	: 1	0
2 N	5 E	18	A 8	341	ΤĐ	GULF REF YOUNG P BASE PENN	1	5300 D	3052	4 3		958 573		2 00	1017 1834	487 1304		0
2 N	6 E	1	D 4	338	LD	GIBSON A VALBERT BASE PENN	H 1	4740 C	3192	4 2		1088 655		1 00	1145 2038	671* 1564*		0

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

CLAY COUNTY

Lo	cation of	Hol	e	County	Туре		Op'r's	Surface	Taul	d.	- 70	Line	1 — Coal 2 — Shoal			1 — Coal N 2 — West I	Franklin
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Total Depth	Quad. Number	Year Drilled	Depth		Thickness	Depth	3 — Base P Altitude	enn. Thicknes
												(Feet)	(Feet)	Ft. In.	(Feet)	(Feet)	Ft. In
2 N	6 E	5	E 6	403		SNCLR WYGM HAUPT L C BASE PENN	1	5180 D	3210		44	998 592		206	1072 1978	554* 1460*	2 00
2 N	6 E	1 2	B 6	339		8 N D M & T R E E S V A L B E R T A B A S E P E N N	1	4650 C	3162		378	1085 630			1150 885 2010	685* 420* 1545*	
2 N	7 E	3	G 5	324		SANDERS J BISSEY J BASE PENN	1	4470 D	3112		42	1026 640		2 0 0	1086 814 2163	639 * 367 * 1716 *	1 00
2 N	7 E	3	Ε7	401		AMERMIN S MCALLISTER BASE PENN		4430 D	3150		44	1042 648			1096 834 1980	653* 391* 1537*	2 0 0
2 N	7 E	3	F 7	489		AMER MIN S MCALLISTER BASE PENN		4250 D	3125		44	1025 632			1074 820 1970	649* 395* 1545*	4 0
2 N	7 E	5	A 4	325		SMITH ETAL GRAHAM C	1	4376 P	1560		36	1020 608		3 0 0	1080	642*	2 0
2 N	7 E	10	01	420	_	PURE OC KITLEY C M BASE PENN	A 1	4360 C	3151		4 2	1035 640			1100 818 2095	664* 382* 1659*	2 0
2 N	7 E	10	06	116		PURE OC STANFORD R BASE PENN		4330 C	3077		41	1029 630			1089 813 2100	656* 380* 1667*	2 0
2 N	7 E	10	E 5	326		WILLIAMS B NOLAN M E BASE PENN	1	4520 C	3083		41	1051 647			1110 833 2145	658* 381* 1693*	
2 N	7 E	10	F1	327	_	PURE OC PEARCE LA BASE PENN	A 3	4380 C	3090		4 2	1029 639			1090 812 2100	652* 374* 1662*	2 0
2 N	7 E	10	н 3	109		PURE OC BAYLER P BASE PENN	A 1	4300 C	3095		42	1008 622		1	1072 2102	642* 1672*	2 0
2 N	7 E	12	87	328		WASHBURN J BAYLOR J BASE PENN	1	4550 C	3073		4 2	$\begin{smallmatrix}1071\\664\end{smallmatrix}$			1136 2100	681 * 1645 *	2 0(

KEY BEDS IN CLAY COUNTY

S

CLAY COUNTY

Lo	cation of	Hol	e	County	Type	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled DoubHul Information	Line	1 — Coal I 2 — Shoal			1 — Coal Ne 2 — West Fr 3 — Base Pe	ranklin
Twp.	Range		Sec.	Number	Hole	operator	Number	Altitude	Depth	σ ₂	P D Y	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Ainode _	Thicknes Ft. In
2 N	7 E	12	07	329	ΤD	WASHBURN J BONNER C BASE PENN	1	4530 G	3085		41	1066 663	613* 210*		1128 854 2052	675* 401* 1599*	2 0
2 N	7 E	1 %	E 5	330	ΤĐ	OLSON DRC IRWIN C BASE PENN	2	4570 G	3174		39	1076 667	619* 210*		1137 856 2067	680* 399* 1610*	
2 N	7 E	1 3	A 3	332	τD	SANDRS ETL STANFORD L BASE PENN	1	4400 C	3068		41	1003 599			1063 2022	623 * 1582*	
2 N	7 E	13	A 4	333	ΤĐ	SANDRS ETL STANFRD LE BASE PENN	2	4340 C	3069		41	1001 586			106 2 2028	628# 1594#	
2 N	7 E	13	84	331	тD	DUNBAR ETL GILL H C BASE PENN	1	4480 D	3036	,	41	1017 606			1078 2048	630* 1600*	
2 1	7 E	1 4	0 2	520	ΤĐ	PURE OC BROYLS CON BASE PENN	B 1	4480 D	3077		4 5	1053	605*		1118 837 2090	670* 389* 1642*	30
2 N	7 E	1 4	Ε7	334	ΤD	KINGWOODOC NEFF F BASE PENN	1	4550 C	3207		40	1040 636		2 0 0	1102 826 2075	647* 371* 1620*	1 0
2 N	7 E	1 5	H1	336	ΤÐ	ILL PROD NEFF F O BASE PENN	1	4460 C	3132		4 2	1035 630		206	1101 817 2055	655* 371* 1609*	2 0
2 N	7 E	15	Н5	335	τD	WSHBRN&PWR BAYLOR CON BASE PENN		4400 C	3119		42	1029 620		1 00	1096 820 2076	656* 380* 1636*	2 0
2 N	7 E	17	08	337	ΤÐ	GULF REF SKELTON L BASE PENN	1	4350 D	3247	×	43	1038 606		2 06	1102 818 2132	667* 383* 1697*	1 0
2 N	8 E	3	B 6	107	TD	PURE OC Mosely con	1	4370 C	3068		41	1004	567*	300	1065	628*	2 0
2 N	8 E	3	E 5	105	LÐ	PURE OC MOSELY B W BASE PENN	B 5	4340 C	2615		42	978 596			1040 1965	606* 1531*	2 0

CLAY COUNTY

Lo	cation of	Hole)	County	Type of	_	Op'r's	Surface	Total	ad. Iber	Year Drilled Doubtful	Line	1 — Coal I 2 — Shoal			1 — Coal M 2 — West 3 — Base F	Frank	
wp.	Range	:	Sec.	Number	Hole	Operator	Number	Altitude	Depth	Quad. Number	Dril	Depth	Altitude	Thickness	Depth	Altitude	Thick	knes
					<u> </u>							(Feet)	(Feet)	Ft. In.	(Feet)	(Feet)	Ft.	In.
2 N	8 E	3	н 4	104	ΤĎ	PURE OC TAYLOR CON BASE PENN	1	4160 C	3040		42	960 570		3 0 0	1016 1950	600* 1534*	3	0
2 N	8 E	4	D 8	115		PURE OC Moseley J	3 B	4490 C	4840		41	1038 626		3 0 0	1097 855	648 * 406*	2	0
2 N	8 E	6	A 6	108		WISER OC DALY J	5	4700 C	3121		39	1088 681		2 0 6	1151	681*	2	0
2 N	8 E	6	▲7	112	TD	WISER OC DALY J	4	4740 C	3131	*	393	1093 619		2 0 0	1155	681*	2	0
2 N	8 E	6	C 6	110		WISER OC DALY J	8	4690 C	3124		39	1095 691			1157	688*	2	0
2 N	8 E	6	Ð 7	111	то	BASE PENN WISER OC DALY J	3	4740 C	3150	*	393	1096			2015 1160	1546* 686*	2	0
2 N	8 E	7	A 5	320		ORCHARÐ OC Nortn Marc	2 A	4580 C	3095		39	1052 652			1122	664*	2	0
2 N	8 E	7	F 3	319		BASE PENN PURE OC SMITH S	5 B	4530 G	3100		39	1061 649			2000 1128	1542* 675*	2	0
2 N	8 E	8	07	490		PURE OC Clark L	16	4660 D	2683		4 4	1036	570* 158*	206	1098	632*	3	0
2 N	8 E	8	F4	535	TD	BASE PENN DUNCAN W CARROLL	7	4670 C	2760		4 5	1042	575*		1930	1464*		
2 N	8 E	10	H 1	509	TD	BASE PENN PURE OC TETRICK T	B 1	4380 D	3113		4 4	996	558 *		2032 1060	1565* 522*		0
2 N	8 E	11	A 6	504	TD	BASE PENN PURE OC MOSELY C B	81	4310 D	3144		4 5	999 594			2010 1063 782	1572* 632* 351*	3	0
2 N	8 E	13	67	106	TD	BASE PENN Pure Oc		4090 D	3115		4 3	973	564 *		2008 1040	1577* 631*	2	0
						HOUGH W BASE PENN	1					566	157*		742 2037	333 1628		

KEY BEDS IN CLAY COUNTY

N

CLAY COUNTY

Loc	cation of	Hole		County	Type of	Operator	Op'r's Number	Surface	Total	Quad. Number	Year Drilled Doubtful Information	Line	1 — Coal 2 — Shoal			1 Coal M 2 West 1 3 Base F	Frankl	
Twp.	Range		Sec.	Number	Hole		Number	Altitude	Depth	Ō₹	≻ ₽ S P	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thick Ft.	kness In.
2 N	8 E	15	A 6	118	TD	PURE OC PIERCE RH	6	4720 C	3058		4 2	1053 645	581* 173*	3 0 0	1120	648*		0 0
2 N	8 E	15	04	321	ŢÐ	BASE ÞENN PURE OC EVANS W BASE PENN	81	4560 G	3080		44	1012 602	556* 146*	2 0 6	2050 1079 782 2027	1578* 623* 326* 1571*	2	0
2 N	8 E	17	Ε5	322	τD	PURE OC HENDERSN E BASE PENN	1	4530 G	3110		38		5 74 * 174*		1087 2057	634* 1604*	2	0
2 N	8 E	17	F8	323	TD	REGENTOC HENDERSNE BASEPENN	1	4510 C	2670		41		585* 181*		1100 2084	649* 1633*	2	0
2 N	8 E	18	B 5	117	TD	PURE OC SCRUGHAM L BASE PENN	. 1	4480 C	3120		40		546 * 150 *		1058 2005	610* 1557*	2	0
2 N	8 E	18	F5	114	τD	SANDERS J GILL L BASE PENN	1	4410 G	3101		39		576 * 180 *		1081 2012	640* 1571*		
2 N	8 E	18	F 6	113	ΤĐ	SANDERS J GILL BASE PENN	3	4500 C	3104	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	393	1032 632		3 0 0	1094 829 2053	644* 379* 1603*	2	0
3 N	5 E	15	E 5	3	PΤ	BNDM&TREES ANDERSON	1	5406 P	2076		153	1025	484≢	2 0 0	1075	534*	3	0
3 N	5 E	18	B 3	4	TÐ.	MYERS&NLSM NEWTON BASE PENN	1	5190 C	2896		41		467* 101*		1046 1782	527* 1263*	3	0
· 3 N	5 E	24	E 4	96	ΤD	MYERS J W HENDY CHAS BASE PENN	3 1	5060 D	3003		4 3	996 627			1050 1873	544 1367 •	1	0
3 N	5 E	25	A 1	33	ΤÐ	BAYER K M ALLISON M BASE PENN	1	5210 C	2967	•	4 2	944 557			1006 1851	485 1330	2	0
3 N	5 E	25	83	479	ΤÐ	LYNN JJ ALLEN BASE PENN	1	5190 D	2705	*	44	940 550		206	998 1830	479* 1311*		0

CLAY COUNTY

Lo	cation of	Hol	e	County	Туре		Op'r's	Surface	Total	ber	ed fful ation	Line	1 — Coal 2 — Shoal			1 — Coal 2 — West 3 — Base	Frank	lin
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Drilled Doubtful Information	Depth	Altitude	Thicknes		Altitude		kness
•												(Feet)	(Feet)	Ft. In.	(Feet)	(Feet)	Ft.	In.
3 N	5 E	25	D 2	481	1	LYNN J J HAYNES BASE PENN	3	5100 D	2725	*4	4	960 579		1 06	1118 1856	6084 13464		0 0
3 N	5 E	25	Е 3	480		LYNN J J CLCLRE HRS	1	4910 G	2718	* 4	4	943 557		2 0 0	997	506*		0 6
3 N	5 E	25	G 2	303		BASE PENN LAIN OG		5150 D	2976		2	967		4 0 0	1831 1023	13404		0 0
2.1			•			HYNS&MC CN BASE PENN	1		~		~	593			1859	1344		00
3 N	5 E	27	A 8	5		STEWART A WALKER HRS BASE PENN	1	5610 C	3082	4	1	1105 708		2 0 6	1170 1926	609×	• 1	0 ε
3 N	5 E	3 2	B 2	6	тр	GORDON&RBN CANNON	1	5680 C	3030	3	8	1058	490* 88*	2 0 0	1124	556*	2	0 6
3 N	5 E	35	A 2	511	то	BASE PENN NAT ASSOC		5270 D	3010	4	5	984	457 *	1 06	1920 1042	1352 515		06
	-					MODLIN EST BASE PENN	1					608			1848	1321	ı	
3 N	5 E	36	н5	512		LYNN J J ANDRN&BRYN BASE PENN	1	5190 D	2735	* 4	5	949 564	430≉ 45≉	2 00	1004 1847	485* 1328*		0 (
3 N	6 E	9	A 1	304		CUPPS L B Frøst d	1	4810 G	3141	4	2	1003 614	522* 133*		1060	579*	r	
3 N	6 E	1 %	С 3	305	τD	BASE PENN MARTN&GDSN NASH	5	4640 D	3007	4	2	1030 624	566* 160*	206		1446* 616*		
3 N	6 E	13	A 6	310	тD	BASE PENN GULF REF PEARCE R	2	4680 D	3001	≉ 4	3	1017 603	549 * 135 *	2 06	1970 1072	1506* 604*		0
3 N	6 E	13	A 7	312	то	BASE PENN TIDE WATER WINKA T	1	4690 D	2990	* 4	3	1017 604	548 * 135*	2 0 6	1974 1074	1506* 605*	2	0 (
3 N	6 E	13	C 7	313		TIBE WATER WINKA T BASE PENN	2	4670 D	2986	* 4	3	1022 602	555* 135*		1082	615*	:	

KEY BEDS IN CLAY COUNTY

CLAY COUNTY

Loc	ation of	Hole)	County	Type of	_	Op'r's	Surface	Total	Quad. Number	Year Drilled ^{Doubtful}	Line	1 — Coal 2 — Shoa				1 — Coal I 2 — West 3 — Base I	Frank	
Twp.	Range		Sec.	Number	Hole	Operator	Number	Altitude	Depth	° N	Dril Dout	Depth	Altitude	Thic	kness	Depth	1	Thick	knes
												(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
3 N	6 E	13	03	307	TD	CARTER OC NEELY E	1	4680 D	2992	*	38	1010			00	1067	599	r 1	0
3 N	6 E	13	E 3	431	тÐ	KINGWOODOO GRAHAM BASE PENN	; 1	4730 G	2984	*	38	1017 607			00	1074	601		0
3 N	6 E	13	E 7	306	ΤD	TIDE WATER HILL G	1	4670 D	2977	*	43	1034 621		- 3	0 0	1094	627		0
3 N	6 E	14	81	314	ΤD	NAT REF GOODENGH A	1	4660 D	2984	*	43	1024 601	_		00	1086	620:	* 2	0
3 N	6 E	14	E 1	396	τD	GULF REF WORTHAM E	2	4670 D	3085	*	4 4	1034 613			o 0	1096	629:	* 1	0
3 N	6 E	14	F 2	366	тD	GULF REF WORTHAM E	1	4700 D	3004	*	4 4	1044 621		2	00	1102	6324	* 2	0
3 N	6 E	14	68	365	TD	MILLER DRO DUNNIGAN O BASE PENN		4750 D	3081		4 4	1015 609		1	06	1070 1900	595*		0
3 N	6 E	16	E 4	367	ΤD	TALBOT C N SMITH A BASE PENN	1	5210 D	3130		4 4	1030 632				1087	566	• 1	0
3 N	6 E	23	E 2	308	τo	DEEP ROCK THOMPSON A	1	4750 D	2996		43	1048		2		1110	635		0
3 N	6 E	23	62	309	ΤD	KINGWOODOC GATEWOOD A		4740 D	3076		42	1036 624		2	00	1098	624	2	0
3 N	6 E	24	C 8	316		STANLNB OG RIGGLE C BASE PENN	1	4890 D	3021	•	43	1072 642	-	2		1134 1976	645* 1487*		0
3 N	6 E	24	н 8	315	TD	NAT REF THING A C	1	4710 D	2994	4	43	1022 615		2		1082	611		Ó
3 N	6 E	30	D 3	317		WILLIAMS B THOMPSON BASE PENN	1	4720 C	2957	*	41	925 530		2		982 1845	510+ 1373+		0

CLAY COUNTY

Loc	ation of	Hole	e	County	Type	Operator	Op'r's	Surface	Total	Quad. Number Year	Doubtful Information	Line	1 — Coal 2 — Shoal			1 — Coal 2 — West 3 — Base	Frankl	
Twp.	Range		Sec.	Number	Hole	Operation	Number	Altitude	Depth	σ ₂ ×2	Dou	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thick Ft.	kness In.
3 N	6 E	30	08	398	ΤD	LYNN J J JOPLIN BASE PENN	2	5220 D	2724	* 4 4		949 572	427*	2 0 0	1004	482	1	0 6
3 N	6 E	30	E 8	495	LD	LYNN J J DEAIN BASE PENN	3	5130 G	2726	4 4		946 567	433‡ 54‡	300	1001 1858	488		0 0
3 N	6 E	30	F 2	369	ΤD	LYNN J J WEILDT	1	5040 D	3018	* 4 3		956 563		2 0 6	1008	504	2	0 0
3 N	6 E	30	F4	318	то	LYNN J J GREENE BASE PENN	2	5050 C	2700	* 4 3		956 573		206	1018 1855	508		0
3 N	6 E	30	G 3	397	ΤD	LYNN J J GREENE BASE PENN	3	4970 C	2706	* 4 3		955 564		206	1012 1787	515; 1290;		0
3 N	6 E	30	G5	370	ΤĐ	LYNN J J Chasteen	1	5120 D	2712	* 4 3		980 590		2 0 6	1039	527:	* 2	0
3 N	6 E	30	G 7	368	ΤD	LYNN J J COMMUNITY BASE PENN		5120 C	2822	* 4 4		964 576		1 0 0	1020 1820	508 1308		0
3 N	6 E	31	H 4	510	ΤD	LYNN J J College	1	5160 C	2976	43		982 594		206	1038	522	* 2	0
3 N	6 E	31	Н7	516	TD	LYNN J J Allison Base Penn	C 3	5200 G	2720	4 5		968 582		2 0 0	1024 1889	504 1369		0
3 N	6 E	34	C 4	513	ΤD	GULF REF MCVEIGH W BASE PENN	1	4920 D	3190	4 5		1042 635		2 0 0	1102 1990	610; 1498;		0
3 N	7 E	2	A 1	251	ΤD	DUNCAN NE PATRIDG J BASE PENN	W 1	4310 D	2955	4 2		1027	596*	1 0 0	1071 876 2010	640 445 1579	†	0
3 N	7 E	2	A 3	254	TD	WISER OC SULLENS J BASE PENN	1	4310 D	3030	4 2		1031	600*	2 0 6	[645 1594		0

KEY BEDS IN CLAY COUNTY

CLAY COUNTY

Loc	ation of	Hole	- County	Type	Operator	Op'r's	Surface Total	Quad. Number Year Drilled ^{Doubtitul}	Line 1 — 2 —	– Coal No. 6 – Shoal Creek	Line 1 Coal 1 2 West 3 Base I	Franklin
Twp.	Range	Sec.	Number	Hole		Number	Altitude Depth		Depth Al	ltitude Thickness	Depth Altitude	Thickness
										Feet) Ft. In.	(Feet) (Feet)	Ft. In.
3 N	7 E	2 A7	255	TD	MCBRIDEINC THOMPSON BASE PENN	1	4340 D 2655	* 4 3	1026 5	* 0	1075 641 * 1995 1561*	
3 N	7 E	≈ 86	284	TD	BRITAM OP DANNELLS B BASE PENN	1	4350 C 2999	* 4 3	1021 5	586* 1 06	1067 732 880 445 2005 1570	3 06
3 N	7 E	≈ 87	494	ΤD	MCBRIDEINC DANNELLS C BASE PENN	1	4340 D 2622	* 4 4	1026 5	* 0	1069 635 1996 1562	
3 N	7 E	¥ C7	252	то	MCBRIDEINC PHILLIPS BASE PENN	1	4330 D 2600	* 4 3	1018 5	585 * 2 00 *0	1062 629 2000 1567	
3 N	7 E	¥ D8	344	ΤD	MCBRIDEINC PHILLIPS F	3	4340 D 2615	* 4 3	1014 5	580 * 3 00 *0	1060 626*	
3 N	7 E	2 E 7	253	TD	BASE PENN MCBRIDEINC PHILLIPS	2	4340 D 2615	* 4 3	1016 5	582* 1 00 *0	1993 1559 1058 624 2006 1572	3 0 (
3 N	7 E	% F3	256	ΤD	BASE PENN NAT REF TOLLIVER M	1	4320 C 3010	* 4 2	1027 5	595* 1 06	1072 6404	
3 N	7 E	≈ G5	482	ΤD	BASE PENN RBNSN PUCK TOLLIVER J BASE PENN	81	4430 D 2627	* 4 4	1016 5	573 * 2 06	2016 1584 1062 619 854 411 2003 1560	
3 N	7E	2 G7	250	τD	MCBRIDEINC FRANKLIN B BASE PENN	1	4310 D 2610	* 4 3	1004 5	573 * 2 00	1048 617 * 1994 1563 *	3 0
3 N	7 E	3 A 1	262	τD	MCBRIDEINC NEELY A H BASE PENN	1	4370 D 2607	* 4 3		584 * 3 00 L87 *	1074 637 838 401 1997 1560	
3 N	7 E	3 A 3	302	TD	MCBRIDEINC CAILTEUX F BASE PENN	1	4360 C 3020	* 4 3		87 *	1064 628 2010 1574	
3 N	7 E	3 A 4	483	τD	MCBRIDEINC CAILTEUX F BASE PENN	2	4350 D 2622	* 4 4	1022 5 622 1		1066 6 3 1• 2006 1571•	
3 N	7 E	3 C 1	263	TD	MCBRIDEINC NEELY A H BASE PENN	2	4340 D 2603	* 4 3	1017 5	583 * 200	1062 628 • 2006 1572 •	20

CLAY COUNTY

Lo	cation of	Hole		County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled	uprrui rmotion		1 — Coal 2 — Shoal				1 — Coal I 2 — West 3 — Base I	Frank	din
Twp.	Range	S	ec.	Number	Hole		Number	Altitude	Depth	σ _Ž	× ۵ ۵	Info:	Depth	Altitude	Thic	kness	Depth	Altitude		kness
													(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
3 N	7 E	3	C 3	25 <u>9</u>	ΤD	MCBRIDEINC HAGEN L BASE PENN	1	4340 D	3015	*	42		1010	576 🔹	2	00	1059 1980	6254		06
3 N	7 E	3	ε1	345	тр	MCBRIDEINC CLARK A BASE PENN	2	4350 D	2613	*	43		1021	586*	1	06	1066	6314		0 0
3 N	7 E	3.	Ε7	261	LD	MCBRIDEINC MCNEELY C BASE PENN	1	4350 D	3084		42		1006	571*	3	00 *0	1058 820 1990	623 385 1555	•	06
3 N	7 E	3	G 1	257	тD	MCBRIDEINC CLARK A BASE PENN	1	4330 D	2997	*	43		1007	574 *	1	06 *0	1050 2007	617×		06
3 N	7 E	3	G 3	258	тD	MCBRIDEINC DICKEY H BASE PENN	1	4330 D	2607	• *	42		997	564 #	2	06	1043 2013	610 1580		06
3 N	7 E	6	F5	264	тD	KINGWOODOC COGGINOD BASE PENN		4740 D	3113		41		1088 695		2	06	1143 2062	669×		06
3 N	7 E	7	A 4	484.	ΤD	COOPREF NASHER BASEPENN	1	4730 D	3065		44		1034 624	561* 151*	2	06	1089 2025	616 1552		00
3 N	7 E	8	Ε7	260	тD	KINGWOODOO BRISSENDEN BASE PENN		4620 C	3101		38		1046 640	584 ≭ 178≭			1099 2019	637; 1557;		
3 N	7Е	9	в3	267	TD	OHIO OIL STANFORD S BASE PENN	6 1	4600 G	3460	And	38		1047 642				110 2 907 2027	642 447 1567		
3 N	7 E	9	C 1	265	ΤD	MCBRIDEINO DEHART W BASE PENN	2	4560 D	3060	*	43		1030	574 *	3	00	1087 2022	631 1 566		0 0
3 N	7 E	9	Ε1	266	Ъ	MCBRIDEINO GERMAN K BASE PENN	1	4530 D	3040	*	43		1026 628		2	00	1076 2032	623 1579	-	00
3 N	7 E	10	A 6	280	TD	SHULMN BRO GILL S BASE PE NN) 1	4490 C	2641	*	41		1034	585*	2	00	1087 2000	638 1551		00
3 N	7E	10	A 7	273	тD	SHULMN BRO COLCLASURE BASE PENN		4340 G	2596	*	41		1013 611		2	00	1063 873 1997	632 442 1566	*	00

KEY BEDS IN CLAY COUNTY

CLAY COUNTY

Loc	cation of	Hole					and an end of the second s										Line	1 — Coal N		
				County Number	Type of Hole	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled	formation	Line	1 — Coal 2 — Shoal			1.0	2 West 3 Base P	Frank	
Twp.	Range	5	ec.					-		Ϋ́Ζ		Ē	Depth (Feet)	Altitude (Feet)	Thic Ft.	kness In.	Depth (Feet)	Altitude (Feet)	Thicl Ft.	kness In.
3 N	7 E	10	B 6	285	TD	SHULMN BRO GILL S	2	4320 D	2607	*	43		1006	574 * 174 *	2		1058	626*		00
						BASE PENN	~							1 / 4 #			1986	1554 🔹		
3 N	7 E	10	88	272	ΤD	SHULMN BRO COLCLSRE C	1	4560 C	2955	*	40		1036 635	580. * 179*	3	00	1088	632*	3	0 0
7.1	7.6				_	BASE PENN											2020	1564*		
3 N	7 E	10	07	346		MCBRIDEINC DEHART W	3	4380 D	2625	*	43		1010 604	572* 166*	2		1060	6224	2	00
3 N	7 E	10	ne	279		BASE PENN MCBRIDEINC		4370 D	0 < 1 0					5 4 5			2000	1562*		
2.1		10	00	≈ 19		DEHART W BASE PENN	1	4 5 7 0 0	2612	*	43		1004	567 *	1		1054	617*	1	00
3 N	7 E	10	F7	268.		MCBRIDEINC		4320 D	2610		42			F R O .	~		2010	1573*	_	
	-		2.	~ 0 0		ARMSTG ETL BASE PENN	1	4 0 2 0	2010	-	4 &		1002	570≉	2		1050	618 +	3	00
3 N	7 E	10	F2	274		SHULMN BRO		4420 C	2340	*	43		1020	578*	2		1996 107 3	1564*	~	06
						COLCLSRE C BASE PENN	B 2		~ - 10				10~0	510.	~		1995	631 * 1553*	2	06
3 N	7 E	10	F4	271		MCBRIDEINC		4430 D	2610	*	43		1032	589*	2		1082	639*	2	00
						BERLINC BASE PENN	2		1. V						-		831 2007	388 * 1564 *	~	00
3 N	7 E	10	F6	2.70		MCBRIDEINC BERLIN C	1	4500 D	2626	\$	4 2		1034	584 🛊	2	00	1084	634 =	3	0.0
						BASE PENN	Ţ										2010	1560 +		
3 N	7 E	10	G 7	2 69		MCBRIDEINC ARMSTRONG	2	4490 D	2620	*	43	1	1035	586*	3	00	1086	637 =	2	00
						BASE PENN	~										2016	1567 🛊		
3 N	7 E	10	нε	281		MCBRIDEINC HANCOCK E	1	4430 D	2615	*	43	-	1020	577 ‡	3	00 *0	1070	627 •	1	00
						BASE PENN	_										1976	1533*		
3 N	7 E	10	H 4	282		MCBRIDEINC MOENCH W F	2	4350 D	2605	*	43	1	1022	587 🛊	3	00	1067	632*	3	00
						BASE PENN		o e respectivo									1970	1535*		
3 N	7 E	11	07	399		MCBRIDEINC MORGAN S	1	4320 D	2615	*	4 4	1	L027 614	595 * 182 *			1074	642*	3	00
						BASE PENN					ĺ						1940	1508*		
3 N	7 E	11	08	485		M C B R I D E I N C M O R G A N	2	4340 D	2614	* 4	44	1	L 0 2 4 6 2 0	590* 186*	2	00	1073	639 *	3	06
						BASE PENN											1965	1531*		

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

CLAY COUNTY

Lo	cation of	Hole	- County	Туре		Op'r's	Surface Total	bed bed	Line 1 — Coo 2 — Sho	al No. 6 oal Creek	2 -	— Coal No — West Fr	ranklin
÷			Number		Operator	Number	Altitude Depth	Quad. Number Year Drilled			3 -	-Base Pe	
Twp.	Range	Sec.					· · · · · · · · · · · · · · · · · · ·		Depth Altitud (Feet) (Feet)			Annoae _	Thicknes Ft. In.
3 N	7 E	11 E7	486	ΤD	MCBRIDEINC PATTON BASE PENN	3	4330 D 2612	* 4 4	1035 602 615 182		1084	651* 1470*	3 0 (
3 N	7 E	11 E8	487	то	MCBRIDEINC PATTON H	4	4330 D 2612	* 4 4	1020 587 618 185		1072	639 =	2 0 0
3 N	7 E	11 F5	287	то	BASE PENN PRUETT T N CAILTEUX	1	4330 D 2960	* 4 2	1034 601	* 2 0 0		1519* 653*	2 0 (
3 N	7 E	11 G 2	290	то	BASE PENN SANDERS J STNFRD & L	1	4330 D 2978	4 2	1010 577	* 3 0 0		1587* 627*	2 0 0
3 N	7 E	11 G7	289	то	MCBRIDEINC PATTON H BASE PENN	_	4340 D 2611	* 43	1027 593 618 184			644* 1566*	2 0 0
3 N	7 E	11 н3	288	TD	JONES J H NEELEY	1	4320 C 2958	4 2	1 0 2 5 5 9 3 6 1 2 1 8 0		1070	638*	2 0 0
3 N	7 E	11 н6	347	ТD	MCBRIDEINC SMITH F BASE PENN	1	4340 D 2616	ŧ 4 3	1034 600	* 3 0 0	1082 1997 1	648* 1563*	30(
3 N	7 E	11 H8	291	םד	MCBRIDEINC PATTON H BASE PENN	5	4350 D 2611	* 4 3	1024 589 624 189		1076 1984 1	641* 1549*	2 0
3 N	7 E	13 C4	292	ΤD	LEONARD C RALEY BASE PENN	1	4320 C 3031	393	1019 587 624 192		1070 2025 1	638* 1593*	
3 N	7 E	14 H1	517	סד	MCBRIDEINO HOHLBAUCH BASE PENN	1	4380 D 3081	4 5	1042 604 633 195			655* 1544*	1 00
3 N	7ε	14 H5	293	TD	CHISYND STASER BASE PENN	1	4580 C 3067	39	1060 602 647 189		1113	655¥ 1577¥	2 0
3 N	7 E	15 B4	505	то	BELL BROS CRICKMAN BASE PENN	1	4660 D 3081	4 5	1056 590 648 182		1111	645* 1538*	
3 N	7 E	15 B7	295	DTD	MILLER DRO SMITH C T BASE PENN	1	4620 D 3032	4 0	1040 578 618 156		1092	630* 1560*	

KEY BEDS IN CLAY COUNTY

CLAY COUNTY

Lo	cation of	f Hole		County	Type of	Operator	Op'r's	Surface	Total	Quad. Number Year Drilled Doubtul	Line	1 — Coal 2 — Shoal			1 — Coal I 2 — West 3 — Base I	Franklin
Twp.	Range	Se	ec.	Number	Hole	Operator	Number	Altitude	Depth	Quad. Number Year Drilled Doubtful	Depin	1	Thickness	Depth	Altitude	Thickness
3 N	7 E	15	E 6	515	ΤD	BELL BROS PEARCE H BASE PENN	1	4550 D	3044	4 5	(Feet) 1 0 2 7 6 2 1			(Feet) 1086 883	(Feet) 631* 428*	Ft. In. 2 00
3 N	7 E	15	н7	294		SHULMN BRO ROSS W E BASE PENN	1	4370 C	2330.	* 4 1	1021 623		1 0 6	2020 1076 2000	1565* 639* 1563*	3 0 0
3 N	7 E	16	A 5 .	498		DORAN PAUL BRISSENDEN BASE PENN	1	4606 D	2706	4 5	1023 60 9		300	2000 1070 1970	1303 609 1509	4 00
3 N	7 E	18	A 1	296	T D	RUMLY HEIS CHANEY	, 1	4650 D	3061	4 2	1024 612			1081	616*	3 0 0
3 N	7 E	24	E 5	526		PURE & LYN GOINGS JA BASE PENN	A 2	4580 C	3068	4 5	1064	606*		2080	1622*	
3 N	7 E	24	нз	527		PHILLIPS MINNIE	2	4426 C	30 2 6	4 6	1046	603*				
3 N	7 E	25	07	297		PURE OC WELSH M S BASE PENN	1	4590 C	3185	4 2	1064 660		306	1124	665 * 1696*	3 0 0
3 N	7 E	27	D 5	298		TEXAS CO WEILER F BASE PENN	1	4530 D	3132	4 3	1053 653	600* 200*		1102	649 * 1572 *	306
3 N	7 E	33	G 6	299		KUTLICH L KUTLCH HRS BASE PENN	1	4660 D	3088	4 2	1065 656	599 # 190 #		121 832 8060	655* 366* 1594*	2 00
				vounai,												
3 N	8 E	8	A 7	400		NAT ASSOC HUNLEY J BASE PENN	1 Å	4270 D	3100	44	1040 642	613≉ 215≉	1 0 6 1		667 * 1529 *	2 00
3 N	8 E	10	н 3	522		BLACK OP DAUBS J BASE PENN	1	4330 D	3090	4 5	1086	653≉	2 00 1	145	712* 448* 1693*	
3 N	8 E	14	F7	523		SOHIO PET BEMIS THOS BASE PENN	2	4180 D	3055	4 5	1044	626*	2 0 0 1	103 834	685* 416* 1606*	2 06

CLAY COUNTY

Lo	cation of	Hole	County	Туре		Op'r's	Surface	Total	d.	r bala	Line	1 Coal 2 Shoal			1 — Coal I 2 — West	Frank	
_	_		Number		Operator	Number	Altitude	Depth	Quad. Number	Year Drilled ^{Doubfful}					3 — Base I	Penn.	
Twp.	Range	Sec.							, Z		Depth (Feet)		Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thick	kness In.
3 N	8 E	20 B 8	3 300	ΤD	ROCK HILL DUFF J W BASE PENN	1	4610 D	2896		41	106		2 0 0	1116 924 2142	6554 4634 16814	2	0 0
3 N	8 E	5≍ н.	528	ΤD	LYNN JJ BRISSENDN BASE PENN	1	4200 D	3090		45	102	4 604≢		2094	1674		
3 N	8 E	26 G	3 529	TD	WALLACE D WILLAMS JS BASE PENN	1	4180 D	2967		45	99	3 575≄		2015	15974		
3 N	8 E	28 E.	488	TD	PURE OC MAYO J W BASE PENN	1	4430 D	3022		4 4	105 66		1 00	1110 2026	667 ×		00
3 N	8 E	29 A S	5 417	то	REGENTOC TOTTERL BASEPENN	· 1	4770 D	3084		41	110 70		2 0 0	1158 21 22	6814 16454		00
3 N	8 E	2 9 E :	L 416	тD	PUREOC TAYLOR WH BASEPENN	A 1	4610 D	31 55		43	108 69		1 0 0	1148 2086	687 ×		00
3 N	8 E	29 FI	415	TD	ROCK HILL STANFORD C BASE PENN	A 1	4990 C	3155		41	1 1 2 7 3		300	1183 2183	684 1684		
3 N	8 E	33 F	5 418	тр	PURE OC BECHTEL S	1	4323 P	2967		378	101 62			828	396*		
3 N	8 E	35 F	419	TD	EUREKA OC SIEHENS BASE PENN	• 1	4150 C	3074	-	38	96 56		2 0 6	1023 815 1965	608 400 1550		
4 N	5 E	6 B !	5 7	ΤD	MADDENA R SLOAN BASE PENN	1	5670 C	4296		4 0	92		206	971 776 1673	404* 209* 1106*	:	06
4 N	5 E	9 H 3	5 8	ΤĐ	WRRN & BRD CRUSE BASE PENN	1	5360 D	2750		41	91 59		5 0 0	965 1655	429 * 1119*	2	06
4 N	5 E	10 A 1	. 377	LD	KROHN WM H Smth Claud Base Penn		5290 D	2706		44	93 60		1 0 0	982 1866	453* 1337*		00

KEY BEDS IN CLAY COUNTY

CLAY COUNTY

Loc	cation of	Hole		County	Туре		Op'r's	Surface	Total	ld. ber	ed	Hul ation		— Coal 2 — Shoal				1 — Coal 2 — West	Frank	din
Twp.	Range	9	Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled	Doub	Depth	Altitude	Thic	kness	Depth	3 — Base Altitude		knes
													(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
4 N	5 E	12	Ε7	521	TD	GULF REF COLGLAZIE BASE PENN	R 1	5110 D	2748		45		933 591	422 * 80 *	2	00	980 1800	469		
4 N	5 E	14	A 5	9	ΤD	CARTER OC COXWT BASE PENN	1	5390 D	4325		38		950 613	411* 74*			1004 830 1890	465 291 1351	-	
4 N	5 E	15	E 8	376		CRSN & CO BILLINGS BASE PENN	R M 1	5140 D	2673		43		938 590	424 * 76*	2	00	988 810 1653	474 296 1139		0 (
4 N	5 E	18	F 8	499	TD	WILLIAMS BOSTIC P BASE PENN	A 1	6040 D	2704		4 4		1004 681	400* 77*	1		1063 1737	459		
4 N	5 E	20	D 2	378		KROHN WM KING W BASE PENN	H 1	5270 D	2793		4 4		974 634	447* 107*	1	00	1026 868 1713	499 341 1186	2	0 0
4 N	5 E	26	D 1	10		LAIN OG ALDRICH BASE PENN	1	5234 C	2838		41		951 604	428* 81*			1004 810 1911	481 287 1388	r	
4 N	5 E	27	Н1	11		BNDM TRS& HARRELL J BASE PENN		5347 P	2302		16	в	960	425*			1700	1165*	ı	
4 N	6 E	2	E 4	391		EASON OC TUCKER C BASE PENN	1	4910 D	2976		43		1023 647	532 * 156 *	1		1066 847 1953	575 356 1491		0
4 N	6 E	8	н5	203		MIDSUN OC DAVIES G BASE PENN	1	5200 C	2851		4 2		976 645	456* 125*	1	-	1022 1794	502* 1274*	3	0 (
4 N	6 E	20	E 8	204		LAGALL OC HUFFMAN N BASE PENN	1	5160 D	2925		40		934 584	418* 68*	3		972 2020	456* 1504*		0 0
4 N	6 E	26	B 4	205		GULF REF MCCOLLUM BASE PENN	н 1	4780 D	3110		4 2		1050 673	572* 195*	8		1098 893 1954	620* 415* 1476*		0
4 N	6 E	34	02	361		TEXAS.CO KEMMERER BASE PENN	R 1	4840 D	3082		44		1028 642	544 * 158 *	2		1075 1930	591* 1446*	2	0 (

CLAY COUNTY

Loc	ation of	Hole		County	Туре		Op'r's		ì	d.	- p = 5	Line	1 — Coal 2 — Shoa				1 — Coal 1 2 — West	Frank	klin
ſwp.	Range	S	ec.	Number	of Hole	Operator	Number	Surface Altitude	Total Depth	Quad. Number	Drilled Doubtful Information	Durth			kness	<u> </u>	3 — Base I		knes
					-		-		-	-		Depth (Feet)	Altitude (Feet)	Ft.	In.	Depth (Feet)	Altitude (Feet)	Ft.	
	-																		
4 N	7Ε	3	C 1	283		RBNSN PUCK GIBSON CON BASE PENN	1	4810 D	3028	4	3	1049 662		4		1093 1984	612* 1503*		
4 N	7 E	11	C 8	500	TD	LUTTRELL H PHILLIPS A	1	4630 D	3045	4	5	1035 644	572* 181*			1078	6154		
4 N	7 E	12	A 6	206		BASE PENN GULF REF HASTINGS R	1	4720 C	3066	4	1	1059	587* 211*	2		1974 1103	1511* 631*		
4 N	7 E	16	F 1	525	TD	BASE PËNN MAGNOLIA		4730 D	3058	4	5	1050	577*	2		1997 1089	1525*		
4 N	7 E	23	A 7	470		CAMMON M BASE PENN RBNSN PUCK	1	4510 C	3010	4	4	650 1026	177 * 57 5 *	2		2022	1549 • 623 •	1	0
4 N		23		1		LEWIS BASE PENN	1					650	199*	-		1980	1529 =	-	Ū
4 11						GULF REF HASTINGS E BASE PENN	1	4410 D	2648	4	2	1027 629	586 * 188 *	د		1074 2000	633* 1559*		
4 N	7 E	25	A 7	208		GULF REF ANDERSON A BASE PENN	1	4500 D	2356	* 4	2	1019 624				1069 2013	619* 1563*		
4 N	7 E	25	A 8	468		GULF REF FRANKLIN J BASE PENN	6	4430 D	2324	* 4	4	1000 610	557* 167*	2		1048 1940	605* 1497*	2	0
4 N	7 E	25	B8	469		GULF REF FRANKLIN BASE PENN	5	4480 D	2327	* 4	4	1008 614	560 * 166 *	2		1056 1947	608* 1499*	2	0
4 N	7 E	25	C 7	210	тр	GULF REF DILLMAN W	1	4530 D	2343	* 4	2	1026 631	573 * 178 *			1074	621=		
4 N	7 E	26	A 1	217		GULF REF KECK R	5	4470 D	2327	* 4	3	1002 610	555 * 163 *	3	00	1044	597*		
4 N	7 E	26	A 7	21 1	тD	BASE PENN MCBRIDEINC KECK A H BASE PENN	2	4540 D	2339	* 4	3	1034 642		3		1992 1084	1545* 630*	1	0

KEY BEDS IN CLAY COUNTY

CLAY COUNTY

Lo	cation of	f Hol	e	Country	Туре		Op'r's	Curtar	Tabul	d.	tel tel tion	Line	1 — Coal 2 — Shoal			1 — Coal I 2 — West	Frank	din
				County Number	of Hole	Operator	Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled Doubtful					3 — Base I	enn.	
Twp.	Range		Sec.							۰z		Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thick Ft.	
4 N	7 E	26	A 8	506		RBNSN PUCK Tooley w S Base Penn	3	4540 D	2615	*	44	1020 629		300	1068 910 1950	614 456 1496		0
4 N	7 E	26	81 ,	214	ТD	GULF REF KECK R	2	4430 D	2317	*	41	997 612	554 * 169 *		1042	5994		
4 N	7 E	26	B 2	215	TD	GULF REF KECK R	3	4480 D	2338	\$	41	1000 616			1045	5974		
4 N	7 E	26	В 3	216	ΤD	GULF REF KECK R	4	4500 D	2338	*	43	1005 613	555* 163*	206	1051	6014	.	
4 N	7 E	26	B 4	213	ΤD	GULF REF KECK R	1	4560 C	2356	*	41		560* 174*	300	1064	608*	I	
4 N	7 E	26	B 6	212	тD	MCBRIDEINC KECK A H	3	4550 D	2618	*	43	1 0 2 7 6 4 0		300	1074	6194		
4 N	7 E	26	C 1	219	TD	GULF REF REED E	3	4510 D	2996	*	4 2		557 * 167*	1 00	1050	599*	I	
4 N	7 E	26	C 6	475	то	RBNSN PUCK Tolliver J		4560 D	262Q	¢	44		574 * 184*	300	1075 910	6194 454		C
4 N	7 E	26	D 2	218		GULF REF REED E	1	4520 D	2326	*	41	1001 622	549 * 170 *	300	1052	6 0 0*	I	
4 N	7 E	26	D 6	492	1	RBNSN PUCK TOLLIVER J BASE PENN	7	4540 C	2621	*	44		579* 187*	206	1088 1940	634* 1486*		6
4 N	7 E	26	07	491		RBNSN PUCK Tollvr con Base penn	3	4540 C	ż620	÷	4 4	$1036\\638$			1086 850 1950	632 396 1496		0
4 N	7 E	26	E \$	348	то	GULF REF TOLLIVER M	2	4550 D	2338	*	41	1015 628	560* 173*	200	1062	607 •		
4 N	7 E	26	E 6	473		RBNSN PUCK EASTIN	A 1	4570 D	2623	*	4 4		577 * 187*	2 0 6	1080	623*	8	C

CLAY COUNTY

Loc	ation of	Hole		County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled	nation		1 — Coal 2 — Shoal			:	1 — Coal 2 — West 3 — Base	Frankl	in
Twp.	Range	Sec.		Number	Hole		Number	Altitude	Depth	ð 'n	P_in	Infor	Depth	Altitude	Thic	kness	Depth	Altitude	Thick	ness
												.,	(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	ln.
4 N	7 E	26 E	7	471	ΤD	RBNSN PUCK TOOLEY W S BASE PENN	A 2	4560 D	2634	4	44		1041 644	585* 188*	3	00	1084 1942	628 1486		00
4 N	7 E	26 F	2	220	тD	GULF REF TOLLIVER M	1	4570 D	2338	*	41		1024 636	567¥ 179≉			1070	613		
4 N	7 E	26 F	6	472	ΤĎ	RBNSN PUCK EASTIN BASE PENN	A 2	4560 D.	2622	*	4 4		1034 642			06	1080 1954	608 1498		00
4 N	7 E	26 F	7	395	ΤD	RBNSN PUCK TOOLEY W S BASE PENN	A 1	4570 D	2619	*	4 4		1034 646		3	06	1078 1955	621 1498		00
4 N	7 E	26 G	3	349	тD	GULF REF BETTINGR F	2	4580 D	3030	*	41		1024 638		3	00	1074	6 1 6	•	
4 N	7 E	26 G	4	209	тD	GULF REF BETTINGR F	1	46 0 0 C	3047	*	41		1028 640				1074	61 4	ŧ	
4 N	7 E	26 G	6	350	то	GULF REF TOLLIVER I	1	4580 D	2660	*	44		1039 648	581* 190*			1083	625	ŧ	
4 N	7 E	26 G	7	393	TD	GULF REF REED E BASE PENN	B 1	4560 D	2624	*	4 4		1039 653	583* 197*	3		1086 1965	630 1509		06
4 N	7 E	27 A	1	371	ΤD	RBNSN PUCK TOOLEY W S BASE PENN	1	4560 D	3027	*	43		1022 626	5 66* 170*	2		1063 2022	607 1566		00
4 N	7 E	27 A	3	221	тD	SANDRS ETL HAGEN J	1	4530 D	2630		41		1028 628	575* 175*	2	00	1073	6 2 0 1	ı	
4 N	7 E	29 E	4	476	ΤD	SKELLY O.C JOHNSN R W BASE PENN	1	4680 D	3104		44		1052	584*	2		1100 2022	632 1554		06
4 N	7 E	34 A	3	226	TD	MCBRIDEINC GOLDBY COM BASE PENN	1	4340 D	2599	*	42		996 604	562* 170*			1044 1993	610 1559		
4 N	7 E	34 C	4	223	ŤD	MCBRIDEINC ERWIN P	1	4500 D	3111	*	42		1015 616	565* 166*			1059	609	•	

KEY BEDS IN CLAY COUNTY

CLAY COUNTY

Loc	ation of	Hole	•	County	Type of	1	Оре	rato	· .	Op'r's		Surfa		То	tal	Quad. Number	Year Drilled	btful nation	Line	1 C 2 S					1 — Coal I 2 — West 3 — Base I	Frank	lin
Twp.	Range		Sec.	Number	Hole		Ope	, aio		Number	4	Altitu	de	De	pth	αş	ž	Dou	Depth	Altitu	de	Thic	kness	Depth	Altitude	Thick	iness
		-				<u> </u>		- 1916-171			-	-		_		1000 100 1000 1000 1000		_	(Feet)	(Fee	-	Ft.	In.	(Feet)	(Feet)	Ft.	ln.
4 N	7 E	34	C 5	224	ТО				EIN STA		4 5	20	D	26	22	*	42		102	4 57	2*			1070	618	¢.	
4 N	7 E	34	Ε1	120					EIN G M	c c	44	5 0	D	262	0		43		1015 612	1		4	00	1063 887	618* 442*	2	00
4 N	7 E	34	E 3	222					EIN		4 4 1	50	D	261	0	*	41		1012			2	o 0	1052	606*		
						BAS	ΒΈ	Ρŀ	ENN			~ ~	0	0.6.6	E		43		1026		7	2	06	2002 1070	1556# 611#	2	00
4 N	7 E	34	G 1	225		FR	A N P	L.	EIN IN ENN		4 5	,0	U	268	5	-	4)		630			2	00	2020	1561*	~	00
4 N	7 E	35	C 5	233	то		_ L		a s	B 2	43	30	С	312	5		41		992 595					1040	607*		
4 N	7 E	35	C 6	414		coo	PE	R		c 2	44	\$ 0	D	263	3	*	44		1003 602			3	06	1050 1960	606* 1516*		
4 N	7 E	35	Ε7	228			3 R	0	EIN	C 1	44	10	D	260	0	*	43		1009 606					105 8	617 •		
4 N	7 E	35	F4	351	ΤD	KE (ET ₩	L 5	44	30	D	234	2	*	43		1009 616					1056	608*		
4 N	7 E	35	F5	392		ASH KE(0R ₩	с 6	4 5 :	LO	D	286	3	*	44		1013 610	4		3	00	1059	608*	1	06
4 N	7 E	35	F6	355		COO	PE	R		C 1	44	30	D	260	6	*	43		1014 610					1058 1990	615* 1547*		
4 N	7 E	35	F7	493	TD	M C E D U F			E I N W	C 3	45	30	D	261	. 5	*	44		1022 624			3	00	1070	617 •	2	0 0
4 N	7 E	35	F8	354	ΤD	DUF	FF	J	E I N W E N N	^с 2	4 5	3 0	D	266	0	*	43		1026 622					1067 1996	615* 1544*		
4 N	7 E	35	G1	229	тD	G U I F R /			E F I N	J 1'	44	9 O	D	232	8	*.	42		1005 620					1051	602*		
					and the second second																						

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

CLAY COUNTY

Loc	ation of	Hole		County	Type of		c	Dpe	era	lor			Op'r				face			otal	Quad.	mber	ear illed	Doubtful Information	Line	1 — C 2 — Sl					1 — Coal I 2 — West 3 — Base I	Fran	klin	
Twp.	Range	s	bec.	Number	Hole	•							Numb	er		Alti:	tude	9	D	epth	Ō	Ž	ר ≺	Do Do	Depth (Feet)	Altitu (Fee	-	Thic Ft.	kness	Depth	Altitude (Feet)	Thie Ft.	1	es: In.
4 N	7 E	35	G 2	230			U L R A					J		2	4 4	7 ())	D	23	35		*	43		1000	55	3 *			1048	601*			
4 N	7 E	35	G 7	232		ĸ	C E E C A S	к		۹.	н			1	4 4	8 (C	D	26	06		+	43		1024 630	1		3	00	1070	622*			
4 N	7 E	35	н1	231	TD.	G		F	K I	R E _ 1	FN	J	l ·	3	4 4	7 (0	D	23	35		*	43		1000 615			3	00	1049	602* 1511*			
4 N	7 E	35	Н 3	422	ΤD	G		F K	(R E C O	F	M		1	4 4	7 (0	D	23	30		*	44		1005 612	-		1	06	1050	6034 15074	2	. ()
4 N	7 E	35	Н 5	394		G K	U L E (_ F С К	1	२ E २	F			7	45	3 (0	D	26	26		*	44		1018 620			3	0 0	1061	608*	1	. (C
4 N	7 E	35	Н 6	353	то	M	A S C E	3 R	1.0	DE	I		:	4	45	2	0	D	s 9	18		*	43		1027 638			-		1069	617			
4 N	7 E	35	Н8	227	то									1	45	2	0	D	26	11		•	43		1020 631			3	0 0	1065	6134			
4 N	7 E	36	Ε7	234	τD	D		١к	Е	М				1	4 4	5	0	D	26	56			42		1016	57	1 *	3	0 0	1068	623* 1523*			
4 N	7 E	36	Н8	235	тD	G		F	K I	R E	FN		J	4	4 4	6	0	Ď	2 3	27		*	43		1002			2	00	1048	602	•		
							A	ΡĽ			N	n															and a second			2000	1014			
4 N -	8 E	1	D 1	236	то	R	U [0 0	LI	РН			J	1	47	4	0	с	31	36			41		1116 728					1172 925 2076	698 451 1602			
4 N	8 E	3	Β4	237	TD		F F							1	46	4	0	с	3 1	29			4 2		1090 702			3	00	1136	6721	3	5 (D
4 N	8 E	4	C 1	119	то	Н	N I N I A I	ΓR	S (сн	R	1		1	46	9	0	с	3 0	52			43		1093 702			2	0 0	1137 2007	668		9 (D

KEY BEDS IN CLAY COUNTY

CLAY COUNTY

Lo	cation of	Hole	County	Туре		Op'r's	Surface	Tatal	er se	Line	1 Coal 2 Shoal			1 — Coal 2 — West	Franklin
Twp.	Range	Sec.	Number	of Hole	Operator	Number	Altitude	Total _Depth	Quad. Number Year Drilled		1			3 — Base	
Twp.	Kange	Sec.								Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thicknes Ft. In
4 N	8 E	8 G 4	238		SNCLR WYOM STANLEY F BASE PENN	1	4690 C	3150	42	1107 710			1156 2060	687 * 1591 *	
4 N	8 E	9 B 5	239		NAT REF LA RUE G BASE PENN	1	4610 D	3115	42	107			1120	659* 1599*	
4 N	8 E ·	10 в 2	240	TD	NAT PET HNTRSCHR G BASE PENN	1	4630 D	3136	42	1088		2 0 0	1134	671*	
4 N	8 E	11 F 5	241	τD	SUPRIOR OC HNTRSCHR H BASE PENN	1	46 00 D	3148	43	1078 676		4 0 0	1124 1982	664* 1522*	
4 N	8 E	1≈ E4	503	τD	MAGNOLIA STANLEY F BASE PENN	1	4700 D	3004	4 5	1102 690			1154	6844	
4 N	8 E	15 D 2	242	TD	DELTA OPC MUHS BASE PENN	1	4520 C	3150	4 2	1087 690	635* 238*	3 0 0	1140	688	
4 N	8 E	21 B 5	243	то	GULF REF LEVITT J	ч	4540 D	3170	4 2	1060 667					
4 N	8 E	2% E8	244		BALDWN ETL LEVITT G BASE PENN	1	4370 D	3108	41	1038 640			1092 2030	655 * 1593*	-
4 N	8 E	23 A3	245		DELTA OPC CRACKEL BASE PENN	1	4450 C	3150	4 1	1085 676		300	1136 880 2080	691* 435* 1635*	
4 N	8 E	24 C 5	246		OHIO OIL NEGLEY D BASE PENN	1	4360 G	3150	38	1040 637			1092 822 2147	656* 386* 1711*	
4 N	8 E	28 A1	478		MAGNOLIA BROWN WM BASE PENN	1	4470 D	3168	* 4 4	1078 676			1129 864 2020	682* 417* 1573*	2 0
4 N	8 E	30 <u>E</u> 4	248		MCBRIDEINC STANLEY L BASE PENN	1	4470 🛛	3130	4 3	1048	601*		1094 854 1986	647* 407* 1539*	
4 N	8 E	33 E 4	524		MAGNOLIA BROWN S	A 1	4460 D	3152	4 4	1064			1114 854	668* 408*	

CLAY COUNTY

Loc	ation of	Hole		County	Туре		Op'r's	Surface	Total	ad. iber	ar led	offul ation	Line 1	— Coal 2 — Shoal			1 — Coal 2 — West 3 — Base	Frank	din
Twp.	Range	9	Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled	Dout	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)		knes: In.
4 N	8 E	33	G 1	477	ΤD	MAGNOLIA RINNERT M	2	4440 D	2697	*	44		1062 652	618* 208*	3 0 0	1114 852	670 408		
5 N	5 E	R	A 8	440	тD	TEXAS CO SPURLIN G BASE PENN	1	5350 D	2161	*	44		900 582	365≉ 47≉		934 760 1594	399 225 1059	•	0
5 N	5 E	3	D 2	29	то	TEXAS CO WRIGHT V BASE PENN	1	5400 C	2544		42		890 578	350≉ 38≉		930 740 1612	390 200 1072		0
5 N	5 E	3	H 4	130	TD	LUTTRELL H NORBUT J BASE PENN	1	5480 D	2553		43		886 574	338 * 26 *		924 746 1615	376 198 1067	•	
5 N	5 E	5	F2	12	ТD	KINGWOODOC DANKS M B BASE PENN	1	5660 C	2723		40		927 610	361 * 44 *	,	965 793 1820	399 227 1254		0
5 N	5 E	10	A 2	379	тD	COOPREF ROSEBRUGH BASEPENN	1	5320 D	2473	*	44		900 688			941. 1610	409 1078		
'5N	5 E	10	A 4	79	ТD	GULF REF EDG ST STE BASE PENN	1	5360 D	2511	*	43		897 582	361≉ 46≢		938 1606	4024 10704		
5 N	5 E	10	A 6	80	то	TEXAS CO HIN&ELK CM BASE PENN	2	5330 D	2375	*	43	-	877 570	344 * 37 *		915 1604	382* 1071*		
5 N	5 E	10	Ε5	43	ТD	TEXAS CO RUSH I J BASE PENN	1	5400 D	2586		42		904 592	364 * 52 *		942 760 1624	402 220 1084	•	
5 N	5 E	10	F2	442	τD	TEXAS CO ROSE J BASE PE NN	1	5330 D	2559	*	44		897 586	364* 53*		935 765 1594	402 232 1061		0
5 N	5 E	10	G 2	441	тĎ	TEXAS CO CRUSE J BASE PENN	1	5380 D	2163	*	4 4		903 583	365 * 45 *	1 00	942 764 1580	404 226 1042	•	0
5 N	5 E	11	A 8	423	тр	JABLNSKI F BURGE ALMA BASE PENN	1	5240 D	2379	*	43		888 575	364≉ 51≉		924 1610	400		0

KEY BEDS IN CLAY COUNTY

CLAY COUNTY

Loc	cation of	Hole	- County	Type		Op'r's	Surface	Total	ld. ber		Line	1 — Coal 2 — Shoa			1 — Coal 2 — West	Franklin	in
-			Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Drilled Doubtful Information					3 — Base	Penn.	
Twp.	Range	Sec.							- 2	<u>-</u> -	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thickn Ft.	nes In.
5 N	5 E	13 C7	101		GULF REF PILCHER J BASE PENN	1	4780 D	2421	* 4	3	860 532	382* 54*		89 9 1700	421*		
5 N	5 E	13 E3	100	то	WAGGONER L GEN AM INS BASE PENN	1	5200 D	2534	4	3	888 570	368* 50*		928	408*		0 0
5 N	5 E	13 E7	129	то	WAGGONER L PILCHER JR BASE PENN		5290 D	2457	* 4	3	905 576	376 * 47 *		943 776 1680	414* 247* 1151*		0
5 N	5 E	13 G 5	275		CENTRLPIPE FENDER E BASE PENN	1	5260 D	2475	4	3	900 584	374 * 58 *	106	937 1632	411* 1106*		
5 N	5 E	13 G8	127		CENTRLPIPE PILCHER JR BASE PENN	1	5170 D	2457	* 4	3	892 574	375≢ 57≉		933 1620	416* 1103*		
5 N	5 E	14 86	364		TEXAS CO WOOLRGE F BASE PENN	1	53 00 D	2363	* 4	4	906 576	376 ≭ 46 ≉		945 775 1606	415 245 1076		
5 N	5 E	14 B7	124		SHELL OC MOSS LEE BASE PENN	6	5160 D	2341	* 4	4	876 548	360* 32*		916 1590	400 * 1074 *		
5 N	5 E	14 B8	121		SHELL OC MOSS LEE BASE PENN	5	5240 D	2349	4	4	878 556	354* 32*		914 770 1594	390* 246* 1070*	2 (0
5 N	5 E	14 C2	496		TEXAS CO WADE C T BASE PENN	1	5270 C	2466	* 4	3	920 582			960 1726	433* 1199*		
5 N	5 E	14 C 3	425		TEXAS CO WADE C T BASE PENN	2	5260 D	2585	* 4	3	912 576	386≉ 50≉		950 1654	424* 1128*		
5 N	5 E	14 C6	426		TEXAS CO BASE PENN RODGERS A	3	5290 D	2360	* 4	3	899 570	370* 41*		940 1604	411* 1075*		
5 N	5 E	14 C7	276		SHËLL OC MOSS LEE BASE PE NN	3	5210 D	2346	* 4	3	882 554	361* 33*		924 1590	403* 1069*	2 (0 (
5 N	5 E	14 C8	424		SHELL OC MOSS ETAL BASE PENN	4	5310 D	2356	* 4	3	886 562	355* 31*		922 780 1590	391* 249* 1059*		

CLAY COUNTY

Loo	cation of	Hole	e	County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled Doubtful	Line	1 — Coal 2 — Shoal			1 — Coal 2 — West 3 — Base	Franklin
Twp.	Range		Sec.	Number	Hole		Number	Altitude	Depth	ΰŻ	≻ <u>P</u> 8 3	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thickne: Ft. In
5 N	5 E	14	D 5	375		TEXAS CO RODGERS A BASE PENN	2	5280 D	2358	*	43	899 568			938 780 1610	4104 2524 10824	1
5 N	⁵ E	14	07	128		SHELL OC MOSS LEE BASE PENN	5	5310 D	2356	*	43	891 565	360 * 34 *		926 772 1592	395 241 1061	
5 N	5 E	14	D8	125		SHELL OC MOSS LEE BASE PENN	1	5330 D	2356	*	43	883 562			920 764 1592	387 231 1059	1
5 N	5 E	14	Ε5	58		CENTRLPIPE REED HEIRS BASE PENN	3	5320 C	2148	*	43	902 574	370 * 42 *		940 1600	408* 1068*	
5 N	5 E	14	Ε7	82		LUTTRELL H REED HEIRS BASE PENN	13	5320 D	2472	*	43	890 572			930 774 1592	398 242 1060	
5 N	5 E	14	Ε7	95	1 1	LUTTRELL H REED HEIRS BAST PENN	12	5300 D	2381	*	43	888 572			930 781 1590	400* 251* 1060*	r
5 N	5 E	14	E 8	81		LUTTRELL H REED HEIRS BASE PENN	10	5320 C	2302	*	43	894 565	362* 33*		930 1588	398* 1056*	
5 N	5 E	14	F1	126		CARTER OC HARPER L BASE PENN	1	4800 D	2553	*	43	876 546	396 * 66 *		910 1571	430# 1091#	
5 N	5 E	14	F 5	497		TEXAS CO BYERS H E BASE PENN	4	5290 D	2360	*	43	906 572			942 772 1595	413 243 1066	ı
5 N	5 E	14	F 7	94		LUTTRELL H REED HEIRS BASE PENN	11	5240 D	2387	*	43	892 570	368* 46*		928 778 1590	404 254 1066	
5 N	5 E	14	F8	77		LUTTRELL H REED HEIRS BASE PENN	9	53500	2366	*	43	890 566			928 770 1592	393* 235* 1057*	ı
5 N	5 E	14	G 1	98		KINGWOODOC DANKS MAUD BASE PENN	1	5190 D	2508	*	43	906 583		206	946 1614	427 = 1095 =	
5 N	5 E	14	G 8	57		CENTRLPIPE REED HEIRS BASE PENN	2	5340 C	2146	*	4 3	893 572	359* 38*		93 2 1600	398* 1066*	

KEY BEDS IN CLAY COUNTY

CLAY COUNTY

Loc	ation of	Hole	•	County	Туре		Op'r's	S. (.	d.	<u>م</u> -	ful	Line	1 Coal 2 Shoal				1 — Coal 2 — West		
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Surface Altitude	Total Depth	Quad. Number	Yea Drille	Doubt					ļ	3 — Base		
										 			Depth (Feet)	Altitude (Feet)	Ft.	kness In.	Depth (Feet)	Altitude (Feet)	Ft.	kness In.
5 N	5 E	14	Н8	68	тD	CENTRLPIPE REED HEIRS BASE PENN	1	5360 C	2370	*	43		902 586	366★ 50≭			940 1610	404		
5 N	-5 E	15	C 2	75	τD	CARTER OC VANGESON R BASE PENN	3	4970 D	2420	*	4 3		856 530	359≉ 33≉			894 740 1550	397 243 1053	4	00
5 N	5 E	15	C 4	89	то	TEXAS CO RISSER F BASE PENN	3	4830 D	2314	*	43		841 522	358≢ 39≢			881 1502	398	- 3	0 0
5 N	5 E	15	D 1	74	ΤD	CARTER OC VANGESON R BASE PENN	2	5290 D	2355	*	43		878 553				915 756 1590	386 227 1061	2	00
5 N	5 E	15	D 2	73	тD	CARTER OC VANGESON R BASE PENN	1	5250 D	2352	*	43		879 550	354 * 25*			919 1560	394	- 2	0 0
5 N	5 E	15	03	88		TEXAS CO RISSER F BASE PENN	2	5170 D	2346	*	43		864 534	347* 17*			902	385	2	0 0
5 N	5 E	15	D 4	55	dт	TEXAS CO RISSER F BASE PENN	1	5060 C	2336	*	43		854 538	348* 32*			892	386	• 3	00
5 N	5 E	1 5	D5	54		SHELL & TXAS LEONRD COM BASE PENN		4940 C	2372	*	43		846 536	352* 42*			886 1520	392	2	0 0
5 N	5 E	15	D 7	363	ΤD	SHELL OC BUHRMAN R BASE PENN	1	5300 D	2451	*	43		879 563	349* 33*			919 740 1566	389× 210×	2	0 0
5 N	5 E	15	Е1	84	ΤD	TIDE WATER DAVIS CORA	8	5180 D	2320	*	43		869 540	351 * 22 *			906	388*		
5 N	5 E	15	E 2	5.3		TIDE WATER DAVIS CORA BASE PENN	7	5270 D	2338	*	43		877 548	350* 21*			916 1552	389		00
5 N	5 E .	15	Е3	93	TD	TIDE WATER DAVIS CORA BASE PENN	б	5300 C	2337	*	43		878 560	348* 30*			916 1572	386	: 2	0 0
5 N	5 E	15	E 4	50	ΤD	TIDE WATER DAVIS CORA BASE PENN	3	5310 C	2351	*	43		869 564	338* 33*			911	380+	2	0 0
						UNDE MENIN											1594	1063	1	

CLAY COUNTY

Loc	ation of	Hole		County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled Doubtful	Line	i — Coal 2 — Shoal		· :	1 — Coal I 2 — West 3 — Base I	Frankl	in
Twp.	Range	s	ec.	Number	Hole		Number	Altitude	Depth	٥Ş		Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thick Ft.	iness In.
5 N	5 E	15	E 6	4 5	ΤD	TEXAS CO KIDWELL A BASE PENN	6	5310 D	2361	*	43	883 564			918 1558	387 1027		00
5 N	5 E	15	Ε7	91	TD	TEXAS CO B&K COMM BASE PENN	2	5320 D	2366	*	43	887 570			926 750 1566	394 218 1034	•	00
5 N	5 E	15	F 1	52	ΤD	TIDE WATER DAVIS CORA BASE PENN		5280 C	2335	*	43	880 553			916 762 1560	388 234 1032		00
5 N	5 E	15	F 1	86	ΤD	TIDE WATER DAVIS CORA BASE PENN		5290 D	2482	*	43	872 548			910 1556	381 1027		00
5 N	5 E	15	F 2	51	τD	TIDE WATER DAVIS CORA BASE PENN		5270 C	2337	*	43	872 563			908 1570	381 1043		00
5 N	5 E	15	F3	49	סד	TIDE WATER DAVIS CORA BASE PENN		5350 D	2361	*	43	878 570			916 1590	381 1055		
5 N	5 E	15	F4	48	тD	TIDE WATER DAVIS CORA BASE PENN		5290 D	2354	*	4 2	866 559			904 1510	375 981		00
5 N	5 E	1 5	F4	85	ΤD	TIDE WATER DAVIS CORA BASE PENN		5 31 0 D	2472	*	43	871 562			910 1570	379 1039	\$	00
5 N	5 E	15	F 5	70	ΤD	TEXAS CO KIDWELL A BASE PENN	5	5280 C	2437	*	43	862 549			907 1545	379 1017	*	00
5 N	5 E	1 5	F 6	71	ΤD	TEXAS CO KIDWELL A BASE PENN	7	5120 D	2342	*	43	860 540			900 750 1538	388 238 1026	+	00
5 N	5 E	15	G 1	47	ΤD	LUTTRELL H REED HEIRS BASE PENN		5330 D	2148	*	43	881 570		1	919 773 1566	386 240 1033	*	00
5 N	5 E	15	G 1	87	ΤD	LUTTRELL REED HEIRS BASE PENN		5310 0	2496	*	43	876 569			914 1570	_	*	00
5 N	5 E	15	G3	36	σT	LUTTRELL I REED HEIR BASE PENN		5 310 D	2311	*	42	879 569			922 1565			00

KEY BEDS IN CLAY COUNTY

CLAY COUNTY

Loo	cation of	Hole	•	County	Туре		Op'r's	Surface	Total	ld. ber	ed r	fful tion	Line	1 — Coal 2 — Shoal			1 — Coal 2 — West 3 — Base	Frank	din
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled	Doubi	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)		Thic	
5 N	5 E	15	G 4	34	TD	LUTTRELL H REED HEIRS BASE PENN	8	5240 D	2287	*	4 2		863 554	3 39 * 30 *	100000	904 1552	3804	1	0
5 N	5 E	15	G 5	40	TD	TEXAS CO KIDWELL A BASE PENN	1	5320 D	2488	*	4 2		873 555	341* 23*		913 1560	3814		
5 N	5 E	15	G 6	69	ΤD	TEXAS CO KIDWELL A BASE PENN	2	5010 C	2327	\$	43		852 532	351* 31*		887 1530	3864		0
5 N	5 E	15	G 7	46	TD	TEXAS CO KIDWELL A BASE PENN	9	5210 C	2351	÷.	43		876 560	355 ∗ 39≉		914 1552	3934 10314	4	0
5 N	5 E	15	Н1	99	ΤD	LUTTRELL H REED HEIRS BASE PENN		5280 D	2360	*	43		883 576	355 * 48 *		921 780 1555	393 252 1027		0
5 N	5 E	15	н 2	39	TD	LUTTRELL H REED HEIRS BASE PENN	5	5310 D	2155	*	43		890 575	359 ∗ 44≉		929 776 1570	398 245 1039		0
5 N	5 E	15	H 4	38	ΤD	LUTTRELL H REED HEIRS BASE PENN	4	5300 D	2305	*	43		886 571	356≉ 41≉		924 1562	3944 10324	: 2	0
5 N	5 E	15	Н 5	41	TD	TEXAS CO KIDWELL A BASE PENN	3	5 320 D	2314	*	43		882 564	350 * 32*		916 1550	364 1018		0
5 N	5 E	15	н б	72	ΤD	TEXAS CO KIDWELL A BASE PENN	8	5320 D	2369	*	43		882 567	350 * 35 *		920 1554	3884 10224	3	0
5 N	5 E	16	D 1 `	90	TD	TEXAS CO JOLIFF J W BASE PENN	1	5320 D	2374	\$	43		876 566	344* 34*		914 730 1553	382 198 1021	r	0
5 N .	5 E	16	D 8	67	TD	BRIDGE FA LANDRETH C BASE PENN	1	5420 C	2380	*	42		882 580	340* 38*		920 747 1550	378 205 1008		
5 N	5 E	16	E 1	56	ΤD	TEXAS CO BIRCH N BASE PENN	1	5330 C	2366	*	43		888 574	355* 41*		926 1584	393 1051	3	0
5 N	5 E	17	C 6	17	סד	STEWART OC FIELDS J BASE PENN	1	5530 C	2562		39		865 581	312* 28*		905 733 1610	352 180 1057		

CLAY COUNTY

Loc	ation of	Hole	e	County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled ^{Doubtful} Information	Line	1 — Coal 2 — Shoal			1 — Coal 2 — West 3 — Base	Frank	
Twp.	Range		Sec.	Number	Hole	Operation	Number	Altitude	Depth	9 P		Depin	Altitude	Thickness	Depth	Altitude	Thick	
5 N	5 E	17	0 2	373	ТО	DUNBAR J		4980 D	2346	*	4 A	(Feet) 8 2 2	(Feet) 324 *	Ft. In.	(Feet) 8 5 8	(Feet) 360	Ft.	In
3 1			0~	515		LIGGETT J BASE PENN	2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	~ ~ ~ 0			535	37*		698 1576	200		
5 N	5 E	17	03	31	ΤD	DUNBAR ETI LIGGETT BASE PENN	1	4990 D	2342	*	42	819 530	320* 31*		855 686 1575	356 187 1076	•	0
5 N	5 E	17	Ε1	18		MADDEN A GING BASE PENN	R 1	5480 D	2399	*	41	886 590			920 770 1600	372 222 1052		0
5 N	5 E	17	Ε3	374		BRIDGE F LANDRETH BASE PENN	2	4960 G	2342	*	43	813 535			848 689 1557	352 193 1061	•	
5 N	5 E	17	Ε6	20		DUNCAN D HUBER BASE PENN	1	5580 C	2400		39	875 592			914 744 1645	356 186 1087	•	0
5 N	5 E	1.7	G 5	102	İ.	DUNBAR ETI HUBER M BASE PENN	2	5370 D	2516	•	43	864 574	327* 37*		902 730 1620	365 193 1083	•	
5 N	5 E	18	E 5	501	TD	TEXAS CO JONES W BASE PENN	1	5650 C	2505	•	45	877 583	312* 18*	1 00	917 742 1750	352 177 1185	•	
5 N	5 E	20	F 5	92			() 1	5480 D	2568		43	868 569	320* 21*	1 00	910 743 1642	362 195 1094	b	0
5 N	5 E	21	D 3	32		BURNET ETI SMITH BASE PENN	- 1	5360 C	2522	:	39	865 560	329 * 24 *		899 743 1580	363 207 1044	•	0
5 N	5 E	21	Н6	76		LCY&RLY DO SMITH R E BASE PENN	1	4900 G	2339	:	39	818 511	328* 21*		857 680 1572	367 190 1082	*	0
5 N	5 E	2 2	A 7	502		REDWINE N CZYZEWSK1 BASE PENN	1	53 0 0 D	2538		43	868 558	338* 28*		910 745 1570	380 215 1040	•	
5 N	5 E	22	81	444		TEXAS CO SPENCER F BASE PENN	2		2514	* 4	14	878 555	350 ≄ 27 ≉	1 06	9 2 2 7 6 0 1 7 0 7	394 232 1179		-
5 N	5 E	2 2	82	443		TEXAS CO SPENCER F BASE PENN	1	5320 D	2360	* 4	14	886 574	354 * 42 *	106	934 768 1682	402 236 1150		0

CLAY COUNTY

Loo	cation of	Hol	e	County	Туре		Op'r's	Surface	Total	Quad. Number Year Drilled DoubHud	Line	1 Coal 2 Shoa		· ·	1 — Coal I 2 — West	Franklin
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number Year Drilled ^{Doubful}				<u> </u>	3 — Base	
iwp.	Kunge		Jec.								Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thickne Ft. Ir
5 N	δE	33	В 3	277	TD	SHELL OC MOSS LEE BASE PENN	1 B	5330 D	2360	* 4 4	886 5 80			930 780 1610	397 × 247 × 1077 ×	
5 N	5 E	3 2	C 1	357	то	TEXAS CO SPENCR CO BASE PENN	1 2	5290 D	2362	* 4 4	871 549		2 00	915 754 1694	386 225 1165	•
5 N	5 E	22	C 2	358	Τ·D	TEXAS CO SPENCR CO BASE PENN	4 1	5300 D	2359	* 4 4	890 568			932 766 1660	402 236 1130	
5 N	5 E	22	C 5	123	l	MCBRIDEINO WOOLRGE L BASE PENN	1	5320 D	2531	* 4 3	880 570		1 06	926 750 1570	394 218 1038	2
5 N	5 E	2 2	D 1	430		TEXAS CO BYERS HIR BASE PENN	4	5280 D	2355	* 4 3	871 560	343* 32*		912 754 1650	384 226 1122	1
5 N	5 E	22	D 2	427		TEXAS CO BYERS HIR/ BASE PENN	2	5300 D	2355	* 4 3	881 552	351* 22*		926 756 1594	396 226 1064	t .
5 N	5 E	22	D 3	356	1	WILLIAMS H MCGEE ESTY BASE PENN		5300 D	2355	* 4 3	876 557			928 750 1552	398 220 1022*	•
5 N	5 E	5.5	D 4	122		WILLIAMS H MCGEE ESTY BASE PENN		5320 D	2356	\$ 4 3	877 562		2 0 0	924 742 1564	392 210 1032	
5 N	5 E	2 X	05	508		MCBRIDEINO WOOLRGEL BASE PENN	2	5290 D	2156	* 4 4	883 565	354* 36*		922 740 1574	393* 211* 1045*	-
5 N	5 E	2 X	Ε1	436		TEXAS CO LOUDEN J F BASE PENN	3	5140 D	2342	* 4 3	860 546	346* 32*		900 740 1700	386* 226* 1186*	
5 N	5 E	22	Ε2	435		TEXAS CO LOUDEN J F BASE PENN	1	5290 D	2358	* 4 3	881 558	352* 29*		920 750 1502	391 221 973	20
5 N	5 E	5 Z	Ε3	431	_	TEXAS CO BYERSH BASE PENN	3	5300 D	2357	* 4 3	884 550			925 746 1552	395* 216* 1022*	
5 N	5 E	55	E 4	428		TEXAS CO BYERS HIRA BASE PENN	1	5220 D	2353	* 4 3	872 550	350 * 28 *	1 00	912 734 1556	390 = 212 = 1034 =	

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

CLAY COUNTY

Lo	ation of	Hole	•	County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled	ubtful mation		1 — Coal 2 — Shoal				1 — Coal 1 2 — West 3 — Base I	Frank	din
Twp.	Range		Sec.	Number	Hole		Number	Altitude	Depth	σ₹	≻Ճ	Infor Do	Depth (Feet)	Altitude (Feet)	Thic Ft.	kness In.	Depth (Feet)	Altitude (Feet)	Thicl Ft.	knes In.
5 N	5 E	5 Z	E 5	438	ΤD	TEXAS CO BYERS HIRA BASE PENN	7	4950 D	2333	". \$	4 4	I	846 530	351≉ 35≉	2	00	886 708 1550	391 213 1055	1	0
5 N	5 E	52	F1	434	TD	TEXAS CO LOUDEN J F BASE PENN	4	5190 D	235.1	\$	44		873 554				908 756 1542	389 237 1023	t i	0
5 N	5 E	22	F 2	429	ΤD	TEXAS CO LOUDEN J F BASE PENN	2	5270 D	2357	*	43		882 554				916 754 1530	389 227 1003	•	0
5 N	5 E	22	F3	432	ΤD	TEXAS CO BYERS HIRA BASE PENN	5	5290 D	2358	*	43		887 553				927 756 1540	398 227 1011	,	Ð
5 N	5 E	22	F 4	352		TEXAS CO BYERS HIRA BASE PENN	6	4890 D	2318	\$	44		847 518				887 708 1510	398* 219* 1021*		
5 N	5 E	22	G 1	507	ΤD	TEXAS CO RUSH I J BASE PENN	2 B	4920 D	2323	*	4 4		831 511	•339* 19*			872 728 1532	380 236 1040		0
5 N	5 E	22	G 2	433		TEXAS CO RUSH I J BASE PENN	18	5100 D	2339	\$	44	-	865 545				904 752 1540	394 242 1030		0
5 N	5 E	22	G3	437	TD	TEXAS CO WILLIAMS J BASE PENN	1	4890 D	2319	*	44		848 550		1	06	886 722 1525	397* 233* 1036*		0
5 N	5 E	22	G 4	380	ΤD	TEXAS CO WILLIAMS J BASE PENN	3	5290 D	2358	\$	44		895 560	364≄ 31≉			936 760 1585	407* 231* 1056*		0
5 N	5 E	22	G 5	21	ΤD	MCBRIDEINC SMITH W É BASE PENN	1	5320 D	2570	\$	40		882 560				922 754 1560	390 222 1028	4	0
5 N	5 E	22	Н3	359	-	TEXAS CO WILLIAMS J BASE PENN	2	5290 D	2359	\$	44		896 556	367* 27*			938 1574	409* 1045*		
5 N	5 E	23	D 8	360	ΤD	WILLIAMS H SMITH JOHN BASE PENN		5310 D	2358	*	43		866 558	335* 27*	2	00	912 748 1690	381* 217* 1159*		0
5 N	5 E	23	E 8	22		MINERVA OC SMITH JOHN BASE PENN		5270 C	2469	*	39		867 553	340 * 26 *	1	00	915 744 1590	388 217 1063		0

KEY BEDS IN CLAY COUNTY

ω

CLAY COUNTY

Loc	ation of	Hole	•	County	Туре		Op'r's	Surface	Total	ber	ed	Hul ation	Line	1 — Coal 2 — Shoal				1 — Coal 2 — West	Frank	klin
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled	Doub	Depth	Altitude	Thic	kness	Depth	3 Base Altitude		knes
													(Feet)	(Feet)	Ft.	ln.	(Feet)	(Feet)	Ft.	In.
5 N	5 E	23	F 5	30	LD	NAT PET Smith John Base Penn	1	4790 D	2341		42		838 518	359* 39*	,		880 712 1678	401 233 1199	•	
5 N	5 E	26	B 2	23	ΤD	KNGWD&GULF DAVIS BASE PENN	1	5190 C	2685		39		912 590	393 * 71*			960 780 1770	441 261 1251		0
5 N	5 E	27	н 2	439	ΤD	LUTTRELL H LANDRETH O BASE PENN		5270 D	2362		4 4		868 566	341* 39*	2	06	916 750 1696	389 2234 11694	•	
5 N	5 E	27	H 4	24	ТD	MCBRIDEINC LANDRETHO BASE PENN		5310 C	2475		40		868 562	337* 31*	1	06	915 750 1620	384 219 1089		0
5 N	5 E	28	D 7	78	σT	CORLEY E PEMBERTN H BASE PENN	1	5370 D	2608		43		876 570	339* 33*			920 742 1600	383 205 1063		0
5 N	5 E	33	C S	530	ΤD	NAT ASSOC WILLIAMS H BASE PENN	1	5320 C	2651		45		9 0 0	368*			1626	10944	2 2	
5 N	6 E	5	A 1	149	TD	LYNN&WLLMS WITTE BASE PENN	1	5210 D	2751		42		961 630	440* 109*	2		1000 1910	4794 13894		0
5 N	6 E	11	Н 6	133	ΤD	RBNSN PUCK BARNICK F BASE PENN	1	52900	2900		43		1040 653		2	-	1084 930 1955	5554 4014 14264	:	0
5 N	6 E	17	0 2	134	ΤD	NAT ASSOC KINCAIÐ O BASE PENN	1	5220 D	2772		43		964 624		1		1010 806 1976	4884 2844 14544		0
5 N	6 E	24	B 4	372	ΤD	WALL T E MCGEE R BASE PENN	1	5100 D	2961		4 4		1054 681		3		1103 1930	5934 14204		0
5 N	6 E	25	B 1	445	τÐ	OBERING E BEASLEY A BASE PENN	1	5000 D	2915		44		1055 688	555* 188*	3		1100 1938	6004 14384		0
5 N	6 E	25	Н1	135	тD	SOHIO PROD BEHREN R C BASE PENN		5100 D	2908		43		1054 701		3		1100 1 92 5	590* 1415*		0

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

CLAY COUNTY

Lo	cation of	Hol	e	County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled ^{Doubtful}	Line	1 — Coal 2 — Shoa			1 Coal 2 West 3 Base	Frankl	
Twp.	Range		Sec.	Number	Hole		Number	Altitude	Depth	9 P		Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	_ Depth (Feet)	Altitude (Feet)	Thick	knes: In.
5 N	6 E	35	A 2	137	TD	MAGNOLIA GRAHN E H BASE PENN	1	5000 C	2864		4 2	1017		2 0 6	1060	560	2 3	
5 N	6 E	35	▲ 4	138	TD	EASON OC BARBEE R BASE PENN	1	4650 D	2887		4 2	992 638		300	1038 1898	573		
5 N	6 E	35	Ε3	136		E'ASON ETAL MILLER A BASE PENN	1	4920 D	2924		42	1028 668		200	1070 1918	5784 14264		0
5 N	7 E	1	Η1	139	ΤD	STOUT CE PULLIAM L BASE PENN	1	5350 D	3039		43	1098 706		300	1134 894 2148	599* 359* 1613*	•	
5 N	7 E	3	A 3	402	LD	OHIO OIL WEBSTER B BASE PENN	3	5210 D	2532		4 4	$\begin{smallmatrix}1&0&2&6\\&6&3&7\end{smallmatrix}$		406	1066 830 2088	545 309 1567		0
5 N	7 E	3	A 4	446	ΤD	OHIO OIL WEBSTER BASE PENN	2	5270 D	2533	*	4 4	1020 636		2 00	1056 830 2084	529 303 1557		0
5 N	7 E	3	A 5	409	τD	TEXAS CO CHLDRS CON BASE PENN	3	5180 D	2518	*	4 4	1009 623		4 00	1046 818 2060	528 300 1542	1	0
5 N	7 E	3	A 6	447	ΤD	TEXAS CO CHLDRS CON BASE PENN	. 4	5300 D	2 5 2 6	*	44	1032 649		300	1068 840 2068	538* 310* 1538*	•	. 0
5 N	7 E	3	A 7	410	ΤD	TEXAS CO CHLDRS CON BASE PENN	1 2	5330 D	2521	*	44	1039 659	506* 126*	1 06	1080 850 2054	5474 3174 15214		0
5 N	7 E	3	B 4	381	τD	OHIO OIL WEBSTER BN BASE PENN	1	5300 D	2.5 4 3	*	44	1032 650		306	1070 840 2086	540 310 1556		0
5 N	7 E	3	B 5	448	ΤD	TEXAS CO CHLDRS CON BASE PENN	15	5200 D	2526	*	45	1023 642		306	$1062 \\ 832 \\ 2060$	542 312 1540		0
5 N	7 E	3	B 6	406	ТD	TEXAS CO CHLDRS CON BASE PENN	1	5320 D	2525	*	4 4	1034 658	502* 126*	300	1070 842 2066	538 310 1534		0

KEY BEDS IN CLAY COUNTY

ωS

CLAY COUNTY

Lo	cation of	Hole	- County		Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled ^{Doubtul}	Line	1 — Coal 2 — Shoa			1 Coal I 2 West 3 Base I	Frank	
Twp.	Range	Sec.	Numbe	r Hole		Number	Altitude	Depth	NuN	Ye Dril	Debiii		Thickness	Depth	Altitude	Thick	
				_				- 1	<u> </u>		(Feet)	(Feet)	Ft. In.	(Feet)	(Feet)	Ft.	ln.
5 N	7 E	388	362	тк	TEXAS CO WEBSTER L BASE PENN	1	5350 D	2533	*	44		990-1					
5 N	7 E	3 C 5	343	T D	TEXAS CO BLMKR COMM BASE PENN	4	5280 D.	2528	*	44	1040 652		300	1076 846 2062	5484 3184 15344		0 (
5 N	7 E	3 C 7	143	ΤD	TEXAS CO BLMKR COMM BASE PENN	2	5370 D	2535	*	43	1062		300	1102 870 2060	565 333 1523		0 (
5 N	7 E	3 D 8	144	ΤD	TEXAS CO BLMKR COM BASE PENN	1	5390 D	2534	*	43	1076 682		300	1117 898 1958	578 359 1419	: 4 :	0
5 N	7 E	3 E 5	342	тр	TEXAS CO BLOEMKER M BASE PENN	8	5340 D	2536	*	44	1091 704		300	1134 894 1970	600* 360* 1436*		0
5 N	7 E	3 E 7	146	TD	TEXAS CO BLOEMKER M BASE PENN	6	5390 D	2538	*	43	1090 696		300	1132 1970	593* 1431*		0
5 N	7 E	3 F 4	147	тD	PURE OC GREENLAW G BASE PENN	1	5330 C	2928		42	1092 700		300	1132 894 1976	599* 361* 1443*	2	0
5 N	7 E	3 F 6	145	T D	TEXAS CO BLOEMKER M BASE PENN	. 7	5420 D	2542	\$	43	1105 710		3 00	1148 930 2000	606 388 1458		0
5 N	7 E	3 F8	140	T D	TEXAS CO BLOEMKER M BASE PENN	5	5390 C	2538	*	43	1084 690		3 0 0	1125 1953	586* 1414*	3	0
5 N	7 E	3 G 5	411		TEXAS CO NADLER C BASE PENN	8	5360 D	2544	*	44	1095 706		3 00	1132 924 1974	596* 388* 1438*	3	0 (
5 N	7 E	3 G 7	141		DUNCAN W BRINK R BASE PENN	2	54 00 D	2540	*	43	1094 702		4 0 0	1138 1974	598* 1434*	3	0 0
5 N	7 E	3 нб	148		TEXAS CO NADLER C BASE PENN	7	5390 D	2548	*	43	1104 714		3 00	1148 1970	609* 1431*	. 3	00
5 N	7 E	3 н8	142		DUNCAN W BRINK R BASE PENN	1	540 0 D	2541	*	43	1086 696			1127 920 1965	587* 380* 1425*	3	0 (

angeraal ee

CLAY COUNTY

Loc	cation of	Hole		County	Type	Operator		Surface	Total	Quad. Number	Year Drilled Doubtful	Line	1 Coal 2 Shoal				1 Coal 1 2 West 3 Base F	Frank	din
Twp.	Range	Se	r	Number	Hole		ber	Altitude	Depth	₫ 2	7 2 8	Depth	Altitude	Thic	kness	Depth	Altitude	Thic	kness
100	nunge		••									(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
5 N	7 E	4	A 5	159	TD	PURE OC NADLER J	4	5340 D	2524	*	4 2	1026		3	00	1065	531*		
						BASE PENN	•		1							2040	1506		
5 N	7 E	4	A 7	157	TD	PURE OC NADLER CH BASE PENN	4	5340 D	2548	*	48	1031 639		3	06	1076 2030	542 1496	2	0
5 N	7 E	4	B 4	163	ΤD	DUNCAN W VEITH L BASE PENN	1	5350 D	2950	*	4 2	1051 655		3	00	1093 865 2040	558* 330* 15 05 *		0
5 N	7 E	4	B 8	155	ΤD	TEXAS CO NADLER CH BASE PENN	1	5330 D	2843	\$	42	1060 664		1	06	1104 2032	571 1499	2	0
5 N	7 E	4	C 1	154	TD	PURE OC KLUTHE A H BASE PENN	4	5380 D	2838	*	43	1063 676		4	00	$1108 \\ 904 \\ 2060$	570 366 1522		0
5 N	7 E	4	C 7	158	σT	TEXAS CO NADLER CH	6	5390 D	2509	\$	43	1082 676		2	06	1123 914	584 375	4	0
5 N	7 E	4	08	156	τD	TEXAS CO NADLER CH BASE PENN	3	5350 D	2868	\$	42	1080 682		3	00	1122 1927	587 1392		0
5 N	7 E	4	E 1	150	TD	TEXAS CO BLOEMKER E BASE PENN	1	5390 D	2534	*	42	1073 682		4	00	1112 1963	573* 1424*	• 4	0
5 N	7 E	4	E 3	152	ΤD	TEXAS CO BLOEMKER M BASE PENN	1	5390 C	2515	*	42	1058 665		3	00	1099 1925	560* 1386*	3	0
5 N	7 E	4	E 5	161	TD	OHIO OIL POEHLER H BASE PENN	2	5370 C	2505	*	42	1078 680		2	06	1116 894 1920	579 357 1383		0
5 N	7 E	4	F 4	153	ΤD	TEXAS CO BLOEMKER M BASE PENN	2	5 380 D	2528	*	42	1072 678		2	06	$1112 \\ 882 \\ 1934$	5744 3444 13964		0
5 N	7 E	4	F6	160	τD	0H1001L POEHLERH BASEPENN	1	5410 D	2971	*	42	1084 691		3	00	1122 906 1940	581* 365* 1399*		0
5 N	7 E	4	G 1	151	ΤĐ	TEXAS CO BLOEMKER E BASE PENN	3	5410 C	2540	*	43	1078 690		3	00	$1120 \\ 895 \\ 1952$	579 354 1411		0

KEY BEDS IN CLAY COUNTY

CLAY COUNTY

Lo	ation of	Hole		inty	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled ^{Doubtful}	Line	1 Coal 2 Shoal				1 — Coal 2 — West 3 — Base	Frank	din
Twp.	Range	Sec.	Num	ıber	Hole	Operator	Number	Altitude	Depth	σž	<u>ية</u> م خ			Thick			1	Thie	kness
iwp.	Kunge	Jec.										Depth (Feet)	Altitude (Feet)	Ft.		Depth Feet)	Altitude (Feet)	Ft.	In.
5 N	7 E	4 G	5 16	2		O'HIOOIL POEHLERH BASEPENN	3	5400 D	2521	*	42	1084 690		3 (126 904 934	586 364 1394		0 (
5 N	7 E	5 A	5 16	6		DUNCAN N&W SCHNEIPP BASE PENN	1	5320 D	2846	*	42	1044 660		3 (087 925	555 1393		0 (
5 N	7 E	5 B	2 19	9	LD	GULF REF STORCK M BASE PENN	1	5270 D	2819		42	1046 658		-	-	092 025	565 1498		0 (
.5 N	7 E	5 B	3 16	7	τD	PURE OC STORCK M	2	5340 D	2835	*	4 2	1062 655	528* 121*	2 (06 1:	104	570	= 3	0
5 N	7 E	5 C	3 16	5	ΤD	TEXAS CO NADLER CH BASE PENN	5	5360 C	2884	\$	4 2	1078 686	542 # 150 #	3 (-	124 925 934	588 389 1398	*	0
5 N	7 E	5 D	2 16	i 4	ΤD	TEXAS CO NADLER CH BASE PENN	2	5340 D	2845	*	4 2	1077 684		3 (121 912 920	$587 \\ 378 \\ 1386$	•	0
5 N	7 E	5 E	3 16	58	ΤD	ILL PROD VEITH L BASE PENN	1	5360 C	2835	*	42	1078 697	542* 161*	2 (117 933	581 1397		0
5 N	7 E	8 A	3 4 4	19	ΤD	PURE OC ZANDER L BASE PENN	6	5240 D	2900		4 4	1 0 3 6 6 4 0		3 (080 865 085	556 341 1561	•	0
5 N	7 E	8 D	4 24	9	ΤD	PURE OC ZANDER L BASE PENN	1	5260 C	2907		42	1010 625		3 (055 094	529 1568		0
5 N	7 E	8 F	2 17	2	ΤD	TEXAS CO LANDWHR WM BASE PENN	1	5310 D	2830	*	4 2	1016 616		2 (056	525 1515		0 (
5 N	7 E	8 F	4 17	1		TEXAS CO LANDWEHR W BASE PENN	1	5230 D	2924	*	4 2	1028 622		3 (077 040	554 1517	• 1	0
5 N	7 E	8 _. H	2 17	0		CAMERON OC LANDWEHR E BASE PENN	2	5230 C	2824	*	4 2	1019 622		3 (00 10 20	060 020	537 1497		0
5 N	7 E	8 H	4 16	9	тD	CAMERON OC LANDWEHR E BASE PENN	1	5320 D	2825	*	42	1046 642		2 (092 030	560 1498		0

CLAY COUNTY

Loc	ation of	Hole	9	County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled	ubtful motion	Line	I — Coal I 2 — Shoal				1 — Coal 2 — West 3 — Base	Frank	
Twp.	Range		Sec.	Number	Hole	- Person	Number	Altitude	Depth	σĒ	≻ ה	Infor Do	Depth	Altitude	Thic	kness	Depth	Altitude	Thic	kness
				-									(Feet)	(Feet)	Ft.	ln.	(Feet)	(Feet)	Ft.	_In.
5 N	7 E	9	B4	383	тD	LEWIS S WEBSTR CON BASE PENN	1	5240 D	2543	•	44		1026 632	502 * 108 *	3	00	1068 83 6 2090	544 312 1566	+	00
5 N	7 E	9	₿6	184	ΤD	DUNCAN W LEWISH D BASE PENN	2	5290 D	2542	*	42		1026 634	497 * 105 *	2	00	1070 2083	541 1554		00
5 N	7 E	9	B 7	458		KINGWOODOC LEWISA BASE PENN	6	5270 C	2531	*	44		1023 628	496* 101*	3	00	1068	541		06
5 N	7 E	9	B 8	181		KINGWOODOC LEWIS A	2	5260 D	2527	*	42		1031 630	505* 104*	3	00	1070	544	= 4	00
5 N	7 E	9	c 2	451	то	BASE PENN GULF REF HALL B	2	5260 D	2539	*	44		1028	502* 124*	2	06	2082 1072	1556		0 0
5 N	7 E	9	C 4	412	то	HALL B BASE PENN LEWIS ETAL		5270 D	2524	*	44		1022		3	0 0	2096 1062	1570		06
		_				HALL B BASE PENN	1						638	111*			840 2082	313; 1555;	•	
5 N	7 E	9	C 7	182	ΤD	KINGWOODOC LEWISA BASE PENN	3	5270 D	2521	*	43		1028 628	501* 101*	2	06	1070 2090	543		
5 N	7 E	9	D 2	467	ΤD	GULF REF HALL B BASE PENN	1	5260 D	2556	*	44		1023 639	497* 113*	4	00	1063	537		06
5 N	7 E	9	D 3	382	то	LEWIS S HALL B BASE PENN	2	5280 D	2530	*	44		1024 634	496* 106*	4	00	1063 831 2078	535 303 1550		06
5 N	7 E	9	D6	183	ТD	DUNCAN W LEWISH D BASE PENN	1	5270 D	2521	*	43	-	1015 636		3	00	1056 2062	529		0 0
5 N	7 E	9	D 7	457	то	KINGWOODOO LEWISA BASE PENN	5	5290 D	2529	*	44		1012 639		3	00	1057 834 2074	528 305 1545	*	0 0
5 N	7 E	9	D 8	180	ТD	KINGWOODOO LEWISA BASE PENN	1	5310 D	2542	*	42		1020 639		3	00	1060 835 2086	529 304 1555	÷ .	00
5 N	7 E	9	E \$	456	סד	TEXAS CO MASHER H BASE PENN	3	5200 D	2534	*	44		1017 631		3	06	1057	537] -	00

CLAY COUNTY

Loc	ation of	Hol	e		County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled	ubtful mation	Line	1 Coal 2 Shoal		-		1 — Coal I 2 — West 3 — Base I	Frank	
Түр.	Range		Sec		Number	Hole	operater	Number	Altitude	Depth	ğŋ	Ϋ́Ε	Dou	Depth	Altitude		ckness	Depth	Altitude		kness
														(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
5 N	7 E	9	E	3	452	ΤD	TEXAS CO MASHER H BASE PENN	2	5270 D	2550	Ŧ	44		1028 631	501* 104*	3	00	1071 2098	544¢ 1571*	2	06
5 N	7 E	9	E	4	454	1	TEXAS CO MASHER.H BASE PENN	4	5280 D	2532	*	44		1026 630	498* 102*	3		1068 2085	540* 1557*	3	0 0
5 N	7 E	9	E	5	407	ΤD	TEXAS CO LANDWHR WM BASE PENN	6	5300 D	2533	*	44		1018 643	488* 113*	3	-	1058 822 2082	528 292 1552	4	0 6
5 N	7 E	9	E	6	453	тр	TEXAS CO LANDWHR WM BASE PENN	7	5270 C	2529	*	44		1011 630	484≉ 103≉	3	-	1056 820 2060	529 293 1533		0 (
5 N	7 E	9	E	7	179	ΤD	TEXAS CO LANDWHR WM BASE PENN	5	5240 C	2540	\$	42		1005 623	481≉ 99≢	3		1045 2071	521* 1547*	4	0 (
5 N	7 E	9	E	8	455	ΤD	TEXAS CO LANDWHR WM BASE PENN	8	5260 D	2539	\$	44		1011 629		3	0 6	1054 832 2065	528* 306* 1539*		0
5 N	7 E	9	F	4	185	τD	TEXAS CO MASHER H BASE PENN	1	5300 C	2885	*	43		1026 645		3		1068 2080	538* 1550*	4	0
5 N	7 E	9	F	6	178	тD	TEXAS CO LANDWHR WM BASE PENN	3	5300 C	2927	*	42		1011 630	481* 100*	3		1050 2066	520* 1536*	4	0
5 N	7 E	9	F	8	177	тD	TEXAS CO LANDWHR WM BASE PENN	2	5270 C	2540	ņ	42		1010 615	483 ≭ 88 ≉	2	-	1049 828 2048	522 301 1521		0
5 N	7 E	9	G	5	450	ΤD	TEXAS CO LANDWEHR W BASE PENN	5	5310 D	2541	\$	44		1016 632	485 ≭ 101 ≉	4	•	1058 830 2040	527 = 299 = 1509 =	3	0
5 N	7 E	9	G	7	176	ΤD	TEXAS CO LANDWEHR W BASE PENN	4	5310 D	2300 2500	*	42		1014 622	48 3* 91*	3		1054 822 2034	523* 291* 1503*		0 (
5 N	7 E	9	۲	4	173	ΤD	DUNCAN W BEHREN R C BASE PENN	1	5360 D	2551	*	42		1028 633	492* 97*	3	-	1070 835 2042	534* 304* 1511*	3	0
5 N	7 E	9	۲	16	175	ΤD	TEXAS CO LANDWEHR W BASE PENN	3	5330 C	2498	*	4 2		$1016 \\ 630$	483* 97*	3		1058 2032	525* 1499*		0

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

CLAY COUNTY

Loc	cation of	Hole	County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled _{Doubiful}	Line	1 — Coal 2 — Shoal			1 — Coal 2 — West 3 — Base	Frank	
Twp.	Range	Sec.	Number	Hole		Number	Altitude	Depth	σ̈́ź		Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thick Ft.	kness In.
5 N	7 E	9 H 8	174		TEXAS CO LANDWEHR W BASE PENN	2	5 31 0 D	2840	*	4 2	1021 630	490* 99*		1062	531* 1489*	3	06
5 N	7 E	10 F8	460	ТD	TEXAS CO STRUVE D BASE PENN	1	5300 D	2893	*	4 4	1031 648	501* 118*		1070 836 2095	540 306 1565		00
5 N	7 E	10 G4	462	ТÐ	TEXAS CO MCKNELLY G BASE PENN	2	5180 D	2534	*	4 4	1018 628	500* 110*		1054 824 2090	536* 306* 1572*		06
5 N	7 E	10 G 5	386	τo	OHIO OIL GHARST L BASE PENN	4	5180 D	2514	\$	4 4	1010 624	492 * 106 *	300	1050 820 2090	532 302 1572		00
5 N	7 E	10 G6	459	то	OHIO OIL GHARST BASE PENN	. 6	5260 D	2517	*	4 4	1017 628			1056 824 2084	530* 298* 1558*		00
5 N	7 E	10 G7	385	тD	OHIO OIL GHARST L BASE PENN	3	5260 D	2530	*	44	1024 636		300	1064 831 2083	538* 305* 1557*	:	0 0
5 N	7 E	10 н4	388	тр	TEXAS CO MCKNELLY G BASE PENN	1	5190 D	2519	*	4 4	1016 629	497 ≭ 110≉		1052 826 2090	533* 307* 1571*	:	00
5 N	7 E	10 H5	461	тD	OHIO OIL GHARST L BASE PENN	5	5280 D	2530	*	4 4	1016 631	488≉ 103≉		1052 823 2000	524 295 1472	I I	00
,5 N	7 E	10 H6	387	ΤD	OHIO OIL GHARST L BASE PENN	1	5280 D	2525	*	44	1026 633	498 ≭ 105 ≉		1064 832 2095	536* 304* 1567*	:	00
5 N	7 E	10 H8	384	тD	OHIO OIL GHARST L BASE PENN	2	5340 D	2542	*	4 4	1048 660	514* 126*		1087 854 2066	553* 320* 1532*		00
5 N	7 E	11 H4	186	ТÐ	OHIO OIL MASHER CH BASE PENN	1	5300 D	3005		42	1076 701	546* 171*		1113 880 2116	583 350 1586	:	00
5 N	7 E	12 G4	531	тк	TEXAS CO YOUNT E BASE PENN	1	5340 C	3015		4 5							
5 N	7.6	13 A6	514	ΤD	KINGWOODOC FULK BASE PENN	1	5120 D	2575		45	1094 724	582* 212*	3 0 0	1143 1958	631* 1446*		00

CLAY COUNTY

Loc	ation of	Hole)	County	Type of		Op'r's	Surface	Total	Quad. Number	Year Drilled Doubtful	Line	1 — Coal 2 — Shoal				1 — Coal I 2 — West 3 — Base I	Frank	din .
Twp.	Range		Sec.	Number		Operator	Number	Altitude	Depth	ð ľ	Dril Doul	Depth (Feet)	Altitude (Feet)	Thick Ft.	iness In.	Depth (Feet)	Altitude (Feet)	Thicl	
5 N	7 E	13	B 6	532	ΤD	KINGWOODOC Fulk	4	5160 C	2922		4 6	1087 716	571 *	<u></u> _		1136	620*	1	
5 N	7 E	14	A 1	188	TD	BASE PENN KINGWOODOC WOLFE BASE PENN	1	5130 C	2955		4 0	1075 699		3	0 0	2052 1119 2010	1536* 606* 1497*	2	0
5 N	7 E	15	E 7	187	тр	PEARSON C MURVIN BASE PENN	1	5130 C	2925		4 2	1044 660		3	00	1085	5724	2	0
5 N	7 E	16	F 8	408	тD	TEXAS CO WNTRWD COM	1	5220 D	2972	*	44	1035 640		2	06	1073	5514		0
5 N	7 E	16	нВ	189	ΤD	KINGWOODOC LEWISH D BASE PENN	1	5280 D	2539	*	4 2	1032 636		3		1076 860 2096	548 332 1568		0
5 N	7 E	17	Ε1	191	ΤD	KINGWOODOC HALL E	2	5210 D	2800	*	43	1040 646		3	00	1083	5624	: 3	0
5 N	7 E	17	Е З	311	ΤD	KING₩00D0C HALL E BASE PENN	B 1	5190 C	2537	*	4 3	1028 625		3		1072 2080	553* 1561*	2	0
5 N	7 E	17	F 2	190	ΤD	KINGWOODOC HALL E BASE PENN	1	5220 D	2945	*	43	1044 629		3		1096 2083	574* 1561*		
5 N	7 E	17	C 2	463	ΤD	PURE OC ZANDER L BASE PENN	5	5220 D	2530	*	4 4	1040 634		3		1083 2076	561* 1554*	: 3 :	0
5 N	7 E	17	G 4	278	ΤD	KINGWOODOC ZANDERL BASE PENN	1	5230 D	2531	*	43	1052 640		2	-	1094 2082	571* 1559*	14. 1	0
5 N	7 E	17	G 5	413	ΤD	TEXAS CO RICHARS C BASE PENN	1	5220 D	2972	*	44	1048 640		2		1092 2080	570 1558		0
5 N	7 E	20	D 2	195	LD	TEXAS CO HARDIN A BASE PENN	1	5010 D	2882		42	1023 634		3		1068 1932	567* 1431*		0
5 N	7 E	20	D 4	192	ТD	KINGWOODOC ESSON BASE PENN	1	5180 D	2928		42		521* 136*	2	ļ	1080 1926	5624 14084		0

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

CLAY COUNTY

Lo	ation of	Hole		County	Туре		Op'r's	Surface	Total	d. ber	ar fful tion	Line	1 — Coal 2 — Shoal				1 — Coal 2 — West	Frank	lin
	_			Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information						3 — Base	-	
Twp.	Range	5	Sec.							2	5	Depth (Feet)	Altitude (Feet)	Thick Ft.	iness In.	Depth (Feet)	Altitude (Feet)	Thick Ft.	kness In.
5 N	7 E	50	E 5	194		SNCLR WYON HARDIN S S BASE PENN		5140 D	2765		4 3	1032 636	518* 122*	3		1074	560* 1406*		0 6
5 N	7 E	2 Z	D 4	519	то	LUTTRELL I MURVIN J I BASE PENN		5130 D	2524		45	1071 699	558* 186*	3	-	1113 904 2080	600* 391* 1567*	•	0
5 N	7 E	55	E 4	196	то	PHILLIPS MURVIN J F BASE PENN	R 1	5150 D	2983		3.9	1065 690	550 * 175 *	3		1109 2075	594×		0 (
5 N	7 E	55	F 2	533	ĺ	DORAN PAUL MURVIN BASE PENN	- 2	5110 D	2498		45	1047	536 *			1996	1485*		
5 N	7 E	5 X	F3	464		DORAN&WIS MURVIN BASE PENN	1	5110 D	2514		4 4	1059 684		2	06	1100	589	4	0
5 N	7 E	27	E 1	197	_	BLACKETT H HARMON A BASE PENN		5010 D	2980		42	1074 694	573 * 193*	2	0 0	1116 886 1978	615× 385× 1477×	3	0
5 N	7 E	29	н 2	404	тр	EASON OC LEWIS W BASE PENN	1	5040 D.	2946		44	1022 643		3	00	1066	562×	•	
5 N	7 E	30	C 4	466	то	TEXAS CO BROOKS E BASE PENN	A 4	5040 D	285 5		44	1041 688	537 # 184 #	2	-	1086 1934	5824 14304		0
5 N	7 E	30	D 3	405	τD	TEXAS CO BROOKS E BASE PENN	A 1	5040 D	2945		43	1036 670		2		1080	576	-	0
5 N	7 E	30	D 5	198	TD	OBERING E MCGEE J H BASE PENN	1	5040 D	2846		43	1038 687		3	0 0	1081 890 1930	577 386 1426	3	0
5 N	7 E	30	E 5	390	то	TEXAS CO BROOKS E BASE PENN	A 2	51 0 0 D	2853		4 4	1048 694	538* 184*	2		1094 1934	584 1424		0
5 N	7 E	30	F 5	465		TEXAS CO BROOKS E BASE PENN	A 3	5070 D	2945	*	4 4	1036 672	529* 165*	2 (1078 1925	571 1418		0
5 N	7 E	32	C 5	200		THARPE&LNE MONICL COM BASE PENN		4980 D	2996		4 2	$\begin{smallmatrix}1&0&1&0\\&6&7&4\end{smallmatrix}$	512 * 176, *	3 (1050 2050	552≉ 1552≉		

CLAY COUNTY

Loo	ation of	Hol	e	County	Type of	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled Doubiful Information	Line	1 — Coal 2 — Shoal			1	1 Coal I 2 West 3 Base I	Frank	din
Twp.	Range		Sec.	Number	Hole		NUMBER	Amiode	Depin	σź		Depth (Feet)	Altitude (Feet)	Thic Ft.	kness In.	Depth (Feet)	Altitude (Feet)	Thic Ft.	kness In.
5 N	7 E	36	СB	201		LONGHRN&MA HARMONJF BASE PENN	1	4880 D	3037		41	1065 690	577* 202*	3		1110 2000	622* 1512*		00
5 N	ΒE	25	н1	103	τD	FRAZR&SPED WEBER A BASE PENN	1	4920 D	3157		4 1	1 1 4 3 7 4 8	651* 256*	3		1184 2150	692 € 1658 €	3	0 C
5 N	8 E	27	01	389	TD	MAGNOLIA IFFERTA BASE PENN	1	4800 D	3162		44	1104 729	624* 249*	4	00	1140 2086	660 1606	4	0 0
5 N	8 E,	36	E 8	202	TD	CANTRBRY J KLINGER R BASE PENN	1	4610 D	3152		43	1106 729	645* 268*	3		1152 2130	691 1669	2	06
						508													
																,			
						·													
										v									
							•								•				

EDWARDS COUNTY

Lo	cation of	Hole	County	Туре		Op'r's	Surface	Total	id. ber	ed	Hul ation	Line	1 — Coal 2 — West				1 Coal 2 Coal		
Twp.	Range	Sec.	Number	ot Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled	Doub	Depth	Altitude	Thic	kness	Depth	Altitude	Thic	kness
	hange											(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
					E D W A R D S N O V 15 19	4 5								-					
1 N	10E	1 42	232	τD	TEXAS CO LAMBRGHT	C 1	4870 D	3242		44		1003 745				1084 962	597 475		
1 N	10E	1 B 3	279	σT	TEXAS CO BRANT H A	1	4760 D	3316		44		1000 740				1084 962	608 486		
1 N	10E	3 48	218	то	TEXAS CO HAYS A	1	4280 D	3320		43		932 682				1014 896	586 468		
1 N	10E	4 A 1	155	τD	OHIO OIL HAYES ALV	2	4360 D	3370		43		949 694				1030 912	594 476		
1 N	10E	4 A 5	282	ТD	ILL PROD BARBER H	c ្ ខ	4260 D	3274		43		955 705				1034 921	608 495		
1 N	10E	4 8 3	150	ΤD	OHIO OIL HAYES ALV	1	4330 D	3312		43		960 709				1038 922	605 489		
1 N	10E	4 C 3	281	то	ILL PROD Ibbtsn Jsi	N 1	4420 D	3271		43		958 710				1037 923	595 481		
1 N	10E	4 C 5	12	TD	ILL PROD BARBER H (C 1	4420 C	3301		43.		955 710				1030 918	588× 476×		
1 N	10E	4 E 5	283	то	ILL PROD AHLFIELD S	6 1	4080 D	3257		43		916 675	508* 267*	-		992 882	5841 474		
1 N	10E	6 F 5	258		YNGLNG S (Smithwick	: 1	3970 D	3377		4 4		967 712	570 * 315*			1042 916	6454 5194		
1 N	10E	7 B 2	308		LAMBERT B VAN SCHK M	i 5	4370 D	3285		45		968 720	531 * 283 *			930	4934		
1 N	10E	7 B8	314		MABEE OG VAN SCHK M	1 2	3930 C	3240		4 5		940 691	547* 298*			1040 902	6474 5094		
1 N	10E	7 C 7	315	-	MABEE OG VAN SCHK N	1 4	3940 D	3243		4 5		950 700	556 * 306 *			1050 91 4	656* 520*		
1 N	10E	7 D6	316		AETNA OC VAN SCHK M	I 5	3950 D	3245		45		940 696	545 * 301*			1040 904	6454 5094		
1 N	10E	7 E 5	317		AETNA OC WEBER E	1	3970 D	3226		4 5		924 684	527 * 287 *			1030 890	6334 4934		

EDWARDS COUNTY

Lo	cation of	Hole	County	Туре		Op'r's	Surface	Total	d. ber	ed ful	Line	e 1 — Coal 2 — West			1 — Coal No. 2 — Coal No.	
Twp.	Range	Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled ^{Doubfful}	Ĕ Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude Thi (Feet) Ft.	ckness In.
1 N	10E	7 G 3	318	тD	OHIO OIL WEBER PM	1	4140 D	3278		45	956 704			1040 1914	626* 500*	
1 N	10E	9 A 1	190	TD	RYAN OC GINTHR RLS	1	4870 C	3348		43	1012			1095 973	608* 486*	
1 N	1 O E	9 A 3	13		R Y A N & F R T N R R A L S T O N	1	4450 C	3336		43	984 721			1063 943	618* 498*	
1 N	1 O E	9 C 1	174	ΤD	ILL PROD GILLESPIE	1	4730 D	3322		43	994 744			1074 960	601* 487*	
1 N	1 O E	9 C 3	173	TD	ILL PROD GAEDE E	A 1	4670 D	3301		43	1000	-		1080 964	613* 497*	
1 N	10E	9 C 4	280		ILL PROD GAEDE A	¥ 2	4740 D	3310		4 4	1007 746			1084 968	610* 494*	
1 N	10E	9 C 5	14	ТD	BANDR&OLDS IBBOTSON G	1	4550 D	3294		43	1003			1082 961	627 * 506 *	
1 N	10E	9 E 2	211		TEXAS CO GILLSP SHB	2	4460 D	3290		44	96 <i>6</i> 714			1044 930	598* 484*	
1 N	10E	9 E 5	151	ΤD	MAGNOLIA KHMHS FRTR	1	4590 D	3298		43	990 736			1070 95 4	611* 495*	
1 N	10E	9 F 1	159		TEXAS CO GILLSP SHB	1	4490 D	3281		43	961 713			1044 926	595* 477*	
1 N	10E	9 F 3	219		TEXAS CO GILLSP COM	1	4340 D	3281		43	954 708			1032 920	598* 486*	
1 N	10E	9G3	153		RYAN OC MOATS E	1	4170 D	3259		43	938 684			1014 898	597* 481*	
1 N	10E	9 G 5	152		MAGNOLIA KHMHS FRTR	2	4410 D	3338		43	972			1050 934	609 * 493 *	
1 N	10E	10 C 3	157		TEXAS CO Shelby Hys	1	4810 D	3366		43	1016			1096 978	615* 497*	
1 N	10E	10 C7	158		TEXAS CO GILLSP SHB	1	4470 D	3320		43	969 714			1051 934	604 = 487 =	
1 N	10E	10 E 1	291		TEXAS CO HAYES C	1	4690 D	3355		43	998	529*	* 0	1092 958	623* 489*	
1 N	10E	10 E7	275		RYAN&FRTNR GAEDE A	T	4270 D	3296		43	940 688			1020 904	593= 477=	

EDWARDS COUNTY

Lo	cation of	Hole	County	Туре		Op'r's			d. Ser	r ful ful	Line	1 Coal 2 West			1 — Coal No. 2 — Coal No. 7	
Twp.	Range	Sec.	Number	of Hole	Operator	Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled Doubtful	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude Thi (Feet) Ft.	ckness In.
1 N	10Ę	10 G8	169	ΤD	TEXAS CO MOATES L	1	4360 D	3264		43	940 688			1024 906	588* 470*	-
1 N	10E	1₽ н1	251	ΤD	TEXAS CO IBBTSN COM	1	4880 C	3227		4 4	988 734			1072 949	584* 461*	
1 N	10E	12 НЗ	212	ΤD	TEXAS CO DUSH A	1	4860 D	3229		4 4	1006 744			1098 960	612 * 474 *	
1 N	10E	13 &1	15	TD	WALSH&DYE TULL W S	1	4830 C	3302		42	934	451*	* 0	1013 895	530 * 412 *	
1 N	10E	16 G3	16	тD	ARMOUR ETL RALSTON	2	4710 D	3319		43	$1000\\737$			$1076 \\ 957$	605* 486*	
1 N	10 E	16 G5	154	D T	DUNCAN W KOENECK W	1	4550 D	3325		43	970 712			1046 932	591* 477*	
1 N	10E	16 H1	292	τD	TEXAS CO Shelby C	1	4650 D	3312		4 3	1000 732			1081 959	616* 494*	
1 N	10E	18 D2	9	LD	MIDSTAT OC MCKINLEY	1	3940 D	3350		43	946 686			1041 904	647 # 510 #	
1 N	10E	18 F6	17	ΤD	LAMBERT B VAN SCHOCK	1	3940 C	3217		4 4	947 685			$1035 \\ 897$	641* 503* ·	
1 N	10E	18 H6	162	ΤŪ	TIDE WATER VAN SCHK N		3910 D	3235		44	954 694			1040 903	649* 512*	
1 N	10E	18 H8	313	то	LAMBERT B VAN SCHK N	4	3940 D	3245		4 5	958 700			1046 910	652* 516*	
1 N	1 O E	23 H5	309	ΤD	AETNA OC GREATHSE C	1	5140 D	3358		4 5	984	470 *		1100 950	586* 436*	
1 N	10E	27 C7	18	τD	ZEPHYR DRO Shelby H	1	4650 D	3371	239	42	954 688			1042 914	577 * 449 *	
1 N	10E	31 04	225	ΤD	ROSS C R RODGERS	1	3900 D	3335	239	4 4	977 696			1054 942	664 * 552 *	
1 N	10E	31 F2	224	DT	GULF REF GUYOT	1	3900 D	3373	239	44	952 681			1034 910	644 * 520*	
1 N	10 E	35 H4	149	ΤD	ĐĖEP ROCK MADDEN M	1	4750 C	3365	239	42	968 690			1057 930	582* 455*	
					•											

KEY BEDS IN EDWARDS COUNTY

EDWARDS COUNTY

Lo	cation of	f Hole	•	County	Type		Op'r's	Surface	Tetel	d. Jer	- 23	Lin	e 1 — Coal 2 — West			1 — Coal I 2 — Coal I		
Twp.	Range		Sec.	Number	ot Hole	Operator	Number	Altitude	Total Depth	Quad. Number	Year Drilled	Dept (Feet		Thicknes Ft. In	(Eeet)	Altitude (Feet)	Thic Ft.	kne:
1 N	11E	18	ΗЗ	294	СН	EVERSON OC PIXLEY A	1	4983 P	1254		6	93	0 432*					
1 N	11E	30	E 6	25	тD	OWEN&DRMN BRISTOW W	1	5030 C	3310	239	42	95 69			1040 920	5374		
1 N	1 1 E	31	E 2	19	TD	MENÉFEE K MCDOWELL C	1	5080 D	3299	239	41	95 68	-		1034 914	5264 4064		
1 N	14W	3	A 5	20	TD	MARTIN R B Bradham E	1	4730 D	3125	234	4 4	84 60			944 780	4714 3074		
1 N	14W	4	G 5	22		WALSH&DYE LEMKE C	1	4790 C	3184	234	39	91 65			855	376=	k	
1 N	14W	5	Н7	23		M A G N O L I A K O E R T G E	2	4720 C	3333		4 2	94 69			1023 883	551 411		
1 N	14W	6	03	1	LD	SNCLR WYOM BIERHAUS A	1	4970 C	3215		4 2	96 70			1046 912	549* 415*		
1 N	14 W	6	D 5	29		NELSON DEV Rothrock G	1	4990 D	3144		42	97 72			1058 928	559* 429*		
1 N	14 W	6	F 2	2 6		BROKHVN OC ROTHROCK C	1	4840 C	3150		42	96 70			1055 902	571* 418*		
1 N	14₩	6	F 3	8		SEABOARD ROTHROCK C	1	4960 C	3141		42	97 71			1058 920	562* 424*		
1 N	14₩	6	G 5	24		MARTIN R B Blackfrd e	1	5180 C	3172		42	98 74			1068 934	550 * 416 *		
1 N	14₩	6	Н1	27		MAGNOLIA KOERTGE K	1	4770 C	3200		42	96 70			1046 900	569 * 423 *		
1 N	14W	6	Н3	30		CENTRLPIPE GADAU	1	4960 D	3141		42	97 72			1056 917	560 = 421 =		
1 N	14W	10	F1	11		M A G N O L I A M A T T H E S	1	4130 D	2918	234	43	79 54			905 738	492 = 325 =		
1 N	14₩	11	E 5	217		BENNET BRO HNDLTR MCV	. 2	4060 D	2868	234	43	77 53			892 714	486* 308*		
1 N	14W	1 1	Н7	21		1 NAT PET MYERS E	1	4080 D	2873	234	43	76			886 712	478= 304=		

EDWARDS COUNTY

Lo	ation of	Hole	•	County	Туре		Op'r's	Surface	Total	d. Der	r ba	Line	1 — Coal 2 — West			1 — Coal 2 — Coal I		
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thic Ft.	knes In
1 N	14W	18	A 8,	31	TD	DYE A F SCHERNEKAU	1	4830 C	3262		4 3	898 652			984 860	501 377	ĺ	
1 N	14W	18	Н1	175		ASHLND ORC BETEBENNER	1	4910 D	3180		44	876 630			960 828	469* 337*		
1 N	14₩	22	88	163	ΤD	BIG CHIEF THOMPSON S	1	4100 D	3084	238	44	812 562			924 770	514 360		
1 N	14W	31	н 3	32	ΤD	CENTRLPIPE STANINGR D	1	4990 D	3218	239	42	910 652			1010 874	511 375		
1 N	14W	31	H 5	33		CE/NTRLPIPE TARPLEY_C	1	4730 D	3220	239	42	908 644			1004 870	531 -397		
1 N	14₩	3%	A 5	51	TD	SEABOARD NELSONL W	1	4290 D	3239	238	41	865 602			962 828	533* 399*		
2 N	10 E	34	C 6	220		TEXAS CO PAMPE COM	1	4410 D	3350		43	980 728			1060 940	6194 499*		
5 N	10E	35	G 6	34	LD	TEXAS CO DENSMORE	1	4600 D	3250		43	1000 749			1081 960	621¢ 500¢		
2 N	14₩	31	B 1	35		CENTRLPIPE BIERHAUS	1	4780 D	3120		42	944 700			1026 886	548* 408*		
2 N	14W	31	B 3	36	ΤD	CENTRLPIPE BLACKFORD	1	5010 C	3190		4 2	962 716			1050 908	549* 407*		
2 N	14₩	31	Β5	45	ΤD	CENTRLPIPE SUMMRFLT D	1	5160 D	2891		42	988 739			1068 931	552* 415*		
2 N	14₩	31	C 5	37	ΤD	MAGNOLIA BRAKE C C	1	5140 C	3240		42	984 738			1068 934	554 420 *		
2 N	14W	31	D 1	41		CENTRLPIPE KENT	4	4560 D	3100		•41	920 672			1002 862	546* 406*		
2 N	14W	31	02	40	TD	CENTRLPIPE KENT	3	4890 D	3130	-	41	948 705			1030 894	541 405		
2 N	14 W	31	03	42		CENTRLPIPE RIDGLEY	1	4740 C	3116		42	940 692			1024 884	550# 410#		

KEY BEDS IN EDWARDS COUNTY

EDWARDS COUNTY

Lo	cation of	Hole	County	Type		Op'r's	Surface	Total	ad. Iber	ar led	ation		1 — Coal 2 — West			1 — Coal No. 5 2 — Coal No. 7
Twp.	Range	Sec.	Number	Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled	Dout Inform	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet) Ft. In.
2 N	14W	31 E1	38	TD	CENTRLPIPE KENT	1	4880 D	3121		41		954 710			1038 900	550 * 412 *
2 N	14W	31 E 2	39	ΤD	CENTRLPIPE KENT	2	4890 D	3124		41		955 710			1036 902	547# 413#
2 N	14W	31 E 3	46	ΤD	BANDR&MRTN WELLS L C	1	4970 C	3150		41		966 723			1053 914	556* 417*
2 N	14W	31 G2	44	TD	OHIO DIL STREMME	2	4920 C	3140		41		965 722			1050 912	558 * 420 *
2 N	14W	31 G3	222	ΤD	BLACK J L MARKMAN E	1	4890 D	3156		43		970 724			1052 918	563 * 429*
2 N	14W	31 H1	43	то	OHIO OIL STREMME O	1	4960 C	3160		41		960 720	464* 224*		1050 906	554 * 410*
2 N	14W	3 ≈ C 8	47	τD	DYE AF Kentec	3	4580 C	3117		41		924 676	466* 218*		1005 866	547 * 408 *
2 N	14W	32 F6	48	τĎ	WSHBRN&PWR MARKMAN H	1	4660 C	3148	234	41			470 * 221*		1026 876	560 * 410 *
2 N	14W	32 F7	50	то	OHIO OIL MARKMAN H	2	4630 C	3103	234	41		926 682	463* 219*		870	407*
2 N	14W	3% F8	49	σT	OHIO OIL Markman h	1	4830 C	3169		41		950 707	467 * 224 *		1036 894	553 * . 411 *
2 N	14₩	3 ≈ H8	52	τD	BROWN W C STREMME O	1	4700 C	3117		41		933 695	463* 225*		1020 880	550* 410*
1 \$	10E	3 A 5	53	TD	SKELLY OC GUMBRELL C	1	4200 D	3367	239	4 3		947 661	527* 241*		1038 897	618 * 477 *
15	10E	9D5	276	ΤD	P.HILLIPS COLYER	1	43800	3396	239	44		996 70 0	558 * 262 *		1066 946	628 * 508 *
18	1,0E	11 C 2	304		LEACH BROS LEA A	1	5100 G	4088	239	38		995 713	485≉ 203≢		1093	583*
18	10E	12 48	161	TD	WALL&MTCHL STEWART W	1	4800 C	3408	239	41		930 665	450* 185*		1040 885	560 * 405 *
18	10E	13 C1	55	ΤD	TIDE WÄTER PRVDNT INS	1	4450 D	3205	239	41		888 613	443 * 168 *		1000 838	555* 393*

EDWARDS COUNTY

Lo	cation of	Hole	•	County	Туре		Op'r's	Surface	Total	id. ber	ar fful ation	Line	1 — Coal 2 — West			1 — Coal No. 3 2 — Coal No. 7	
ſwp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet) Ft.	ckne lı
1 S	10E	13	Н1	54	ΤD	TIDE WATER GAWTHORP I	1	5260 C	3325	239	4 1	940 670			1042 898	516 # 372 #	
1 \$	10 E	16	Ε7	2	LD	NELSON DEV REID A	1	4270 D	3388	239	43	940 666		ч	1034 893	607 * 466 *	
1 S	10 E	21	Ε5	56	ΤD	TIDE WATER BUNTING E	1	4280 C	3410	239	40	927 661			1013 884	585* 456*	
18	10E	29	A 2	160	TD	SOHIO&BCHF BUNTING C	1 A	4820 D	3526	239	4 4	1014 742			1107 964	625* 482*	
1 S	10E	31	D 8	57	TD	OLSON OC FELIX J	1	3990 D	3455	239	43	940	541*	• 0	1028 894	629* 495*	
1 S	11E	6	A 4	58	ΤD	STEELE C F Couch c	1	5120 D	3255	2 3 9 [.]	4 2	930 667			1018 895	506* 383*	
1 S	11E	7	A 6	64	TD	CITIESSERV DRURY E	1	4920 C	3263	23 9	42	914 644	422* 152*		1010 86 6	5 1 8 * 3 7 4 *	
18	1 1 E	7	A 8	63	TD	TIDE WATER GAWTHORP I	2	5180 D	3277	239	41	934 661			1026 888	508 * 370 *	
1 \$	11E	7	C 6	60	TD	CONGDON R HOCKING	1	4970 C	3230	239	42	900 665			994 858	497* 361*	
1 \$	1 1 E	7	E 6	59	ΤD	TIDE WATER HOCKING B	1	4700 D	3208	239	42	876 650			970 840	500 * 370 *	
1 S	11E	7	Ε7	61	TD	CITIESSERV BLDNG COMM	1	5080 D	3252	239	42	920 684			1005 884	497 = 376 =	
1 S	11E	7	G 6	3	LD	MAGNOLIA GOULD E	1	5070 C	3350	239	42	926 698			1012 888	505* 381*	
1 S	1 1 E	7	G 7	6 2	ΤD	MAGNOLIA BROKAW C	1	5°230 C	3290	239	42	934	411 *	ĸ	1018 898	495* 375*	
1 \$	1 1 E	18	A 7	70	ΤD	TIDE WATER ST LEDGER	1	4340 D	3265	239	42	867 592			983 815	549* 381*	
15	11E	18	C 8	69	ΤD	TIDE WATER GAWTHORP I	4	4420 D	3211	239	42	866 604	1		984 818	542 * 376*	
1 S	1 1 E	18	E 6	68	ΤÐ	TIDE WATER GAWTHORP I	3	4710 D	3208	239	42	611	140*	* 0	973 828	502 = 357 =	

EDWARDS COUNTY

Lo	cation of	Hole	County	Туре	1	Op'r's	Surface	Total	d. ber	ar ed fful ation	Line	1 — Coal 2 — West			1 — Coal N 2 — Coal N	
Twp.	Range	Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)		Thickness Ft. In.
1 \$	11E	18 E8	67	TD	CITIESSERV THREADS A	2 B	4730 C	3265	239	4.2	884 612			980 835	507 * 362 *	
1 \$	1 1 E	18 G7	66	ТD	CITIESSERV THREAD L	5 A	4760 C	3228	239	42.	882 604			968 838	492* 362*	
1 \$	11E	18 н8	65	τD	CITIESSERV THREAD L	1	5220 C	3316	239	41	940 666		-	1038 898	516* 376*	
- 1 S	1 1 E	30 A 5	71	τD	TAYLOR DRC Odle	1	4490 C	3261	239	4 2	918 622			1020 870	571* 421*	
1 \$	11E	30 48	259	τD	ROTHLEI Smith	1	4670 D	3278	239	44	898 618	-		994 852	5 2 7 * 3 8 5 *	
1 \$	11E.	30 G 5	305	ΤD	SUPRIOR OC Smith G E	1	4270 D	3190	239	4 4	870 594			957 817	530* 390*	
1 \$	11E	31 B3	181	TD	BRIT AM OP PETERS	2	4470 C	3182	239	4 4	907 622			994	547 =	* 0
1 \$	1 1 E	31 B5	176	TD	MAGNOLIA FEWKES EST	1	4930 D	3276	239	44	936 654			1038 888	545* 395*	
18	1 1 E	31 C4	170		SUPRIOR OC LAMBERT J	1	4490 D	3206	239	44	914 621	465 * 172 *		1006 862	557 * 413 *	
18	1 1 E	31 D 3	180		SUPRIOR OC LAMBERT J	5	4460 D	3175	239	44	902 614			1000 855	554 # 409 #	
18	11E	31 D 5	178		SUPRIOR OC LAMBERT J	3	4810 D	3186	239	4 4	934 644			1034 884	553 # 403 #	
18	11E	31 E4	284	TD	SUPRIOR OC LAMBERT J	4	4680 D	3157	239	44	927 638			1018 886	550 = 418 =	
18	11E	31 E 5	177	TD	SUPRIOR OC LAMBERT E	1	4870 D	3216	239	44	945 650	458* 163*		1050 890	563= 403=	
								-							-	
1 \$	14W	4 45	73		POWERS ETL Strauss f	1	4730 D	3156	238	41	854 599			946 820	473* 347*	
18	14W	4 G 5	74		KINGWOODOC Shurtlff M	1	4070 D	3128	238	40	835 578			935 804	528# 397#	
18	14W	7 G 5	72	τD	PERSHA&ADG HESSLER	1	5110 C	3330	239	42	957 686	446 * 175 *		1036 913	525* 402*	

EDWARDS COUNTY

Loc	ation of	Hole	County	Туре		Op'r's	Surface	Total	ber	ar ed ation	Line	1 — Coal 2 — West			1 — Coal I 2 — Coal I		
Twp.	Range	Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thic Ft.	knes In
18	14W	16 F1	75	TD	SNCLR WYO GAWTHORP	M 1	3990 C	3061	238	41	810 549			896 779	497* 380*	_	
1 \$	14 W	21 E 3	253	τD	SUPRIOR O COWLING H		4010 D	3079	238	44	798 536	397* 135*		892 76 7	491* 366*		
1 \$	14₩	28 A 3	254		SUPRIOR O LIPPER L	с 8	4000 C	3048	238	4 4	803 540	403* 140*		912 770	512* 370*		
18	14 W	28 86	183	тD	SUPRIOR O LIPPER L	C 5	4010 D	2799	238	4 4	814 550	413* 149*		902 780	501* 379*		
1 S	14W	28 C 5	167	ΤD	SUPRIOR O LIPPER L	c 2	3980 D	2947	238	44	800 538	402* 140*		910 7 66	512 * 368 *		
1 S	14 ₩	28 67	182	τĎ	SUPRIOR O LIPPER L	с 3	4010 D	2810	238	4 4	812 549	411* 148*		916 777	515# 376*		
1 S	14 W	28 D 6	166		SUPRIOR O LIPPER L	c1	3980 D	3091	238	43	802 542	404* 144*		918 770	520* 372*		
1 S	14 W	28 D8	91	LD	SUPRIOR O LIPPER L	C 4	3980 D	3112	238	43	828 55 8	430* 160*		930 791	532* 393*		
1 S	14 W	28 E 3	171	τD	SUPRIOR O DANIELSON		3880 D	3081	238	4 4	771 514	383* 126*		872 743	484* 355*		
1 \$	14₩	28 E 5	168		SUPRIOR O DANIELSON		3990 D	2824	238	44	782 527	383* 128*		897 752	498 * 353 *		
1 S	14 W	30 A 8	184		MAGNOLIA Curtis J	L 1	4790 D	3228	239	44	938 652	459* 173*		1014 888	535 = 409 =		
15	14 W	31 E8	285		SUPRIOR O LAMBERT J	-	4400 D	3180	239	44	896 603	456* 163*		994 846	554 406 *		
1 S	14₩	31 G8	257		KINGWOODO FREEMN ET		4540 D	3252	239	4 4	906 632	452* 178*		1000 876	546* 422*		
1 S	14W	3≈ F4	172		SUPRIOR O CURTIS V		4280 D	3146	238	44	888 602	460* 174*		974 834	546* 406*		
1 S	14₩	33 G 5	255		SUPRIOR O LANKFORD	C 1	4150 D	3071	238	4 4	812 558	397* 143*		914 778	499* 363*		
18	14W	33 н4	273		SUPRIOR O LIPPER L	c c s	4020 D	3042	238	4 4	800 544	398* 142*		920 768	518* 366*		
1 S	14₩	33 н6	256		SUPRIOR O LANKFORD	с 2	4150 D	3086	238	4 4	814 554	399* 139*		926 780	511 * 365*		

KEY BEDS IN EDWARDS COUNTY

EDWARDS COUNTY

Loc	ation of	Hole		County	Туре		Op'r's	Surface	T-1-1	d.	fel tel	Line	1 Coal 2 West			1 — Coal I 2 — Coal I	
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Total Depth	Quad. Number	Year Drilled Doubtful	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thicknes Ft. In
25	10E	1	Н1	260	ΤD	NOAH F HODGSON E	1	4630 D	3208	239	44	914 636	-		1000 865	537 403	
2 S	10E	3	G 8	306	СН	LEACH BROS Ellen J	1	5150 T	4932	239	37	1016 750			965	450=	5
2 \$	10E	7	Ε1	76	ΤD	STANLND OC Broster M	i 1	5040 D	3495	239	42	1010 736			1082 940	5784 4364	
2 8	10E	8	Ε7	4		NELSON DEV BUNTING C	1	4690 C	3447	239	43	975 709			919	4504	1
2 S	1 O E	12	В 3	79		MORSN&NOAH SMITH ARCH		4720 C	3212	239	41	856 584			808	336*	
2 \$	10E	12	C 1	77	TD	MAGNOLIA FEWKES M	1	4590 D	3069	239	4 2	826 563	367 * 104 *		780	321*	#
2 \$	10E	13	A 1	88	TD	MORSN&NOAH WORKS G	2 A	5040 C	3144	239	4 0	908 634			1004 856	500* 352*	
2 \$	1 O E	13	A 4	80		MORSN&NOAH BARNES W	3	4700 C	3213	239	40	876 597			974 828	504 = 358 =	
28	10 E	13	В 1	87	TD	MORSN&NOAH Works G	18	4740 C	3118	239	40	879 602			972 830	498 356	
2 5	1 O E	13	B 2	89	ΤD	MORSNÆNOAH Works g	28	4860 C	3218	239	40	892 620			986 852	500 = 366 =	
25	10 E	13	B 4	83		MORSNÆNOAH Horton L J		4810 C	3226	239	40	883 607	402* 126*		980 829	499 * 348 *	
2 \$	1 O E	13	B 5	81	тD	WATKN'S DRC CONOVER O	1	4970 C	3260	239	40	902 626			994 862	497 = 365 =	
2 S	10 E	13	D 2	90	ΤD	TUESDAY OC WORKS G	4	4700 C	3210	239	4 0	882 599			975 830	505 360 *	
2 \$	10E	13	D 8	84	TD	MORSN&NOAH STAFFORD	1	4900 C	3350	239	39	925 640			1015	525* 399*	
2 S	10E	13	F1	86	ΤD	CONTNTL OC STAFFORD L		5050 C	3225	239	40	908 642			999 882	494* 377*	
2 \$	10E	13	G 2	85	TD	ARROW DRC Stafford L	2	5160 D	3265	239	40	916 646			1006 875	490 359	

EDWARDS COUNTY

Loc	ation of	Hole		County	Туре		Op'r's	Surface	Total	ber	ar ed ^{ation}		1 — Coal 2 — West				1 — Coal 2 — Coal		
ſwp.	Range	Sec		Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth	Altitude	Thic	kness	Depth	Altitude	Thic	ckness
												(Feet)	(Feet)	Ft.	ln.	(Feet)	(Feet)	Ft.	In.
2 \$	10E	13 H	11	82	TD	CONTNTL OC COWLING JJ		5120 C	3251	239	40	908 636				992 866	4804 3544		
28	10E	18 E	1	92	τD	ÒHIO OIL HARRIS C P	1	4220 C	3475	239	42	·61 4	192*			844	4224		
2 5	10E	19	1	5	LD	SUN OC MCKIBBEN R	1	4370 D	3394	239	42	938 646				1015 862	5784		
2 \$	10E	19 /	8	94	τD	MARTIN R B LESTER R P		4360 C	3351	239	41	924 643	488* 207*			1036 858	6004		
25	10E	19 0	66	93	то	SMOKEY OC CHALCRFT L	1	4780 C	3418.	239	41	978 704	500* 226*			1100 906	622 428	1	
25	10E	24 0	1	97	סז	JARVISMARC GREEN CAM	1	4760 C	3137	239	40	885 604				985 828	509 352		
2 5	10E	24 C	13	98	TD	JARVISMARC WICK A	1	4580 C	3122	239	40	870 5 87				964 816	506× 358×		
25	10E	24 0	5	99	σT	MORSNANOAH WICK G	1	4350 C	3188	239	40	844 562	409* 127*			938 791	503× 356×		
25	10 E	24 E	1	100	τD	JARVISMARC WICK H	2 🕇	4720 C	3125	239	40	874 597				956 821	484 349		
2 5	10 E	24 E	4	101	τD	JARVISMARC WICK H	W 2 A	4490 C	3220	239	40	856 580				957 802	508 353		
2 \$	10E	24 F	2	102	TD	JARVISMARC WICK H	3 A	4750 C	3194	239	40	879 600				960 824	485 3494		
2 \$	10E	24 F	3	103	τD	JARVISMARC WICK H	W 1 A	4530 C	3109	239	40	862 583				962 808	5094 3554		
5,8	10E	24 0	: 2	95	то	MORSNÆNOAH BARNES H	2	4800 D	3127	239	40	888 610				984 828	504× 348×		
2 S	10E	24 (3	96	TD.	MORSNÆNOAH BARNES W	1	4570 C	3189	239	40	866 585		1		966 812	509× 355×		
25	10E	25 /	1	208	то	SUPRIOR OC EARHART H	2	4850 D	3065	239	43	889 614	129 *			970 830	4854 3454		
25	10E	258	1	226	T D	SUPRIOR OC EARHART	4	5050 D	2408	239	44	925 644	139*			1024 868	519× 363×		
2 \$	10E	25 E	12	179	סד	SUPRIOR OC EARHART H	1	5140 D	3233	239	43	930 654				1026 896	512		

KEY BEDS IN EDWARDS COUNTY

EDWARDS COUNTY

Loc	ation of	Hole		County	Type	· . ·	Op'r's		·	d. ver		Line	1 — Coal 2 — West			1 Coal I 2 Coal I		
Twp.	Range	Sec		Number	of Hole	Operator }	Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thick	ness In.
2 S	10E	25 F	F 2	186	TD	SUPRIOR OC WICK A C	1	5100 D	3208	239	43	925			1027 872	517 362		
28	108	32 0	1	277	то	DUNCAN INC CULISN COM	1	47 0 0 D	3373	239	43	994	524*	*0	109 2 92 2	622 452		
2 5	10E	33 C	7	105	τD	DEEPOPC SUTTONAE	1	4440 C	3351	239	43	952 662			1042 896	5984 4524		
25	10E	33 E	1	286	ΤD	COLSTR PET Sherdn com	1	4200 D	3340	239	44	915 615		-	$\begin{smallmatrix}1&0&1&4\\&8&3&6\end{smallmatrix}$	594 416		
28	10E	33 E	7	209	ΤÐ	DEEP ROCK CRACKL CON	1	4140 D	3330	239	43	935 645						
28	10E	36 B	31	104	ΤD	WHSNT&TRD DUNK I	1	5130 C	3275	239*	39	1024 756			1105	592*	2	
28	10E	36 B	31	106	LD	LEWIS PROD DUNK I	1 Å	5140 D	2453	239	43	1029 757			1110	596*	•	暭
28	10 E	36 B	12	164	τD	TEXAS CO DUNK I	2	5180 D	2435	239	43	910 684			994	476*	ı	卑
25	10 E	36 B	3	230	ΤD	TEXAS CO DUNK I	3	5160 D	3272	239	4 4	642	126*	∵ ≉ 0	1000	484 *		æ (
2 \$	10E	36 B	4	107	ΤD	WHSNT&TRD DUNK I	1 Å	5180 C	2552	239	40	641	123*	*0	1023 838	505* 320*		
2\$	10 E	36 C	:1	210	ΤD	SUPRIOR OC JUDGE J W	1	4940 D	2376	239	44	742	248*	* 0	978	484*		
28	10 E	36 D	2	231	ΤD	TEXAS CO JUDGE R	2	5150 D	2445	239	44	910 640			1000	485*		皋 (
28	10 E	36 E	1	250	TD	SUPRIOR OC Scott	1	4710 C	5196	239	40	870 590			955 790	484* 319*		
25	10E	36 E	3	278	ΤĐ	FISHER OC WICK G C	1	5020 D	2441	239	43	905 633			996	494*		虖 (
2 S	10 E	36 F	2	261	TD	WHITE W R SCOTT HEIR	5	5010 D	2403	239	44 .	898 622			990 822	489* 321*		
25	10 E	36 G	1	165	ΤĐ	TEXAS CO TAI T CO MM	2	4750 D	2386	239	44	868 592	117*		958 800	483 325 =		
25	10E	36 H	12	262	ΤD	SACKETT H TAIT R	1	4960 D	2396	239	44	890 618			982 830	486* 334*		

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

	less In.							0									
0.5	Thickness Ft. In.							w									
- Coal No. Coal No.	Altitude 1 (Feet) F	ະ ອ ບ	C 40	· 40	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	345#	3 5 4 4	331*	346	335*	0.00 0.00 0.00 4.4	000 000 000 000	498 366 *	516* 370*	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ທີ 0.0 ທ.4 ອີສຸ	ດ ດ ດ ດ ດ ດ ດ
Line 1 - 2 -	Depth (Feet)	9 J E		vom.	7 5 0	800	807	772	062	764	9 5 2 2 2 2 2 2 3 2 2 3 2 3 2 3 2 3 2 3 2	9 6 8 8 8 8 8	962 830	0,00 4,00 00 03	948 803	0.8 4.0 0.8	0 4 6 6 7 6
. Coal No. 6 . West Franklin	Thickness Ft. In.																
	Altitude (Feet)	4 01 6	A 10 CV	00	379# 115#	393 4031 408	4004 1224	379* 118*	1.00 1.00 4.4 4.4	377* 116*	4 1 0 4 1 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4104 4004 48	407 440 44	4 1 2 4 4 4 4 4 4 4 4 4 4	4184 1394	41044 4108 4408	40041 900 44
Line 1 2	Depth (Feet)	854	r 40) œO	80 70 40 40	848 575	853 580	8 2 0 5 5 9 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	80 40 50 50 50 50 50 50 50 50 50 50 50 50 50	8 6 0 5 8 3	870 595	871 598	850 573	858 579	854 576	851 575
Hul	duod Doubi															,	
	Prill Drill	4	4 N	4 M	4	4 1	4 1	4 1	4	4	4	4	40	4	4	4 0	4 O
	Qud Mum	8 7 8	239	239	239	239	239	239	239	239	239	2 2 3	239	239	239	239	2 2 3 6
L T	Depth	3159	3030	3166	3164	3190	3113	3205	3 2 2 0	3155	3087	3098	3114	3133	3084	3173	3087
Surface	Altitude	0 0 0 0 0 0 0	240 D	440 D	250 D	550 D	530 D	410 C	4 4 0 C	290 D	420 0	6 00 D	640 D	320 C	4 0 0 D	440 D	4 2 0 D
	, la	4		- -	4	ب 4	4	 	<u>ه</u>	4	4	4	4	ى 4.	4 4	4	<u>م</u>
	Operator Number	下 の 型 で の 型 で	ACKEL D NAT PET		SUPRIOR OC Kiley C L	8.1 F K = 0 K O C C F F を K E S J	SUPR-OR OC FENKES J	MAGNOL-A TEMATES FL	MAGNOTIA FIEWKES FL	SUPS-07 OC FEWKES H W	SUPRIOR OC WORKS G J	SUPRIOR OC WORKS G J	SUPRIOR OC WORKS G J	SUPRIOR OC WORKS G J	SUPRIOR OC Works G J	SUPRIOR OC WORKS G J	SC P R - O R O R S C P R - O R O R S C R S R - O R
Type	of Hole	0 1	10	ΤD	TD	ΤD	T 0	ΠD	ΤD	ΤD	τD	τD	τ0	0 1	10	ΤĎ	0
	Number	189	2	289	113	111	112	108	109	110	119	1 2 2	117	120	118	121	124
	Sec.	¥ 6		F 7	A 3	A 6	A 6	B	B 7	D 6	A 6	A 7	8 8	C 5	C 7	8 0	D 6
Hole		ە	Ŷ	Q	7	2	2	2	۲	2	18	18	18	1 8	1 30	18	18
Location of Hole	Range	н 17	I + I	1 1 E	11E	11E,	11E	11E	11E	1 1 E	1 1 E	115	1 1 E	1 1 E	11E	11E	115
Foc	Twp.	ა ა		s S	s s	s s	8 8	8 8	8 8	S S	s S	S S S	S S	S S	2 S	s s	s s

KEY BEDS IN EDWARDS COUNTY

TABULATED DATA ON KEY BEDS

EDWARDS COUNTY

Loc	ation of	Hole		County	Туре		Op'r's	Surface	Total	d. ber	ed ful	Line	1 — Coal 2 — West			1 — Coal No. 5 2 — Coal No. 7	
Twp.	Range	Sec	N	lumber	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude Thick (Feet) Ft.	kne Ir
2 S	11E	18 0	8.	123	ТD	SUPRIOR WORKS M	0 C 1	4580 C	3090	239	40	876 589		I	965 822	507 * 364 *	
2 \$	11E	18 E	5	115	ΤD	SUPRIOR HEDGE E	0 C 1	4510 D	3110	239	40	872 59 , 9			968 828	517* 377*	
28	11E	18 E	7	125	ΤD	SUPRIOR WORKS M	0 C 4	4560 D	3111	239	40	873 599			969 840	513# 384#	
2 S	11E	18 F	5	116	ΤD	SUPRIOR HEDGE E	0 C 2	4700 <u>D</u>	3184	239	40	891 612	421 * 142 *		981 862	5 1 1 * 3 9 2 *	
25	11E	18 F	6 :	127	ΤD	SUPRIOR WORKS M	0 C 6	5020 C	3164	239	40	913 644	411* 142*		1000 887	498* 385*	
2 S	11E	18 F	8	126	ΤD	SUPRIOR WORKS M	0 C 5	4990 C	3233	239	40	908 630	409 * 131*		994 860	495* 361*	
25	11E	18 H	7	114		SUPRIOR FEWKES	0 0 2	4770 D	3190	239	40	884 605	407 128 =		840	363*	-
25	11E	19 A	7	133	τD	SUPRIOR WOOD ET		4490 D	3147	2 3 9'	40	860 582			960 809	511* 360*	
28	11E	190	6	128	ΤD	SUPRIOR GREEN C	0 C 1	4380 C	5185	239	40	861 582			963 810	525* 372*	
2 5	11E	19 F	8	129	ΤÐ	SUPRIOR WOOD F	0 C 1	4850 C	3.131	239	40	892 618			993 850	508* 365*	
2 S	11E	19 G	8 :	130	ΤD	SUPRIOR WOOD'ETA		4910 D	2374	2.3 9	40	902 620			998 855	507 * 364 *	
2 \$	11E	19 G	8 :	134		SUPRIOR WOOD F	0 C 7	4900 D	3136	239	40	900 620	410* 130*		1000 850	510* 360*	
2 \$	11E	19 H	7 :	132		SUPRIOR WOOD ETA		4650 D	3114	239	40	881 592	416 * 127 *		978 830	513* 365*	
2 S	11E	19 H	8 :	131	ΤD	SUPRIOR WOOD ET		4790 D	2361	239	40	885 607	406* 128*		982 830	503 * 351*	
28	11E	30 A	7 :	21.6	ΤD	SUPRIOR WILLETT	1 S 0 C	4530 D	3123	239	44	848 578	395* 125*		944 794	491* 341*	
28	11E	30 B	7	228	Τ̈́D	SUPRIOR WILLETT	0 C J 3	4640 D	2366	239	44	872 594	408* 130*		974 818	510* 354*	
2 \$	11E	30 B	8 :	214	T. D	SUPRIOR WILLETT		4870 D	3170	239	4 4	904 625	417* 138*		992 849	505 * 362 *	

EDWARDS COUNTY

Loc	ation of	Hole	•	County	Туре		Op'r's	Surface	Total	ber	ed tful ation	Line	1 — Coal 2 — West			1 — Coal M 2 — Coal M	
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thickne Ft. Ir
2 \$	1 1 E	30	C 8	227	TD	SUPRIOR OC Wick T J	2	4950 D	2397	239	4 4	922 640			1025 872	530* 377*	
28	11E	30	F6	199	TD	SUPRIOR OC SCOTT M J	1	4670 D	3154	239	44	916 629			1008 860	541 393*	
28	11E	31	B 8	188	TD	SOHIO OC UNION INS	1	5070 D	3319	239	43	1016 742			1107 954	600 * 447 *	
2 S	118	31	F8	78	то	CARDR TRST SCOTT HRS	3	4510 G	2510	239	4 4	831 641			921 797	470¥ 346¥	
2 5	11E	31	H7	213	τD	TEXAS CO TAIT	2 <u>,</u> B	4530 C	2365	239	44	942 670			887	434*	\$
2 \$	1 1 E	31	н8	187		LEWIS PROD TAIT	18	4950 D	2412	239	44	885 612			970 824	475 = 329 =	
2 5	14W	5	A 3	191	TD	SUPRIOR OC JACK A	1	4020 D	3142	238	4 3	838 561			921 802	519* 400*	
28	14W	5	A 5	288	τD	TRNSWESTRN WAHLER	1	4020 D	2871	239	4 4	835 556			925 802	523= 490=	
2 8	14W	5	08	135	то	NAT PET CRACKEL G	1	4020 D	3150	239	41	820 542			913 770	511* 368*	
2 \$	14W	5	E 8	265	ΤD	MITCHELL Q HENDERSN H	1	4010 D	2869	239	4 4	818 540			906 772	505* 371*	
2 5	14 W	7	A 3	136	ΤD	SUPRIOR OC HUBER P W	1	4030 D	3177	239	42	828 568			794	391*	
28	14 W	7	F 7	137	τD	SUPRIOR OC KILEY C L	3	4170 D	3150	239	41	808 541			763	346=	
2 8	14₩	16	A 4	194	ΤD	SCHONMKR G COWLING JT	1	4120 D	3151	238	44	854 601			818	406=	*
25	14W	17	F1	307	τD	SKELLY OC BASS H L	1	4010 D	3153	238	44	850 586	1		940 810	539 * 409 *	
28	14W	18	07	138	ΤD	WSTLND ETL ROOSEVLT J	1	4140 Đ	3175	239	42	878 601			972 829	558* 415*	
25	14 W	20	A 2	264	тD	MABEE OG FRANKLND A	2	4570 D	2775	238	44	896 625			996 846	539 = 389 =	

KEY BEDS IN EDWARDS COUNTY

EDWARDS COUNTY

Lo	cation of	Hole		County	Туре		Op'r's	Surface	Total	d. ber	ed fut tion		Coal No. 6 West Franklin		1 — Coal N 2 — Coal N	
Twp.	Range	Se	ec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubiful Information	Depth Altite (Feet) (Fe		Depth (Feet)	/Feet	Thickness Ft. In.
2 \$	14 ₩	20	A 6	8	LD	KINGWOODO Cowling w	C 1	4670 D	3247	239	4 3	928 46 651 18	1 * 4 *	1023 879	556* 412*	
2 \$	14W	20	8 8	221	тр	GULF REF FIEBER J	N 1	4810 D	3196	239	43		1 * 2 *	1050 902	569* 421*	
2 \$	14W	20	C 4	263	тD	MABEE OG FRANKLND	A 1	4680 D	3160	239	43		5 * 8 *	992 854	524* 386*	
2 \$	14W	20	60	287	ΤD	ASHLAND OC COWLING R	1	4410 D	3047	239	43	906 46 623 18		1004 856	563* 415*	
2 \$	14₩	20	05	229		SCHNMKRETL COWLING	. 2	4790 D	3052	239	43	918 43 650 17		1012 870	533* 391*	
2 \$	14₩	20	E 6	144		SKELLY OC Feber L	1	4400 D	3029	239	43	890 45 620 18		988 842	548* 402*	
2 S	14W	2 2	A 6	200	ΤÐ	RIDDLE HI Schroeder	1	4050 C	3083	238	39	800 39 550 14		925 755	520* 350*	
2 \$	14 W	27	C 1	310	T-D	WICKHM GH Schroedr M		4110 D	2958	238	45	766 35 522 11		910 725	499= 314=	
2 \$	14W	27	ε1	311		WICKHM G H Schroedr		4360 D	3004	238	45	786 35 540 10		738	302*	
2 \$	14W	27	Е 3	266		WICKHM G F Schrdr J	1	44 0 0 D	2987	238	4 4	802 36 554 11		766	326*	\$ 0
2 \$	14W	27	E 5	267		WICKHMIĞ H Schrdr Con		4790 C	3060	238	44	872 39 618 13		1014 835	535 # 356 #	
2 5	14W	28	H 5	252		KEITH RAIL GARNER	1	4440 C	2990	238	4 4	898 45 630 18		1008 858	564 # 414 #	
2 5	14₩	29	G 2	193		SUPRIOR OC Reid M	1	4850 D	3230	238	43	935 45 666 18		1029 888	544= 403=	
2 \$	14₩	29	G 5 ,	268		LAMBERT B BENDER GA		5120 D	2819	239	44	972 46 698 18		1070 924	558* 412*	
28	14₩	29	G 6	192		SUPRIOR OC BENDER G A		4940 D	3178	239	43	948 45 674 18		1044 902	550* 408*	
2 5	14W	34	44	139		OMEAR&ANDR BROSTER	2	4500 C	2653	238	39	827 37 56 9 11		965 782	515* 332*	
•																

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

EDWARDS COUNTY

Lo	cation of	Hold	•	County	Туре		Op'r's	Surface	Total	ld. ber	ed r	Line	1 — Coal 2 — West			1 — Coal 2 — Coal I		
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	· Depth	Quad. Number	Year Drilled Doubtful	Depth (Feet)		Thickness	Depth (Feet)	Altitude (Feet)		knes
	<u> </u>	<u> </u>			<u> </u>					-	-	_		Ft. In.			Ft.	In
38	10E	1	A 4	295	ΤD	SUPRIOR Blood J	0 C C A 7	5000 D	3076	239	45	70	200*	*0	1090	5904		
3 S	10E	1	A 5	247	ΤD	SUPRIOR BLOOD J	0 C C A 6	5120 D	2048	239	4 4	71	5 204*	*0	1010 906	4984 3944		
3 S	10E	1	A 6	246	тD	SUPRIOR BLOOD J	0 C C A 5	5060 D	2396	239	44	57	3 72*	* 0	972 782	466		
3 S	10E	1	A 8	206	ΤD	SUPRIOR MUSSETT	0C W 3	5710 D	3177	239	44	663	91*	· \$0	1050 878	479		
3 S	1 ° E	1	B 4	298	ΤD	SUPRIOR BLOOD J	0 C C A 8	5110 D	2402	239	4 5	71	199*	* 0	1110 964	599 453		
38	10E	1	85	205	ΤD	SUPRIOR BLOOD J	0 C	5010 D	3094	239	4 4	57	72*	* 0	974	473		
3 S	10 E	1	B 6	204	τD	SUPRIOR Blood J	0 C C A 1	5310 D	3263	239	44	60	73 *	* 0	996 798	465		
3 S	10E	1	87	203	тD	SUPRIOR MUSSETT	0 C 2	5450 D	3149	239	4 4	620) 75≉	* 0	1014 831	469	r	
3 S	10E	1	C 4	245	то	SUPRIOR Blood J		4840 D	3056	239	44	693	208*	≉ 0	1092	608* 396*		
3 S	10 E	1	C 5	301	TD	GULF REF WEBB S M		4890 D	3211	239	4 4	56(≉ 0	965 760	484*		
3 S	10 E	1	C 6	302	то	GULF REF WEBB \$ M		5380 C	3143	239	44	610		* 0	1010	472*		
38	10 E	1	03	215	то	SUPRIOR BLOOD J	0 C A 9	4450 D	3026	239	4 5	656		≉ 0	010	200	-	
3 S	10E	1	D 4	274	TD	SUPRIOR	0 C A 3	4700 D	3174	239	4 4	68		* 0	1016 870	546*		
3 S	10E	1	05	300	то	GULF REF		4990 D	3229	239	44			*0	980	491		
3 S	10E	1	E 4	249	TD		0 C	4490 D	3027	239	4 4	583		* 0	780	281*		
3 S	10E	1	F 2	303			0 C 2	4810 D	3040	239	4 5	610		* 0	730	281*		
3 S	10E	1	F 3	297			C 5	4690 D	3047	239	4 5	710			890 1024	409* 555*	r	
						BL00D J	C 4					680	211*		916	447 =	r	

KEY BEDS IN EDWARDS COUNTY

[9

EDWARDS COUNTY

	ocation of	f Hole	County	Туре	1	Op'r's	Surface	Total	ber	ed fful ation	Line	1 — Coal 2 — West			1 — Coal No. 5 2 — Coal No. 7
Тwp	Range	Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude Thickness (Feet) Ft. In.
3	\$ 10E	1 G 2	201	TD		0 C 6	4860 D	3053	239	4 5	712	226 *	* 0	1100 896	614 410 *
3	5 10E	1 G 3	299	τD		0 C C 7	4990 D	3175	239	4 5	710	211*	*0	1096 898	597 # 399 #
3 :	10E	1 H 2	223	TD		0 C C 1	4850 D	3200	239	44	954 712			1064 898	579 + 413 +
3	10E	² B7	140	τD		CO M 1	4250 C	3271	239	40	846 562			946 770	521* 345*
3 :	10E	2 C8	269	TD	HAYNES J PERKINS	C 1	4430 D	-		44	870 584	141#		978 788	5 3 5 * 3 4 5 *
3 :	10E	2 F 5	312	TD	ILL MIDC PERKINS	0 N 1	4810 D			44	894 614	133*		1005 846	5 2 4 # 3 6 5 #
3 :	3 10E	6 C 1	290	TD	PHILLIPS FIEBER F	1	3870 D	-		43	870 600	213*		804	*0 417*
3		6 C 4	198	TD	PHILLIPS BROSTER	1	3810 D			4 4	882	239*		986 816	605 * 435 *
3 :		7 0 4	141	ΤÐ		W 1	3770 G	a and a market and		41	885 599	222*		985 816	608 * 439 * 605 *
3 :		8 8 2	6	LD	SNCLR WY PERKINS	н 1				42	878 604	190*		1019 837 1045	603+ 423+ 505+
3 (11 A1	196	TD	MICHELS	0 C J 1				43	946 652	112*		883	343*
3 (11 E1	234	TĐ	SUPRIOR SCHMITLR	F 3				45	937 645	115*		1052 874 1060	522# 344# 511#
3 :		11 F2	233	TD	SUPRIOR SCH.MITLR	F 1				44	958 667 876	118*		974	347 * 499 *
3		12 48	207	TD	SKELLY O GLOVER R	S 1		-		4 3	582	107 #		810 962	499 335 497 *
3 :		12 88	195	TD	SKELLY O GLOVER R	2			239	45	573		* 0	796 990	331*
3		12 D7 12 E6	248	то	CARTER O SCHMITLR ROCK ISL	V 7				4 3	590	108 *		814 1056	332= 589=
3 :		IN LO	003		CHLCRFT		-010 0	1900	~ > >		682	215*	+ 0	856	389*

EDWARDS, COUNTY

Loc	ation of	Hole		County	Туре		Op'r's	Surface	Total	ber	ed	tful ation	Line	1 Coal 2 West				1 — Coal 2 — Coal I		
ſwp.	Range		iec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled	Doub	Depth	Altitude	Thic	kness	Depth	Altitude	Thic	knes
mp.	Kunge												(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In
38	10 E	1 2	E 7	243	ΤD	CARTER O SCHMITLR		4920 C	2659	239	4 4		586	94*		\$ 0	1004 810	512 318		1
3 S	10E	12	E 8	244	ΤD	CARTER O SCHMITLR		53700	2720	239	44		650	113*		* 0	1048 872	511 335		
3 S	10E	12	F 4	272	тD	REASOR G JOHNSN H	RS 1	4730 D	2400	239	4 4		686	213*		*0	1110 880	637 407	9 9	
38	10E	12	F6	235	σT	ROCK ISL Checrft		4980 D	3180	239	44		690	192‡		*0	1006	508		#
3 S	10E	12	F 7	242	τo	CARTER O SCHMITLR		4910 D	3188	239	44		582	91*		* O	986 801	495 310		
3 S	10E	1 2	G 4	271	τD	LYNN J J Coad	1	4870 D	3054	239	44		70 0	213*		\$ 0	1110 894	623 407		
3 S	10E	12	G 6	237	ΤD	SUPRIOR MUSSETT	0 C W 4	4960 D	3077	239	44		573	77 🗢		* 0	966 784	470		
3 S	10E	12	G 7	240	ΤĐ		0 C W 8	5280 C	2699	239	44		612	84 *		* 0	1012 830	484 302		
3 S	1 0 E	12	G 8	241	ΤD	SUPRIOR MUSSETT	0 C W 9	5140 D	1870	239	4 4		610	96*		* 0	1006 828	492 314		
3 S	10E	1≈	Н4	296		SUPRIOR BARNES J		5080 D	3208	239	45		704	196*			1090 950	582 442 *		
3 S	10E	12	н 6	239		SUPRIOR MUSSETT	0C W 7	49 00 D	2106	239	44		562	72 🛊		# 0	952 772	462* 282*	r	
3 S	10E	12	H 7	238		SUPRIOR MUSSETT		5240 D	3119	239	44		604	80*		* 0	984 812	460* 288*		
3 S	10E	13	D 1	142		WILSON D CURTISS		4670 C	3260	239	40		952 684	485* 217*			892	425*	:	
3 S	10E	13	н8	10		MIDSTAT COAD M	0 C 1	4830 C	3240	239	43		964 711	481* 228*			1055 934	572¢ 451*		
3 S	11E	7	A 7	270		LYNN J J Coad	2	4170 D	3201	239	4 4		906 624	489# 207#	,		1014 823	597# 406*		
38	11E	18	Е З	143		KINGWOOD Johnson	0 C 1	4180 C	3267	239	39		880 605	462* 187*			970 825	552* 407*		

KEY BEDS IN EDWARDS COUNTY

EDWARDS COUNTY

Loc	ation of	Hole		County	Туре		Op'r's	Surface	Total	ld. ber	# #ui #ioi	Line	1 — Coal 2 — West			1 — Coal I 2 — Coal I	
Twp.	Range	5	Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feét)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thickne Ft. I
38	14₩	8	G 1	145	ΤÐ	KINGWOODØ Frost s	C 1	4220 C	3161	238	40	868 603		-	962 825	540 403	
38	14₩	9	A 1	146	T D	LEGHORN O Broster L	C 1	3760 0	3078	238	41	811 543			922 760	5464 3844	
3 S	14W	10	Н7	197	σT	PUGH JOHN Smith L V	1	38,20 C	2668	238	39	790 525			885 750	503¢ 368¢	
3 S	14₩	17	C 8	293	τÐ	RIDDLE&MA TOOPS M K	B 1	4430 D	3169	239	41	853 580			930 798	4874 3554	
3 S	14W	17	Η1	7	LD	HALBERT R Proctor	1	4060 0	3100	238	43	844 572			918 792	5124 3864	
3 S	14W	18	87	148	τD	MAGNOLAIA Etherdge (2	4050 G	3147	239	39	858 588	453* 183*		958 805	5534 4004	r 8
3 S	14W	18	C 7	147	тD	MAGNOLIA ETHERDGE	E 1	4060 C	3190	239	39	870 592			960 815	5544 4094	
38	14₩	18	G 7	202	то	BARNES J BAKER	B 1	4070 C	3160	239	39	876 595			976 830	5694 4234	
						317											
								-				-					
		-															
														-			
															1		

GALLATIN COUNTY

Loc	ation of	Hole			Туре					er H	203	₅ Lin	e 1 — Coal	No. d	5	Line	1 Coal I	No. 5	
τ	D			County Number	of Hole	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled ^{Doubtful}	Dept	Altitude	Thic	kness	Depth	Altitude	Thic	kness
Twp.	Range	3	ec.									(Feet		Ft.	In.	(Feet)	(Feet)	Ft.	In.
						GALLATIN Mar 23 194	4 5												
7 S	8 E	19	88	103	ÐS	GRAVES I E	E	3750 B	6	261		43	3 58*	4	10	543	1684	• 4	05
78	8 E	21	A 2	120	TD	CARTER OC WHIPPLE H	1	4040 C	3120	261	41	4 2	6 22*	4	00	525	1214	5	00
7 S	8 E	21	E 2	118	TD	CARTER OC VINYARD R	1	4300 C	3165	261	40	48	0 50*	4	00	580	150*	- 5	00
7 S	8 E	21	E 2	119	LD	CARTER OC VINYARD R	2	4080 C	2962	261	42	45	8 50*	4	00	558	150*	- 4	00
78	8 E	21	G 1	116	T D	HEATH B M EDWARDS W	1	4080 C	2971	261	42	45	7 49*	4	0 0	557	149*	4	0 0
78	8 E	21	G 4	117	T D	CARTER OC KIMSALL O	1	3980 C	2982	261	42	45	0 52*	4	00	550	152*	4	0 0
78	8 E	22	E 5	247	TD	HLBRTHEATH BENER GRE(3880 C	2961	261	43	45	4 66*	and the second second second second		553	165*	5	
7 S	8 E	2 2	G 7	121	ΤD	HEATH B M EDWARDS W	2	4160 C	2972	2 61	42	46	9 53*	4	00	569	153≉	5	00
78	8 E	23	E 6	3	СН	OMAHA OG RANDOLPH		4022 P	1556	261	10	48	0 78*	7	00	571	169#	5	06
75	8 E	23	E 6	1 2 2	TD	CARTER OC BROCKETT (G 1	4030 C	3085	261	42	47	0 67≉	4	00	568	165#	4	00
7 S	8 E	24	A 8	123	LD	SNCLR WYON COX ISAAC	4 1	3950 C	3083	2 61	4 2	50	8 113*	4	00	625	230*	4	00
78	8 E	26	Ð 8	100	DS	BLACKARD H	1	3615 P	,	261	128	40	0 38*	7	00	490	128*	5	00
78	8 E	27	D 1	4	СН	OMAHA OG DAVIS M M		3624 P	9 1790	261	10	37	0 8*	6	06	482	120*	3	00
7 \$	8 E	28	C 4	125	TD	POWERS ETI WEST R G	L 1	3640 0	2955	261	4 0	24	1 123	3	0 0	341	23	4	00
78	- 8 E	28	C 5	124	TD	POWERS R I WEST L F	R 1	3690 0	2873	261	42	24	5 124	2	00	343	26	4	00

KEY BEDS IN GALLATIN COUNTY

GALLATIN COUNTY

Loc	cation of	Hole)	_	Туре		A 11	_		er .		u i	Line	1 — Coal	No.	6	Line	1 — Coal I	No. 5	
Twp.	Range		Sec.	County Number	of	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled	Doubtf Informat	Depth	Altitude	Thio	ckness	Depth	Altitude	Thick	kness
													(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
7 \$	8 E	89	E 3	2	СН	KLEVALLAOG DAVIS W E	1	3907 P	738	261	21		3 3 3	58	5	06	435	44*	: 5	0 0
78	8 E	32	B 6	6	ÐD	TAYLOR CO	100	3578 P	508	261	12		144	214	4	04	259	99	4	04
7 S	8 E	32	H 3	5		OHIO OIL Forester W	1	4154 P	1807	261	17	8	230	185	10	00				
75	8 E	33	A 4	127		CARTER OC KUDER A W	1	3740 C	1754	261	40	8	120	254			225	149	5	00
7 S	8 E	33	A 5	129		CARTER OC YORK R M	1	3650 C	2840	261	40	8	115	250			220	145		
7\$	8 E	33	82	130		TOMBS&SMTH PATTON C W	1	3790 G	6 2 0	261	41	2	137	242	2	00	249	130	3	00
7 S	8 E	33	В 3	126		CARTER OC KUDER A W	4	3780 G	1739	261	41	8	129	249			231	147	4	00
78	8 E	33	¢ 6	1 31		CARTER OC MCGINLEY W	1	3780 C	2529	261	41	8	127	251			232	146	4	00
7 8	8 E	33	E 5	128		CARTER OC DUCKWORTH	1	3720 C	2007	261	42	8	145	227			250	122	4	00
7 S	9 E	21	Н1	132		SKELLY OC HALE HUGH	1	4010 G	3087	260	40		659	258*	3	00	755	354 *	4	00
7 S	9 E	22	88	369		CARTER OC HALE R H	1	41 3 0 D	3104	260	45		690	277*	3	00	792	·379 *	3	0 0
7 S	9 E	22	H 5	133		DUNCAN INC KNIGHT S S	1	4120 C	3082	260	42		684	272*	5	00	779	367 *	5	00
7 \$	9 E .	31	F 3	1	DD	TAYLOR F K	102	3685 P	751	261	12		634	265*	4	0 2	745	376*	4	11
75	9 E	33	Η6	134		M R P H Y & M L S N S P E N C E	1	3750 C	3150	260	42		680	305≉	4	00	790	415≉	4	00
78	9 E	35	A 1	135		DUNCAN INC GREER	1	3720 G	3042	260	41		541	169*	4	00	639	267*	4	00
													1							

GALLATIN COUNTY

Loo	cation of	Hole	•	Cart	Туре			Op'r's			.	d. ver	<u> </u>	ful tion	Line	1 — Coal	No. d	ò	Line	Coal	No. 5	;
ſwp.	Range	9	Sec.	County Nuriber	of Hole	Operato	r	Number	Surfa Altitu		Total Depth	Quad. Number	Year Drilled	Doubt	Depth	Altitude	Thic	kness	Depth	Altitude	Thic	knes
	Kunge														(Feet)	(Feet)	Ft.	ln.	(Feet)	(Feet)	Ft.	In.
7 S	10E	17	A 2	91	00	NEW HAT	VEN		370ò	н		260	_	8	500	130*						
78	10E	27	A 4	352	ΤÐ	CARTER WILLAW		1	3520	D	2170	260	4 4		402	50*	3	00	499	147	• 4	0
7 S	10E	27	A 6	351	ΤÐ	OIL MA Gofort		3	3540	D	2139	260	44		402	48*	3	00	500	146*	• 4	0
75	10E	27	A 7	357	ΤD	OIL MAI GOFRTH			3580	D	2880	260	44		416	58≉	3	00	514	156	: 4	0
7 S	1 O E	27	84	356	TD	CARTER WILLAM:		2	3540	Ð	2130	260	4 4		404	50*	3	00	50 0	146*	4	Q
7 S	1 O E	33	H 5	136	LD	KINKAII SCHMID		1	3500	С	2946	260	42		405	55*	4	οò	502	152	4	0
78	10E	34	H 5	343		H A GE MN S T O F L E			3500	D	2930	260	44		388	38*	4	00	485	135 =	- 4	0
8 S	8 E	1	D 5	340		JARVISI DAVIS (1	3800	D	2970	261	43		345	35	4	00	458	78*	5	0
8 S	8 E	4	B 6	140		CAMEROI GREEN	N OC IVAN		3540	C	1720	261	4 1		38	316	3	00	144	210	4	0
8 S	8 E	4	87	144		CARTER JONES (1	3470	G	1932	261	41	8	53	294			159	188	4	0
8 S	8 E	4	C 6	145		CARTER KOVAL		1	3510	С	1707	261*	41	8	49	302			155	196		
85	8 E	4	C 7	137		C A R T E R C A R N A H J			3500	С	1917	261	41	8	53	297			159	191	4	0
8 S	8 E	4	D 4	139		SEABOAR COLNAN	J T	1	3630	С	1720	261	41	8	75	288			181	182	4	0
8 8	8 E	4	D 5	146		CARTER KOVAL		2	3630	C	1718	261*	41	8	69	294			175	188	4	0
8 S	8 E		08	-		C A R T E R C A R N A H I		2	3510	-		261		8	51	300			157	194	4	0
85	8 E	4	E 8	151		CARTER RISTER	0 C L	2	3610	С	1950	261*	41	8	56	305			162	199	5	0

KEY BEDS IN GALLATIN COUNTY

GALLATIN COUNTY

Loo	ation of	Hole	•		Туре		.			- i a	2.00	ul ioi	Line	1 Coal	No. d	5	Line	1 — Coal I	No. 5	
	2		•	County Number	of Hole	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled	DoubH	Depth	Altitude	Thic	kness	Depth	Altitude	Thick	knes
Twp.	Range		Sec.							-		_	(Feet)	(Feet)	Ft.	In.	(Feet)	· (Feet)	Ft.	In.
8 S	8 E	4	F3	156		CARTER OC RISTER S	5	3580 C	1718	261	41	8	92	266			198	160	4	0
8\$	8 E	4	F 6	154		CARTER OC RISTER S	3	3690 C	1724	261	41	8	77	292			183	186		
8 S	8 E	4	F7	150	тD	CARTER OC RISTER L	1	3640 G	1957	261	41	8	61	303			167	197	3	0
8 S	8 E	4	G 6	177	ΤD	CARTER OC RISTER S	1	3750 C	1720	261	41	8	9 8	277			204	171	4	0
8 S	8 E	4	G7	142	ΤD	CAMERON C ROBINSON		3760 C	1727	261	40		98	278	4	00	202	174	4	0
8 S	8 E	4	Н2	141	ΤD	SUN OC PATTON C	W 1	3810 C	2543	261	41	8	124	257			230	151	4	0
8 S	8 E	4	Н 3	148	ΤD	CARTER OG KUDER A V		3690 C	1724	261*	41	8	109	260			215	154	4	0
8 S	8 E	. 4	H 4	147	ТD	CARTER OG KUDER A		3630 C	1700	261	41	8	98	265			204	159	4	C
88	8 E	4	Н5	152	тD	CAMERON (RISTER S) C 1	3610 G	1704	261	41	8	95	266			201	160	4	C
8 S	8 E	4	H7	157	τD	K I N G W O O D (R O B I N S O N) C 1	3750 C	2915	261	40	8	121	254			227	148		
8 \$	8 E	5	A 1	158	ΤD	CARTER OC GREGG PAU		3570 C	1999	261	43	8	107	250			212	145	5	0
85	8 E	5	E 1	159	ΤD	TEXAS CO EDWARDS (i 1	3590 C	2807	261	41	8	80				184	175	3	0
8 S	8 E	8	D 6	7	DC	TRI COUNT OVERTON		3950 C	445	261	20		313				439	. 44	*	
8 S	8 E	9	C 8	8	DC	TRI COUN WATSON A		3583 C	354	261	20		250				348	10		
8 \$	8 E	14	Н1	160	ΤD	DUNCAN NA GREEN E	1	3820 C	3048	261	41		288	94	4	00	400	18,		0
8 \$	• 8 E	17	B 8	9	DD	TAYLOR F	K 104	3619 P	349	261	12		222	140	4	06	342	20	5	1
8\$	8 E	18	68	101	DS	PARKER C MOSEBY	V	4120 P		261										

GALLATIN COUNTY

Lo	cation of	f Hole	e .		Туре		0-1-1			er H	_ ہے	ion ion	Line 1	— Coal	No.	5	Line	1 — Coal	No. 5	i
Twp.	Range		Sec.	County Number	of Hole	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled	format	Depth	Altitude	Thic	kness	Depth	Altitude	Thic	kness
									Ì	-			(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	ln.
8\$	8 E	20	N 5	161	TD	EXCHNGE O EVANS O	C 1	3850 C	3042	261	40	2	255	130	3	00	371	14	4	0 0
8 S	8 E	23	E 7	102	0 U	W FRANKLI	N	3600 T		261		6	200	160						
8 3	8 E	28	н7	11	00	BYRD PITT	S 2	3729 C	266	261	12	3	239	134	5	08				
8 5	8 E	33	A 8	12	0.0	BYRD PITT	s	3872 C	320	261	12	2				# 0	241	146	2	00
				1~			•	50.2	220	~01		~				. 0		1.0	~	00
88	9 E	3	D 6	163	TD	SNCLR WYO Henson W	M 1	3710 C	3000	260	41		529	158≉	3	00	639	268	* 4	00
88	9 E	2	D7	162	TD	BLKSTK&DC COX J	к 1	3720 G	3020	260	41		537	165*	2	00	642	270	ŧ	
88	9 E	2	E 7	164	TD	SNCLR WYO WILLIAMS		3750 C	2995	260	41		546	174*	2	00	652	280:	⊧ 3	06
85	9 E	7	F8	165	TD	EXCHNGE O	с	38 20 C	3060	261	40		794	412*	3	00	907	525*	¢.	
8\$	9 E	9	Ð 3	166	TD	HUELSING RYAN OC	T 1	3830 G	2636	260	41		594	211*	2	06	692	309*	: 4	00
						CRUNK	1													
8\$	9 E	10	E1	167	ΤD	AETNA OC FOSTER L	1	3710 C	3060	260	42		516	145*	3	00	628	2574	: 4	00
85	9 E	15	A7	253	TD	GULF REF BAHL L	6	3730 C	2511	260*	43		456	83*	4,	00	570	197*	: 4	00
83	9 E	15	A 8	170	ΤD	GULF REF BAHL L	5	3740 C	2 515	260	43		463	89*	2	00	571	197:	: 4	00
88	9 E	15	B 6	109	ТD	GLOBE ORC	1	3730 C	2493	260	43		468	95*	4	00	566	193*	• 5	00
8 S	9 E	15	B7	111	ТD	BAHL L GULF REF	_	3740 C	2495	260*	43		476	102*	3	00	578	204	: 4	00
8 S	9 E	15	88	173	ТD	BAHL L GULF REF	3	3710 C	2500	260	43		479	108*	2	00	581	210	4	00
						BAHL L	2													• •
85	9 E	15	C 3	171		SKELLY OC HOGE MYRL	1	3830 C	2985	260	42		495	112*	3	00	605	222:	: 4	00

KEY BEDS IN GALLATIN COUNTY

GALLATIN COUNTY

Loc	ation of	Hol	e	_	Type	· · ·	0.11				0	ful	Line	1 — Coal	No. (6	Line	1 — Coal I	No. 5	;
T	Deres		Sec.	County Number	of	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled	Doubt	Depth	Altitude	Thie	kness	Depth	Altitude	Thic	knes
Тwp.	Range		Sec.							ŀ			(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
8 S	9 E	15	C 6	112		GULF REF BAHL L	4	3740 C	2497	260	43		476	102*	2	00	580	206*	4	0
8 S	9 E	15	C 7	176		MARTIN R B Straub Com	1	3700 C	2517	260	42		480	110*	4	00	585	215*	4	0
8 S	9 E	15	D 4	244		SKELLY OC HOGE MYRL	2	3740 C	2985	260	43		492	118*	5	00	604	230*	6	0
8\$	9 E	15	06	169	L 0	GULF REF BAHL L	1	3710 C	2511	260	42		480	109*	4	00	589	2184	4	0
8 S	9 E	15	D 7	255	TD	MARTIN Straub Com	3	3710 C	2540	260	43		490	119*	4	00	598	2274	4	0
85	9 E	15	E 3	174	ΤD	GULF REF MOYE C	1	3730 C	2547	260	42		489	116*	3	00	602	2294	4	0
8 S	9 E	15	E 5	168	TD	MARTIN R B BAHL L	1	3 71 0 C	2492	260	42		464	93*	4	00	579	2084	4	٥
8 S	9 E	15	E 6	339	ΤĐ	MARTIN ETL BAHL L	3	3710 C	2545	260*	43		478	107*	3	00	590	2194	4	C
8 \$	9 E	15	E 7	172	TD	SKELLY OC SCHMITT J	1	3720 C	2518	260	42	2	488	116*	5	00				
85	9 E	15	F 4	110	TD	DCKRSN ETL Moye c	1	3730 C	2517	260*	42		490	117*	3	00	605	2324	5	o
8 S	9 E	15	F 6	254	ΤĎ	MARTIN ETL BAHL L	2	3740 C	2548	260	43		486	112*	3	00	601	2274	= 4	o
8 S	9 E	15	F 7	175	T D	SKELLY OC SCHMITT J	3	3780 C	2526	260	43		4 9 <u>,</u> 5	117*	4	00	610	2324	4	0
8 \$	9 E	15	G 4	243	ΤD	ASHLND ORC RISTER A P	2	3720 C	2989	260	43		504	132*	3	00	616	244	4	0
85	9 E	15	65	115	T D	GREENE I B GRANT S E	1	3710 C	2509	260	43		472	101*	5	00	588	217 4	4	0
8\$	9 E	15	66	338	TD	ASHLND ORC GRANT S E	2	3830 C	2522	260*	43		495	112*	3	00	611	2284	5	c
8 \$	9 E	15	G7	178	ΤD	SKELLY OC SCHMITT J	2	3810 C	2574	260	43		490	109*	4	00	610	2294	4	0
88	9 E	16	A 1	180	TD	GLOBE ORC PILOT HISH	1	3730 C	2519	260	43		460	87*	4	00	574	2014	4	0

GALLATIN COUNTY

Loc	ation of	Hole			Туре		.			er.		ion l	Line	1 — Coal	No.	5	Line	1 — Coal I	No. 5	
T	Panao			County Number	of Hole	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled	Doubt	Depth	Altitude	Thie	kness	Depth	Altitude	Thic	kness
Twp.	Range		Sec.										(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
8 S	9 E	16	C 1	179	TD	GLOBE ORC HRNGTN HSF	1	3710 C	2521	260	43		484	113*	3	00	588	217 #	5	00
8 \$	9 E	19	F 4	13	DD	TAYLOR F H Hemphill	105	3756 P	766	261	12		644	268*	3	11	760	384*	- 4	10
88	9 E	20	83	14	СН	RIGGSER Hemphill F		3706 P	1056	260	10	2	605	2.34*	7	00				
88	9 E	21	A.5	182	TD	SNCLR WYON Schmitt W	1	3760 C	2964	260	41		462	86*	3	00	576	200*	4	00
8 3	9 E	21	C 3	181	τD	MCBRIDEINC HISE SHAN	; 1	3780 C	2989	260	43		466	88*	3	00	584	206*	4	00
83	9 E	22	H 8	183	τD	GLOBE ORC STRAUB A	1	3720 C	2901	260	43		450	78*	3	00	558	186*	5	00
8 3	9 E	24	F 6	184	TD	DELTA DRC Domerty M	1	3640 G	2941	260	41		405	41*	3	00	505	141*	4	00
83	9 E	25	C 7	185	TD	ANGLE&ANGL DAILY JOHN		3750 C	2864	260	41		380	5*	3	00	492	117*	4	00
8 8	9 E	25	H7	186	TD	EASN&ANGLE DUFFY M	1	3690 C	3007	260	40		402	33*	3	00	512	143*	5	00
88		28	G 1	188		MRTN&TDWTR MINER LEO	1	3750 C	2974	260	42		418	-43*	3	ΟÖ	530	155*	4	00
88			Н5			DELTA DRC MINER LEO	1	3750 C	2993	260	41		464	89*		00	580	205*	4	00
88			Н7	15		RIGGSER MINERA		3622 P	1032		10	2	477	115*	4	00				
88		29	01	189		RBNSN PUCK Smith P	1	3770 C	3050	2,60	43		494	117*	4	00	620	243*	4	0.0
88			61	16		RIGGSER SMITHL	1	3634 P	1200			2	484	121*	4	00			_	• -
88	9 E	35	Н5	342	LD	CONTNTL OC MALONEY A	1	3700 D	2972	260	44		372	2 *	6	00	482	108*	4	00
8 \$	10E	5	67	190	TD	BUELL J G Sutton	1	3520 G	3010	2 60	39		395	43*	2	00	494	142*	3	00

KEY BEDS IN GALLATIN COUNTY

GALLATIN COUNTY

Lo	ation of	Hole	•		Туре		0~'*'-			d.	- 0 3	<u>ق</u> Line	1 — Coal	No. (6	Line	I — Coal I	No. 5	;
Twp.	Range		Sec.	County Number	of Hole	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled ^{Doubtful}	Depth	Altitude	Thio	kness	Depth	Altitude	Thic	knes
· • p.	Kunge							A				(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
8\$	10E	10	A 1	334	TD	CHERRY&KD KERWIN M	E 14	3410 C	1986	260	43	262	79	4	00	360	194	4	0
83	10E	10	A 2	358	ŦÐ	CHERRY&KD KERWIN M	G 25	3460 D	1990	260*	44	270	76	4	0 0	368	224	4	0
88	10E	10	A 3	365	TD	CARTER OC BRWNNG J	н 1	3420 D	1980	260*	44	264	78	3	00	359	174	3	0
85	102	10	03	191		V A N D N B R K B R O W N I N G		3460 C	2840	260	41	270	76	4	00	365	194	4	0
88	10E	11	A 4	197	ΤD	CARTER OC BUSIEK E	н 4	3420 C	2054	260	43	508	166*	4	00	608	2664	3	0
88	1 O E	11	A 5	209	ŤD	CHERRY&KD KERWIN M	E 6	3420 C	2053	260	42	266	76	5	00	370	28*	5	0
85	1 O E	11	A 6	210	TD	CHERRY&KD KERWIN M	E 7	3520 C	2075	260 *	42	270	82	3	00	370	18*	4	0
8 \$	195	11	A 7	213	TD	CHERRY&KD KERWIN M	E 10	3440 C	2059	260	43	256	88	4	00	356	124	5	0
88	10E	11	A 8	216	ΤĐ	CHERRY&KD KERWIN M	E 12	3450 C	2805	260*	43	260	85	3	00	358	13*	4	0
88	198	11	B 4	196	TD	CARTER OC BUSIEK E	н 3	3490 C	2056	260	42	512	163*	4	00	582	233*	4	0
88	10E	11	85	208	TD	CHERRY&KD KERWIN M	E 5	3500 C	2057	260	42	272	78	4	00	377	27*	4	0
85	1 O E	11	B 6	211	τD	CHERRY&KD KERWIN M	E 8	3460 C	2053	260*	42	267	79	4	00	369	23*	5	0
88	1 O E	11	B 7	212	TD	CHERRY&KD KERWIN M	E 9	3490 C	2070	260	42	270	79	4	00	368	19*	5	0
8 5	10E	11	88	335	τD	CHERRY&KD KERWIN M	E 13	3470 C	2071	260*	43	266	81			364	17*		
8 \$	1 O E	11	C 3	198	סד	CARTER OC BUSIEK E	н 5	3490 C	2057	260	43	540	191*	4	00	642	293*	4	0
88	1 O E	11	C 4	194	TD	CARTER OC BUSIEK E		3480 C	2055	260	42	286	62	4	06	389	41*	4	0
88	1 O E	11	C 5	205	TÐ	CHERRY&KD KERWIN M	E 2	3500 C	2061	260*	42	290	60	4	0 0	390	404	5	0

GALLATIN COUNTY

Loc	ation of	Hole		Туре						0	Line	1 Coal	No. (6	Line	1 Coal 1	No. 5	
т		C .	County Number	of Hole	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled Doubtful Information	Depth	Altitude	Thio	ckness	Depth	Altitude	Thic	kness
Twp.	Range	Sec.									(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
8 S	10E	11 C6	806	TØ	CHERRY&KD KERWIN M E	3	3500 C	2061	260*	42	289	61	4	00	383	33*	• 5	0 0
83	10E	11 67	214	ΤÐ	CHERRY&KD Kerwin me	11	3520 C	2076	260	42	282	70	4	00	380	28*	4	0
88	10E	11 Da	345	TD	CARTER OC BUSIEK CRW	13	3520 D	2659	260*	44	562	210*	4	00	662	310#	\$ 5	0 (
88	10E	11 03	199	τD	CARTER OC Busiek e h	6	3500 C	2062	260	43	440	90*	4	0 0	542	192*	: 3	00
8 3	10E	11 04	195	מד	CARTER OC Busiek C87	2	3490 C	2062	260	42	294	5 5	4	00	393	44	: 4	0
88	10E	11 05	203	TD	CHERRY&KD Kerwin m e	1	3490 C	1863	260*	42	298	51	4	00	396	47*	5	0
88	198	11 D5	204	ΤÐ	CHERRY&KD Kerwin m e	1 .	3500 C	2060	260*	43	299	51	4	00	398	48*	• 5	0
85	10E	11 D6	207	ΤÐ	CHERRY&KD KER₩IN M E	4	3500 C	2073	260	42	300	50	5	00	396	46*	: 4	0
88	1 Ø E	11 E a	246	τD	CARTER OC CRWFRD C87	4	3500 C	2066	260	43	574	224*	5	00	665	315 *	5	0
85	10E	11 E3	202	TO	CARTER O.C CRWFRD C87	3	3510 C	2067	260	43	312	39	3	00	412	6,1 *	5	0
8 \$	105	11 E4	201	ΤÐ	CARTER OC CRWFRD C87	2	3510 C	2065	260*	42	308	4 3	4	00	408	5 7 \$: 4	0
8 5	108	11 E5	193	τD	V N D N B R K B R O B U S I E K	1	3480 G	2452	260.	39	304	44	4	00	402	54*	•	
8\$	10E	11 F1	344	ΤD	CARTER OC BUSIEK CRW	124	3510 D	2815	260	44	562	211*	3	00	648	297 =	: 4	0
85	1 O E	11 F 2	336	ΤŪ	CARTER OC CRWFRD C87	5	3500 C	20 _. 73	260	43	444	94*	5	00	543	193*	- 4	0
83	10E	11 F5	200	t D	CARTER OC CRAWFORD J	1 4	3530 C	2091	260	42	311	42	5	00	412	59≉	: 4	0
8\$	105	12 87	215	T Ø	S [.] OHIO PROD CRWFD WRHT		3500 C	2751	260	4 2	531	181*	4	00	632	2824	: 5	0
83	105	14 64	363	ΤÐ	CHERRY&KD Kerwin	19	3400 D	2423	260*	44	490	150*	3	00	588	3484	3	0

GALLATIN COUNTY

Lo	cation of	Hole			Туре		.				<u>_</u> ح	ul lion	Line	1 — Coal	No. (5	Line	1 Coal I	No. 5	5
T	Dennes	6		County Number	of	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled	DoubH	Depth	Altitude	Thic	kness	Depth	Altitude	Thic	kness
Twp.	Range	56	ec.				10- 0 10 M						(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
8 S	10E	14	G 5	337	TD	CHERRY&KD Kerwin M E	21	3370 C	2388	260	43		490	153*	3	00	588	2514	3	00
8 S	10E	14	H-4	217	TD	CHERRY&KD KERWIN M E	17	3380 C	2087	260	42		476	138*	3	00	578	.2404	: 4	00
8 \$	10E	14	H 5	218	TD	CHERRY&KD KERWIN M E	20	3420 C	2060	260	4 2		462	120*	3	00	561	2194	5	00
85	1 O E	14	H 6	326	TD	CHERRY&KD KERWIN M E	22	3360 C	2054	260	43		252	84	3	00	350	144	- 3	0 0
8 \$	10E	14	H7	328	ΤÐ	CHERRY&KD KERWIN M E	24	3380 C	1945	2604	4 3		254	84	4	00	352	144	- 4	00
85	10E	14	H 8	327	τD	CHERRY&KD KERWIN M E	23	3350 G	2042	260	43		247	88	4	00	346	114	4	0 0
8 S	10E	15	A 8	236	סד	BUEL&HRNDN EGYPTN T T		3530 T	19 98	260	4 2		273	80	5	00	380	274	- 4	00
8\$	10E	15	B 8	235	TD	BUEL&HRNDN EGYPTN T T		3500 G	2417	260	41		271	79	4	00	385	354	- 4	00
8 S	10E	15	C 5	237	TĐ	KINGWOODOO EGYPTN T T		3480 G	2850	260	39		259	89	4	00	365	174	4	00
85	10E	15	C 7	234	τÐ	BUEL&HRNDN Egyptn t t		3440 G	2444	260	41		263	81	4	00	36 9	25*	5	0 0
8 S	1 0 E	15	07	231	ΤÐ	DUNCAN INC Egyptn t t		3360 G	2446	260	41		258	78	4	00	357	21*	4	0 0
88	10E	15	E 4	353	ΤD	L E C H & H L B R T A R E N S M A N	. 3	3410 D	2080	260*	43		245	96	4	o o	342	1*	4	00
85	10E	15	E 6	219	TD	CARTER OC CURRY J H	1	3410 C	2869	260	41		258	83	3	00	358	17*	4	0 0
88	10E	15	E 7	226	TB	LECH&HLBRT Curry J H	5	3330 C	2052	260*	41		250	83			350	17#		
85	1 O E	15	E 8	222	ΤD	LECH&HLBRI CURRY J H	. 1	3330 C	2074	2 6 0	41		260	73	3	00	358	25*	5	0 0
85	1.0 E	15	F3	359	τD	L E C H & H L B R T A R E N S M A N	1	3430 D	2390	260*	43		250	93	4	00	346	3*	3	00
8 \$	1 O E	15	F 4	354	TD	LECH&HLBRI ARENSMAN	2	3400 D	1981	2604	44		250	90	3	00	344	4 4	4	00

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

GALLATIN COUNTY

Loc	ation of	Hole	e		Туре					er	-p -= 6	Line	1 — Coal	No.	6	Line	1 Coal	No. 5	i
-			•	County Number	of Hole	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled Doubtful Information	Depth	Altitude	Thie	ckness	Depth	Altitude	Thic	kness
Twp.	Range		Sec.								-	(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
SH3	1 0 E	15	F 5	367	TØ	CARTER OC CURRY J H	5	3420 D	1976	260*	4.4	252	90	3	00	346	4 4	4	C 0
8 8	10E	15	F 6	220	TD	CARTER OC CURRY J H	2	3370 G	2094	260	41	247	90	3	o o	341	4 1	• 4	00
8 8	10E	15	F 7	227	TD	LECH&HLBRT CURRY J H	6	3420 C	2080	260*	41	259	83	3	00	354	124	5	00
8\$	10E	15	F 8	223	ΤĎ	LECH&HLBRT Curry J H	2	3420 C	2075	260	41	2 6 3	79	3	00	362	201	5	00
88	1 0 E	15	61	324	ΤĎ	CHERRY&KD Wright f J	2	3410 C	2404	260	43	250	91	4	0 Ó	346	5 \$: 4	· • 0 0
8 \$	10E	15	62	325	ΤD	CHERRY&KD Wright f J	3	3360 C	2388	260	43	248	88	3	0 0 ¹	34.4	8*	: 4	00
8\$	10E	15	G 3	348	TĐ	ASHLND ORC CURRY J H	1	3450 D	1971	260*	43	260	85	3	00	356	11*	4	0.0
83	10E	15	64	347	ΤD	ASHLND ORC CURRY J H	2	3450 D	1982	260*	43	256	89	3	00	350	5 *	4	00
8\$	1 O E	15	<u>,</u> G 5	366	מד	CARTER OC Curry J H	4	3460 D	1987	260*	44	256	90	3	00	348	2 4	3	00
8 \$	1 O E	15	G 7	228	TD	LECH&HLBRT CURRY J H	7	3440 C	2068	260	41	254	90	4	00	351	7 \$	4	00
88	10E	15	G 8	224	TO	LECH&HLBRT CURRY J H	3	3360 G	2071	260*	41	246	90			344	8 *	4	00
8 \$	1 O E	15	H1	323	TD	CHERRY&KD Wright F J	1	3380 C	1952	260	43	246	92	2	00	342	4 4	5	00
88	10E	15	H 2	368	TO	CHERRYEKD Wright f J	4	3400 D	1973	260*	44	254	86	3	00	354	144	3	00
88	10E	15	H 3	346	TD	ASHLND ORC CURRY J H	3	3400 B	1972	260*	44	256	84	3	00	352.	124	- 4	00
8 S	1 0 E	15	H 4	355	TD	ASHLND ORC CURRY J H	4	3430 D	1980	260*	44	262	81	3	00	356	13*	4	00
85	10E	15	Нб	221	TD	CARTER OC CURRY J H	3	3430 C	2106	260	41	262	81	3	00	354	11*	4	0 0
8 5	10E	15	H7	229	ΤD	LECH&HEBRT CURRY J H	8	3460 C	2081	260	41	255	91			354	8 4	4	00

KEY BEDS IN GALLATIN COUNTY

GALLATIN COUNTY

Lo	cation of	Hole	•	County	Туре		Op'r's	C (d. Ser	- p	ful tion	Line	1 — Coal	No.	5	Line	I Coαl I	No. 5	;
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled	Doubt	Depth (Feet)	Altitude (Feet)	Thio Ft.	kness In.	Depth (Feet)	Altitude (Feet)	Thic Ft.	knes In.
8 \$	10E	15	H 8	225		LECH&HLBRT Curry J H	. 4	3440 C	2091	260	41		273	71	4	00	371	274	4	0
8 \$	1 O E	16	A 1	256		LÉCH&FUHRR Egyptn t t		3460 C	2425	260*	41		283	63	2	0 0	374	284	3	0
8 \$	10E	16	A 2	257		LECH&FUHRR Egyptn t t		3430 G	2417	260	41		267	76	4	00	383	404	4	0
88	106	16	A 3	241		BUEL&HRNDN Egyptn t t		3550 C	2442	260	41	2	290	65			390	. 35*	4	0
8 8	10E	16	81	251		OIL MANGMT Egyptn t t		3510 C	2415	260*	41	4	288	63	2	06	394	43*	4	0
88	10E	16	62	252		OIL MANGMT EGYPTN T T		3490 C	2436	260	41		280	69	2	00	390	41*	3	0
8 \$	10€			240		BUELLHRNDN Egyptn t t		3500 C	2422	260	42		275	75	4	00	383	33*	4	0
8 8	10£		_	250		LECH&FUHRR Egyptn t t	6	3520 C	2087	260		4	288	64	3	00	396	44\$	4	0
88	10E			249		LECH&FUHRR Egyptn t t	5	3510 C	2083		41		279	72	4	00	394	43*	4	0
88	10E			333		HERNDN DRO Egyptn t t	3	3490 G	2080	260*		2	272	77						
63	10E		03	238		HERNDN DRO Egyptn t t Buel j etl	2	3360 G 3510 C	2067	260*		2	262	74					_	_
83			85	242		BUEL J ETL Egyptn t t Duncan new	1	3490 C	2960		39 41		283 305	68	2	06	395	444		0
88			E1	259		EGYPTN T T Phillips		3320 G	2073	260	4 1		275	44 57	2	00	400 367	51* 35*		-
8.8			E.3	258		EGYPTN T T PHELLIPS	2	3369 C	2083	260*			273	64	~ 3		380	43*		-
8 5	10E	16	E3	268		EGYPTN T T Snclr wygw		3350 C	2075		41		276	59	3	00	382	47*		
88	10E	16	F1	260	TD	LEACH B K Phillips	1	3400 G	2081	260	41		272	68	4	00	367	27*	5	0
						Е GYPTN Т Т	3													

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

GALLATIN COUNTY

Loo	cation of	Hole	9		Туре						0	6	Line	1 Coal	No.	6 .	Line	1 Coal I	No. 5	i .
			c	County Number	of Hole	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled	Doubtfu	Depth	Altitude	Thie	kness	Depth	Altitude	Thic	knes
Twp.	Range		Sec.							2		-	(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	ln.
8 \$	1 O E	16	F 2	263	TB	PHILLIPS Egyptn t 1	6	3360 C	2077	260*	41		270	66	4	00	366	30*	4	0
83	10E	16	F 3	269	τø	SNCLR WYOM LEACH B K	1 2	3340 C	2894	260	41.		280	54	3	06	375	414	: 4	0
88	10E	16	G 1	261		PHILLIPS Egyptn t t	- 4	3'370 G	2077	260*	41		262	75	4	00	358	21 *	: 4	0
8 \$	10E	16	62	265		PHILLIPS Egyptn t t	. 8	3400 <u>C</u>	2089	260	41		276	64	3	06	367	274	4	0
8 3	10E	16	G 3	270		SNCLR WYON Leach b k	I 3	3420 C	2868	260	41		281	61	3	00	37.7	35≉	3	0
8 3	1 9 E	16	H 1	266		PHILLIPS Egyptn t t	. 9	3510 C	2098	260	41		292	59	3	00	390	39*	4	0
8 3	10E	17	A 8	271		OIL MANGMT Egyptn t t		3470 C	2909	260	41		3 5 6	9*	3	00	464	117*	5	0
8 \$	10E	18	A 3	272		SNWDEN&MC8 EGYPTN T 7		3470 C	2818	260	41		366	19*	3	00	480	133*	5	0
83	1 O E	19	C 4	278		OIL MANGMT GOEBEL	. 1	3620 C	2903	260	42		365	3*	3	00	487	125*	4	0
88	1 O E	19	05	279		MAGNOLIA MCGUIRE J	1	3610 C	2001	260*	4 2		370	9 *	4	00	481	120*		
8\$	1 O E	19	D7	280	-	MAGNOLIA MCGUIRE J	2	3770 C	3010	260	4 2		420	43*	4	00	520	143*	4	0
85	10E	19	EŻ	275		RITCHIE M Frey	1	3620 C	2040	260	41	- Contraction of the Contraction	364	2 *	2	00	480	118*	5	0
83	10E	19	E 3	277		GAMMEL D FRYE	1	3600 G	2775	260	40		375	15*	2	00	502	142*		
83	1 O E	19	G 5	276	TD	SNWDEN&MCS FREY	1	3560 C	2956	260	40		395	39*	3	00	506	150#	4	0
8 3	10E	20	E 1	281		DUNCAN INC Blair o b	1	3480 C	2940	260	41		314	.34	2	00	420	72*	4	0
88	10E	21	F1	286	TD	CARTER OC Jordan C L	. 2	3470 C	2908	260	42		270	77	2	00	378	31*		
8 8	10E	21	F3	283		SKELLY OC Egyptn t t	2	3470 C	1996	260	42		269	78	2	00	377	30*		
							•													

GALLATIN COUNTY

	ation of	Hole	9		Туре						 1 0	Line	1 — Coal	No.	6	Line	1 — Coal	No. 5	5
wp.	Range		Sec.	County Number	of Hole	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled Doubtful	Depth	Altitude	Thi	ckness.	Depth	Altitude	Thic	kness
wр. 	Kunge		Jec.									(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
8 8	10E	21	И1	285	TD	CARTER OC JORDAN C L	. 1	3490 C	2421	260	42	280	69	2	00	380	314		
8 \$	10E	21	H 2	287	TD	CARTER OC JORDAN C L	. 3	3490 C	2420	260	42	278	71	2	00	380	31*	5	00
8\$	1 0 E	21	H 3	284	TØ	SKELLY OC Egyptn t t	· 1	3490 C	2000	260	42	292	57	2	00	384	354	•	
88	10E	21	H 5	282	TÐ	PHILLIPS Egyptn t t	· 1	3590 C	2915	260	42	284	72	2	00	398	42*	5	0 0
88	1 0 E	82	C 4	362	TD	CARTER OC JOHNSON C	2	3520 D	2470	260	44	626	272*	4	00	702	350*	4	00
8 \$	10E	22	05	349	ΤD	CARTER OC Johnson C	1	3520 D	2908	260	44	255	97	3	00	374	224	4	0 0
88	10E	22	G 5	350	TÐ	OIL MANGMI Leach b k	1	3490 D	2824	260*	44	256	93	3	00	358	9 4	4	00
88	10E	22	66	288	TD	BUFORD W C Egyptn t t		3480 G	2478	260	39	257	91	3	06	362	14*	4	0 0
88	10E	26	A B	289	TD	MARTIN R E AGNEW W	1	3430 G	3047	260	41	472	129*	3	00	589	2464	4	00
8 8	10E	28	F S	290	ΤÐ	SOHIO PROD NATRL RES	1	3480 C	2784	260	42	276	72	4	00	390	42*	5	00
8\$	10E	29	Ε1	291	TD	HALBERT R OSBORNE L	1	3460 C	2933	260	40	275	71	1	06	393	474	: 5	00
8 \$	10E	30	€1	292	LD	RYAN OC ET TATE L C	r 1	3460 C	2944	260	43	340	6	3	00	460	114*	: 5	00
85	1 9 E	32	Ð 7	293	TD	KINGWOODOO DODGE H P	1	3590 C	2959	260	42	305	54			420	614	6	0 0
98	8 E	1	E 5	9'3	**	DRONE L		3770 H	250	261	6	188	189	10	00				
9 S	8 E	1	F 2	9'5	ÐS	DEVOUS J Drone l		3650 F		261	68	, 3 8 0	15*			484	119*	-	
98	8 E	1	F 6	24	90	DEVOUS DRONE LOU	2	3770 H	190	261	7	186	191	4	02				

GALLATIN COUNTY

Loc	ation of	Hole			Туре		• • • •				er.	وت	ion tion	Line	1 — Coal	No. d	5	Line	1 — Coal	No. 5	5
Twp.	Range		Sec.	County Number	of	Operator	Op'r's Number	Surface Altitude		al <u>à</u> oth C	Number	Year Drilled	Doubtf Informat	Depth	Altitude	Thic	kness	Depth	Altitude	Thic	kness
1 mp.	Kunge													(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
98	8 E	1	Нб	23	DC	DEVOUS White R	1	3480	H 51	6 2	61	7		140	208			255	93		
95	8 E	2	E 4	107	0 U			3400 1	F	2	61										
95	8 E	8	F 5	25	ÐÐ	DEVOUS C LANE JOE	3	3480 1	H 10	3 2	61	7		98	250	4	03				
98	8 E	3	C 1	52	c s	Г ОСКЕТТ •	10 E	4000	т 20	0 2	61		6	150	250	4	06				
9 S	8 E	3	C 1	106	0 U			3500	F	2	61										
95	88	4	A 3	53	RS	WALTHAM (;	3500	F 3	2 2	61	27	7	28	322	4	0.2				
9 S	8 E	4	A 3	198	0 U	NO 6 COAL	•	3269	P	2	61				327						
98	8 E	4	88	54	W W	WALTON C		4050	F 10	0 2	61			60	345	4	06				
9 S	8 E	4	D 6	294	TD	ARROW DRO HANCOCK		3560	G 237	52	61	41		64	292			182	174	4	0
98	8 E	4	E 6	59	R S			3450	F 75	1 2	61	27	4	50	295	4	08				
98	8 E	5	A 8	63	RS			3580	т	2	61	29	7								
93	8 E	5	€5	27	RD	TRUAXTRAE	R 3	3700	T 5	5 2	61	29	2	60	310						
98	8 E	5	F 1	61	c s	MCLAIN D	N.	3600	T 13	5 2	61		4	70	290	4	06				
9 S	8 E	5	G 1	26	0 D	BYRD PITT	TS 3	3555	C 19	4 2	61	12	7	67	289	4	06	187	169	4	0
9 S	8 E	6	C 1	5 5	RS			3700	T	2	61	29	7	30	340						
98	8 E	6	E 7	28	R D	TRUAXTRAE MOORE	R 2	3650	т	5 2	61	29	8	. 31	334	2	00				
98	8 E	7	C 8	295	TD	WALL J H Mossman (; 1	3770	c 56	5 2	61	41	8		407			90	287	7	0 7

GALLATIN COUNTY

Loc	ation of	Hole	•	County	Туре	Op'r's	Surface	Total	d.	- p	ful tion	Line	1 — Coal	No.	6	Line	1 — Coal	No. 5	
Twp.	Range		Sec.	Number	of Hole	Operator Number	Altitude	Depth	Quad. Number	Year Drilled	Doubt	Depth	Altitude	Thic	kness	Depth	Altitude	Thick	kneiji
	kunge								_			(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
98	3 B	7	D 5	65	C S		3950 T		261							169	226	5	0
98	8 E	7	80	104	C S	SWABER H	3900 T		261			2 2	368	3	00				
98	8 E	8	66	64	R S		3540 T		261	29	7								
98	8 E	9	A 1	96	C S		3700 T		274		6					108	262		
98	8 E	9	G 4	56	cs	WALTHAM C	3650 F	29	261	27	9	23	342	1	06				
98	8 E	9	M 3	66	6 A		3300 T		261		4		330	4	06				
98	8 E	10	E 6	62	備 蔚	GORDON DR	3850 T		261		7	41	344			166	219		
98	8 E	10	68	30	S A	GORDON DR Gordon	3600 B		261			41	319	4	02				
9.8	8 E	10	H 6	29	R D	TRUAXTRAER 1 MAMILTON	3820 H	59	261	29		54	328	3	02				
98	8 E	11	08	60	C S		3800 T	84	261			60	320						
98	8 E	13	82	67	8 M	NEW SHAWNE	3700 F		274							95	275	4	0
9 3	8 E	13	E 8	68	c s		4100 T		274							165	245		
98	8 E	14	A 3	74	8 A	LOGAN HWY	3800 T		274		4					47	333	4	0
93	8 E	14	A 7	88	S A	SANKS MINE	3800 H		274							34	346	4	0
9 S	8 E	14	C 2 .	75	c s	LOGAN H MN	3950 T		274							93	302		
9\$	8 E	14	C 4	69	c s	H HILL SCH	4250 T	65	274										
98	8 E	14	D 2	70	c s		3800 T	116	274				9.4 9. 			116	264	4	· 0 6

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

GALLATIN COUNTY

Loc	ation of	Hole	•		Туре				er.	0	io r	Line	1 — Coal	No. (5	Line	1 — Coal	No. 5	5
Twp.	Range	s	Sec.	County Number	of Hole	Operator Number		Total Depth	Quad. Number	Year Drilled	Doubtf Informat	Depth (Feet)	Altitude (Feet)	Thio Ft.	kness	Depth (Feet)	Altitude (Feet)	Thic Ft.	knes
98	8 E	14	D8	71	C S		3700 F		274							103	267		
98	8 E	14	E 6	72	c s	H HILL CC	4000 F		274		4					126	274		
98	8 E	15	66	31	CN	GORDON MUR BEATTY	3820 F	244	274		5					118	264	1	0
98	8 E	16	A 7	79	S A	E SIDE CC	3620 H	1	274							40	322	4	0
98	8 E	16	A 8	78	s a	SISKMINE	4500 T		274		4		450	4	00				
98	8 E	16	A 8	87	S A .	GOLDNUGGET	3620 H		274							40	322		
98	8 E	16	C7	77	8 A	EQUALTYOLD	4200 T		274				420	4	00				
9\$	8 E	16	66	80	0 U .	COAL 5A	3400 T		274										
98	8 E	16	68	81	S M	PEKIN CC	3719 P		274							140	232	4	0
98	8 E	16	68	8 2	8 A	NRTHSIDECC	3846 P		274			14	371						
93	8 E	16	₩7	84	8 A		3850 F		274			10	375						
93	8 E	16	H 8	83	S A		3800 T		274				380						
98	8 E	17	F1	90	S A	MCLAIN W H	3750 F		274	94			375	5	0 2				
98	8 E	17	63	85	S A		3800 T		274				380						
98	8 E	18	61	97	S A	GALLATN CC 2	3800 F		274	14						94	286	4	0
95	8 E	18	64	296		TURNER&CRM MUENSTRMAN 1		2610	274	41	8		378		-	109	268*	2	0
98	8 E	80	H 8	86	S A	GALLATNCCC 1	3620 F		274	82						75	287	4	0

KEY BEDS IN GALLATIN COUNTY

GALLATIN COUNTY

Loc	ation of	Hole	•		Туре					e T	5	ul ion	Line 1	I — Coal	No. 6	I	Line	Coal	No. 5	
			_	County Number	of Hole	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled	Doubtf	Depth	Altitude	Thic	kness	Depth	Altitude	Thick	knes
ſwp.	Range		Sec.							2		-	(Feet)	(Feet)	Ft.	ln,	(Feet)	(Feet)	Ft.	In.
9 S	8 E	23	G 6	76	S A	H HILL CC		3900 H		274		4			1		390	403		
9 S	8 E	24	D 2	36	сн	VANDELL MC	3	3550 T	240	274										
95	8 E	24	F1	35	сн	A W DELL WC	2	3550 T	280	274		4								
98	8 E	24	F1	98	S A	VANDELL MC		3580 F	40	274										
98	8 E	24	H1	34	СН	VANDELL MC	1	3550 T	194	274		4								
9 S	8 E	25	A 2	37	ÐÐ	TAYLOR CO	17	3550 F	663	274	12	4								
98	8 E	28	H 3	38		BYRD PITTS Ruwely	4	3734 C	510	274	12									
98	9 E	9	A 5	297	TD	DELTA DRC Stinson W	1	3580 C	2795	27.5	39	8	130	228			240	118	5	C
98	9 E	15	E 6	341		PHILLIPS Ford WL N	1	3560 D	2807	275	44		162	194			262	94		
98	9 E	16	A 8	298		COATES ETL Greene	1	3520 G	2670	275	39	8	59	293			169	183	4	đ
98	9 E	17	A 2	305		FIELDS&ZEP GREEN	10	3530 C	1819	275	40	8	54	299			164	189		
9 S	9 E	17	A 4	307	ΤÐ	FIELÐS B LOGAN CH	2	3620 C	1820	2 7 5	40	8	70	292			180	182		
98	9 E	19	C 4	19	СН	VANDELL MC	4	3600 T	298	274		7				* 0				4
98	9 E [.]	20	₩3	309	ΤD	ZEPPA J LOGAN C H	1	3560 C	1800	275	40	8	50	3 0 [.] 6			160	196		
98	9 E	20	H 4	308		ZEPPA J EASLEY B H	1	3580 C	1803	275	40	8		367			101	257		
98	9 E	81	08	312	ΤĐ	DELTA DRC WINTERBRGR	1	3670 C	2701	275	39	8		381			96	271		

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

GALLATIN COUNTY

Loo	ation of	Hole	•		Туре	Op'r's	Surface	T.1.1	d. Ver	קיי	ful tion	Line	1 — Coal	No.	5	Line	1 — Coal	No. 5	
Twp.	Range		Sec.	County Number	of Hole	Operator Number		Total Depth	Quad. Number	Year Drilled	Doubt	Depth	Altitude	Thio	kness	Depth	Altitude	Thic	kness
										•		(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	ln.
98	9 E	81	M 8	313	TD	FIELDS&ZEP GREEN 9	3590 C	1782	275	40	8	58	301			168	191		
93	9 E	24	M 5	361	LD	BREHM C E OLDHAM C 1	4910 D	2837	275	4 4		168	233	6	00	286	115	4	0 (
98	9 E	86	E 6	105	W P1	HIGHSCHOOL	4050 T		275		2	2 2 0	185						
98	9 E	31	C.S	20	СН	EAGLE OG 3 DRØNE 3	3479 P	3612	275	19									
98	9 E	31	E 1	21	CH	DRONE LOU	3613 P	625	275										
98	9 E	36	H 8	3 2	ÐD	BYRD PITTS 18	3700 T	473		12					\$ 0	206	164	4	01
9 S	10E	1	A 4	314	LĐ	MAGNOLIA	3510 C	2860	260	43		302	49	3	00	430	79	= 5	0 (
98	10E	3	E 5	364	TĐ	LOGSDON N 1 SNCLR WYOM	3510 D	3002	260	4 4		422	71*	3	00	546	195:	= 4	0
98	10E	8	H 8	315	TO	NINES E 1 JARVISHARC DRONE JIN 1	3760 C	2904	260	42		642	266*	3	00	754	378:	3 4	0
95	1 O E	9	82	89	0 U		5400 H		260		8	500	4 0						
9 S	10E	15	D1	360	TO	CHERRY&KD Gray Al 1	3510 D	2859	275	44		265	86	3	00	393	42	- 4	00
98	10E	16	A 5	316	TD	MARTIN R B Clayton H 1	3530 C	2808	275	41		287	66	3	00	404	51:	5	00
95	10E	31	E 2	18	СН	SHAWNEETOG	3500 T	1514	275		8	100	250			214	136	7	0 6
						310									-				
														1					

KEY BEDS IN GALLATIN COUNTY

HAMILTON COUNTY

Loc	ation of	Hole	•	County	Type		Op'r's	Surface	T-1 1	d. Jer	- p B	E Line	1 — Coal	No. 6		1 Coal N 2 Little M	
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Total Depth	Quad. Number	Year Drilled ^{Doubfful}	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thickne Ft. Ir
						MAMILTON June 22 19	4 5										
38	5 E	22	87	41	TÐ	SEABGARD Knapp gryr	1	4780 G	3497	256	41	1003	525*		1107 2489	629* 2011*	
3 \$	5 E	26	8 A	95		SNCLR WYØM Zellers m	r 1	4200 C	3339	256	41	937	517*		1042 2452	622* 2032*	
38	5 E	26	¢ 6	93	ΤĐ	D P OC Zellrs f í	1	4120 G	3376	256	41	947	535*		1043 2462	631# 2050#	
38	5 E	26	C 8	94	TO	HALL&JORDN ZELLRS F	1	4150 G	3334	256	41	922	507*		1032 2452	617# 2037#	
38	5 E	27	A1	58		SNCLR WYOM HALL M F	9	4160 C	3325	256	41	931	515*		$1041 \\ 2451$	625* 2035*	
38	5 E	27	A 3	99		SNCLR WYOM Hall M F	1	4260 D	3311	256*	41	910	484*		1015	589≢	
38	5 E	27	A 4	100	TD	SNCLR WYOM HALL M F	2	4220 D	3294	256	41	885	463*		$1005 \\ 2424$	583 * 2002*	
38	5 E	27	A 5	53		SNCLR WYOM HALL M F.	. 4	4200 B	3289	256*	41	875	455≉		985	565*	
38	5 E .	27	A 6	59		SNCLR WYOM HALL M F	10	4220 D	3295	256*	41	875	453*		1000	578*	
38	5 E	27	82	57		SNCLR WYOM HALL M F	8	4220 D	3320	256*	41	915	493*		1030	608*	
3 \$	5 E	27	83	54		SNCLR WYOM HALL M F	5	4180 6	3307	256	41	897	479*		1007 2419	589* 2001*	
38	5 E	27	B 4	55		SNCLR WYOM HALL M F	6	4190 D	3291	256*	41	875	456*		985	566*	
38	5 E	27	B6	56		SNCLR WYOM HALL M F	7	4200 D	3295	256	41	875	455*		1005 2394	585* 1974*	
3\$	_	27				SHELL OC R atclf com	1	4390 D	3312	256*	41	905	466*		1025	586*	
38	5 E	27	C 5	63		DEKLB ASSN SCRIVNER C	. 1	4220 D	3306	256	41	876	454*		1000 2400	578* 1978*	

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

HAMILTON COUNTY

Loc	ation of	Hole	9		Туре		Op'r's		F . 1	d.	- p 12	E Line	1 — Coal	No. 6		1 — Coal 2 — Little		
Twp.	Range		Sec.	County Number	of Hole	Operator	Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled ^{Doubtful}	Depth	Altitude	Thicknes	s Depth	Altitude	Thic	kness
				-								(Feet)	(Feet)	Ft. In.	(50.04)	(Feet)	Ft.	ln.
38	5 E	27	C 8 -	68	TD	ONIO OIL TROTTER M	1	4390 D	3307	256*	41	915	476*		1030	591	*	
38	5 E	27	07	69	ΤÐ	OHIO OIL TROTTER M	2	4370 0	3306	256	41	935	498*		1050 2406			
38	5 E	27	٤2	72		SMITH PET ZELLRS FI	# 1	4140 D	3320	256	41	890	476*		1010 2410	596 1996		
38	5 E	27	£ 7	96	TD	SEABOARD GARRISON	1	4320 C	3306	256	41	940	508*		1035 2402	603 1970		
38	5 E	27	F 7	97	TO	SEABOARD GARRISON	2	4300 D	3307	256*	41	945	515*		1040	610	*	
38	5 E	27	G 6	61	TD	FIELDS B Kennedy A	1	4420 D	3314	256	41	946	504*		1036 2440	594 1998		
38	5 E	27	67	98	ΤD	FIELDS B Garrison (; 1	4360 C	3307	256	41	950	514*		1025 2410	589 1974	1	
38	5 E	28	A 1	107	TD	BRACY H W Tennyson i	1	4410 C	3322	256	41	918	477*		1033 2423	592 1982	1	
38	5 E	38	¢1	106		MULCAHY C Scrivner	1	4400 D	3382	256	42	940	500≉		1050 2410	610 1970		
38	5 E	30	A 5	42		SEABOARD XAVIER K	1	4240 D	3404	256	42	935	511≉	3 0 0	1020 2376	596 1952		00
38	5 E	38	D 8	25		CARPA H Clark e f	1 Å	5150 D	3476	256	38	1047	532*		1120 2515	605 2000		
38	5 E	38	Ð 8	35		CARP ETAL Clark e f	1	5110 B	3224	256≉	37	1040	529*	700	1118	607	•	
38	5 E	33	E 3	74		D P OC Miller C I) 1	4360 C	3383	256	41	920	484*		1012 2457	576 2021		
38	5 E	34	Ε4	85	TD	SNCLR WYOI GAGE E J	4 3	4390 D	3344	256*	41	945	506*		1060	621	*	
38	5 E	34	F 1	86		WITT&KROHA GAGELH	1	4310 D	3350	256*	41	960	529*		1085	654		
38	5 E	34	F 2	87		WITT&KROHP GAGE L H	1 2	4310 B	3355	256	41	955	524*		1070 2482	639 2051		
38	5 E	34	F 3	83	TD	SNCLR WYON GAGE E J	1	4340 D	3351	256≉	41	945	511*		1070	636	*	

KEY BEDS IN HAMILTON COUNTY

HAMILTON COUNTY

Loo	cation of	Hol	e	Comb	Туре		Op'r's	C (Tatal	d. Der		Line	1 — Coal	No. 6		1 Coal 1 2 Little A		
Twp.	Range		Sec.	County Number	of Hole	Operator	Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thick Ft.	cness In.
38	5 E	34	F 4	8.4		SNCLR WYGM Gage e j	2	4340 Đ	3349	256	4 1	935	501*		1050	616*		
3 \$	5 E	34	F 5	75		SNCLR WYOM Brumley J	1	4360 D	3349	256*	41	928	492*		1040	604*		
3 \$	5 E	34	F 6	76		SNCLR WYOM Brumley J	2	4270 D	3322	256	41	910	483*		1026 2453	599 2026		
3 \$	5 E	34	G1	90		DUNCAN D Zellers M	1	4270 C	3355	256*	40	963	•236*		1075	648*		
38	5 E	34	G 2	77		NALL&JORDN DEERHAKE.F	1	4310 C	3363	256*	41	959	528*		1077	646*		
38	5 E	34	G 3	78		HALL&JØRDN DEERHAKE F	2	4300 D	3349	256	41	930	50 0*		1040 2458	610* 2028*		
38	5 E	34	G 4	79		HALL&JORDN DEERHAKE F	3	4290 D	3329	256*	41	920	491*		1035	606*		
38	5 E	34	H 2	82		HALL&JORDN DEERHAKE F	6	4270 D	3338	256	41	940	513*		1065 2458	638* 2031*		
38	5 E	34	H 3	80		HALLÆJØRDN DEERHAKE F	4	4230 D	3327	256*	41	910	487≉		1020	597*		
38	5 E	34	H 5	88		DUNCAN D Hogk geo	1	4160 C	3303	256	41	881	465*		996 2422	580≉ 2006≉		
38	5 E	35	G 8	92		EXCHNGE OC Silliman e	1.	4310 D	3488	256	41	965	534*		1075 2472	644* 2041*		
38	5 E	3 6	C 2	108		OIL CARRS ROSE TO	1	4310 D	3463	256	42	950	519*		1065 2520	634* 2089*		
38	6 E	20	61	540	1	NAT ASSOC Good w H	1	4190 D	3494	256	4 5	957	538*		1032 2526	613* 2107*		
38	6 E	22	H1	43		MIDCON PET Rubin Jan	1	4410 D	3508	256	42	973	532*		1045 2558	604* 2117*		
38	6 E	27	F 7	408		MAGNOLIA PEOPLES NB	1	3880 D	3513	256	44	955	567*		1036 2538	648* 2150*		
3 S	6 E	35	A 3	102		WHTE&BLTN SCHNUCK	1	3810 D	3452	256	42	990	609*		1090 2558	709* 2177*		

HAMILTON COUNTY

Loc	ation of	Hole			Туре		Op'r's	Surface	Total	ld. ber	ar ful tion	Line	1 — Coal	No. 6		1 — Coal N 2 — Little A	
Twp.	Range	5	iec.	County Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thicknes Ft. In.	5 Depth (Feet)	Altitude (Feet)	Thicknes Ft. In
38	7 E	20	N 3	109	79	TEXAS CO Barker	1	3820 C	3382	257	39	895	513*		995 2459	613 2077	
38	7 E	21	N7	110	TD	TEXAS CO Prvdnt in	51	3820 C	3427	257	40	907	525*		1010 2478	628* 2096*	
38	7 E	23	02	111	19	CHERRY&KD LECH FHRE	R 1	3780 C	3470	257	42	1000	622*		1090 2500	712* 2122*	
38	7 E	24	¢ 1	116	ΤÐ	TEXAS CO Poormn A	J B 2	3790 D	3451	257	41	925	546*		1025 2480	646* 2101*	
38	7 E	24	01	115	TD	TEXAS CO Poornn a	J B1	3780 C	3258	257	41	935	557*		1025 2492	647 2114	
38	7 E	24	E 1	112	ΤÐ	CHERRY&K& GARDNER	8 1	3740 C	3240	257*	41	935	561*		1030	656*	r
38	7 E	24	E 2	44	LD	CHERRY&KD GARDNER R	3	3740 G	3254	257	42	945	571*	6 0 0	1028	654*	: 30
38	7 E	24	۴1	113	ΤÐ	C HERRY&K& G ARDNER	s 2	3750 C	3247	257	41	950	575*		1035 2462	660* 2087*	
38	7 E	24	61	114	TD	RBNSN PUC Mcculloug		3820 C	3273	257*	41	955	573*		1040	6584	•
38	7 E	25	A 1	507	ΤÖ	MAGNOLIA Fyie Anna	1	3800 C	3228	257	42	895	515*	-	980 2422	600 2042	
3\$	7 E	25	C 1	117	T O	MAGNOLIA Fyie Anna	2	3790 D	3239	257	4 2	903	524*		986 2422	607 # 2043 #	
3\$	7 E	25	C 3	118	ΤÐ	MLAGNOLIA Fyie Anna	3	3790 C	3442	257	42	910	531*		1005 2445	626 2066	
38	7 E	38	E 6	119	T ð	WEINERT H Mawi co l	C 1	3800 G	3483	257	3 8	952	572*		1047 2499	667 2119	
	e.												÷				
4 \$	5 E	1	01	4-5	LD	TEXAS CO RAWLS RBR	т 1	4400 D	3456	256	43	965	525*	500	1065 2506	6254 20664	
4 8	5 E	2	01	169	ΤÐ	MAGNOLIA Karchr Un	т 1	4480 B	3460	256	43	984	536*		$1120 \\ 2576$	672 2128	

KEY BEDS IN HAMILTON COUNTY

HAMILTON COUNTY

Loo	ation of	Hole	•	County	Туре		Op'r's	Surface	Total	d. ber	ted r	5 Line	1 — Coal	No. 6		1 Coal N 2 Little M	
ſwp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled ^{Doubtful}	Depth (Feet)	Altitude (Feet)	Thickness	Depth (Feet)	(Feet)	Thickne
4 8	5 E	3	C 3	170	78	9 H I G 9 I L		5530 C	3596	256	41	1080		Ft. In.	1195	642*	Ft. In
						AYDT R W	1		,						2631	2078*	
48	5 E	17	D 1	508		GULF REF MCGTH NNFD	1	4520 B	3515	256	44	940	485*		1028 2510	576* 2058*	
48	5 E	19	C 7	502		MIDSUN OC Hall Mary	1	5240 C	3521	256	41	974	450*		1055 2520	531* 1996*	
48	5 E	25	Ε4	1		DELAFIELD Crry NLDNG		4099 P	920	256	6	914	504*	503			
4 \$	5 E	86	₩1	509	TÐ	BIGGS&JNSN BARR W T	1	4160 D	3516	256	43	945	529*		1038 2570	622* 2154*	
48	5 E	29	C 8	120	1	YNGBLD&F&G Thompson l	1	5150 8	3475	256	41	970	455*		1050 2540	535* 2025*	
4 5	5 E	36	A 3	121	1	MIDSUN OC MAULDING	1	4650 C	3535	256	41	990	525*		1090 2596	625* 2131*	
4 8	6 E	1	68	122		WICKWR&PWR PATTERSN R	1	3790 D	3450	256	41	985	606*		1090 2530	711* 2151*	
4 \$	6 E	2	85	123		EASON OC LITTLE H C	1	3890 D	3461	256	41	965	576*		1055 2542	666* 2153*	
4 \$	6 E	2	E 5	134		HLLMN&BREL MOORE J R	1	3870 D	3466	256	41	972	585*		1058	671* 2143*	
45	6 E	2	G 1	125		K I N G W O O D O C S C M N U C K	1	3810 C	3546	256	39	985	604 *		1085 2536	704* 2155*	
4 S	6 E	3	Ε1	127		KINGWOODOC Willms wes	1	4280 C	3571	256	40	999	571*		1094 2614	666≉ 2186≉	
4 \$	6 E	3	E 3	126		KINGWOODOC Willams Jw	1	4340 D	3528	256	43	1010	576 *		1105 2620	671* 2186*	
4 8	6 E	7	E 5	513		MAGNOLIA KAUFMAN	A 1	4250 B	3453	256	43	975	550*		1080 2528	655* 2103*	
4 \$	6 E	12	ε1	500		PHILLIPS Leach b k	1	3 790 D	3451	257	44	962	583*		1070 2518	691* 2139*	
4 S	6 E	13	H 4	546		PHILLIPS HOLLA	1	3810 D	3500	257	45	974	59 3 *		1070 2538	689* 2157*	

HAMILTON COUNTY

Loc	ation of	Hole	•	Guid	Туре		Op'r's	Surface	Total	rd. ber	ed	fful ation	Line	1 — Coal	No. (5		1 Coal I 2 Little <i>I</i>		
				County Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled	Doub	Depth	Altitude	Thio	kness	Depth	Altitude	Thic	knes
Twp.	Range		Sec.										(Feet)	(Feet)	Ft.	In.	(Feet)	(Feet)	Ft.	In.
4 S	6 E	14	£ 3	510	TD	LECH&HLBRI LEACH GLPR		3840 D	3563	256	44		1000	616*			1086 2575	702# 2191#		
4 S	6 E	15	Ε1	2	СН	HAWLEY M / Schultz	١	3844 P	1490	256	8	4	1015	631*	8	0 0	1110	726*	6	0
4 S	6 E	16	8 G	528	TĐ	MAGNOLIA Maas a g	1	4170 D	3550	256	44		1055	638*			1145 2614	728* 2197*		
4.8	6 E	27	A 7	3	DD	ELNGROVECO DALLY JOE	:	4178 P	1294	256	6		1020	602*	7	06	1097	679=	5	0
4 8	6 E	28	A 3	511	TD	LAYTON ETI JUERGN ETI		4080 D	3502	256	4 4		1012	604*			1086 2570	678* 2162*		
4 S	6 E	29	A 5	128	TD	RYAN OC MITCHELL	1	4020 C	3522	256	41		985	583*			1045 2580	643≢ 2178≢		
4 S	6 E	33	D 3	46	LD	WISER OC ECHOLS W (: 1	4120 D	3505	256	43		1003	591*	6	00	1078 2576	666* 2164*		0
4 S	7 E	1	H1	129	TD	GRAY W W GRAY W W	3	3800 C	3275	257	41		905	525*			987 2446	607* 2066*		
48	7 E	6	81	130	ΤD	HELMRH&PYP HAMI CO LI		3800 C	3528	257	39		962	582*			1062 2537	682* 2157*		
4 S	7 E	7	E 7	517	TØ	₽HILLIPS ₩ILMA	1	3770 B	3512	257	44		968	591*			1058 2514	681* 2137*		
4 8	7 E	8	H 5	131	TD	TEXAS CO Adams N	1	3840 C	3558	257	40		970	586*			1070 2526	686* 2142*		
4 S	7 E	9	B 1	132	T D.	TEXAS CO EPPERSON	C 1	3800 D	3510	257	42		950	570*			1060 2518	6804 21384		
4 S	7 E	11	A 1	133	TD	KINGWOODO TMOMAS GEO		4040 B	3494	257	42		940	536*			1030 2525	6264 21214		
4 \$	7 E	14	C 7	512	TD	GILL DRC SNEED COM	W 1	4180 D	3464	257	4 3		974	556*			1052 2510	6344 20924		
4 \$	7 E	16	A 5	135	TD	TIDE WATER Lynch J A	۶ 1	4170 D	3480	257	42		970	553*			1035 2514	6184 20974		
48	7 E	16	A 6	136	TD	TIDE WATEL Lynch J A	R 2	4060 D	3294	2574	43		950	544*			1020	614*	•	

KEY BEDS IN HAMILTON COUNTY

HAMILTON COUNTY

Loo	cation of	Hole		County	Туре		Op'r's	Surface	Total	ber ber	ed r	ntion	Line 1	Coal`	No. 6		1 — Coal M 2 — Little A	
Twp.	Range	1	Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled		Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thickne Ft. I
48	7 E	16	A 7	134	TÐ	TEXAS CO Ernest h	M 2	3910 0	3426	257	42		940	549*		1010 2506	619* 2115*	
48	7 E	17	A 4	137	T 8	TEXAS CO Flannign	₹ 1	3900 B	3284	257	43		9 55	565*		1045 2503	655* 2113*	
48	7 E	17	AG	521	TD	TEXAS CO Flannign	R 5	3900 D	3319	257	44		968	578*	•	1066 2500	676 2110	:
4 8	7 E	17	61	5.2.2	TB	TEXAS CO Flannign	R 4	3860 D	3317	257*	44		934	548*		1005	619*	:
4 \$	7 E	17	₿5	139	TO	TEXAS CO Flannign	R 3	3890 D	3500	257	43		965	576*		1060 2510	671# 2121#	
4 \$	7 E	17	C 1	138	ŦÐ	MAGNOLIA ODELL R	1	3850 D	3490	257	43		940	555*		1035 2518	650* 2133*	
4 8	7E	20	81	148	ΤD	MAGNOLIA Travis g	L 2	4120 B	3527	257	42		945	533*		1020 2528	608* 2116*	
48			83	149		MAGNOLIA TRAVIS G	L 3	4140 B	3460		43		970	556*		$1045 \\ 2536$	631* 2122*	
48			C 3	146		DUNCAN W THOMPSON	M 1	4190 D	3317				960	541*		1030	611*	
4 8		20	-	147	3	MAGNOLIA TRAVIS G	L - 1	3990 C	3458	257*	42		948	549 *		1030	631*	
4 \$			C 4	150		MAGNOLIA TRAVIS G	L 4	3980 D	3516		43			5 5 2 *		$1035 \\ 2536$	637* 2138*	
48		20		141		TEXAS CO MINTON S	4	4320 D			42			528*		1045 2540	613* 2108*	
4.8			E'1			TEXAS CO MINTON S	1	4250 D	3531		42		965	540*	6 0 0	1045 2544	620* 2119*	
4 8			E 2	142		TEXAS CO MINTON S	5	4170 D	3458				965			1040	623*	
4 8	76		E 3	198		GULF REF SNEED J	1	3940 D	3438	257*				556*		1010	616*	
48	7E		F 5	144		TEXAS CO PEOPLES I	NB 1	3940 D	-		43			556*		1040 2505	646* 2111*	
4 \$	7 E	20	63	145	TÐ	GULF REF SNEED J	2	3920 D	3427	257	43		94 0	548*		1030 2488	638* 2096*	

HAMILTON COUNTY

Loc	ation of	Hole		County	Туре		Op'r's	Surface	Total	ad. ber	ar led	otion	Line 1	— Coal	No. 6		1 — Coal No. 5 2 — Little Menard
ſwp.	Range	· S	ec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled		Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	_ Depth (Feet)	Altitude Thickr (Feet) Ft.
48	7 E	20	N1	143	TD	TEXAS CO MINTON COM	1	3920 D	3273	257	43		935	543*		1025 2498	633 * 2106*
48	7 E	20	H 5	140	τÐ	TEXAS CO Drew Comm	1	39 20 D	3277	257	43		950	558*		1050 2504	658 * 2112*
4 3	7 E	21	87	157	Τð	TEXAS CO Minton S	3	4390 D	3480	257	42		970	531 *	-	1045 2538	606* 2099*
4 S	7 E	21	E 6	154.	TD	TEXAS CO Leobettr d	2	4300 D	3326	257	42		960	530*		1040 2536	610* 2106*
4 8	7 E	21	E 7	156	ΤÐ	TEXAS CO MINTOM S	2	4170 D	3454	257	42		945	528*		1030 2516	613* 2099*
45	7 E	21	66	155	ΤÐ	TEXAS CO LEOBETTR D	3	4280 D	3337	257*	43		970	542*		1045	617*
43	7€	81	68	152	TO	TEXAS CO ERNEST H M	3	4080 D	3291	257\$	42		955	547*		1010	602*
48	7 E	21	H 5	153	7 D	TEXAS CO LEDCETTR D	1	4270 D	3480	257	42		970	543*		1045 2536	618* 2109*
48	7 E	21	A 7	151	TD	TEXAS CO Ernest H M	1	4040 C	3501	257	42		950	546*		$1020 \\ 2516$	616* 2112*
4 3	7 E	-		535	TD	KINGWOODOC LAND G L	1	4020 B	3492	257	44		936	534 *		1022 2514	620* 2112*
48		26		160		NAGNOLIA PETERS E	1	4180 D	3308	257	43		936	518*		1040 2539	622* 2121*
48		26		161		OHIO OIL York Marco	1	4360 0	3320	257	43		960	524*		1055 2568	619* 2132*
48	7 E			480		OHIO OIL York Marco	2	4380 B		257	43		955	517*		1040 2550	602* 2112*
43	7 E		D-4	158		OIL MANGMT KEITH JACB	1	4180 C	3502	257	42		950	532*	4 0 0	1050 2552 1046	632* 2134* 625* 4
48		8.6 8.6	9-6- 9-8	478	LD	OHIO OIL York e d Nat assoc	2	4210 C	3300 3314	257	44		956 966	535*	4 0.0	2540	2119*
48	7 E	26		543		NAI ASSOC Peters I Shell Oc	3	4130 D	3299	•	4 4		950	533* 537*		1044	611 # 617 #
70	, E	~ 9	20	4 4 2	U	REBSTOCK C	1		5677	2.51			500			2534	2121*

KEY BEDS IN HAMILTON COUNTY

HAMILTON COUNTY

Loc	ation of	Hole	•	County	Туре		Op'r's	Surface	Total	ld. ber	ed ful	Line	1 — Coal	No. 6		1 — Coal N 2 — Little N	
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thickne Ft. li
4 \$	7 E	26	F 8	533		NAT ASSOC Rebstock	4	4240 8	3302	257	4 4	954	530*	(<u></u>	1042 2540	618 * 2116*	
4 5	7 E	26	G 6	159	TB	WOOD RIVER LAWRENCE A		4050 C	3450	257	40	915	510*		1010 2538	605# 2133#	
4 \$	7 E	27	83	497	ΤÐ	TEXAS CO BARNETT J	3	4310 D	3490	257	43	990	559*		1070 2572	639* 2141*	
4 \$	7 E	27	D 1	162	ΤÐ	ONIO OIL York e d	1	4410 D	3317	257*	43	970	529*		1060	619*	
4 8	7 E	27	02	520	TD	TEXAS CO Barnett J	4	4350 D	3330	257	44	974	539 \$		1070 2560	635¢ 2125¢	
4 \$	7 E	27	E 2	481	TD	GULF REF York Ernst	1	4390 Đ	3318	257*	43	975	536*		1070	631*	
4 \$	7 E	27	F1	482	TD	GULF REF Yørk ernst	2	4260 D	3310	257	44	965	539*		1056 2548	630# 2122*	
4 \$	7 E	27	11 1	444	TĐ	ONIO OIL PETERS M E	1	4070 C	3326	257	43	958	551*		1034 2512	627≉ 2105≉	
4 8	7 E	30	E 3	163		MENHALL J Murta	1	4460 D	3566	257	43	1070	624*		1155 2628	709# 2182#	
4 \$	7 E	33	F 2	164	ΤĐ	AETNA OC GIFFEL E J	1	4680 D	3159	257	42	1070	602*		1145 2644	677* 2176*	
4 3	7 E	34	D 2	536	TD	NAT ASSOC Themas J F	1	4170 B	3298	257	44	945	528*		1050 2540	633* 2123*	
48	7 E	34	F 1	545	TĐ	NAT ASSOC Gondy C A	2	4170 C	3307	257	4 5	936	519*		1040	623*	
4 \$	7 E	34	62	515		NAT ASSOC HAWTHRNE C	2	4220 D	3307	257	44	964	542*		1062 2540	640* 2118*	
4 8	7 E	34	H1	514		NAT ASSOC HAWTHRNE C	1	4280 B	33.04	257	4 4	958	530*		$1052 \\ 2545$	624# 2117#	
4 \$	7 E	34	H 2	516		NAT ASSOC HAWTHRNE C	3	4270 G	3316	257	44	972			1062 2551	635* 2124*	
4-8	7 E	36	F 5	197		SMOKEY OC York m e	1	4030 B	3522	257	42	990	587*		1070 2556	667 * 2153*	
						N											

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

HAMILTON COUNTY

Loc	ation of	Hole	•	County	Туре	UB UB	's Surface	Total	ber ber	ar tful ation	Line	1 — Coal I	No. 6		1 Coal N 2 Little N		d
wp.	Range	5	Sec.	Number	of Hole	Operator Num		Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thick Ft.	cne: In
58	5 E	5	E 6	165	70	HAMMER A J Seal	4780 C	3463	256	41	950	472*		1025 2515	547# 2037#		
58	5 E	11	A 1	166		CARTER OC Leslie I	4910 D 1	3608	256	42	958	467*		1055 2570	564* 2079*		
5 \$	5 E	13	6.9	167	TÐ	LEDDETTR N Num	4720 9	3567	256	40	990	518*		1060 2563	588* 2091*		
5 \$	58	19	Ce	479	LÐ	M A GNOL I A M A THENEY	4470 C	3393	256	44	870	423*	4 0 0	960 2446	513* 1999*	5	0
5 \$	5 E	22	н 3	4	D D	KNIGHT PCC Sandusky F	4 5160 P	956	256	5	951	4 3 5 *	504				
58	5 E	22	M 5	171	TD	MIDSUN OC HOFFMAN A	5250 B 1	3508	256	41	972	447*		1058 2568	533* 2043*		
58	5 8	27	C 4	168	TD	FOTIADES H MANGIS E A	5110 0 1	3482	256	42	945	434 *		1020 2525	509* 2014*		
58	5 E			172	TD	MAGNOLIA Moore s a	4570 C 1	3430	256	42	870	413*		955 24,62	498* 2005*		
58	5 E	34	H 8	6	0 D	AMCOKECHEM Moore s a	1 4909 P	989	256	20	896	405*	503	984	493#	3	C
5	5 E	36	A 1	7	80	ROTRAMEL T BENNET SH	1 4900 T	979	256	10	904	414*		973	483*		
5-8	6 E	3	E 1	173	TĐ	KINGWƏƏDOC Jimnsin ca w	4850 C	3592	256	4 1	1054	569\$		1135 2632	650* 2147*		
58	6 E	11	E 6	174	TÐ	1 NAT PET Malone g e	4570 D	3542	256	43	1000	543*		1070 2534	613# 2077#		
5 S	6 E	13	83	175	τD	BLCKSTCK H WEBB M W	4480 C	3518	256	40	910	462*		1000 2516	553= 2068=		
55	6 E	23	Ε3	176	TD	NADELÆGSMN Jønes bell	4340 B 1	3340	256	4 3	.825	391*		915 2420	481* 1986*		
58	6 E	23	E 7	177	TD	TEXAS CO Meador M	4470 D	3400	256	43	852	405*		945 2427	498* 1980*		
58	6 E	23	G 5	178	το	N AÐELÆGSMN MEAD H	4100 D	3219	256	43	804	394 *		890 2396	480* 1986*		

KEY BEDS IN HAMILTON COUNTY

HAMILTON COUNTY

Loc	ation of	Hole	•	County	Туре		Op'r's	Surface	Total	ld. ber	ur Hul	Line	1 — Coal	No. 6		1 — Coal N 2 — Little M	
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	(Feet)	Thickness Ft. In.
5 \$	6 E	27	A 3	183		CARTÉR OC Freil T M	3	4050 C	3068	256*	41	700	295*		798	393*	
5\$	6 E	27	A 4	185		CARTER OC FREIL T M	6	4080 C	2963	256*	41	705	297*		798	390*	
58	6 E	27	A 5	196	TD	PARKER DRC TROBAUGH W	2	4160 D	2983	256	41	720	304*		805 2317	389* 1901*	
5 \$	6 E	27	B 2	184		CARTER OC FREIL T M	4	3990 C	3056	256	41	700	301*		790 2296	391* 1897*	
5 S	6 E	27	83	200		CARTER OC Freil T M	2	3980 D	2964	256*	40	703	305*		795	397 *	
5 \$	6 E	27	B 4	182		CARTER OC Freil T M	1	4040 B	2956	256*	40	710	306*		795	391*	
5 \$	6 E	27	B 5	192	тD	PARKER DRC TROBAUGH W	1	4070 D	3076	256*	41	710	303*		800	393*	
58	6 E	27	C 2	188	ΤD	EXCHNGE OC Stelle Jon	4	3930 C	2954	256*	40	704	311*		794	401*	
58	6 E	27	C 3	167	ΤÐ	EXCHNGE OC Stelle Jon	2	4020 C	2958	256*	40	716	314*		805	403*	
58	6 E	27	C 4	186	ΤÐ	EXCHNGE OC Stelle Jon	1	4020 C	2965	256*	40	705	303*		795	393*	
58	6 E	27	C 5	179	TD	EXCHNGE OC Abbott w A	1	4030 D	2967	256	40	705	302*		795 2320	392* 1917*	
5 \$	6 E	27	02	190	TO	SNCLR WYOM Stelle Jon	6	3990 D	3056	256*	41	710	311*		800	401=	
5 \$	6 E	27	03	189	ΤD	EXCHNGE OC Stelle Jon	5	3960 C	3049	2 5 6 *	40	705	309*		795	399 🔹	
5 \$	6 E	27	05	181	ΤÐ	EXCHNGE OC Abbott w A	2	3980 C	3057	256*	41	701	303*		796	398 🔹	
58	6 E	27	Ε2	191	TD	CARTER OC STRUBNGR B	3	3950 G	3043	256*	41	702	307*		795	400*	
5\$	6 E	27	Ε3	199	TD	CARTER OC STRUBNGR B	2	3980 B	3040	256*	41	710	312*		795	397 \$	
58	6 E	27	E 4	195	ΤÐ	CARTER OC STRUBNGR B	1	4000 C	3082	256*	41	715	315*		802	402*	

HAMILTON COUNTY

Loc	ation of	Hole		Carrie	Туре		Op'r's	Surface	Total	ber ber	fful ation	Line	1 — Coal 1	No. 6		1 — Coal N 2 — Little N		1
Twp.	Range	\$	Sec.	County Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thickn Ft.	nes In
58	6 E	27	E 5	180		SNCLR WYON Morris J F	1	4010 D	3 2 7 5	256	41	710	309*	I	797 2320	396* 1919*		
58	6 E	27	F 1.	193		CARTER OC Strußngr B	5	3980 B	3234	256	41	715	317*		805 2280	407* 1882*		
58	6 E	27	F 3	194	TO	CARTER OC Strubngr b	4	3990 B	3049	256*	41	715	316*		810	411*		
5 \$	6 E	27	H 6	20	CH	BRANT C E		4110 P	1919	256		748	337*	700				
58	6 E	27	H 6	24		AMCOKECHEM MGRRIS JGE	12	4064 P	829	256		743	337*	509	824	418*	4	0
58	6 E	30	A 5	201	TO	SUN OC Swank whte	1	4650 B	3516	256	42	890	425*		955 2490	490* 2025*		
5\$	6 E	34	A 1	235		8 HELL OC Porter n	3	3980 8	2947	256*	40	650	252*		750	352 =		
58		34		219		SHELL OC Porter n	1	4940 0	2953				256*		760	356*		
5 \$			A 3			SHELL OC Porter n	5	4060 0		256*		670			765	359≉		
53		34				SHELL OC Porter N	8		2960	256*		680			775	365*		
58		34				EXCHNGE OC FREIL M E	15C	4180 B	3049	256*	*	685			780	362*		
58		34	-			SNCLR WYOM Freil M E	18C	4180 C	3063	256*		685	-		775	357*		
5 \$		34 34				LAIN OG HOOD C W SNELL OC	1	4280 C	3246 2952	256	40	695 664			780 2330 758	352* 1902* 356*		
58	6 E		83			SHELL OC	7	4110 0		256*		680	_		780	369*		
5 \$	6 E	34		-		PORTER N Shell Oc	2 A	4.130 D	2963	256		684			798	385*		
58		34	85	221		PORTER N Exchnge oc	6	4310 Đ	3094	256*		690			2294 785	1881* 354*		
			-			FREIL M E	130									-		

HAMILTON COUNTY

Loc	ation of	Hole		County	Туре		Op'r's	Surface	Total	d. Ser	ed ful ful	Line	1 — Coal	No. 6		1 Coal No. 5 2 Little Menar	
Twp.	Range	S	ec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet) Ft.	kness In.
5 8	6 E	34	C 1	229			0 C E 11A	3970 C	2960	256	4 2	6 6 9	272*	<u></u>	759 2272	362* 1875*	
58	6 E	34	сз	228			0 C E 9 A	4070 D	3061	256*	40	680	273*		770	363*	
5 \$	6 E	34	C 3	224	TD	EXCHNGE FREIL M	0 C E 8 B	4100 C	3069	256*	40	684	274\$		784	374 \$	
58	6 E	34	C 4	225		EXCHNGE FREIL M	0C E 10B	4200 C	2966	256*	40	695	275*		790	370 =	
58	6 E	34	C 5	215		EXCHNGE FREIL M		4180 C	3 2 0 0	256*	41	691	273*		786	368*	
5 S	6 E	34	C 6	214	ΤD	SNCLR WY FREIL M		4300 D	2994	256	41	705	275*		800 2328	370≉ 1898¢	
5 S	6 E	34	D 1	226	ΤD	EXCHNGE FREIL M		3990 C	3041	256*	40	676	277*		766	367 #	
5 S	6 E	34	D 2	227	TD	EXCHNGE FREIL M		4160 D	3 0 5 5	256*	40	700	284*		785	369#	
5 S	6 E	34	D 3	222		EXCHNGE FREIL M		4200 C	2976	256	40	695	275*		790 2305	370* 1885*	
5 S	6 E	34	D4	223	ΤD	EXCHNGE FREIL M		4290 C	2970	256*	40	705	276*		795	366 🕈	
5 S	6 E	34	D 5	216	ΤD	EXCHNGE FREIL M		4290 C	2 9 8 5	256*	41	710	281*		800	371*	
5 S	6 E	34	Ε1	212	ΤD	HINKLE&S L&NRR	TL 2	4030 G	2 9 5 3	256*	40	667	264*		772	369≢	
5 S	6 E	34	E 1	213	то	KINGWOOD MORRIS	0 C 7	4040 D	3045	256*	41	670	266*		770	366 =	
5 8	6 E	34	E 2	210	ΤD	KINGWOOD MORRIS F		4160 D	3299	256*	40	685	269*		788	3 7 2 *	
58	6 E	34	ЕЗ	206	то	GULF REF MORRIS G	W 1	4340 C	2 9 8 2	256*	40	710	276*		805	371 🕈	
58	6 E	34	E 4	2 08	ΤD	GULF REF MORRIS G	₩ 2	4440 D	3000	256	40	715	271*		815 2346	371* 1902*	
5 S	6 E	34	E 5	204	ΤD	EXCHNGE FREIL M		4210 C	2990	256*	40	705	284*		805	384 *	
	anomalian Y Ta Int "Plant"									and the second sec							

HAMILTON COUNTY

Loo	cation of	Hole		G	Туре		Op'r's	Sunfar	Tatal	d. Jer	ed ful ful	Line	1 — Coal	No. 6		1 — Coal N 2 — Little M	
Twp.	Range		jec.	County Number	of Hole	Operator	Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	(Foot)	Thickne
5 S	6 E	34	F2	211	ΤD	STELLE JH L&NRR	1	4140 C	2960	256*	40	685	271*		790	376=	
5 S	6 E	34	F3	209	ΤD	KINGWOODOC MORRIS	ż	4360 C	2992	256*	40	715	279*		81 5	379=	
5 S	6 E	34	F4	207	ΤD	GULF REF MORRIS G W	3	466 0 D	3022	256*	40	745	279*		845	379 =	
5 S	6 E	34	F 5	205	то	HOSSL B CAMPBELL G	1	4600 D	3022	256*	41	735	275*		795	335*	
5 S	6 E	34	G4	203	ΤD	GULF REF AUSTIN J	3	4510 D	3120	256	41	735	28,4*		830 2356	379# 1905#	
5 S	6 E	34	н 3	202	ΤD	GULF REF AUSTIN J	1	4270 D	2983	256*	40	71 5	288≉		810	383=	
5 S	6 E	35	A .8	377	ТD	TEXAS CO EDWARD G G	3	3940 D	2949	256*	40	650	2356≉		758	364*	
5 S	6 E	35	C 1	241	тD	MCBRIDEINC GEN AM INS	1	3880 C	3500	256	39	7 00	312*		805 2332	417 1944	
58	6 E	35	С 8	240		EXCHNGE OC FREIL M E	144	3990 D	3053	256*	41	662	263*		760	361*	
58	6 E	35	08	239		HAYES DRC MORRIS	6	4000 D	3044	256≉	41	665	265*		760	360*	
5 S	6 E	35	E 8	236	тD	ILL PROD JACKSON	3	3970 C	3041	256	41	665	26 8*		765 2279	368≢ 1882≢	
58	6 E	35	F1	238		EXCHNGE OC GEN AM INS	1	3920 D	3300	256	40	695	303*		805 2328	413 1936	
58	6 E	35	GВ	237		HAYES DRC HOOD E	1	3940 C	2968	256	40	665	271*	1	770 2289	376* 1895*	
5 S	6 E	36	A 1	245		PURE OC UNION CEN	1	3820 0	3035	257*	42	7 0 0	318*		785	403•	
58	6 E	36	B 2	244		PURE OC UNION CEN	2	3830 D	3085	257	43	700	317*	:	800 2290	417 1907	
5 S	6 E	36	E 1	243		EASON OC PRINCE C M	2	4030 D	3083	257	41	715	312*	:	810 2310	407* 1907*	
58	6 E	36	н 2	242		KINGWOODOC WEIR J	1	4170 D	3315	257	41	750	333*		850 2352	433 # 1935 #	

HAMILTON COUNTY

Loc	ation of	Hole		County	Туре		Op'r's	Surface	Total	ld. ber	ed Hul	Line	1 — Coal	No. 6		1 — Coal N 2 — Little M	
Twp.	Range	s	Sec.	Number	of Hole		Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thickne Ft. I
58	7 E	2	03	506	TO	KINGWOODOC Swader J	1	4640 9	3605	257	4 4	996	532*		1100 2608	636* 2144*	
5 \$	7 E	3	E 5	247	ΤD	OMIG OIL 1 NAT BANK	1	4530 C	3587	257	41	1000	547*		1100 2580	647 * 2127 *	
55	7 E	10	C 4	532	ΤD	NAT ASSOC Johnsn v	3	5270 0	3398	257	44	1006	479\$		$1120 \\ 2604$	593* 2077*	
58	7 E	10	13	537	TD	WISER OC Jommsn a	2	5010 D	3364	257	45	966	465*		2592	2091=	ŧ
5\$	7 E	10	63	539		DUNCAN WJR Flatley	1	5140 C	3358	257	45	988	474=		2610	2096*	
5 \$	7 E	10	65	544		NAT ASSOC DOWNEN C F	5	4870 C	3372	257*	45	960	473*				
58	7 E	11	Eð	248	TD	KINGWOODOC MCGUIR J M	1	4940 D	3590	257	40	980	486*		2614	2120*	4
5 \$	7 E	14	F 5	249	TB	LOMELN&WMS BGGRSTFF E	1	4290 D	3547	257	43	905	476*		2564	2135*	
58	7 E	15	М 3	498		NAT ASSOC RUBINACKER	1	4880 B	3367	257	44	988	500*	4 0 0	1085 2586	597* 2098*	5 0
5\$	7 E	17	65	250		DELTA OPC HALL CONS	1	4250 D	3498	257	42	934	509*	•	1045 2590	620* 2165*	
58	7 E	2 8	C 7	251	TO	ZEPHYR DRC STEPHENS W	.1	4600 C	3576	257	41	922	462*		$1051 \\ 2583$	591# 2123*	
58	7 E	31	A 4	252	TD	CAMERON OC Griffith e	1	3970 G	3159	257	41	662	265*		762 2307	365# 1910*	
58	7 E	31	A 6	258		PURE OC Consol Mit	1	3890 C	3220	257	42	666	277*		754 2281	365* 1892*	
58	7 E	31	A 7	318	TO	PURE OC Union cen	1	3820 C	3032	257*	42	675	293*		775	39·3*	
58	7 E	31	D 6	253		TEXAS CO LOGAN M P	1	3890 D	3219	257	41	690	301*		790 2298	401* 1909*	
58	7 E	31	08	254		TEXAS CO Logan m P	2	3920 D	3062	257	42	695	303*		795 2300	403* 1908*	

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

HAMILTON COUNTY

Loc	ation of	Hole		County	Туре		Op'r's	Surface	Total	d. Der	ed r	5 Line	1 — Coal	No. 6		1 — Coal 2 — Little J		
Twp.	Range	ę	Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled ^{Doubtful}	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thicl	kness In.
5 S	7 E	31	E 8	483	TD	SNCLR WYOW Prince J W	8	3940 C	3067	257*	41	695	301*		795	401*		And a second sec
5 8	7,E	31	F 8	246	тø	K 1 % G % 0 0 D 0 C P R 1 % C E	1	3960 D	3257	257	40	698	302*		794 2315	3984 1919*		
58	7Ε	31	G 8	255	TD	KINGWOODOC Smith F L	1	4000 D	3225	257	41	705	305≉		800 2318	400* 1918*		
5 8	7 E	31	M 1	38	90	AMCOKECHEM MUNSLL F M	14	3940 B	802	257	20 4	696	302*	5 07	796	4024	4	09
58	7 E	33	E 5	530	TO	NAT ASSOC Tyler j m	1	4960 D	3378	257	44	854	358*		960 2496	4644 2000		
58	7 E	33	F4	531	TD	NAT ASSOC Tyler j M	2	4810 D	3259	257	44	832	351*		928 2498	447 2017		
5 \$	78.	35	C 1	256	τD	REESE&HETM Klemm	1	4820 ¢	3486	257	42	850	368≉		2556	2074=	þ	
6 3	5 E	6	A 1	257	TO	CLLHN&MRMY ULRICH	1	5420 0	3490	256	41	945	403≉		1030 2532	488* 1990*		
68	5 E	11	A 1	260	TD	SNELL OC Cox L	B 1	5220 D	3387	256*	41	810	288*		880	358*	¢.	
68	5 E	11	A 3	259	ТÐ	SHELL OC Hatcher B	A 1 A	5480 D	3440	256	42	840	292*		910 2422	362= 1874=		
63	5 E	11	A 4	21	60	A M C O K E C H E M D A R N A L	8	5604 P	943	256	20	886	326*	7 08	939	379	▶ 4	04
63	5ε	11	E 5	103	ΤD	REWARD OC Hungate L	1	5490 C	3353	256	42	894	345*		964 2460	415 1911		
6 3	5 E	12	A 1	273	TO	TEXAS CO Smith E	4	4500 D	3330	256	42	780	330*		840 2332	390* 1882*		
53	5 E	13	A 2	274	TO	TEXAS CO Smith e	1	4440 D	3276	256*	41	776	332*		835	391=	•	
63	5 E	12	A 3	272	TO	SHELL OC Ventress C	4	4620 B	3267	256*	41	790	328*		845	383:	•	
6 8	5 E	12	A 4	262	ΤD	SHELL OC Ventress C	1	4920 C	3194	256*	41	820	328*		870	378*	•	
			•															

KEY BEDS IN HAMILTON COUNTY

HAMILTON COUNTY

Loc	ation of	Hole			Туре		Op'r's			d. Yer	r fol tion	Line	1 — Coal	No. 6		1 — Coal 2 — Little		
Twp.	Range	ę	Sec.	County Number	of Hole	Operator	Op r s Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness	Depth (Feet)	Altitude (Feet)		cknes
6 8	5 E	1 8		271	TB	SHELL OC		5330 0	3329	256		865		Ft. In.	910	3774	Ft.	In
	9E	10	AJ	611	10	VENTRESS C	3	5 5 5 6 6	5565	230	*1	005	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2405	18724		
6 8	5 E	12	47	261	T D	REWARD OC Andersn Ab	2	4690 8	3147	2 56*	41	810	321*		865	3764	1	
6 \$	5.E	12	A 8	270	TD	REWARD OC ANBERSN AB	1	5430 D	3195	256*	41	854	311 *		904	3614	1	
68	5 E	12	87	263	TĐ	REWARD OC AMDERSN AB	4	4770 C	3251	256	41	792	315*		842 2350	3654 18734		
6 S	5 E	12	C1	267	TO	PURE OC COX J A	1	4360 D	3313	256	42	770	334 *		830 2322	3944 18864		
6 8	5 E	12	c 2	269	TD	SHELL OC COX E	1	4390 D	3305	256*	42	770	331*		820	3814		
65	5 E	12	C 3	268	ΤD	SHELL OC COX E	2	4480 D	3104	256	43	775	327 =		820 2310	3724 18624		
6 S	5 E			265	TD	SHELL OC Beul J	1	4670 D		256	42	800	-		865 2358	398* 1891*	t	
6 S	5 E					SUN OC Moss gidn	2	5440 D		256	4 3	884			950 2456	4064	2	
68	5 E			264	TD	SUN OC Moss gidn	1	5220 D	3420	256			350*		935 2420	4134	F .	
6 S	5 E			283		OHIO OIL WHITMORE M	1 ,	4600 D		256*			325*		850	390:		
68	5 E				TD	TEXAS CO LOCKWD T	6	4670 C	3345				318*		845	378*		
68	5E			280	TD	SHELL OC CRABTREE J	B 7	4800 C	3353	256* 256	42	_	300* 303*		835	355× 358×		
68	5-E			281		TEXAS CO Lockwd M	5	4870 C	3370	256	41		317*		2360 895	1873 382	*	
65	5 E					SHELL OC SMITH C A	6 A		3296		42		302*		2386 865	1873	*	
65	5 E			279	TD	SHELL OC Nohava J	2	5030 D		256	41		299*		2 3 7 4 8 7 5	1871 359*	ŧ	
6 5	5 E	13	Ε7	277	TĐ	TEXAS CO LOCKWD T	4	5160 D	5 ت م ر	630	a T	013	677*		2388	18724		

HAMILTON COUNTY

Loc	cation of	f Hole	e	County	Туре		Op'r's	Surface	Total	d. Jer	for the de	Line	1 — Coal	No. 6		1 — Coal N 2 — Little A		
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thick Ft.	kness In.
6 \$	5 E	13	F1	284	TD	SHELL OC SMITH C A	4	5170 C	3404	256	41	840	323*		895 2400	378* 1883*		
68	5 E	13	G 3	415	TD.	REWARD OC SMITH KNGT	2	4780 C	3345	256*	41	800	322*		850	372*		
68	5 E	13	H 1	278	τD	TEXAS CO SMITH E	3	4730 C	3350	256*	42	800	327*		865	392*		
65	5 E	13	H 5	276	τD	SHELL OC ANDERSN AB	1	5120 0	3380	256	41	835	323*		880 2 3 90	368* 1878*		
6 \$	5 E	13	H 8	275	ŤΟ	SHELL OC L ock#D l F	2	5530 D	3427	256	41	865	312*		910 2430	357* 1877*		
6 \$	5 E	14	¥ 3	294	TÐ	SHELL OC TRST SCHLL	2	4490 D	3333	256*	42	748	299*		805	356*		•
6 S	5 E	14	A 5	293	τD	KEWANEE OG CULWAR	A 1	4510 D	3347	256≉	4 2	750	299*		820	369\$		
68	5 E	14	A 8	287	TD	REWARD OC LOCKWD SAM	3	4450 D	3134	256*	41	745	300*		830	385*		
6 S	5 E	14	B 4	291	ΤD	KEWANEE OG CULPEPER C	4	4670 D	3222	256	41	760	293*		830 2336	363* 1869*		
6 S	5 E	14	C 2	292	TD	SHELL OC CRABTREE J	3	5070 B	3364	256	41	800	293*		855 2370	348* 1863*		
65	5 E	14	81	290	TD	SHELL OC Crabtree J	1	4910 D	3362	256*	41	790	299*		840 2355	349* 1864*		
6 S	5 E	14	D 5	288	ΤĐ	KEWANEE OG Culwar	B 6	4880 D	3281	256	42	760	272*		850 2365	362* 1877*		
6 8	5 E	14	F 4	289	ΤĐ	SHELL OC FLANNIGAN	1	5560 C	3440	256	41	860	304*		905 2420	349* 1864*		
6 8	5 E	14	G 5	286	ΤĐ	GULF REF Clark J O	1	5340 D	3258	256*	42	840	306*	,	902	368*		
6 S	5 E	14	H 4	285	ΤÐ	K I NG WOO DOC H ATCHER	1	5730 0	3232	256	41	870	297*		940 2449	367* 1876*		
68	5 E	15	A 1	297	TD	GULF REF LOCK₩D A	1	4610 D	3225	256	42	761	300*		850 2380	389* 1919*		
6\$	5 E	15	A 5	296	TD	CURTIS PRO Føster	1	5490 C	3392	256	41	865	316*		956 2482	407* 1933*		

KEY BEDS IN HAMILTON COUNTY

HAMILTON COUNTY

Loc	ation of	Hole	9	County	Туре		Op'r's	Surface	Total	ber	ar fed ation	Line	1 — Coal	No. 6		1 — Coal I 2 — Little /		
wp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled DoubHul Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thic Ft.	kne Ir
68	5 E	15	62	895	TD	GULF REF Lockwo a	2	5090 0	3415	256	4 3	809	300*		898 2430	389≉ 1921≉	1	
68	5 E	15	E 7	505		SNELL OC Harrelsn e	1	4650 0	3240	256	44	778	313¢		868 2390	403* 1925*		
68	5 E	17	C 2	8		AMCOKECHEN Poyner a e		5750 B	1000	256	20	922	347*	605	994	419*	5	C
68	5 E	22	F 5	298		RING D S Craddock	1	5230 C	3225	262	41	870	347\$		950 2450	427 • 1927 •	1	
58	5 E	22	64	299		SUPRIOR OC Darnell F	5	5070 D	3225	262	41	840	333*		930 2422	423* 1915*		
68	5 E	23	81	307		OIL CARRS WARREN T A	1	4260 0	3104	262	43	730	304*		812 2326	386 1900	:	
58	5E	23	83	306		SCHULTE E Warren f	1	4320 D	3193	262	43	760	328*		816 2353	384 1921 *		
58	5 E	23	04	303		MAGNOLIA Sloan C R	7	4340 D	3136	262	41	744	310≉		805 2342	371* 1906*		
58	5 E	23	05	304	-	LAYTN&MYRS Smith J L	1	4360 D	3342	262	43	735	299*		815 2342	379* 1906*		
59	5 E	23	Ε1	302		WHSNT&TRD LOCKWD J D	8	4320 D	3170	262	42	730	• -		795 2322	363* 1890*		
58	5 E	23	67	305		OIL MANGMI Lockwd J D		4510 C	3144		41	775			840 2368	389* 1917*		
63			н 2	301		SHELL OC CRABTREE .	83	4490 C	3351		41	746			808 2314	359* 1865*		
68		23	₩5			HALBRT ETL Lockwd J 8		4380 C	3258	262	40	740			815 2320	377* 1882*		
65		24	A 4			REDWINE N MEZOJL	1	4210 B	3285	262	42	730			810 2342	389* 1921*		
68		24	-	312		MAGNOLIA HAMI MCFAR	1	4320 D	31 37		42	730			820 2340	388* 1908*		
65	5 E		Ð5	314		MAGNOLIA Hamilton J	3	4260 D	3.308	262	42		314*		810 2322 825	384* 1896* 380*		
55	5 E	24	F3	311		TÉXAS CO Smith L W	2	4450 D	3281	262	42	104	319*		825 2353	1908*		

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

HAMILTON COUNTY

Iwp. Range 6 \$ 5 E 6 \$ 5 E		Se 3 4 3 4 3 4 3 5 3 6 3 6	67 H4 H5 E5	County Number 309 308 310 315 9	T D T D	Operator CAMERON OC LOCKWOOD SMELL OC CRABTREE J TEXAS CO LOCKWD M EASON OC CULPEPER R AMCOKECHEM	81 82 10	Surface Altitude 4 4 3 0 C 4 5 2 0 C 4 7 0 0 0 4 2 8 9 D	Total Depth 3 1 2 0 3 3 4 7 3 3 4 3 3 2 9 0		4 1 7 4 αr 1 4 1 1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Depth (Feet) 7 3 5 7 3 5 7 8 0	Altitude (Feet) 292* 283* 310*	Thic Ft.		Depth (Feet) 805 2342 806 2334 850	Altitude (Feet) 362* 1899* 354* 1882* 380*	Thic Ft.	knes In
6 \$ 5 E	: 8 : 8 : 8	4 4 5 6	67 H4 H5 E5	308 310 315	T D T D T D	LOCKWOOD SMELLOC CRABTREE J TEXAS CO LOCKWDM EASONOC CULPEPERR	81 82 10	4520 C 4700 D	3 3 4 7 3 3 4 3	262	41	735	292* 283*	H.		805 2342 806 2334 850	362* 1899* 354* 1882* 380*	Ft.	
6 3 5 E 6 3 5 E 6 3 5 E 6 3 5 E 6 3 5 E 6 3 5 E 6 3 5 E 6 3 5 E 6 3 5 E 6 3 5 E 6 3 5 E 6 3 5 E	: 8 : 8 : 8	4 4 5 6	67 H4 H5 E5	308 310 315	T D T D T D	LOCKWOOD SMELLOC CRABTREE J TEXAS CO LOCKWDM EASONOC CULPEPERR	81 82 10	4520 C 4700 D	3 3 4 7 3 3 4 3	262	41	735	283*			2342 806 2334 850	1899* 354* 1882* 380*		
6 \$ 5 E 6 \$ 5 E	: 2 : 2 : 2	4 85 86	H4 H5 E5	310 315	T D T D	CRABTREE J Texas co Lockwd M Eason oc Culpeper R	10	4700 D	3343							2334 850	1882* 380*		
685E 635E 635E 635E 635E	: 2 : 2 : 2	25 26	H 5 E 5	315	TD	LØCKWD M EASON OC Culpeper R	_			262	42	780	310*						
6 \$ 5 E 6 \$ 5 E 6 \$ 5 E	2	86	ε 5			CULPEPER R	1	4280 D	3290							2349	1879		
6 3 5 E 6 3 5 E	2			9	00	AMCONECHEM				262	43	735	307*			810 2337	382* 1909*		
6 9 5 E		86	M 3			CARROL GUS		4556 P	851	262	20	795	339*	9	01	846	390*	4	1
63 5E	: 2			316	TD	KIOWA DRC Barker P R	1	4290 D	3187	262	43	760	331*			820 2364	391* 1935*		
		37	A 1	317	TD	TIDE WATER Dennis La		5110 D	3426	262	42	840	329*			900 2468	389* 1957*		
68 5E	: 3	55	85	320	T D	GULF REF PARKS M E	1	5300 D	3267	262	43	830	300*			895 2492	365* 1962*		
	3	55	03	50	LD	OHIO OIL Moore M C	6	5000 C	3420	262	4 2	79 5	295*	6	00	868 2444	368* 1944*	4	C
68 5E	: 3	55	05	376	1	OHIO OIL Moore M C	3	5260 C	3255	262	42	8 2 0	294*			895 2482	369* 1956*		
68 5E	3	55	F3	375	τð	OHIO OIL MOORE M C	2	5070 C	3450	262	42	805	298*			870 2455	363* 1948*		
63 5E	: 3	55	F 7	378	TO	OHIO OIL Moore M C	4	5530 C	3281	262	42	853	300*			930 2506	377* 1953*		
68 5E	: 3	55	₩5	319	TD	OHIO OIL Moore m c	5	5630 D	3369	262	42	880	317*			940 2506	377* 1943*		
68 5E	: 3	56	05	519	TD	OHIO OIL MOORE M C	7	4610 D	3498	262	4 4	746	285*			835 2420	374* 1959*		
63 6E	5	1	¢1	323		CARTER OC HALE I	2	3780 D	3213	257	41	637	259*			755 2215	377* 1837*		
68 .6E	E	1	ε1	382	TD	CARTER OC HALE I	3	3790 Đ	3027	257	41	679	300*			775 2242	396* 1863*		

KEY BEDS IN HAMILTON COUNTY

HAMILTON COUNTY

Loc	ation of	Hole	e	Country	Туре	C	s'ı'qC	Surface	Total	ber	ed ation	Line	1 Coal	No. 6		1 — Coal N 2 — Little N	
Twp.	Range	ę	Sec.	County Number	of Hole	Operator N	umber	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thickne Ft. I
6 8	6 E	1	H 2	321	TD	CARTER OC HALE I	5	3810 D	3279	257	4 2	695	314*		795 2272	414* 1891*	
6 S	6 E	2	A 6	379	TD	TEXAS CO EDWARD ADA	3	4190 C	3060	256	41	644	225*		742 2394	323* 1975*	
68	6 E	2	88	324	TD	TEXAS CO EDWARD ADA	4	4180 D	3081	256	42	640	222*		740 2299	322\$ 1881*	
68	6 E	2	E 8	325	TD	CARTER OC GRIMES J F	2	4050 G	3048	256	41	637	232*		732 2292	327* 1887*	
6 S	6 E	2	H 8	326	ΤĐ	GRIMES R E	1	3980 C	2952	25 6	40	650	252*		750 2285	352≉ 1887≢	
63	6 E	3	A 5	329	TD	OHIO OIL MOORE A B	3	4270 D	3068	256	41	680	253≉		760 2320	333* 1893*	
68	6 E	3	82	331	ΤD	OHIQ OIL MATHENY O	7	4490 D	3089	256	41	665	216*		765 2330	316* 1881*	
68	6 E	3	B 7	382	ΤD	TEXAS CO FLINT C A	1	4170 D	3187	256	41	680	263*		770 2322	353* 1905*	
68	6 E	3	C 6	332	ΤD	OHIO OIL MOORE A B	4	4240 B	3058	256	41	690	266*		780 2315	356* 1891*	
6 5	6 E .	3	D 4	330	ΤD	OHIO OIL MATHENY O	· 1	4310 0	2976	256	40	680	249*		760 2302	329‡ 1871‡	
68	6 E	3	F 3	381	TD	TEXAS CO HOOD C W	9	4090 D	3052	256	41	658	249*		750 2282	341* 1873*	
6 \$	6 E	3	G 7	328	TD	TEXAS CO PITTMAN E	1	4300 D	3220	256	41	685	255*		775 2510	345* 2080*	
65	6 E	3	н 2	327	ΤÐ	TEXAS CO EDWARD G C	1	4010 C	3051	256	40	655	254\$		750 2279	349* 1878*	
6 S	6 E	3	H 4	380	ΤD	TEXAS CO HOOD C W	2	4080 Đ	3055	256	40	672	264*		770 2290	362* 1882*	
68	6 E	4	B 4	334	ΤD	EASON OC HOGAN P T	1	4390 D	3232	256	42	685			765 2346	326* 1907*	
6 S	6 E	4	Е З	333	TD	CAMERON OC ROTH D S	1	4720 D	31 4 1	256	42	745			825 2376	353* 1904*	
68	6 E	4	Н1	10	СН	MORRISON C PITTMAN F	1 1	4591 P	2564	256*	20	718	259*	6 0 0			

HAMILTON COUNTY

Loc	ation of	Hole	•	Count	Туре	0,	o'r's	Surface	Total	ld. ber	ar ful tion	Line	1 — Coal	No. (5		1 Coal M 2 Little M		
ſwp.	Range	:	Sec.	County Number	of Hole		mber	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thic Ft.	kness In.	Depth (Feet)	Altitude (Feet)	Thick Ft.	kness In.
63	6 E	4	H1	36	00	A M C O K E C H E M P I T T M A N	11	4586 P	803	256	203	719	260*	6	05	797	338*	5	0 0
68	6 E	6	F 2	503	TÐ	KINGWOODOC Parker ta	1	5140 0	3433	256	44	860	346*			932 2435	418* 1921*		
68	6 E	7	85	335	TO	TEXAS CO DIAL COMM	1	4240 Đ	3278	256	42	749	325*			825 2329	401* 1905*		
6 S	6 E	7	87	484	TD	SHELL OC Johnsn C W	1	4310 D	3175	256	43	757	326*			830 2322	399* 1891*		
63	6 E	7	FB	336	TD	OHIO OIL DIAL A E	1	5310 D	3208	256	42	855	324*			925 2435	394* 1904*		
6.8	6 E	10	F 4	338	TO	TEXAS CO LAGER B	1	4280 D	3200	256	41	675	247*			755 2324	327 ¥ 1896 ¥		
68	6 E	10	Н 5	337	τD	0HIO OIL BETHELL J	1	4200 D	3069	256	41	658	238*			745 2312,	325 * 1892 *		
6 S	6 E	11	A 3	349	TD	TEXAS CO HNDRSN COM	2	4130 Đ	3108	256	43	650	237*			750 2305	337* 1892*		
65	бE	11	86	348	ΤD	TEXAS CO HNDRSN COM	1	4130 B	3092	256	42	655	242*			730 2297	317* 1884*		
63	6 E	11	87	104	TD	MAGNOLIA BETTS BRKR	1	4090 C	3300	256	42	680	271*			760 2325	351* 1916*		
69	6 E	11	D 6	346	TD	TEXAS CO MCDONALD E	1	4230 D	3081	256	41	660	237*			750 2309	327* 1886*		
6 S	6 E	11	E 4	48	LD	TEXAS CO MCDONALD E	6	4030 C	3076	256	42	645	242*	5	06	730 2278	327# 1875#		0
6 S	6 E	11	Ε7	345	TD	OHIO OIL DURNELL F	1	4250 D	3110	256	41	660	235*			754 2307	329* 1882*		
6 S	6 E	11	F 2	339	TD	TEXAS CO DAVNPRT G	1	3870 0	3284	256	42	635				725 2270	338* 1883*		
6 S	6 E	11	G 4	340	TD	FORD GEO ANDERSON	1	4050 D	3254	256	42	645				735 2290	330* 1885*		
68	6 E	11	Η7	347	TD	TEXAS CO TURNER J R	2	4110 C	3068	256*		634		_		745	334*	-	-
6 S	6 E	11	н 8	11	ĐD	A M C O K E C H E M M C D O N A L D	5	4193 P	754	256	20	640	221*	5	03	747	328*	6	0

KEY BEDS IN HAMILTON COUNTY

HAMILTON COUNTY

Loc	cation of	Hole	,	County	Туре		Op'r's	Surface	Total	rd. ber	ar ful ation	Line	1 — Coal	No. 6			1 Coal I 2 Little /		
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth	Altitude	Thic	kness	Depth	Altitude	Thic	knes
· • • •	Kunge											(Feet)	(Feet)	Ft.	ln.	(Feet)	(Feet)	Ft.	In.
6 S	6 E	12	A 7	343		CARTER OC MAYBERRY J	2	3950 D	3078	257	42	680	285*			760 2304	365* 1909*		
68	6 E	12	B 3	356	TD	CARTER OC JOHNSN CAR	2	4150 D	3090	257	4 2	672	257*	-		780 3212	365* 2797*		
68	6 E	12	88	342	ΤÐ	CARTER OC Mayberry J	1	3890 B	3068	257	42	650	261*			750 2286	3614 18974		
68	6 E	12	C 5	105	TD	TEXAS CO IRWIN M	2	3910 ¢	3066	257	42	665	274*			750 2278	359 1887		
6 \$	бE	12	01	351	ΤØ	SHELL OC DAILY W W	3	3830 C	3038	257	41	615	232*			726 2244	3434 18614		
63	6 E	12	D 4	352	TD	CARTER OC Short P	1	3850 C	3055	257	42	638	253*			738 2266	353* 1881*		
6\$	6 E	12	D 18	341	ΤÐ	CARTER OC MAYBERRY M	1	3830 D	3058	257	42	665	282*			740 2272	357× 1889×		
63	6 E	12	F 2	355	TO	SHELL OC DAILY W W	7	3810 C	3243	257	41	620	239*			725 2226	344 1845		
63	6 E	12	F 8	354	ΤD	SHELL&PURE RA₩LS J E	3	3880 D	3060	257	42	658	270*			752 2278	364* 1890*		
68	6 E	12	н1	350	TD	SHELL OC DAILY W W	6	3810 D	3032	257	41	610	229*			710 2211	329* 1830*		
6 \$	6 E	12	Нб	353	TD	SHELL OC RAWLS J E	2	3800 D	3062	257	42	658	278*			750 2268	370* 1888*		
6 S	6 E	13	¢ 5	12	DD	ROTRML TOM Clark e W		3966 P	795	256	9	703	306*	7	09	788	391*	5	0
65	6 E	13	E 3	446		MARKHM DRC PEARSN G E	1	4430 D	2514	257	43	730	287*			838 2385	395* 1942*		
68	6 E	13	F 8	363		TEXAS CO HATTON M F	1	4060 D	3129	257	42	685	279*			780 2340	374* 1934*		
63	6 E.	13	G 1	357	TD	TEXAS CO JOHNSN R R	12	4120 0	3110	257	42	670	258*			770 2329	358* 1917*		
65	6 E	13	H 4	358		POLOTIS A Mayberry	2	4290 D	3124	257	42	702	273*			790 2361	361* 1932*		
65	6 E	13	H6	360		TEXAS CO HALL J C	C 1	4080 0	3100	257*	42	690	282≉			780 2325	372* 1917*		

p

TABULATED DATA ON KEY BEDS

HAMILTON COUNTY

Lo	cation of	Hole	•	County	Туре		Op'r's	Surface	Total	d. ber	ar ed tion	Line	1 — Coal	No. 6		1 — Coal I 2 — Little A		
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information		Altitude	Thickness	_ Dehiii	Altitude	Thic	knes
										-		(Feet)	(Feet)	Ft. In.	(Feet)	(Feet)	Ft.	In.
68	6 E	13	H 8	359	TO	TEXAS CO Johnsn J	2	4986 0	3105	257	42	695	287=		770	362* 1917*		
63	6 E	14	н 3	362	TO	TEXAS CO Johnsn J	1	4140 8	3124	256*	42	665	251 *		765	351*		
68	đΕ	14	Н 3	361	TO	KINGWOODO WARING	C 1	4190 C	3358	256	40	680	261*		770 2329	351* 1910*		
63	6 E	17	E 5	523	TD	TEXAS CO Marrison	R 1	4380 0	3150	256	44	746	308*		805 2375	367* 1937*		
6 8	6 E	17	٤7	13	0 0	A M C O K E C H E I P R I N C E	a 2	4497 P	835	256	20	768	318*	9 01	825	375*	: 4	0
63	6 E	18	87	364	τo	SMOKEY OC Cluck J B	1	4960 C	3342	256	41	830	334*		895 2400	399* 1904*		
65	6 E	18	D 6	365	TD	PURE OC Allen Mer	1	5130 B	3415	256	43	845	332*		910 3415	397* 2902*		
63	6 E	18	F4	486	TO	TEXAS CO DAVIS MRT	1	4680 D	3330	256	43	790	322*		860 2380	392* 1912*		
63	6 E	18	Fб	367	τø	TEXAS CO GOTT F	1	5320 D	3209	256*	42	860	328*		925	393*		
68	6 E	18	68	366	T D	TEXAS CO Mall J C	1	4680 C	3323	256	42	805	337\$		855 2365	387* 1897*		
68	6 E	18	₩5	501	TO	TEXAS CO HALL J C	A 3	4480 0	3325	256	42	790	342*		845 2350	397* 1902*		
63	6 E	19	98	504	TD	MAGNOLIA Clark J S	1	4370 0	3309	262	44	744	307\$		834 2375	397* 1938*		
68	6 E	21	63	368	τD	TEXAS CO Mann J	1	4010 0	3375	262	43	690	289*		782 2390	381* 1989*		
6\$	6 E	22	A 3	448	TD	TEXAS CO Johnsn G	r 3	3850 D	3280	262	43	650	265≉		750 2334	365* 1949*		
68	6 E	88	86	447	TO	TEXAS CO TEDFORD C	. 2	3880 0	3112	262	43	648	860\$		740 2349	352* 1961*		
63	6 E	23	F 1	23	80	AMCOKECHEI	a 10	3794 P	784	262	20	681	302*	6 08	778	399*	4	0
63	6 E	32	F 6	369	TO	TEXAS CO JNNSN A G	1	3860 0	3355	262	41	645	259\$		740 2360	354* 1974*		
															, 1997. 19			

HAMILTON COUNTY

Loo	ation of	Hol	e	County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled	bfful nation	Line	1 — Coal	No.	6		1 — Coal 2 — Little		
ſwp.	Range		Sec.	Number	Hole	Operator	Number	Altitude	Depth	Q N	، ۲ _.	Dou Infor	Depth (Feet)	Altitude (Feet)	Thio Ft.	kness In.	Depth (Feet)	Altitude (Feet)	Thic Ft.	knes In.
68	6 E	24	H 1	524		TEXAS CO WEBB E M	1	3940 D	2456	261	44		684	290*			788 2344	394 1950 *		
6 S	6 E	25	H 8	370		0H10 OIL MILLER VI	4 1 Å	3760 B	3360	261	40		690	314*	•		790 2349	414* 1973*		
6 \$	6 E	25	K 3	547		A MCOKECHE UNDERWOOD	M 17	3730 C	844	261	20		632	259*	4	04	806	433*	3	0
6 \$	6 E	26	B 6	374	TÐ	TEXAS CO Jomnsn R	F 1	3880 C	3110	262	43		638	250*			740 2300	352* 1912*		
6 \$	6 E	26	C 3	525	TD	TEXAS CO JOHNSN R	F 2	3780 Đ	3116	262	44		646	268*			744 2312	3664 19344		
68	6 E	26	C 7	373		TUESDAY O HALL PHIL	C 3	3810 C	3110	262	41		640	259*			745 2300	3644 1919		
6 S	6 E	26	E B	372	TÐ	TEXAS CO IRWIN O	6	3880 C	3100	262	42		652	264*			755 2327	367* 1939*		
6 S	6 E	26	G 8	371	ΤD	TEXAS CO IRWIN H	1	3810 D	3135	262	42		658	277*			758 2334	377* 1953*		
68	6 E	27	82	389	TD	TEXAS CO Johnson C	4	3840 C	3109	262	43		638	254*			750 2304	366* 1920*		
65	6 E	27	87	387		TEXAS CO WILSON F	R 2	3870 B	3115	262	43	NORMAL DI MATURA POLI	648	261*			750 2325	363* 1938*		
68	6 E	27	03	388	TD	TEXAS CO IRWIN O	7	3830 C	3100	262	42		630	247*			730 2311	347 1928 *		
68	6 E	27	08	306		TEXAS CO MCGILL R	L 3	3880 D	3102	262	42		640	252*			740 2342	352× 1954×		
65	6 E	27	E 4	385		TEXAS CO SHAVITZ F	4	3860 D	3101	262	42		634	248*			735 2307	349* 1921*		
6 S	6 E	27	E 8	383	I I	TEXAS CO HALL RNYR	3	3880 D	3127	262	42		635				730 2340	342 1952	•	
6 9	6 E	27	G 3	384		JOHNSN R	L M 1	3860 D		262	41		650	264 *			750 2320	364* 1934*	•	_
6 S			G 5			PIERSON LEE	3	3850 G	3112	262	43			258*	5	00	745	360*		0
6 S	6 E	27	G 6	344		PERRN&PRS LEE J R	N 1	3860 0	3076	262	42		644	256*			742 2339	354* 1951*		
				<i>\</i>														3		

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

HAMILTON COUNTY

Lo	ation of	Hole		County	Туре		Op'r's	Surface	Total	ıd. ber	r be	ation	Line	1 Coal	No. (5		1 Coal 1 2 Little A		
wp.	Range	S	Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled		Depth (Feet)	Altitude (Feet)	Thic Ft.	kness In.	Depth (Feet)	Altitude (Feet)	Thick Ft.	kne: In
6 3	6 E	28	A 1	391	ΤÐ	TEXAS CO WILSON F R	4	4180 C	3176	262	43		685	267*			782 2384	3644 19664		
68	6 E	28	C 1	449	ΤÐ	TEXAS CO MCGILL R L	6	3920 0	3116	262	43		654	262*			754 2348	362* 1956*		
6 3	6 E	28	E 1	390	ΤÐ	TEXAS CO HALL R	5	3920 C	3137	262	43		635	243*			735 2348	3434 19564		
68	6 E	29	68	22	ÐD	AMCOKECHEM	9	4044 P	842	262	20		735	331 *	6	06	838	<u> </u>	4	C
68	6 E	31	¢ 2	392	TD	KINGWOODOC LASSWELL D	1	4880 D	3433	262	41		770	282*			860 2470	372 1982		
68	6 E	33	61	14	ÐÐ	ANCOKECHEM Cotter e	3	4097 P	835	262	20	3	667	257*	5	11	768	358*	: 4	C
6 \$	6 E	34	82	526	ΤÐ	TEXAS CO RANDOLPH G	1	4230 D	3172	262	44		657	€34*			773 2344	350* 1921*		
68	6 E	34	84	485	ΤÐ	TEXAS CO JOHNS S L	3	4190 D	3152	256	4.4		665	246*			765 2359	346 1940		
68	6 E	34	88	534	ΤĐ	TEXAS CO JOHNSN T T	1	4160 D	3153	262	44		667	251*			770 2374	354* 1958*	•	
6 S	6 E	34	C 5	396	ΤÐ	TEXAS CO COTTER G	1	4070 D	3131	262	43		657	250*			760 2348	3534 19414		
68	6 E	34	Ε1	394	TD	TEXAS CO Brown Com	2	3970 D	3288	262	43		645	248*			750 2326	353* 1929*		
68	6 E	34	E 7	397		TEXAS CO RUSSELL F	1	4020 D	3300	262	43		660	258*			760 2352	358× 1950×		
68	6 E	34	G 3	393	TD	TEXAS CO B gnd M	1	3910 D	3080	262	41		645	254*			748 2312	357 1921		
68	6 E	34	66	395	ΤD	TEXAS CO Cotter e	1	3920 D	3138	262	42		650	258*			755 2339	363* 1947*		
68	6 E	34	H 2	51	LD	TEXAS CO Johnson C	5	3870 C	3103	256	43		646		6	00	752 2305	365* 1918*		
68		35.	69			TEXAS CO SMITH M E	1	4050 C		262	42		650				760 2328	355* 1923*		
68	.6 E	35	D 4	401	TD	MAGNOLIA IRWIN W	1	4060 D	3163	262	42		6 6`0	254*			760 2352	354* 1946*		

HAMILTON COUNTY

Loc	ation of	Hole		County	Туре		Op'r's	Surface	Total	rd. ber	ar fful ation	Line	1 — Coal	No. 6			1 — Coal I 2 — Little /		
				Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth	Altitude	Thic	kness	Depth	Altitude	Thic	knes
ſwp.	Range		Sec.							-	-	(Feet)	(Feet)	Ft.	ln.	(Feet)	(Feet)	Ft.	In.
68	6 E	35	G 3	399	TD	OIL CARRS IRWIN ORVI	. 1	3810 8	3094	262	4 3	630	249*			730 2308	3494 19274		
68	6 E	35	G 7	398	TD	TEXAS CO Smith m a	2	3880 C	3145	868	43	630	242*			740 2314	352* 1926*		
68	6 E	35	н 2	400	TD	OFL CR ETL IRWIN ORVL		3770 0	3104	262	43	625	248*			730 2304	3534 19274		
68	7 E	3	C 8	541	TD	NAT ASSOC LITTLE G	1	4480 D	3419	257	44	792	344*			895 2454	447		
68	7 E	3	E 2	403	ТD	DELTA ETAL Johnsn Car		4270 C	3407	257	42	770	343*			890 2466	463* 2039*		
6 S	7 E	5	86	405	ΤD	SHELL OC BEAGLE N	, 7	3770 D	3027	257	42	634	257*			745 2271	368× 1894×		
68	7 E	5	D 6	406	то	MCBRIDEINO WINTERS C	1	3800 0	3235	257	42	680	300*			770 2312	390 1932		
63	7 E	5	06	49	LD	SHELL OC Kern j C	1	3900 D	3059	257	4 2	655	265*	5	00	760 2284	370× 1894*		C
68	7 E	5	GB	404	TD	CAMERON DO HALL BGRS1		3960 C	3065	257	42	685	289*			780 2325	384* 1929*		
68	7 E	6	A 1			SHELL OC BEAGLE N	J 9	3760 B	3014	257	43	610	_			710 2248	3344 18724	z	
68	7 E		8 8			PURE OC CUPPY E	23	3790 C			41	605				720 2202	3414 18234		
68	7 E		85			PURE OC CUPPY E	3	3790 D		257	40	590	_			695 2222	316* 1843*	2	
68	7 E	_	D 4			KINGWOODOO WILSON	1	3780 C		257	40	610				700 2237	3224		
68	7 E		E 8	410		KINGWOODOO DODD G E	8	3810 0	3014		41	670	289*			7502246	369*		
68	7E		62	409		CAMERON OC JOHNSN B F		4050 C	3073	257	42	675				760 2303	355*		
68	7 E	6	н8	407	TD	PURE OC PHILLIPS N	4 A 1	3810 C	3030	257	42	680	299*			770 2259	389* 1878*		

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

HAMILTON COUNTY

Loc	ation of	Hole		County	Type of	•	Op'r's	Surface	Total	Quad. Number	Year Drilled ^{Doubtful} Information	Line	I — Coal	No. 6		1 — Coal M 2 — Little A		
ſwp.	Range		Sec.	Number	Hole	Operator	Number	Altitude	Depth	9 ľ	Ye Dril Dril	Depth	Altitude	Thickness	Depth	Altitude	Thic	cknes
. np.	Kunge											(Feet)	(Feet)	Ft. In.	(Feet)	(Feet)	Ft.	In
6 \$	78	7	A 1	424	TD	PURE OC Mayberry K	5	3740 D	3030	257	43	620	246*		732 2271	358 1897 *		
6\$	7 E	7	A B	425	T,Ð	CAMERON OC Kern	8	3890 G	3058	257	4 2	635	233*		727 2272	338 1883		
68	7 E	7	83	418	ΤĐ	PURE OC MAYBERRY K	1	3780 Đ	3035	257	41	580	202 *		720 2255	342= 1877=		
68	7 E	7	85	426	TD	CAMERON OC Kern J C	1	3890 D	3005	257	41	590	201*		720 2253	331* 1864*		
6 3	7 E .	7	03	4 8 3	τÐ	TEXAS CO JOHNSN R R	4	3850 C	3015	257\$	41	590	205≉		725	340*		
6 S	7 E	7	05	420	TD	TEXAS CO CLARK J E	2	385.0 D	3010	257	41	600	215*		720 2232	335* 1847*	•	
68	7 E	7	08	422	TÐ	PURE OC FAIRWTHR S	A 3	3860 D	3045	257	41	600	214*		$\begin{array}{r} 714 \\ 2244 \end{array}$	328 1858		
6 S	7 E	7	F 2	421	TD	SHELL OC RITCHESN A	4	3790 C	3015	257	41	585	206≉		710 2228	3314 18494		
6 S	7 E	7	F 5	417	ΤD	TEXAS CO DAVIS M	4	3790 0	2986	257*	41	590	211*		715	3364		
68	7 E	7	G 4	416	TĐ	TEXAS CO DAVIS M	3	3770 D	2670	257	40	580	203*		700 2214	3234 18374		
5 3	7 E	7	G 7	427	TD	PURE OC CUPPY E	10	3820 0	2996	257	41	595			720 2199	338 1817	*	
68	7 E	7	Нб	419	TO	PURE OC CUPPY E	9	3810 D	2995	2574		590			710	329		
6 9	78	8	86	429	TD	TEXAS CO MILLER V H	2	3740 C	3075	257	42	625			712 2302		*	
68	7 E	8	96	433	TD	TEXAS CO MILLER V H	1	3750 D	3075		42	630			752		*	
68	7 E	8	08	434	TD	OHIO OIL HALL C W	1	3760 D	3009		41	595	,		738 2265		*	
68	7 E	8	F 6	432		PURE OC CONSOL WEA	1	3750 C	3027	257	42		257*		755 2274 745	1899	ŧ	
6 5	7 E	8	F 8	435	TD	TEXAS CO Clark WM	2	3770 D	3031	2574	42	615	238*		145	100		

HAMILTON COUNTY

Loc	ation of	Hole	•	County	Туре		Op'r's	Surface	Total	ber	ed Hful stion	Line 1	— Coal N	ło. 6		l — Coal N 2 — Little M	
ſwp.	Range	5	Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	(Feet)	Thickness Ft. In.	Depth (Feet)	(Feet)	Thickne Ft. I
6 8	7 E	8	G 7	430		TEXAS CO DAVIS M	13	3750 C	3038	257*	4 2	618	243*		735	360*	
65	7 E	8	68	428	ΤĐ	TEXAS-CO DAVIS M	12	3770 B	3024	257	41	615	238*	2	715	338≢ 1870≢	
68	7 E	8	нб	431	ΤĐ	GULF REF NEEL S	1	3750 D	3027	257	4 2	635	260*	2	745	370≢ 1911≢	
6 5	7 E	13	67	529	TØ	REWARD OC Walker C C	1	5120 D	3514	257	4 4	822	310*	2	946 556	434 2044 *	
68	7 E	17	88	443	ΤÐ	GULF REF JOHNSN B W	1	3750 D	3209	257	42	596	223*	a	720	345 = 1910 =	
68	7 E	17	02	455	Τð	WASHBURN J Arnold	1	3750 C	3340	257	43	638	263*	2	760 316	385* 1941=	
68	7 E			438		PURE OC LAYMAN J C	A 3	3730 D	2770		42	605		2	730	357* 1919*	
68	7 E		E 7	453	TO	TEXAS CO HALL J C	B10	3740 0	2764			610			73B 760	364 = 386 =	
68 68	7 E		F 6	454		PURE OC LAYMAN J C TEXAS CO	A 2	3740 C 3720 D	3062 3213	257 257*	42	630 620	~ 5 0 * 2 4 8 *	2	745	1933¢ 373*	
~ 3 6 8	76			451		HALL J C	B 3	3750 C	2768	257	42		260*		760	385*	
68	7 E					HALL J C	88	3750 D	3032		42	622	247*	2	755	1929* 380*	
68	7 E			474	TD	HALL J C Texas co	B 1	3770 0	3060	257'*	42	605	228*	2	292 735	1917 * 358 *	
68	7 E	18	A 3	473	TD	HALL J C MENHALL J	B 9	3920 Ø	3065	257	42	644	252≉		770	378*	
6 9	7 E	18	A 5	470	TD	HARRAWOOD TEXAS CO SIERKS M	1	3920 D	3090	257*	43	660	268*	×	283 760	1891* 368*	 1 ₄
68	7 E	18	B 6	458	TD	PURE OC JOHNSN CON	-	4060 D	3122	257	43	668	262*		790	384* 1918*	
68	7 E	18	C 1	472	ΤĐ	TEXAS CO HALL J C	B 7	3760 C	3048	257	4 2	590	214*	X	725	349≢ 1890≢	

HAMILTON COUNTY

Loc	ation of	Hole		Country	Туре		Op'r's	Surface	True	d. Der	ful fiel	Line	1 — Coal	No. 6		1 — Coal I 2 — Little /		
Twp.	Range	S	ec.	County Number	of Hole	Operator	Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled Doubtful Information	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thicl Ft.	kne Ir
68	7 E	18	C 3	471	TD	SHELL OC MORRIS G	w 4	3810 D	3059	257*	42	615	234*		725	344	b	
6 S	7 E	18	C 4	439	TD	SHELL OC Morris G	W 6	3880 D	2417	257*	43	622	234*		734	346	•	
68	7 E	18	C 6	456	TD	SHELL OC MØRRIS SH	г 2	3900 D	3069	257*	42	620	230*		734	344	Þ	
68	7 E	18	C 6	457	TO	SHELL OC WEBB E	3	4070 D	2467	257*	43	660	253*		760	353:	8	
6\$	7 E	18	C 8	469	TD	PURE OC ST CLAIR (G A 3	4110 D	2474	257	43	680	269*		800 2388	389* 1977*		
6 S	7ε	18	D 3	440	TD	SHELL OC MORRIS GI	5	3810 C	2416	257	43	610	≅ 29≉		732 2240	351* 1859*		
6 \$	7 E	18	05	441	TD	SHELL OC WEBB E	4	3940 D	2432	257*	43	625	231 *		742	348*	ı	
6 S	7 E	18	Ε1	468	TD	TEXAS CO HALL J C	B 6	3740 C	3059	257*	42	605	231 *		730	356		
68	7 E	18	E 6	442	TD	SHELL OC MORRIS SH	r 3	4150 D	3106	257*	43	648	233*		758	3434	I	
6\$	7 E	18	E 7	462	TD	SHELL OC Shelton j	1	4090 D	3117	257	42	645	236*		$\begin{array}{r}750\\2310\end{array}$	341* 1901*		
68	7 E	18	F 4	467	TD	KINGWOODO Shelton J	C 1	3790 D	3028	257	42	604	225*		708 2254	329* 1875*		
68	7 E	18	61	466	TO	SHELL OC SUMMERS M	4	3740 D	3075	257*	42	612	238*		725	351*		
6 S	7 E	18	63	465	TD	SHELL OC SUMMERS M	3	3790 D	3052	257*	42	600	221*		720	341*	•	
6 8	7 E	18	68	461	ΤD	TEXAS CO Johnsn Ri	R 13	3990 C	3078	257	42	645	246*		760 2301	361* 1902*		
6 S	7 E	18	Н 2	464	TD	SHELL OC SUMMERS M	2	3820 D	3057	257	42	605	223*		$\begin{array}{r} 715\\ 2276 \end{array}$	333 1894		
68	7Ε	18	на	463	TD	SHELL OC SUMMERS M	1	3830 D	3033	257*	41	585	202*		705	322*	•	
6 \$	7 E	18	н6	460	τD	SHELL OC Morris G	N 2	3900 D	3060	257	42	605	215*		720 2265	330 1875		

.

KEY BEDS IN HAMILTON COUNTY

HAMILTON COUNTY

Loc	ation of	Hole	•	County	Туре		Op'r's	Surface	Total	ld. ber	ar fful ation	Line	1 — Coal	No. 6		1 — Coal 2 — Little I		
			-	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful Information	Depth	Altitude	Thickness	Depth	Altitude	Thic	knes
Twp.	Range		Sec.							-	-	(Feet)	(Feet)	Ft. In.	(Feet)	(Feet)	Ft.	In.
6 5	7 E	18	M 8	459	TO	TEXAS CO Johnsn R	R 11	3960 D	3075	257*	41	635	2390		750	354:	•	1
6 8	7 E	19	63	437	тÐ	GULF REF Harrawd I) 1	3900 B	3078	261	43	656	266*		780 2310	390 1920		
68	7 E	19	G 5	475	T 0	MENHALL . Harráwð F		3830 C	2772	261	43	650	267*		7702308	387 1925 -		
63	7 E	19	M 4	476	TĐ	NAT PET HARRAWD (:M 1	3890 B	3063	261	43	650	261*		785 2296	3964 19074		
68	7 E	19	# 8	487	TD	TEXAS CO Wheeler /	6	3930 0	2450	261	44	670	277*		790 2332	397* 1939*		
68	7 Ę	30	H 8	477	TD	MENHALL . HAMMOND 1		3750 B	3066	261	43	590	215*		710 2309	335× 1934×		
6 \$	7 E	24	C 6	488	TB	TEXAS CO MCMAHON) 1	4370 0	3384	261	43	740	303¢		835 2442	398 2005 4		
68	7 2	28	٤1	489	TD	RYAN OC Hunt W A	1	3690 C	3332	261	41	650	281*		2388	2019*	¥.	
6 5	7E	30	92	490	TÐ	NERNDN DA Porter J		3730 C	3346	261	40	648			2376	2003		
6 3	7Ε	32	A 7	491	TO	MCBRIDEIN Marsch L	1	3660 0	3472	261	43	680	_		795 2383	4294 20174	r	
63	7 E	33	#4		LD	INB FRM E Seywour	1 1	3660 G	3349	261	44	651	285*		764 2401	398 2035	*	0
68	7 E	36	MG	492	TO	MARTIN R MCKENZIE	B C 1	4420 C	3295	261	41	680	238*		790 2409	348× 1967×		
78	5 E	3	F 5	18	8 C	TRI COUNT Weber 801		4539 P	845	262	21	758	304 \$		837	383:	8	
7. 8	5 E	4	E 4	19	80	AMCOKECHE JNNSN WRO		4510 N	792	262	203	729	278*	9 0 0	787	3361	≭ 5	i 0
78	5 E	14	C 4	39	8	AMCOKECHE Jones G I		4650 C	833	262	203	731	266*	6 0 8	828	3531	5	i 0
78	5 E	17	A 6	587	TD	SNCLR WYO Russell (4400 D	3139	262	44	670	230*		776 2350	336× 1910×		

HAMILTON COUNTY

Lo	cation of	Hole		County	Type of		Op'r's	Surface	Total	Quad. Number	Year Drilled Doubtful Information	Line	1 — Coal	No. 6			1 — Coal 2 — Little /		
Twp.	Range		iec.	Number	Hole	Operator	Number	Altitude	Depth	3 Ž	Pou Dril Dou	Depth	Altitude	Thic	kness	Depth	Altitude	Thick	kness
1 .	Kunge											(Feet)	(Feet)	Ft.	ln.	(Feet)	(Feet)	Ft.	In.
78	5 E	17	附4	542	T D	SWANN A K Medges W .	1	4830 0	3422	262	44	700	217*			2400	1917	¢.	
78	5 E	18	A 5	27	99	AMCOKECHEN Plaster J	16	4505 P	786	262	20	688	238*	6	06	778	328:	* 3	0 9
78	6 E	4	88	29	8 D	AMCOKECHEI DEAN	20	4257 P	829	262	<u> </u>	725	299*	7	0 2	822	396	₽ 6	0 3
78	6 E	7	E 2	30	0 0	ANCOKECHEI	1 21	4030 P	790	262	5 5	702	299*	6	08	782	379	* 4	1 (
78	6 E	8	60	31	00	AMCOKECHEI LEWIS J	1 2 2	3998 P	778	262	22	694	294*	7	00	772	372	* 5	0
78	6 E	8	E 5	538		PHILLIPS Fed Coke	1	4010 D	3362	262	43	701	300*			784 2384	383 1983		
78	6 E	9	A 3	493	ΤĐ	ALMA OC DAVIS P	1	4011 C	3388	262	39	675	274*			760 2345	359 1944	1	
78	6 E	9	F1	32	00	AMCOKECHEN Burnnett n		4052 P	764	262	20	673	268*	6	08	758	353	* 4	0
7 \$	6 E	14	62	16	D C	TRI COUNT Allen geo	1008	3944 P	776	262	20	679	285*			770	376	â	
7 3	6 E	15	H 8	17		TRI COUNTY DAVIS A	1010	3878 ₽	731	262	21	643	255*			725	337	•	
7 \$	6 E	16	65	26	DD	A M C O K E C H E I	13	3896 P	764	262	20	663	273*	7	00	757	367	\$ 6	0
7 S	6 E	17	01	495		A D K I N S E S F E D C O K E C M I		3970 0	3344	262	41	670	273*			745 2292	348 1895		
78	6 E	17	D 4	494	TD	ADKINS E FEDCOKECHI		4110 D	3266	262	41	702	291*			780 2318	369 1907	*	
78	6 E	17	05	34	00	AMCOKECHEN	1 23	4119 P	772	262	2 2	698	286*	7	11	765	353		0.4
78	Ø E	18	F3	33		A M C O K E C H E I H A R G R A V E		4230 P	793	262	2 2	706	283*	8	0 2	786	363	* 5	01

KEY BEDS IN HAMILTON COUNTY

HAMILTON COUNTY

Loc	ation of	Hole	•	County	Туре	_	Op'r's	Surface	Total	Quad. Number	Year Drilled	offul ation	Line	1 — Coal	No. 6	5	Line	1 Coal 1 2 Little A	No. 5 Nenar	ď
			-	Number	of Hole	Operator	Number	Altitude	Depth	0 m O L D	Ye Dril	Dout	Depth	Altitude	Thic	kness	Depth	Altitude	Thic	cness
Тwp.	Range		Sec.				- 51119121222000-000000						(Feet)	(Feet)	Ft.	ln.	(Feet)	(Feet)	Ft.	In.
7 8	7 E	15	D 6	15	BC	TRI COUNTY Kennedy F	1001	3594 P	660	261	20		547	188*			654	295*	:	
78	7 E	15	H 5	436	TD	CANERON O Bonley M	C 1	3810 C	3279	257	42		588	207*			710 2310	329 1929		
78	7 E	17	A 6	496	TO	ROBINSON (Porter ræn		3840 6	3660	262	39		550	166*			665 2280	281 1896	:	
7 \$	7 E	18	T 6	548	8 D	AMCOKECHEI Johnson A	a 24	3980 C	696	261	21	3	594	196*	5	10	690	2924	5	08
						532														
									The second s											
														·						
	5																			

RICHLAND COUNTY

Loc	ation of	Hole		County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled	ubtful mation		1 — Coal 2 — West 3 — Shoal 4 — Palzo	Franklin		1 Coal I 2 Coal I 3 Coal I 4 Glen I	No. 7 No. 4
Twp.	Range	s	ec.	Number	Hole	Operator	Number	Altitude	Depth	α ν	P, Y	Dou Infor	Depth (Feet)	4 — Palzo Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	1	Thickne Ft. In
						RICHLAND FEB 1 1946									- tantalan	-		
2 N	8 E	1	A 8	198	TD	PURE OC CHAFFIN E S C PALZO & G	C 1 D	4110 B	3110		44		946 724 540 1210	313* 129*		1010 904 2400	599# 493# 1989#	L
2 N	8 E	.1	C 8	186	ΤD	PURE OC KLNGSMTH H SC PALZO & G		4370 B	3110		44		974 758 576 1240	321* 139*		1088 928 2430	651 491 1993	
2 N	8 E .	1	G 6	89	ΤD	PURE OC FRYMAN CON SC PALZO & G		4460 B	3100		44		994 750 580 1270	134*		948 2421	5024 19754	
2 N	8 E	1	G8	350	ΤD	PURE OC GRUBB M M PALZO	4	4470 D	3083		44		1003 1276			1066 954	6194 5074	
2 N	8 E	1	Н7	182	ΤD	PURE OC GRUBB M M PALZO & G	2 D	4450 D	3085		44		996 1282			1064 954 2403	619* 509* 1958*	
2 N	8 E	2	D 5	183	ΤD	PURE OC SHARPG W PALZO & G	81 D	4120 D	2982		4 4		968 814 1250	402*		1034 924 2386	6224 5124 19744	2
2 N	8 E	2	F1	180	ΤD	PURE OC GRUBB M M SC PALZO & G	3 D	4340 D	3065		4 4		985 575 1264	141*		1050 937 2403	616 503 1969	2
2 N	8 E	2	F 5	185	TD	PURE OC ORREA SC PALZO&G	A 2	4370 B	3070		4 5		994 730 575 1270	293* 138*		1058 946 2414	621 509 1977	3

KEY BEDS IN RICHLAND COUNTY

RICHLAND COUNTY

Loc	cation of	Hole		County	Type of	_	ator	Op'r's	Surface	Total	Quad. Number Year Drilled	ibtful nation		1 — Coal 2 — West 3 — Shoal	Franklin Creek		1 — Coal No. 5 2 — Coal No. 7 3 — Coal No. 4
Twp.	Range	5	ec.	Number	Hole	Oper		Number	Altitude	Depth	Nun Pri	Dou Inforn	Depth (Feet)	4 — Palzo Altitude (Feet)	Thickness Ft. In.		4 — Glen Dean Altitude Thickn (Feet) Ft.
2 N	8 E	2	F 7	184		PURE PIERO PALZO	ЕΗ	B A1 D	4320 D	3080	4 5		998 1270	566* 838*		1060 954 2422	628* 522* 1990*
2 N	8 E	2	G S	179		P U R E G R U B B P A L Z O	M M	5	4230 D	3045	4 4		800	547* 377* 837*		1044 930 2395	507*
2 N	8 E	2	Η1	181	ΤD	P U R E G R U B E P A L Z O	MM	1	4330 C	3055	4 4		780	552* 347* 837*		1045 930 2389	612# 497# 1956#
2 N	9 E -	5	G 6	10	ΤD	WERNF SMITH SC8	CRR	L 1	4450 C	3140	4 1		776	538≉ 331≉ 144*		1054 942 1148	609≉ 497≉ 703≉
2 N	9 E	6	D8	187	тD	PURE WHRRL SC PALZC	L CO	N 1	4420 D	3088	4 4		746 570	521* 304* 128* 794*		1030 922 2434	588* 480* 1992*
2 N	9 E	7	G 7	11	ΤD	PURE VAN N	O C A T R E G	1	4140 C	3036	3 8			526* 311*		1015 900 2416	601* 486* 2002*
2 N	9 E	11	02	2 26	TD	BREHN BREHN S C PALZO		1	4300 D	3270	4 5		750 558	560* 320* 128* 850*		1060 946 2574	
2 N	9 E	12	Η7	12	TD	PURE	0.0	1 A	4130 C	3185	4 1		968 742	555* 329*		1048 907 1138 2543	635* 494* 725* 2130*
2 N	9 E	13	D 8	228	TD	PURE HOWAF SC PALZO	D J	C A1	4070 D	3243	4 5		726	561* 319* 133* 799*		1	618* 523* 2183*

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

RICHLAND COUNTY

Lo	cation of	Hole	County	Type of	Operator	Op'r's	· Surface	Total	Quad. Number	Year Drilled ^{Doubtful}		1 Coal 2 West 3 Shoa	Franklin Creek		1 Coal I 2 Coal I 3 Coal I 4 Glen	No. 7 No. 4
Twp.	Range	Sec.	Number	Hole	Operator	Number	Altitude	Depth	9 P	Dri X		4 — Palza Altitude	Thickness			Thickne
i wp.	Kange	Jec.		-					-		Depth (Feet)	1	Ft. In.	(Feet)	(Feet)	Ft. I
2 N	10E	5 A 8	304		STANLND Ö JENNINGS SC PALZO & G	G 1	4380 8	3 2 9 0		4 4	1006 758 554	320* 116*		1080 936 2575	642 498 2137	
2 N	10E	5 G 8	197		PURE OC SLCHNMYR SC PALZO & G	P & 1	4410 D	3230		45	10.06 756 554	565* 315* 113*		1078 932 2530	637* 491* 2089*	
2 N	10E	6 4 2	192	τD	PHILLIPS RICHLAND SC PALZO & G	D 2	4280 D	3156		45	976 738 540 1258	310* 112*		1054 918 2568	626* 490* 2140*	8
2 N	10E	6 B1			PHILLIPS RICHLAND SC PALZO & G	1 D	4330 D			44	990 746 554 1240	313* 121* 807*		1065 926 2573	6324 4934 2140*	
	10E	6 B 5			PURE OC WILSON C S C PALZO & G		4070 D			45	942 700 500 1230) 293* 93* 823*		1014 880 2542	607 473 2135 *	
2 N	10E	6 D 1			PHILLIPS KUHL SC PALZO & G	1 D	4250 D			44	970 728 520 1250	303# 95# 825#		1046 904 2560	621* 479* 2135*	
2 N	10E	6 D 3			PHILLIPS TRACY SC PALZO & G	1 D	4070 D			44	952 712 516 1240	305* 109* 833*		1024 885 2555	617 479 2149	
2 N	1 O E	6 F 3	195	ΤD	PHILLIPS BOHLANDER SC PALZO & G		4160 D			44	960 712 520 1240	296*		1030 890 2556	614 474 2140	
2 N	10E	7 C 7	321	ΤD	PURE OC MULLINAX SC PALZO & G		4060 C	3134		45	970 724 520 1268	318 * 114 *		1054 900 2544	648* 494* 2138*	8

KEY BEDS IN RICHLAND COUNTY

RICHLAND COUNTY

Lo	cation of	Hole	County	Type	Operator	Op'r's		Total	Quad. Number Year	Doubtful Information		1 — Coal 2 — West 3 — Shoal	Franklin Creek		I — Coal No. 5 2 — Coal No. 7 3 — Coal No. 4
Twp.	Range	Sec.	Number	Hole	Operator	Number	Altitude	Depth	°SN ≻2	Dou	Depth (Feet)	4 — Palza Altitude (Feet)	Thickness Ft. In.	-	4 — Glen Dean Altitude Thickne (Feet) Ft. I
2 N	10E	7 D 3	326	TD	ROSS CR BOWENETAL SC PALZO & G	. 1	4 1 80 Đ	3157	4 5		733 537	557* 315* 119* 845*		1049 913 2564	631* 495* 2146*
2 N	1 O E	7 D 5	231	TD	COOPREF ROTRAMEL C SC PALZO & G	: 1	4050 D	3126	4 5		714 524	551* 309* 119* 840*		1034 894 2542	629* 469* 2137*
2 N	1 O E	7 E 6	230	TD	COOPREF EDE ETAL SC PALZO & G	2	40400	3126	4 5		720	556* 316* 110* 842*		1034 894 2544	630* 490* 2140*
2 N	1 O E	7 G 2	330	тD	PHILLIPS DELILAH SC PALZO&G	6	4160 D	3143	4 5	1999 - 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	738	562* 322* 107* 852*		1054 918 2551	638* 502* 2135*
2 N	1 O E	7 H1	196	τD	PHILLIPS DELILAH SC PALZO & G	1	4290 D	3281	4 4	And the second se	750	571* 321* 115* 867*		1074 938 2562	645≉ 509≉ 2133≉
2 N	1 0E	10 D1	13	тр	1 NAT PET RICHEY S C & NO 4 G	1	4550 C	3368	4 3	And a second	825	593* 370* 147*		1128 1003 1230 2695	673* 548* 7,75*
2 N	1 O E	14 A 8	189	τD	JACKSNL B MCDONALD R PALZO & G	: 1	4770 D	3365	4 4		776	543* 299* 843*		1102 976 2700	625* 499* 2223*
2 N	1 O E	17 A7	349	ΤD	PURE OC RITTER CON PALZO & G	B 1	4360 D	3222	4 5		737	544* 301* 826*		1046 910 2615	610* 474* 2179*
2 N	1 O E	18 E1	225	TD	PURE & JWC LAME A SC PALZO & G		4250 D	3245	45		734	549* 309* 125* 850*		1048 910 2604	623* 485* 2179*
2 N	1 O E	19 G1	232	то	PURE OC KIMMEL U S C PALZO & G	1	4320 D	3266	4 5		974 722 540	542* 290* 108* 826*		1040 906	608*

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

RICHLAND COUNTY

Loc	ation of	Hole		County	Type	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled ^{Doubtful}	1	1 — Coal 2 — West 3 — Shoal	Franklin Creek		1 Coal M 2 Coal M 3 Coal M	No. 7 No. 4
Twp.	Range	s	ec.	Number	Hole		Number	Altitude	Depth	g y	Dri Dou	Depth (Feet)	4 — Palzo Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	4 — Glen I Altitude (Feet)	
2 N	10E	20	G 5	223	ΤD	PHILLIPS NITRAM SC PALZO & G	1	4340 B	3304		4 5	996 745 454 1286	311* 20*		1070 930 2606	636 496 2172	3
2 N	10E	20	Η 6	233	то	CARTER J BORAH O C S C PALZO & G	W 1	4330 D	3203		4 5	990 742 544 1222	309* 111*		1063 920 2610		•
2 N	10E	2 2	A 3	14	τD	MARTIN R SMITH R C NO	B 1	4580 B	3300		42	1012 764	554 *		1100 970 1177 2700	642* 512* 719* 2243*	1 - 1 -
2 N	1 O E	26	A 5	305	тD	MARTIN R BOYD C PALZO & G	1	4630 D	3257		4 3	1016 765 1310			1100 924 2644	637 461 2181	
2 N	1 O E	26	A 7	306	то	ASHLND OR DESCHR,ET PALZ9 & G	L 1	45BO D	3310	- -	43	1012 766 1296	308*		975	637 517 2182 •	1
2 N	10E	26	B 4	235		ASHLND OR POWELL J		4580 D	3250		44		532 * 284 *		950	492*	i
2 N	1 O E	26	C 5	234	ΤD	ASHLND OR BOYDC PALZO & G	2	4570 D	3 3 3 0		44	994 744 1294	287 🛊		1076 954 2650	619* 497* 2193*	
2 N	1 O E	26	C 8	15	ΤD	MARTIN R DEISCHER NO G	1 4	4530 C	3268		41		543≉ 297≉		1078 955 1168 2655	625 502 715 2202	
2 N	10E.	26	D 1	16	ΤD	ROBNSN ET JENNER NO G	1	4710 C	3326		40		506≉ 272≉		1057 936 1150 2655	5864 4654 6794 21844	
													-				

KEY BEDS IN RICHLAND COUNTY

RICHLAND COUNTY

Loo	ation of	Hole	Cou	ntv	Туре		Op'r's	Surface	Total	id. ber	tion tion		e 1 — Coal 2 — West 3 — Shoal	Franklin		1 — Coal No. 5 2 — Coal No. 7 3 — Coal No. 4
Twp.	Range	Sec	Num		of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful	Depth	4 — Palzo Altitude			4 — Glen Dean Altitude Thickness
2 N	11E	30 C	8 1	7	TD	ZEPHYR DI Simpson	RC FH 1	5120 B	3365		42	(Feet)	0 508*	Ft. In.	(Feet) 1100 977	(Feet) Ft. In. 588 \$ 465 \$
							G 0								2671	
2 N	14W	4 E	1 30	7	ΤD	ASHLND Ø FRDLY CO PALZO &	MM 1	4390 D	3202	234	4 3	72	0 531* 5 286* 0 821*		1065 900 2516	4614
2 N	14₩	8 0	2 2	0	TD	SUN OC CLDFLTR	JL 1	4940 C	3276	234	41		B 494* B 264*		1070	576 ¢
2 N	14W	8 C	3 2	2	ΤD	OHIO OIL WHITAKER SC&NO	Ρ 1	4920 D	3139	234	41	75	0 498* 5 263* 2 100*		1073 930 1170 2578	581 438 678 2086
2 N	14₩	8 E	3 2	1	ΤD	CRAFT ET DAUBS M NO	1	5070 0	3169	234	41		0 503≋ 9 262≉		1091 949 1188 2584	584 442 681 2077
2 N	14₩	8 F	2 1	. 9	ΤD	ARROW&TE BUNCH A NO	1	4940 C	3167	234	41		7 503* 6 272*		1084 940 1168 2576	590 446 674 2082 *
2 N	14₩	8 0	3 1	. 8	ΤD	SNCLR WY BOLEY R SC & NO	1	4920 C	3140	234	41	77	3 511* 1 279* 5 103*		1087 943 1183 2575	595* 451* 691* 2083*
2 N	14W	13 0	2 2	3	ΤD	SEABOARD WETZEL H S C & NO	4	5200 C	3067	234	412	90 69 49			1020 868 1080 2421	500# 348# 560# 1901#
2 N	14W	16 /	8 32	0	ΤD	JOHNSTON HUNDLEY PALZO &	J 1	4880 C	3133		4 5	76	2 514* 5 277* 7 819*		1103 954 2570	615* 466* 2082*
					And The American											

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

RICHLAND COUNTY

Loc	ation of	Hole		County	Type	0	Op'r's	Surface	Total	uad. mber	Year Drilled Doubtful		1 Coal 2 West 3 Shoal 4 Palzo	Franklin Creek		1 — Coal N 2 — Coal N 3 — Coal N 4 — Glen D	No. 7 No. 4	
Twp.	Range	5	Sec.	Number	Hole		Number	Altitude	Depth	¢₹	ζ Δ Å	Depth (Feet)	Altitude	Thickness Ft. In.		Altitude	Thick	ines: In.
2 N	14₩	16	G 7	24	TD	DUNCNWET BIERHAUS NO	W 1	4730 D	3206	234	41	983 750	510* 277*		1064 933 1154 2568	591 460 681 2095	: :	
2 N	14₩	17	A 5	26	ΤD	SIEGELI WEESNERE NO	1	5010 G	3174	234	42		494≉ 252≉		1087 930 1177 2572	586* 429* 676* 2071*	:	
2 N	14₩	17	B 1	329	ΤD	JOHNSTON RIDGLEY SC PALZO & G	3	4960 D	3144	234	45	771 580	520* 275* 84* 804*		1104 965 2560	608* 469* 2064*		
2 N	14W	17	C 3	8	LD	LVNGSTN A HOLTZ B H NO	i 1	4900 0	3197	234	43	1000 754	510≇ 264≉		1088 938 1190	598* 448* 700*	_	0
2 N	14₩	17	E 6	25	ΤD	OHIO OIL LAMBERT N NO	1 1	4960 C	3148	234	41		500* 260*		1080 933 1179 2574	584* 437* 683* 2078*		
2 N	14₩.	20	Β5	328	ΤD	BRDIGEF HILLWP PALZO&G	3	4840 Đ	3156	234	45		504* 253* 800*		1071 923 2573	587* 439* 2089*		
2 N	14W	20	C 7	28	ΤD	OHIO OIL WALDEN M G	1 0	4940 C	3201		41		492≉ 260≉	1	1074 928 2592	580 * 434 * 2098 *		
2 N	14₩	20	F 2	216	тр	OHIO DIL CHILDS C NO	1	4760 D	3200	234	43	996 750	520 \$ 274 \$		1084 926 1160	608¢ 450‡ 684\$		
2 N	14₩	ະ 0	G 4	27	ΤD	OHIO OIL HULL G G NO	1	4940 C	3167	234	41		504≉ 264≉		1093 935 1183 2575	599* 441* 689* 2081*	1	
2 N	14₩	21	¥ 2	32	то	BONPAS DE WOODS J	E V 3	4440 D	3069	234	42	938 695	494 * 251*		1018	5740	I	

RICHLAND COUNTY

Lo	cation of	Hole	8	County	Туре	5		Op'r's	Surface	Total	d. Jer	- p 3	tion	2	I — Coal 2 — West 3 — Shoal	Franklin		1 — Coal No. 2 — Coal No. 3 — Coal No.	7
Twp.	Range		Sec.	Number	of Hole	Opei	ator	Number	Altitude	Depth	Quad. Number	Year Drilled ^{Doubtful}	Informa	4	4 — Palza Altitude			4 <u> </u>	
			•											Feet)	(Feet)	Ft. In.	(Feet)	(Feet) Ft.	- <u>-</u>
2 N	14W	21	A 4	31	ΤD	B O N P / W O O D S	ASDE 3 J	v V	4650 C	3096	234	42			489≢ 246≉		1034	569*	
2 N	14W	21	A 5	33	ΤD		RLPIP WLT NO G	R 1	4560 D	3164	234	42			510* 256*		1038 898 1123 2510	582* 442* 667* 2054*	
2 N	14W	21	81	30	ΤD	8 0 N P / W 0 0 D 5		¥ 1 D	4360 C	3100	234	41		937 690	501 * 254 *		874 2498	438 2062 #	
2 N	14₩	21	C 2	303	_	AHLFI	SDE ELD J&G	1	4390 C	3102	234	42		690	531* 251* 801*		1040 885 2512	601 446 2073	
2 N	14₩	21	C 4	29	тр		IRN O ELD G	1	4620 G	3198	234	42			509* 259*		1067 908 2523	605# 446# 2061#	
2 N	14₩	22	B 6	200	TD	LETH F YON AK	S ETI	1	4100 T	3062	234	393		690	280*				
2 N	14W	2 2	G 5	302		FUNK TARPL PALZO	ĒΥ	1	4260 D	3110	234	43		685	501 * 259* 788*		1012 862	586* 436*	
2 N	14₩	28	G 4	34		CENTR MCVEI	LPIPI GH NO G	4 1	4480 D	3154	234	42			498* 248*		1035 886 1104 2518	587* 438* 656* 2070*	
2 N	14₩	29	A 6	43			WETU GEG NOG	1 4	4820 C	3200	234	41			465* 224*		1037 894 1123 2514	555¢ 412* 641* 2032*	
2 N	14W	29	A 7	36		OHIO CLDFL	OIL TR CO) 2	4846 C	3146		41			466* 229*		1037	552*	

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

RICHLAND COUNTY

Loo	ation of	Hole		County	Type of	<u> </u>	Op'r's	Surface	Total	Quad. Number	Year Drilled ^{Doubtful}		1 — Coal 2 — West 3 — Shoal	Franklin Creek		1 — Coal No 2 — Coal No 3 — Coal No	. 7 . 4
Twp.	Range	s	iec.	Number	Hole	eperator	Number	Altitude	Depth	ă Đ	Y D of	Depin	4 — Palzo Altitude (Feet)	Thickness Ft. In.	1	4 — Glen De Altitude T (Feet) F	
2 N	14₩	29	85	41	TD	SNCLR WYO CLDFLTR C	M 5	4800 C	3113	234	4 1		471 * 234 *		1037		
2 N	14W	29	B 7	35	тD	OHIO OIL CLDFLTR C	0 1	4920 C	3130		41		475* 232*		1050	558*	
2 N	14W	29	C 4	4 2		NELSON DE EVANS H&A		4770 C	3133	234	41	968 723	491≉ 246≢		1052	575*	
2 N	14W	29	C 5	38	ΤD	SNCLR WYO CLDFLTR C		4770 C	3111	234	41	956 716	479* 239*		1040	563 =	
2 N	14₩	29	C 7	40	ΤD	SNCLR WYO CLDFLTR C	M 4	4950 C	3131		41		483* 239*		1062	567*	
2 N	14W	29	D 5	51	ΤD	SNCLR WYO CLDFLTR C G	พ 0 1 อ	4890 C	3125	234	41	970 734	481 * 245*		1058 920 2542	431*	
2 N	14W	29	D 7	39	ΤD	SNCLR WYO CLDFLTR C	M 3	4970 C	3132		41		483 247 *		1068	571\$	
2 N	14₩	29	E 4	37	ΤD	NELSON DE CLDFLTR C G	v D	4710 C	3130	234	41		498≉ 264≉		1053 918 2538	582* 447* 2067*	
2 N	14W	29	E 5	44		OHIO OIL KOERTGE H		4880 C	3129	234	41	975 737	487* 249*		106 3	575#	
2 N	14W	29	Ε7	49	ΤD	OHIO OIL KOERTGE H		4940 D	3136		41	975 740	481* 246*		1060	566*	

RICHLAND COUNTY

2 N 14	4 ¥ 4 ₩ 4 ₩	29 29 29	Sec. F 6 G 4 G 5 B 1	331 48	T D T D T D	OHI KOE BRI MAT PAL OHI KOE	R T D G H E Z O	GE NG EF SC 4	- H G I - A G I	D 1	48		D	Depth 3 1 2 8 3 1 4 0	A Cuad.	4 1 4 5		(Feet) 972 735 963 725	(Feet) 485# 248# 484# 246#	Thickness Ft. In.	Depth (Feet) 1058 924 1145 2542 1046 916 2548	4 — Glen Altitude (Feet) 5714 4374 20556 5676 4374 2059	Thickn Ft.
2 N 14 2 N 14 2 N 14	4 ¥ 4 ₩ 4 ₩	29 29	G 4 G 5	331 48	TD	K O E B R I M A T P A L O H I	R T D G H E Z O	GE NG EF SC 4	- H - G − I - A - G − I - G − I	D 1	47	90	-				1	735 963 725	248 ¢ 484 ¢ 246 ¢		924 1145 2542 1046 916	4374 6584 20554 5674 4374	
2 N 14	4₩ 4₩	29	G 5	48	TD	M A T P A L O H I	H E Z O	S C &	с н с і				Ð	3140	234	45		725	246 *		916	4376	
2N 14	4 ₩																	1262	783*		\$ 3 4 8		
		30	81	46	тр	1		NO	3 4 G 1	1 D	4 5	30	D	3148	234	4,2		968 734	485* 251*		1056 925 1145 2552	5734 4424 6624 20694	
2N 14	4 🗑		•			0 H I S T E		NS NG		1 D	48	00	G	3129		41			472* 237*	-	1039 902 1135 2569	559. 422 = 655 = 2089 =	:
	r ed	30	C 1	4 5	ΤD	0 H I S T E				2	50	05	C	3170		42			475* 237*		1060	559*	
2N 14	4₩	30	ΕS	47	TD	ARR KOE		GE NO		1 D	504	40	Ð	3190		41			483* 238*		1072 941 1165 2590	568 437 661 2086 *	
3 N 8	8 E	1	F 1	199		PUR HAS S C	LΕ	RI		A 1	44;	2 O	D	3180		4 5		1085 885 705	643* 443* 263*		1170 1050	728* 608*	
3 N 8	8 E	12	E 5	53	ТD	PAĽ HEL TAY	SE	N V	G E	1	441	L 0	с	3099		37	- 1	1375 1076 810	933* 635* 369*		2500 1135	2058 * 694 *	
						S C PAL	Z 0	ê	GE	_								680 1310	239* 869*		1022 2475	581* 2034*	
3 N 8	8E :	13	A 2	236		DUN MOR PAL	RI	S C		1	447	70	Ð	2990		44		1004 804 1276	557* 357* 829*		1066 960 2418	619* 513* 1971*	

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

where the second se

RICHLAND COUNTY

Loc	ation of	Hole		County	Type of	Operator	Op'r's Number	Surface	Total	Quad. Number	Year Drilled	oubtful rmation		1 — Coal 2 — West 3 — Shoal 4 — Palzo	Frank Cree	din		1 — Coal 2 — Coal 3 — Coal 4 — Glen	No. 7 No. 4
Twp.	Range	S	iec.	Number	Hole		Inomper	Altitude	Depth	۵₹	٦	Do Info	Depth (Feet)	Altitude (Feet)	Thic	kness In.		Altitude	Thicknes Ft. In
3 N	8.E	13	A 5	55	TD	FRAZRESPE BRANT F M NO G	1	4420 G	3072		4 2		1027 841	585* 399*		The second s	1087 987 1177 2427	6454 5454 7354 19854	
3 N	8 E	13	E 1	188		PURE OC PLEASANT SC PALZO & G	N 1	4550 0	3103		44		1026 818 635 1290	363*			1086 972 2420	631 517 1965	9
3 N	8 E	13	Е3	237		BLACK PALMER P SC PALZO & G		4510 B	3019		4 5		1030 825 650 1300	374*			1094 986 2430		8
3 N	8 E	24	A Á	291	TD	PURE OC RUSK E S C PALZO & G	1	4490 D	3026		44		1006 826 600 1275	377# 151#			1065 960 2422	6164 5114 19734	
3 N	8 E	24	82	301	ΤÐ	PURE OC RUSK E S C PALZO & G	2 D	4520 D	3010		44		990 590 1254	138*			1048 940 2419	5964 4884 19674	
3Ń	8 E	24	05	111		PURE OC MARTIN WM PALZO & G	2 0	4380 D	2988		4 4		1000 1264	562* 826*			1056 944 2420	6184 5064 19824	
3 N	8 E	24	F3	332		PURE OC MARTIN AR PALZO & G		4530 D	3018		44			563* 817*			1076 962 2426	6234 5094 19734	•
3 N	8 E	24	Η1	238		FULK&CRVN MRTN Å ET PALZO & G	L 2	4460 D	2995		44		1018 816 1286				1076 960 2577	6304 5144 21314	5
3 N	ΒE	25	B4	295		PURE OC PARSNS CO S C PALZO & G		4470 D	3100		43		1000 773 590 1260	143*			1060 956 2423	613¢ 509¢ 1976¢	
3 N	8 E	25	D 1	217	τD	PURE OC KLNGENSMTI NO		4490 D	3080		43		993 774				1055 950 1145	6064 5014 6964	

RICHLAND COUNTY

	_			County Number	Type of Hole	0	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled ^{Doubtful}	formati	3 — Shoa 4 — Palza			3 — Coal No. 4 4 — Glen Dean
Twp.	Range		Sec.			annati, Gudalan						Depin	Altitude (Feet)	Thickness Ft. In.		Altitude Thickness (Feet) Ft. In.
3 N	8 E	2	5 D 6	218		PURE OC KLGMIT CON SC PALZO & G	B 1 D	4490 D	3025		44	80	0 561* 351* 161* 4 845*		1070 966 2430	
3 N	8 E	5	5 E1	294		PURE OC ODELL L H S C PALZO & G	1	4440 D	3055		43	79 58	551* 551* 142* 808*		1054 948 2417	
3 N	8 E	2	5 F 5	296		PURE OC PIPHER CON SC PALZO & G	1	420Ö D	3030		44	781 591	560* 362* 170* 830*		1040 940 2400	
3 N	8 E	2	5 F 7	293		PURE OC PIPHER H SC PALZO & G	2	4170 0	2995		44	79	548* 373* 181* 5808*		1025 935 2400	
3 N	8 E	2	5 G 6	297		PURE OC PIPHER H SC PALZO & G	1	4420 D	3 1 00		44	820	562* 378* 178* 828*		1060 914 2420	618* 472* 1978*
3 N	8 E	2	5 H 5	219		PURE OC PIPHER H S C PALZO & G	3	4210 D	2995		44	58) 559* 159* 829*	# 0	1040 940 2395	619* 519* 1974*
3 N	8 E	3	5 B 1	555		PURE OC SMITH CT SC PALZO & G	۸3	4440 D	3075		44	801 651	552* 364* 214* 844*		1061 940 2418	617# 496# 1974#
3 N	8 E	3	5 B 3	341		PURE OC SMITH CT PALZO & G	A 4	4310 D	3078		44		552 * 839 *		1046 938 2400	
3 N	8 E	3	5 D 3	292		PUREOC KSKDDN CON SC PALZO & G	1	4440 D	3088		44	594	2 558* 150* 836*	# 0	1055 950 2420	
3 N	8 E	3	6 46	550		PURE OC GRUBBAL SC PALZO&G	8 A D	4480 D	3090		44	993 723 580	2 544 2 274 1 32 8 36 *		1056 950	

RICHLAND COUNTY

Loc	ation of	Hole	County	Type	Operator		tal Dunder.	Year Drilled Doubtful Information	•	— Coal No. 6 — West Franklin — Shoal Creek	3 Coal No. 4
Twp.	Range	Sec.	Number	Hole		Altitude De	pth 32	Dri Dou	Debiu 1	— Palzo Altitude Thickn (Feet) Ft.	4 Glen Dean ess Depth Altitude Thickness n. (Feet) (Feet) Ft. In.
3 N	8E	36 C 8	34Ò	TD	PURE OC GUYOTC A 2 SC PALZO & GD	4410 D 30	72	4 4	990 764 622 1280	549* 323* 181* 839*	1054 613 936 495 2404 1963
3 N	8 E	36 D 2	221	ΤD	PURE OC PHILPOTT G 1 PALZO & GD	4540 D 30	96	4 4	970 1240	516* 786*	1036 582* 918 464* 2424 1970*
3 N	8 E	36 D 5	239	ΤD	PUREOC BOONEHG 2 SC PALZO&GD	4530 D 30	0	4 5	984 800 584 1250	531* 347* 131* 797*	1050 597 928 475 2425 1972*
3 N	8 E	36 E 8	339	то	PUREOC GRUBBART D2 SC PALZO&GD	4350 D 30	58	45	975 775 602 1240	540* 340* 167* 805*	1040 605* 932 497* 2409 1974*
3 N	8 E	36 G 2	215	ΤD	PURE OC GRUBBART B1 NO 4	4490 D 30	56 232	43	977 760	528* 311*	1040 591* 932 483* 1129 680*
3 N	8 E	36 G8	224	TD	PUREOC GRUBBCONB1 SC PALZO&GD	4390 D 30	5 5	4 5	984 785 590 1244	545≉ 346≉ 151≉ 805≉	1094 655* 944 505* 2415 1976*
3 N	9 E	2 B 6	300	ΤD	CARDNALOC MILLER 1 SC PALZO&GD	4630 C 30	2 5	4 4	1000 780 590 1240	537* 317* 127* 777*	1064 601* 945 482* 2390 1927*
3 N	9 E	2 E 2	56	TD	PURE OC MILLER DM 1 SC GD	4730 C 29	95	41	1000 820 625	527* 347* 152*	1068 595* 958 485* 2418 1945*
3 N	9 E	3 C 7	58	TD	PURE OC SNYDER AM 5 SC GD	4880 C 30	17	42	1035 813 633	32 5 *	1100 612* 2390 1902*

RICHLAND COUNTY

	ocation of	Hole	e	County	Type of	1	Op'r's	Surface	Total	ad. iber ar ation		1 — Coal No. 6 2 — West Franklin 3 — Shoal Creek	3	Coal No. 5 2 Coal No. 7 3 Coal No. 4
Twp.	Range		Sec.	Number	or Höle	Operator	Number	Altitude	Depth	Quad. Number Year Drilled Doubted	Depth (Feet)	4 — Palzo Altitude Thickness (Feet) Ft. In.	Depth (Feet)	t — Glen Dean Altitude Thicknes (Feet) Ft. In
3 ‡	9 E	3	D 8	201	ΤD	PURE OC SNYDER A SC & NO	M 7 4	4940 D	2645	4 3	1024 812 628	318*	1086 973 1154	592 • 479 • 660 •
31	9 E	3	F 1	57	ΤĐ	STENGLE AL DAVNPRT A SC	L 1 D	4790 C	2985	4 0	1033 833 643	354*	978 2409	499* 1930*
31	9 E	3	G 5	310		PURE OC SNYBER A SC PALZO	8	4890 D	3025	4 4	1025 814 635 1325	325* 146*	1092 974	603¢ 485¢
31	9 E	4	A 3	117		PURE OC COENJO SC	36 D	4910 C	2650	4 3	1024 806 630	533* 315*	1087 976 2384	596¢ 485¢ 1893¢
31	9 E	4	A 7	311		PURE OC COENJO SC PALZO & G	42	4910 D	2650	44	1030 804 635 1280	313* 144*	1090 980 2384	599# 489# 1893#
31	9 E	4	C 3	115		PURE OC COEN J O G	33 D	4960 C	2650	4 2	1025	529*	1086 973 2388	590* 477* 1892*
31	9 E	4	C 4	116		PURE OC COENJO SC	34	4960 C	2650	4 3	813	534* 317* 139*	983	487¢
31	9 E	4	C 6	312		PURE OC COENJO SC PALZO & G	4 0 D	4930 D	2650	44	1020 796 640 1265	303* 147*	1085 975 2378	592* 482* 1885*
3 M	9 E	4	C 7	313	тD	PURE OC COENJO SC PALZO & G	41	4910 D	2650	44	1024 820 642 1265	533* 329* 151*	1096 978 2382	605* 487* 1891*
3 M	9 E	4	D 2	114		PURE OC COEN JO G	31 D	4940 C	2640	42	1019 802	525*	1080 967	586° 473° 1890°

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

RICHLAND COUNTY

Loc	cation of	Hole	County	Туре		p'r's	Surface	Total	Quad. Number	ar led offul		1 — Coal 2 — West 3 — Shoal	Franklin Creek		1 Coal M 2 Coal M 3 Coal M	lo. 7 lo. 4
Twp.	Range	Sec.	Number	of Hole	Operator Nu	mber	Altitude	Depth	Nun	Year Drilled	Depth (Feet)	4 — Palzo Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	4 — Glen I Altitude (Feet)	Dean Thickness Ft. In.
3 N	9 E	5 C 1	314	TD	PURE OC PALMER TAY S C PALZO & G D	12	4910 D	2650		44	1030 810 635 1265	319* 144*		1090 982 2384	599# 491# 1893#	
3 N	9 E	5 G 2	118	ΤD	GULF REF EBERHRDT MST S C & NO 4	W D 1	5080 D	1744		40	1053 843 657	335*		1114 1005 1195	606 497 687	۰ , ^۱
3 N	9 E	6 D 3	120	ΤD	PURE 0C NOE A S C & NO 4	B 1	4630 C	3070		41	1078 868 696	405 *		1140 1029 1218	677 566 755	1
3 N	9 E	7 A 3	242	ΤĎ	PURE OC CROUSE CON S C PALZO & G D	1	4670 D	3000		4 5	1042 840 662 1310	373¢ 195*		1102 1002 2412	635 535 1945	1
3 N	9 E	7 4 5	243	ΤD	PURE OC SUMMERS C PALZO & G D	1	4580 D	3070		45	1046 844 1320	588* 386*		1110 1010 2426	652* 552* 1968*	
3 N	9 E	66 B 8	244	TD	PURE OC HART W H S C PALZO & G D	1	4670 D	3036		45	1015 796 640 1280	329≉ 173≉		1078 975 2380	611 508 1913	
3 N	9 E	8 H 8	121	T D	OHIO OIL ARBUTHNOT S C G D	1	4691 P	2988	-	37.	1036 825 652	567 \$ 356 \$		1102 991 2402	633* 522*	
3 N	9 E	9 C 5	338	ΤD	BLACK JL ROBRDS ETL S C	1	4870 D	2609		44	1010 814 620 1254	523* 327* 133* 767*		1076 968 2389	589 481 1902	
3 N	9 E	9 D 2	77	τD	PALZO & G D PURE OC HILL L R S C	1	4840 D	2650		42	1021 802 618	787≉ 537≉ 318≉ 134≉		1088 976	604 492 *	
3 N	9 E	9 E 2	75	TD	G B PURE 0C C0EN J 0 S C & N0 4 G D	30	4880 C	2650		42	1019 797 628	531* 309* 140*		2397 1084 974 1155 2398	1913 596 486 667 1910	
					·.									- Andre a delayatione		

KEY BEDS IN RICHLAND COUNTY

alter i sectione des sets secolations - inte

RICHLAND COUNTY

Loc	ation of	Hole	- County Number	Type of	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	Year Drilled ^{Doubtful}		1 — Coal 2 — West 3 — Shoa 4 — Palzo	Franklin I Creek		1 — Coal M 2 — Coal M 3 — Coal M 4 — Glen I	No. 7 No. 4
Twp.	Range	Sec.	INUMDER	Hole		Romber	Alfilude	Depth	α₹	<u>۽</u> ۾ ج	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude (Feet)	Thickness Ft. In.
3 N	9 E	9 E 4	73	τċ	PURE OC COEN JO NO G	28 4 0	4880 C	2660		4 2	1020	532*	*0	1082 964 1159 2396	594* 476* 671* 1908*	
3 N	9 E	9 E 5	74	ΤD	PURE OC COENJO SC4NO G	89 4 D	4870 C	2650		42	1016	529* 135*	¢ 0	1082 974 1160 2387	595 487 673 1900	1
3 N	9 E	9 F 3	202	TD	PURE OC COEM J O S C & NO	3 2 4	4890 C	2640		42	1019 797 622			1083 970 1158	594 481 669	
3 N	9 E.	9 F 5	76	ΤD	PURE OC COEN J O NO G	38 4 0	4890 D	2632		4 3	1015	526*		1078 970 1158 2390	589 481 669 1901	:
3 N	9 E	9 H 4	203	TD	PURE OC COENJO SC&NO	37 4	4920 0	2650		4 3	803	532* 311* 131*		1086 975 1166	594¢ 483¢ 674¢	
3 N	9 E	9 H 8	315	ΤD	PURE OC COENJO SC PALZO & G	39 D	4860 B	2650		44				1085 976 2382	599± 490‡ 1896≠	
3 N	9 E	10 07	204	TD	PURE OC HEGG H S C & NO	4 1	483,0C	3050		42	1005 788 604	305*		1068 958 1139	585¢ 475¢ 656¢	· ·
3 N	9 E	10 E 6	337	TD	BLACK JL HUNTAN SC PALZO&G	1	4820 D	2591		43	994 776 592 1236	284*		1064 948 2390	582* 466* 1908*	
3 N	9 E	10 F4	336	TD	BLACK JL HUNTAN SC PALZO&G	2 D	4680 D	2 5 8 7		44	988 780 590 1230	312* 122*		1056 940 2390	588* 472* 1983*	
3 N	9 E	10 F7	6	LD	CARTER OC WINTERS C S C & NO G	2 4 D	4830 D	2589		42	1015 802 620			1084 967 1150 2380	601¢ 484¢ 667¢ 1897¢	

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

RICHLAND COUNTY

Log	ation of	Hole	- County	Туре		Op'r's	Surface	Total	Quad. Number	ar led	offul ation		1 — Coal 2 — West 3 — Shoal	Franklin Creek		— Coal No. 5 2 — Coal No. 7 3 — Coal No. 4
Twp.	Range	Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Q E J	Year Drilled	Dout	Depth (Feet)	4 — Palzo Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	4 — Glen Dean Altitude Thicknes (Feet) Ft. In
3 N	9 E	10 G8	78	TD	CARTER OC WINTERS C S C & NO G	4 D	4820 D	2627		42		1020 806 613	324*		1086 972 1106 2374	604 490 624 1892
3 N	9 E	13 A1	80	ΤD	WILSON DRO WILSON R S C & NO G	1	4150 G	2750		39		979 745 560			1041 929 1124 2457	626 514 709 2042
3 N	9 E	13.H3	79	ΡŢ	HUNTETA STALEY	L 1	4520 P	1895		30		1005 765			1072	620*
3 N	9 E	14 F1	245	TD	PURE OC HILL EM SC PALZO & G	1 D	4440 D	3105		45		990 760 575 1215	316* 131*		1050 944 2433	606* 500* 1989*
3 N	9 E	15 E 3	54	ΤD	BLACK JL MOSELY JN SC	-	4620 B	2995		4 3		1004 787 602	542* 325*		1078 960 2412	616* 498* 1950*
3 N	9 E	16 A 2	299	τD	PURE OC MCBRIDE W SC PALZO & G	L 1	4750 D	3060		4 4		996 595 1254	120*		1060 956 2421	585 481 1946
3 N	9 E	16 E7	81	TD	DEKALBOC MICHAELJ SC	1 0	4900 T	2987		38	2	985 580	495*		2390	1900\$
3 N	9 E	18 A 8	316	тD	PURE OC MADDOX J S C	U 1 D	4560 D	3085		44		1000 795 614 1266	339* 158*		1066 946 2417	610* 490*
3 N	9 E	18 88	298	TD	PURE OC	A 2	4560 0	2993		45		1000	544*		1066 955 2415	610 499 1959
3 N	9 E	18 F4	248	ΤD	PURE OC TOLIVER E S C PALZO & G	1 D	4610 D	3055		4 5		1025 821 634 1286	360≉ 173≉		1086 982 2408	625* 521* 1947*

KEY BEDS IN RICHLAND COUNTY

RICHLAND COUNTY

Loc	ation of	Hole		County	Type of	Operator	Op'r's Number	Surface Altitude	Total Depth	Quad. Number	rilled	oubtful srmation		1 — Coal 2 — West 3 — Shoal 4 — Palzo	Franklin Creek		1 Coal No. 5 2 Coal No. 7 3 Coal No. 4 4 Glen Dean
Twp.	Range	S	ec.	Number	Hole		NUMBER	Amrude	Depm	σź	~ _	De De	- Copini	Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	Altitude Thickn (Feet) Ft.
3 N	9 E	18	F 6	346		PURE OC PLEASANT W PALZO & G	1 2	4560 D	3000	-	4 5		826	574 370 * 844 *		1092 982 2413	
3 N	9 E	18	H 4	247	ΤD	PURE OC SCHWARTZ W SC PALZO & G	1 2 D	4660 D			45		831 653	574* 365* 187* 840*		1100 1000 2412	
3 N	9 E	19	¥ 2	250		PURE OC RUSK R M PALZO & G	A 5	4680 B	3018		4 5			522* 788*		$1050 \\ 946 \\ 2432$	582¢ 478‡ 1964‡
3 N	9 E	19	81	249		PURE OC RUSK R M PALZO & G	A 3 D	4670 D	3013		4 5			516≑ 773≉		1044 938 2416	471#
3 N	9 E	19	B 4	190	то	PURE OC RUSK R M S C G		4610 D	3055		43			526* 133*	\$0	-	570 • 479 • 1941 •
3 N	9 E	19	68	333	TD	PURE OC GRUBBAL SC PALZO & G	61	4560 D	3015		44		590	540* 134* 800*		1056 944 2415	
3 N	9 E	19	D3	251	TD	BRIDGE F SAGER R PALZO & G	A 1	4600 D	3051		4 4	-		526* 790*		1044 944 2415	
3 N	9 E	19	E 4	309	ŤD	PURE OC EVANS W SC PALZO & G	C 1	4620 B	3005		4 4		796	528* 334* 138* 788*			588* 483* 1949*
3 N	9 E	19	E 8	335	TD	PURE OC ALLARD R S C PALZO & G	M A1	4560 D	3020		44		1004 810 602			1064 944 2416	
3 N	9 E	19	F1	334	TD	PALZO & G PURE OC KURTZ J PALZO & G	1	4640 D	3046		4 4		980 770	516¢ 306¢ 781¢		1040	576* 471* 1953*
					-												

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

RICHLAND COUNTY

Loc	ation of	Hole		County	Type of		Op'r's	Surface	Total	Quad. Number	Year Drilled ^{Doubtful}		I — Coal No. 6 2 — West Franklin 3 — Shoal Creek	3 Co	al No. 5 al No. 7 al No. 4 en Dean
Twp.	Range	S	iec.	Number	Hole	Operator	Number	Altitude	Depth	δ ^υ Ν	Dri Dou Inform	Depth (Feet)	4 — Palzo Altitude Thicknes (Feet) Ft. In.	Depth Altitu	de Thicknes
3 N	9 E	20	A 8	254	TD	PURE OC RUSK R M PALZO & G	A 4 D	4640 D	3022		4 5	981 767 1246	303*	1040 57 940 47 2424 194	
3 N	- 9 E	20	C 6	325	TD	CARTER OC Shatto R PALZO & G	4 D	4670 D	3030		45	974 755 1240		1040 57 932 44 2418 195	
3 N	9 E	20	E 6	253	ΤĐ	PURE OC FLANDERS N PALZO & G	D 2	4690 D	3010		45	966 762 1220		1026 55 926 45 2422 195	
3 N	9 E	20	E 8	252	TD	PURE OC FLANDERS W PALZO & G		4640 D	3001		45	966 1226			2 8 0 8 1 8 8
3 N	9 E	2 3	D 1	83	ΤD	AM NAT DRO EVERSON S C	; 1	4530 G	3080		<u>3</u> .8	1007 767 593		1062 60	9 ≉
3 N	9 E	27	E 5	84	тÐ	TEXAS CO SHAN H S C G	1 D	4770 Đ	3100		41		530* 306* 123*		94 # 36 # 95 #
3 N	9 E	29	G 6	256	τD	PURE OC WRIGHT H S PALZØ & G		4450 D	3018		45	763	517* 318* 785*		31* 73* 57*
3 N	9 E	29	Н5	322	TD	PURE OC WRIGHT H S S C PALZO & G		4540 C	3020		45	970 780 558 1224	326* 3104*		78* 72* 61*
3 N	9 E	29	H 7	255	ΤD		Å 6	4630 C	3025		4 5	983 767 1250	7 304*		81* 77* 53*
3 N	-9 E	30	A 6	214	TD	PURE OC Hout C M No	1 4	4520 D	3075		43	961 740	L 509* 5294*	920 4	74* 68* 63*
									-						

KEY BEDS IN RICHLAND COUNTY

RICHLAND COUNTY

Lo	cation of	Hole	County Number	Type of	Operator Number		Total	Quad. Number	Year Drilled Doubtful		1 Coal 2 West 3 Shoa 4 Palzo	Franklin I Creek		1 Coal 2 Coal 3 Coal 4 Glen	No. 7 No. 4
Twp.	Range	Sec.	NUMDER	Hole		Alfifude	Depth	α₹		Depth (Feet)		Thickness Ft. In.	Depth (Feet)	1	Thickness Ft. In.
3 N	9 E	30 02	317		PUREOC LONGWW A2 SC PALZO&GB	4560 D	3070		44	974 765 574 1240	309≉ 118≉	-	1040 928 2421	584 472 1965	
3 N	9 E .	30 E 4	344	σT	PURE OC LONG WWA1 SC PALZO & GD	4570 D	3075		44	980 758 575 1240	301* 118*		1040 920 2412	583* 463* 1955*	
3 N	9 E	30 E7	319		PURE OC SHATTO CON 1 PALZO & G D	4550 D	3061		44	978 787 1240	332*		1040 930 2424	585* 475* 1969*	
3 N	9 E	30 F1	318	ΤD	PURE OC LONG WWA3 PALZO & GD	4610 0	3068		44	974 760 1246	299*		1034 926 2417	573* 465* 1956*	
3 N	9 E	30 F 2	324	ΤD	PURE OC LONG WWA4 PALZO & GD		3035		45	974 1246			1036 920 2411	574* 458* 1949*	
3 N	9 E	30 G6	345		PURE OC VANBLRCM C 1 S C PALZO & G D	4590 D	3008		44	992 584 1260	125*		1050 940 2413	591* 481* 1954*	
3 N	9 E	30 H1	257		PUREOC RUSKRMA7 PALZO&GD		3105	-	45	986 125.0			1046 944 2420	583* 481* 1957*	
3 N	9 E	31 E5	5		PURE OC MYERSEA 1 NO 4 GD		3098		43	967 746			1031 919 1120 2425	580* 468* 669* 1974*	4 00 2 00
3 N	9 E	32 F8	258	-	FULK P MURVIN JG 1 SC PALZO & GD	4500 B	3115		45	980 766 596 1260	316# 146#		1056 934 2430	606* 484* 1980*	
3 N	9 E	33 H8	88		MARTN&GDSN TAYLOR W G 1 S C & NO 4 G D		3145		42	995 770 593	301*		1059 955 1145 2481	590* 486* 676* 2012*	

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

RICHLAND COUNTY

Loc	ation of	Hole		County	Type		Op'r's	Surface	Total	Quad. Number	Year Drilled Doubtful		1 — Coal 2 — West 3 — Shoa	Franklin Creek		1 Coal 2 Coal 3 Coal	No. 7 No. 4
Twp.	Range	S	ec.	Number	Hole	Operator	Number	Altitude	Depth	α _ν	≻ E a	Depth (Feet)	4 — Palzc Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	4 — Glen Altitude (Feet)	Dean Thickness Ft. In.
<u></u>											1			N.			
3 N	10E	1	88	5.9	TD	OLSONOC Boydw Scano G	1	5030 C	3326		42	1071 850 674	347*		1141 1012 1226 2584	638 509 723 2081	8
3 N	10E	3	G 5	60	**	OLNEY WEL Phillips		4840 H	2218		372	1080 '850	596* 359*		1155	671	
3 N	10E	5	E 4	61	ΤD	PAPOOSE-OLYNCH SC	с 1 0	444 9 D	3124		38	1007 778 605			2520	2076:	
3 N	10E	6	C 3	284	ΤD	SC	с 1 0	4390 B	3132		44	1010 780 628 1280	341*		1074 956 2475	635 517 2036	•
3 N	10 E	8	C 1	343	ΤD	1 NAT PET PADDOCK R S C PALZO & G	1	4210 B	3 2 5 3		43				968 2513	547	
3 N	10E	10	C 3	62	ΤD	HIAWTHA O POWELL K NO	G 1	4730 C	3182		42	1052 825	579* 5352*		1130 997 1216 2551	657 524 743 2078	p p
3 N	1 O E	11	C 3	63	τD	HIAWTHA O WHARF A J NO	G 1	4774 C	3301		43	1066	5589* 5348*		1140 1013 1238 2568	663 536 761 2091	•
3 N	1 O E	14	D 4	342	TD	KINGWOODO CUTSHALL PALZO & G	s 1	4460 D	3253		44	1040 800 1290	354*		1100 982 2568	654 536 2122	
3 N	1 O E	19	B 2	283	тD	FRAZIER C SCHLMYR E PALZO & G	1 D	4140 D	3197		44	956 730 1230			1026 914 2504	612 500 2090	•

RICHLAND COUNTY

Lo	cation of	Hole	•	County	Туре)	Op'r's	Surface	Total	rd. ber	ed ful		1 Coal 2 West 3 Shoa	Franklin		1 — Coal N 2 — Coal N 3 — Coal N	o. 7
Twp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Depth	Quad. Number	Year Drilled Doubtful	Depth (Feet)	4 Palza Altitude (Feet)	Thickness	Depth (Feet)	/ annouc _	ean Thickness Ft. In.
3 N	10E	20	D 4	64		OHIO OIL NELSON G O S C & NO G	6	4190 C	3299		4 2	997 765 565			1065 954 1155 2542	646* 535* 736* 2123*	
3 N	1 O E	21	Η1	259		MURRAY R KURTZ F PALZO & G	1	4250 B	3278		4 5	1010 790 1260	5 371*		1096 [.] 972 2544	671# 547#	
3 N	1 O E	2 2	E 1	308		NEELYRH BAUGHMAN G	1	4766 C	3252		37	1070 820) 593* 343*		2602	2125*	
3 N	10E	28	A 6	282		PURE OC ROSS TRESS PALZO & G	S 1	4400 D	3280		4 5		564* 840*		1075 960 2594	635¢ 520‡ 2154*	
3 N	1 O E	32	E 3	351	τÐ	PURE OC Eberhrdt i	E A 1	4400 C	3250		46		594* 336*		1124 968	684* 528*	
3 N	10E	33	G 4	260		PURE&OHIO GREEN R L PALZO & G	1	4400 B	3200		45	765	555* 325* 814*		1064 940 2600	624# 500# 2160#	
3 N	1 O E	33	H 5	281		PURE&OHIO KOERTG COI PALZO & G	1	4390 D	3280		44	1005 770 1290	566* 331* 851*		1080 960 2592	641* 521* 2153*	
3 N	11E	19	A 8	9		SOHIO PROE HEAP E NO G	1	4930 C	3309		4 3		580* 343*	7	1154 1013 1251 2669	661* 520* 758* 2176*	
							2									-	

RICHLAND COUNTY

Number Hc 3 65 TE 7 213 TE	ΤD	SEABOARD STEBER A 1 NO 4 G D	Altitude Deptl		N Drilled Doubtful Doubtful	Depth (Feet)	4 — Palzo Altitude (Feet)	Thickness Ft. In.	1	4 — Glen Dean Altitude Thickne (Feet) Ft. I
7 213 TC	TD	STEBER A 1 NO 4 G D Somio prod	5360 B 3120	234 4	2	1054				
							528* 306*		1130 995 1230 2542	594 459* 694* 2006*
5 280 TE	1	SCANO 4	5140 0 3349	4	3		634* 408* 218*		1228 1073 1326	714* 559* 812*
		MLLR&MCBRD ATKINSHM PALZO&GD	5380 8 3160	234 4	.		572* 332* 812*		1195 1040 2550	657* 502* 2012*
7 66 TC	ΤD	NADEL&GSMN MCEVELLY 1 NO 4 GD	5560 C 3099	234 4	2		514≉ 288≉		1147 1000 1241 2480	591* 444* 685* 1924*
5 67 T		SNCLRWYOM LEGANT 1 NO4 GD	5090 C 3382	. 4	1		581¢ 358¢		1174 1270 2670	665* 761* 2161*
5 68 TC		NADEL&GSMN EATON TF 1 NO 4 GD	5080 B 3189	234 4	5		552* 340*		1155 1000 1230 2547	647 492 722 2039
5 7 L C		SEABOARD KIMMELM 1 GD	4930 C 3231	234 4	2		523* 297*		1112 963 2590	619 * 470* 2097*
5 69 T		HASSLERJ BUNNSL 1 NO4 GD	4720 B 3180	234 4	3	1025 786	553* 314*		1108 948 1195 2560	636* 476* 723* 2088*
4 71 T		CASE&POMRY BOWERS 1 NO 4 G D	4840 G 312 [.]	234 4	1				957 1189	64; = 473= 705= 2073=
		CASE&POMRY BUNNAE 1 NG4 GD	4910 C 321:	234 4	1				953 1196	612 462 705 2085 *
4			BOWERS 1 NO 4 G D 70 TD CASE&POMRY BUNN A E 1 NO 4	BOWERS 1 NO 4 GD 70 TD CASE&POMRY BUNNAE 1 NO 4	BOWERS 1 NO 4 G D 70 TD CASE&POMRY 4910 C 3211 234 4 BUNN A E 1 NO 4	BOWERS 1 GD 70 TD CASE&POMRY BUNNAE 1 NO 4	BOWERS 1 789 GD GD 1 70 TD CASE&POMRY 4910 C 3211 234 41 1025 70 TD CASE&POMRY 4910 C 3211 234 41 1025 90 N0 4 10 <	B 0 W É Ř S 1 NO 4 0 70 TD CASE & POMRY B UN N A E NO 4	B 0 W E RS 1 N0 4 - G D - 70 TD CASE&POMRY B UNN A E 1 1 1025 534 * 70 TD CASE&POMRY 8 UNN A E 1 1	B 0 W E RS 1 957 N 0 4 0 G D 2557 7 0 T D CASE&POMRY B UNN A E 1 N 0 4 N 0 4 910 C 3211 234 41 1025 534* 1103 953 957 1196 2576

RICHLAND COUNTY

Loc	ation of	Hole	County	Type	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled ^{Doubtful}		e 1 — Coal 2 — West 3 — Shoa	Franklin I Creek		1 — Coal I 2 — Coal I 3 — Coal I	No. 7 No. 4
Twp.	Range	Sec.	Number	Hole	operation	Number	Altitude	Depth	o n	, P S	Depti (Feet			1	4 — Glen Altitude (Feet)	Thickness Ft. In.
				2												
4 N	9 E .	9 A 3	279	TD	PURE OC GRAY W T S C PALZO & G		4800 B	3195	213	4 4	112 90 72 134	7 427 • 0 240 •		1180 1070 2510	700	8
4 N	9 E	12 C 5	278	ΤD	PURE OC RUNYEN R SC		5380 0	2955	213	44	104 88 67 130	4 506* 6 298* 0 132*		1096 988 2372	558 450 1834	2 8
4 N	9 E	12 D1	123	тр	PURE OC BAUMAN M S C & NO	4	5610 C	2985	213	40	106 87 69	2 311*		1134 1020 1208	573 459 647 \$	1
4 N	9 E	12 E7	125		PURE OC ROBERTS A S C	A 1	5330 C	2 9 7 0	213	42	104 84 66	6 313≉		1104 988	571 455 4	1
4 N	9 E	13 E 5	277		PURE OC MOORE K C PALZO & G	1	5320 B	2976	213	44	106 84 134			1123 1010 2370	591* 478* 1838*	
4 N	9 E	13 E8	126		OHIO OIL CHAPMAN C S C		5590 C	3020	213	39	87	0 521* 2 313* 2 143*		1137 1028	578# 469#	
4 N	9 E	13 G8	127		PURE OC CHAPMAN C S C		5510 C	2955	213	42	107 86 68			1133 1023	582* 472*	
4 N-		14 Å1			PURE OC STORER C	1 A	5110 G				103 82	316*		1094 984	583* 473*	
4 N	9 E	22 B7	129		PURE OC HASLER A S C & NO	4 ^{A 1}	5290 C	3036	213	42	110 89 71	3 369*		1161 1054 1233	632¢ 525¢ 704¢	

RICHLAND COUNTY

Loc	ation of	Hole		County	Type	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled Doubtful Information		1 — Coal No. 2 — West Fran 3 — Shoal Cre	klin	e 1 — Coal No. 5 2 — Coal No. 7 3 — Coal No. 4 4 — Glen Dean
Twp.	Range	-9	jec.	Number	Hole	Operator	Number	Altitude	Depțh	° P	D D	Depth (Feet)	4 — Palzo Altitude Thia (Feet) Ft.	ckness Dep In. (Fee	h Altitude Thickne
4 N	9 E	22	02	130	TD	PURE OC HAYS H D NO	1 4	5280 C	3015	213	42	1076 888		113 103 120	4 506*
4 N	9 E	23	A 2	132	ΤD	MABEE JE SPARRM NO	4	5040 G	2619	213	39	1015 812	511* 308*	107 97 113	2 468*
4 N	9 E	23	A 5	135	ΤD	PURE OC Wakfld F	L 2	5080 G	2614	213	38		535* 354*	111	5 607 *
4 N	9 E	23	B 1	209	τD	MABEE JE SPARR M	6	5040 C	2604	213	3'9	1015 815			
4 N	9 E	23	C 1	210	ΤD	MABEE JE SPARRM	7	5110 C	2598	213	39	1022 806		107 97	
4 N	9 E	23	c 2	206	ΤD	MABEE JE SPARR M NO	3	5140 C	2618	213	39	1032 835		108 98 115	6 472 *
4 N	9 E	2 3	C 3	205	TD	PURE OC CAZEL H S C & NO	4 A 4	5110 G	3015	213	39	1037 843 652	332*	109 99 116	2 481*
4 N	9 E	2 3	Ð 1	133	ΤD	MABEE J E SPARR M	8	5120 G	2614	213	39	1022 810		108 97	
4 N	9 E	2 3	D 2	207	TD	MABEE J E Sparr M	4	5160 C	2 5 9 5	213	39	822	306*		
4 N	9 E	2 3	Ε7	131	ΤD	PURE OC ENGLEDOW	C 1	5240 C	3015	213	42	1090 910		115 104	
	-														

KEY BEDS IN RICHLAND COUNTY

RICHLAND COUNTY

Lo	cation of	Hole	•	County	Туре		Op'r's	Surface	T-1.1	d. Jer	- 70 2		e 1 — Coal 2 — West 3 — Shoa	Franklin		1 — Coal N 2 — Coal N 3 — Coal N	o. 7
ſwp.	Range		Sec.	Number	of Hole	Operator	Number	Altitude	Total Depth	Quad. Number	Year Drilled Doubtful		4 Palza			4 — Glen D	
						-						Depth (Feet)	1	Ft. In.	Depth (Feet)	/ annous _	Ft. In
4 N	9 E	24	.F2	211	TD	ALLEN & HRWI SECHREST NO	1	4889 6	2588	213	39	101			1081 974 1144	5938 4868 6568	
4 N	9 E	24	G 3	143	TD	PURE OC SAYRE O	2 A	4900 6	2969	213	39	1019 807			107 [.] 7 964	587¢ 474\$	
4 N	9 E	2 5	G 4	146	TD	PURE OC LUCAS ETAI	- 1	4880 C	2585	213	42	1011 821			1069 958	581¢ 470¢	
4 N	9 E	26	Β4	148	TD	PURE OC HARRELL P NO	1	4930 C	2586		42	1022 820			1082 978 1150	589* 485* 657*	
4 N	9 E	26	C 8	323		PURE OC HASKELL E S C PALZO & G	1	5030 B	2980	213	45	1042 820 656	317*		1098 996 2390	595* 493* 1887*	
4 N	9 E .	26	H 2	150		PURE OC Wakfld F L	. 6A	5000 G	3050	213	39	1007			1064	5640	
4 N	9 E	27	02	327		PURE OC WASSON LA SC PALZO & G	2	5060 C	2989	213	45				1100 992 2401	594 486 1895*	
4 N	9 E	27	Ε7	2		PURE OC MURVIN W S C	82	5300 C	3063	213	422	1107 900			1060	530*	
4 N	9 E	27	G 7	151		PURE OC MURVIN W S C & NO 4	81	5380 C	2710	213	42	892	552* 354* 165*		1148 1042 1223	610\$ 504* 685\$	
4 N **	9 E	2 8	D 3	152		PURE OC BOLEY L R S C & NO 4	A 1	5090 C	3003	213	41	870	572* 361* 196*		1147 1040 1207	638* 531* 698*	

142

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

RICHLAND COUNTY

Loc	ation of	Hole	County	Type	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled DoubHul Information		1 — Coal No. 6 2 — West Franklin 3 — Shoal Creek 4 — Palzo	Line 1 — Coal No. 5 2 — Coal No. 7 3 — Coal No. 4 4 — Glen Dean
Twp.	Range	Sec.	Number	Hole		Number	Altitude	Depth	σ₹		Depth (Feet)	Altitude Thickness (Feet) Ft. In.	DepthAltitudeThickness(Feet)(Feet)Ft.In.
4 N	9 E	28 E 5	276	TD	PURE OC PELAUM E S C PALZO & G	8 1 D	4950 D	3112	213	4 4	1100 886 710 1304	391≉ 215≉	1170 675 1050 555 2458 1963
4 N	9 E	32 E 2	154	ΤD	DUNCANBROS SCHILLING NO 4	1	5010 C	3002		40	1079 881		1140 639* 1029 528* 1210 709*
4 N	9 E	33 E 4	159	TD	PURE OC WILSON WE NO 4	A 3	5310 0	3045		43	1076 858		1127 596* 1022 491* 1200 669*
4 N	9 E	33 E 5	158	ΤĐ	SHFFER ETU PFLAUM NO 4	1	5250 C	3011		41	1068 851	543* 326*	1117 592* 1011 486* 1198 673*
4 N	9 E	33 G7	156	ТD	SHFFR&MTCH BOLEY L R NØ 4	1	5020 G	3002		42	1075 861	5 5 7 3 * 3 5 9 *	1143 641* 1021 519* 1207 705*
4 N	9 E	35 D6	261	ΤD	PURE OC BERGER E PALZO & G	1 D	4820 D	3060		45	1049 818 1275	336*	1114 632* 994 512* 2396 1914*
4 N	9 E	35 H4	155	ΤD	PURE OC Betbnr A (: 1	4850 D	3020	•	43	1021 812		1077 592* 976 491*
4 N	9 E	36 E 5	275	TD	PURE OC DIESSER T PALZO & G	D 1	4810 D	3017		44	1024 796 1265	5 315*	1090 609* 974 493* 2404 1923*
4 N	1 O E	1 46	91	ΤD	GULF ET AL DEITRICH H NO G	1 1 1	5 130 D	3170	213	42	1128 902		1177 664 1050 537 1273 760 2520 2007

KEY BEDS IN RICHLAND COUNTY

RICHLAND COUNTY

Loo	cation of	Hole		County	Type of	Operator	Op'r's Number	Surface	Total	Quad. Number	Year Drilled ^{Doubtful}	1	1 — Coal 2 — West 3 — Shoa 4 — Palzo	Franklin Creek		1 — Coal N 2 — Coal N 3 — Coal N 4 — Glen D	lo. 7 lo. 4
Twp.	Range	S	ec.	Number	Hole		Number	Altitude	Depth	σ₹	≻ ¤ 8 ª	Depth (Feet)	Altitude	Thickness Ft. In.		Altitude	Thicknes Ft. In
4 N	10E	6	88	162	ļ	PURE OC WACHTEL J 8 C & NO		5170 C	2940	213	40		508* 318* 121*		1073 997 1043	556 * 480* 526*	
4 N	10E	6	62	161	тD	PURE OC Kermicle	E A 4	4840 C	2896	213	41		537* 316*		1068 947	584≉ 463≉	
4 N	10E	7	ЕЗ	163		PURE OC HOEL CONS		5200 C	2940	213	40		517≉ 305≉		1088 968	568* 448*	
4 N	10E	10	E 4	285	τD	TEXAS CO KESLER I S C PALZO & G	1	4770 B	3151	213	44	810 630	556* 333* 153* 833*		1078 960 2438	601* 483* 1961*	
4 N	1 O E	15	A 5	164		PYRAMD PE HOUSER S C		4740 G	3024	213	39	1014 797	540* 323* 140*		940	4668	
4 N	1 O E	15	C 2	286		TEXAS CO KOWA WM PALZO & G	1 D	4740 D	3035	213	44		530* 316* 801*		1050 940 2433	576 466 1959	
4 N	1 O E	18	D 8	165	τo	DYSON&AND ASH NO	1	5360 C	2943	213	40		504≉ 390¢		1092 980 1163	556* 444* 627*	
4 N	1 O E	18	E 8	166		DYSON&AND ASH NO	2	5310 C	2945	213	40		501* 291*		1083 974 1159	552¢ 443¢ 628*	
4 N	1 O E	19	65	167		PURE OC GERTSCH P S C	1	4780 D	3020	213	4 3	797	534* 319* 142*		1063 950	585¢ 472¢	
4 N	1 O E	2 2	A 1	168	ΤD	PYRAMD PE Sly geo S C	T 1	4430 C	3036	213	38	798	577* 355* 175*			-	

RICHLAND COUNTY

Lo	cation of	Hole		County	Type	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled ^{Doubtful}	1	e 1 — Coal 2 — West 3 — Shoa 4 — Palzo	Franklin I Creek		1 — Coal No. 5 2 — Coal No. 7 3 — Coal No. 4 4 — Glen Dean
Twp.	Range	Se	ec.	Number	Hole		Number	Altitude	Depth	ō₹	<u>م ۲</u>	Dept (Feet	h Altitude	Thickness		Altitude (Feet) Ft. In
4 N	10E	22	A 3	169	TD	TEXAS CO WINTERS W NO	1	4700 G	3081	213	38	104 82			1102 980 1183	632* 510* 713*
4 N	10E	5 5	E 6	3	LD	TEXAS CO HASSLNGRI S C & NO G	4	4710 C	3136	213	42	103 80 63			1082 965 1155 2455	6118 4948 6848 1984
4 N	10E	22	F1	262		TEXAS CO SCHERER C PALZO & G	4	4500 B	3131	213	44		0 320* 5 805*		1050 920 2443	600* 470* 1993*
4 N	10E	22	F 4	287	то	TEXAS CO BAIRD M S C PALZO & G	2	4650 D	3140	213	44	79	5 550* 0 325* 4 139* 0 795*		1065 946 2450	600* 481* 1985*
4 N	10E	22	62	288	ΤD	TEXAS CO SCHERER C S C G	2	4789 D	3032	213	4 4		6 548* 1 323* 4 146*	[1080 900 2458	602* 422* 1988*
4 N	10E	5 2	Н1	289	ΤD	TEXAS CO SCHERER C PALZO & G	3 D	4780 D	3153	213	4 4	102 80 130	0 542* 0 322* 8 830*	1	1070 950 2462	592 = 472 = 1984 =
4 N	10E	2 3	B 1	267		TEXAS CO SCHERER J S C PALZO & G	3 D	4690 D	3073	213	45		-			
4 N	1 O E	23	C 5	268	ТК	TEXAS CO SCHERER J S C PALZO & G	4	4830 D	3077	213	45					
4 N	1 O E	53	D 1	266	TD	TEXAS CO SCHERER J PALZO & G		4820 C	3:078	213	45	83	0 548* 9 348* 0 828*	,	1100 980 2495	618* 498* 2013*
4 N	10E	2 3	E 4	265	тк	TEXAS CO FRITSCHL S C PALZO & G		4900 B	3181	213	45		- -			
							D									

RICHLAND COUNTY

Lo	cation of	Hole	- County	Type	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled Doubtful		1 — Coal 2 — West 3 — Shoa	Franklin I Creek		1 Coal I 2 Coal I 3 Coal I 4 Glen	No. 7 No. 4
Twp.	Range	Sec.	Number	Hole		Number	Altitude	Depth	άź	Y D O	Depth (Feet)		Thickness Ft. In.		Altitude (Feet)	Thicknes Ft. In.
4 N	10E	23 F	3 264	TD	TEXAS CO FRITSCHL S C PALZO &	W 5 G D	4860 B	3087	213	4 5	1030 821 656 1310	1335* 170*		1100 976 249 4	6144 4904 20084	
4 N	1 O E	23 G	7 170	TD	GULF REF DEHLINGR S C & NO		4490 B	3 2 8 9	213	39	1005 785 607	336*		1050 925 1140	6014 4764 6914	
4 N	10E	23 н	1 263	TD	TEXAS CO Fritschl Palzo &		489 9 D	3184	213	4 5	1014 798 1250	309≉		1062 950 2495	573 461 2006	1
4 N	1 O E	24 A	8 346	TD	TEXAS CO FRITSCHL PALZO &		4940 D	3088	213	4 5	1060 838 1325	344*		1110 990 2506	616 496 2012	
4 N	10E	24 C	8 271		TEXAS CO FRITSCHL SC PALZO &		4880 P	3090	213	45	1032 826 653 1315	338* 165*		1103 980 2506	615¢ 492¢ 2018¢	
4 N	10E	24 D	7 272		TEXAS CO FRITSCHL S C	W 6 G D	4900 B	3090	213	4 5	1028 825 647	335*		1100 976 2519	610* 486* 2929*	
4 N	1 O E	24 G	6 269		TEXAS CO FRITSCHL PALZO &		4950 C	3195	213	45	1008 806 1310	311*		1076 956 2530	581 461 2035	
4 N	10E	24 G	8 270	TD	TEXAS CO FRITSCHL PALZO &		4960 D	3091	213	45	1014 806 1266	5 310*		1066 958 2507	570 462 2011	1
4 N	10E	24 H	3 171	ŢĎ	GULF ET FRITSCHL S C & NO	W 1	5010 0	3112	213	42	1067 848 676	347*		1115 988 1210	614 487 709	
4 N	1 O E	26 B	8 173	TD	SYLVESTR MILLER	F 1	4950 T	3137		38	1092 879			115 3	658*	2

KEY BEDS IN RICHLAND COUNTY

RICHLAND COUNTY

Loco	ation of	Hole		County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled ^{Doubtful}		1 — Coal 2 — West 3 — Shoal	Franklin Creek		1 — Coal No. 5 2 — Coal No. 7 3 — Coal No. 4
Twp.	Range	S	ec.	Number	Hole		Number	Altitude	Depth	n Nu N	, Dril Dou	Depth (Feet)	4 — Palzo Altitude (Feet)	Thickness Ft. In.	Depth (Feet)	4 — Glen Dean Altitude Thickness (Feet) Ft. In.
4 N	10E	36	G 7	175	τo	PYRAMD PET U OF Chi S C & NO 4	3	4460 C	3060	213	38	1025 809 625	363*		1077 956 1167	631* 510* 721*
4 N	10E	36	Η1	347	тк	TEXAS CO FRITSCHL S C		4760 D	3883	213	4 5		. ,			
4 N	10E	36	Н 3	348	TD	SLAGTR AJF WTTLWRTH A S C	1	4490 B	3050	213	4 5	1026 785 610 1300	161*		1075 935 2472	626* 486* 2023*
4 N	10E	26	н 8	174	τo	PALZO & G Pyramd Pei U of Chi		446 0 C	3036	213	38	1025			412	
4 N	10E	27	6	177	ΤĐ	MENHALL CO MILLER B S C & NO 4	1	4680 D	3.082	213	4 2	826	580* 358* 163*		1104 985 1177	636* 517* 709*
4 N	10E	27	E 8	176	ΤD	KINGWOODOC ALLEN	: 1	4640 C	3045	213	38	1040 820	576* 356*		1100	636*
4 N	10E	34	F6	72	ΤD	SOWSTRN OG City Olney S C & No 4	1	4650 C	3096		4 3	1071 847 666	382 +		1132 1000 1212	667* 535* 747*
4 N	10E	35	HВ	178	ΤО	K 1 N G W O O D O C M C C A N E	1	4940 G	3141		38	1122 897			1183	689*
4 N	11E	6	Е 1	99	ŦD	MAGNOLIA STERCHIS NO	1	5070 C	3068	213	41	1072 854			1117 1003 1210	610 496 703 e
4 N	11 E	6	Ε1	99	τD	STERCHI S		5070 C	3062	213	41				1003	

RICHLAND COUNTY

ation of	Hole		County	Type of	Operator	Op'r's Number	Surface Altitude	Total Depth	uad. umber	Year rilled oubtful	ormotion		2 — West 3 — Shoal	Franklin		2 — Coal N 3 — Coal N	lo. 7 lo. 4
Range	s	ec.	Inomper	Hole			Annode	Depin	⁰ ž		10		Altitude (Feet)	Thickness Ft. In.	Depth (Feet)		Thickne: Ft. In
11 E	6	G 1	136	TD	OLSON OC NUDING A NO	F 1	5060 C	3055	213	41					1130 1015 1227	624 509 721	
14W	6	F8	92	TD	NOLFE G NUDINGA	F 1 5 D	4940 D	3.041	213	41					992	611* 498* 1986*	
14W	6	G 5	137	TD	STERCH HI	₹\$ 2	5000 C	3056	213	42					1012	628* 512* 728*	
14W	10	F 1	138		BOLESE PETTYW	1	4840 G	3094	212	42	1	027	543\$				
14W	11	F 7	4	LD	MILLER J NO	1 4	4830 C	3057	212	42	1	013 793	530* 310*		946 1175	594 463 692 1941 *	3 0
14₩	16	F1	139		RENNIER	. 1	5670 C	3 2 0 2	212	43		912	345 ≉		_	620 a 726 a	
14W	23	A 5	140		RICHEY	1	4800 B	3073	212	41					916	566 436 664 8	
14₩	30	68	141		BOHRER L	1	4900 B	3235	213	42		888	398¢		1030	680* 540* 780*	
	Range 11 E 14 W 14 W 14 W 14 W 14 W	Range S 11 E 6 14 W 6 14 W 10 14 W 10 14 W 11 14 W 16 14 W 23	11E 6 G1 14W 6 F8 14W 6 G5 14W 10 F1 14W 11 F7 14W 16 F1 14W 23 A5	Range Sec. County Number 11 E 6 G 1 136 14 W 6 F 8 92 14 W 6 G 5 137 14 W 10 F 1 138 14 W 10 F 1 138 14 W 16 F 1 139 14 W 23 A 5 140	Range Sec. County Number Type of Hole 11 E 6 G1 13 6 TD 14 W 6 F8 9 2 TD 14 W 6 G5 137 TD 14 W 10 F1 138 TD 14 W 11 F7 4 LD 14 W 16 F1 139 TD 14 W 23 A5 140 TD	RangeSec.County NumberType of HoleOperator11 E6 G1136TD0 LS 0 N 0 C N UD I N G A N 014 W6 F89 2TDN 0 LF E G N UD I N G A N 014 W6 G5137TDN 0 LF 0 C STER CH HF N 014 W10 F1138TDB 0 LES E M I L LER TR S N 014 W11 F74LDLEE R TR S M I L LER N 014 W16 F1139TDS UN 0 C R EN N I ER S C 4 N 014 W23 A 5140TDY OR K ET A R I CHEY N 014 W30 C 8141TDG ULF ET A B O H RER L	RangeSec.County NumberType of HoleOperatorOp'r's Number11 E66 1136TD0 L S 0 N 0 C N U D I N G A F 1 N 0 4114 W6F 89 2TDN 0 L F E G N U D I N G A F 1 G D114 W6G 5137TDN 0 L F 0 C S T E R C H H R S 2 N 0 4214 W10F 1138TDB 0 L E S E A P E T T Y W114 W11F 74LDL E E R T R S T N I L L E R J114 W16F 1139TDS U N 0 C R E N N I E R S C 4114 W2 3A 51 4 0TDY 0 R K E T A L N 0 4114 W30C 8141TDG U L F E T A L	Range Sec. County Number Type of Hole Operator Op'r's Number Surface Altitude 11 E 6 G1 136 TD 0 L S O N O C N U D I N G A F 1 5 0 6 0 C 14 W 6 F 8 9 2 TD N O L F E G N U D I N G A F 1 4 9 4 0 D 14 W 6 G 5 137 TD N O L F O C S TER CH HRS 2 5 0 0 0 C 14 W 10 F 1 138 TD B O L E S E A P E T T Y W 4 84 0 G 14 W 10 F 1 138 TD B O L E S E A P E T T Y W 4 83 0 C 14 W 10 F 1 138 TD B O L E S E A P E T T Y W 4 83 0 C 14 W 11 F 7 4 L D L E E R T R S T N I L E R J 4 83 0 C 14 W 16 F 1 139 T D S U M O C R E N N I E R S C 4 N 0 4 1 5 6 7 0 C 14 W 23 A 5 14 0 T D Y O R K E T A L N 0 4 4 8 0 0 B 14 W 30 C 8 14 1 T D G U L F E T A L B O H E R L 4 9 0 0 B	County Number Type of Hole Operator Operator Op'r's Number Surface Altitude Total Depth 11E 6 G1 136 TD 0LSON 0C NUDING A F NUDING A F SERCH HRS NO 4 5060 C 3055 14W 6 F8 92 TD NOLF C NUDING A F STERCH HRS NO 4 4940 D 3041 14W 6 G5 137 TD NOLF OC STERCH HRS NO 4 5000 C 3056 14W 10 F1 138 TD BOLES E PETTY W 1 4840 G 3094 14W 10 F1 138 TD BULES E PETTY W 1 4830 C 3057 14W 16 F1 139 TD SUN OC RENNIER S C 4 NO 4 1 5670 C 3202 14W 23 A 5 140 TD YORK ET AL RICHEY NO 4 4800 B 3073 14W 30 C8 141 TD GULF ET AL BOHRER L 4900 B 3235	Type of Hole Type of Hole Operator Operator Operator Surface Altitude Total Depth Total Operator 11E 6 6 1 13.6 TD 0 L S O N O C N U D I N G A F N U D I N G A F D 5060 C 3055 213 14 W 6 F 8 9.2 TD N O L F E G N U D I N G A F S TER CH HRS N O 4 1 4940 D 3041 213 14 W 6 G 5 137 TD N O L F O C S TER CH HRS N O 4 2 5000 C 3056 213 14 W 10 F 1 138 TD B O L E S P E T T Y 1 4840 6 3094 212 14 W 11 F 7 4 LD L E E M I L L E R S C 4 N 0 4 1 4830 C 3057 212 14 W 16 F 1 139 TD S U N O C R E N N I E R S C 4 N 0 4 1 5670 C 3202 212	Type of Mumber Type of Hole Operator Op'r's Number Surface Altitude Total Depth Total Depth </td <td>Number County of effect Type of effect Operator Opiris Number Surface Altitude Total Depth Total of effective Total of effective Total Depth Total of effective Total Depth Total Depth</td> <td>arise County Number Type of Hole Type of Hole Operator Op'r's Number Surface Altitude Total Depth \overline{g} g</td> <td>arise of Hole County Number Type of Hole Type of Hole Type of Hole Description Surface Altitude Total Description <t< td=""><td>Type Number County Hole Type Hole Operator Number Opiris Number Surface Altitude Total Depth Total Sec Total Depth Total Depth<td>offend Hole Type of hole Type of hole Operator Operator Operator Number Type of hole Ty</td><td>arise of Hole Type Number Type of Hole Type of Number Type Number Operator Number Surface Altidude Total Depth Total</td></td></t<></td>	Number County of effect Type of effect Operator Opiris Number Surface Altitude Total Depth Total of effective Total of effective Total Depth Total of effective Total Depth Total Depth	arise County Number Type of Hole Type of Hole Operator Op'r's Number Surface Altitude Total Depth \overline{g} g	arise of Hole County Number Type of Hole Type of Hole Type of Hole Description Surface Altitude Total Description Total Description <t< td=""><td>Type Number County Hole Type Hole Operator Number Opiris Number Surface Altitude Total Depth Total Sec Total Depth Total Depth<td>offend Hole Type of hole Type of hole Operator Operator Operator Number Type of hole Ty</td><td>arise of Hole Type Number Type of Hole Type of Number Type Number Operator Number Surface Altidude Total Depth Total</td></td></t<>	Type Number County Hole Type Hole Operator Number Opiris Number Surface Altitude Total Depth Total Sec Total Depth Total Depth <td>offend Hole Type of hole Type of hole Operator Operator Operator Number Type of hole Ty</td> <td>arise of Hole Type Number Type of Hole Type of Number Type Number Operator Number Surface Altidude Total Depth Total</td>	offend Hole Type of hole Type of hole Operator Operator Operator Number Type of hole Ty	arise of Hole Type Number Type of Hole Type of Number Type Number Operator Number Surface Altidude Total Depth Total

RICHLAND COUNTY

Loc	cation of	Hole	County	Type of	Operator	Op'r's	Surface	Total	Quad. Number	Year Drilled Doubtful	Line	1 — Coal 1 2 — West 3 — Shoal 4 — Palzo	Franklin		1 — Coal No 2 — Coal No 3 — Coal No 4 — Glen De	o.7 o.4
ſwp.	Range	Sec.	Number	Hole	C por aice	Number	Altitude	Depth	σ₹	≻ 7 ° å	Depth (Feet)	1	Thickness Ft. In.	Depth (Feet)	Altitude 1	thicknes Ft. In
5 11	9 E	25 C	1 102	ΤĐ	WRIGHT F	R 1 4 D	4920 G	2921	213	42	1043 797			1089 977 1147 2347	597* 485* 655* 1855*	
5 N	9 E	28 E	5 103	ΤD	GULF REF WAKEFLD L N@ G	1 0	4970 0	3183	213	42		655* 429*		1205 1274 2446	708* 777* 1949*	
5 N	9 E	31 H	8 273	ΤĐ	KINGWOODO KLINGERG SC PALZO & G	1	4880 C	3177		45	1100 904 708 1345	416*		1150 1054 2486	662* 566* 1998*	
5 N	9 E	36 B	5 105	ΤD	PURE OC CAVINS W G	1 D	4900 C	2950	213	41	1013 805			1059 947 2337	569* 457* 1847*	
5 N	10E	25 C	5 .212	TĐ	GULF REF Sterchih S C & Ng	3 4	5010 C	3013	213	4 3		584* 367* 201*		1124 1010 1201	6 2 3 * 5 0 9 * 7 0 0 *	
5 N	10E	25 C	7 106	ΤD	GULF REF MOSSER C G	2 D	4970 C	2995	213	43	1082 865	585* 368*		1121 1010 2438	624* 513* 1941*	
5 N	10E	25 E	7 290	τĐ	GULF REF HARDING L G	D 1	4920 D	2990	213	44	1080 838	588* 346*		1120 1008 2430	628* 516* 1938*	
5 N	10E	36 A	1 109	τD	GULF REF STIFF C G	2	4940 8	2998	213	42	1084 860			1124 1008 2433	630* 514* 1939*	
5 N	10E	26 E	4 110	ΤD	PURE OC STIFF E G	1 0	4820 C	2993	213	43	1057 836			1096 980 2400	614 498 1918 *	

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN

RICHLAND COUNT	ND COUNTY
----------------	-----------

Loo	cation of	Hole	County	01	Operator	Op'r's Iumber	Surface	Total	Quad. Number	ear illed	ubtful rmation		1 Coal 2 West 3 Shoa 4 Palzo	Fran I Cre	klin		1 Coal 2 Coal 3 Coal 4 Glen	No. 7 No. 4
Twp.	Range	Sec.	Number	Hole		umber	Altitude	Depth	α₹	ζ	Info	Depth (Feet)	Altitude (Feet)		kness In.	1	Altitude	Thickn
5 N	10E	26 G1	107	TD	SUN OC HARDING L	1	4850 B	2993	213	42	_	1078	593*					
5 N	1 O E	26 G 3	108	тD	SUN OC MILLER O G D	1	4810 B	2954	213	42		1068 846	587 * 365 *			1111 992 2408	511	*
5 N	10E	29 C 2	112	τD	PWRE OC BARTLETT F G D	1	4500 C	3 1 1 7	213	39	8	1000 781	550* 331*			933 2301	483 1851	*
5 N	10E	30 E 3	90	ΤD	PURE OC HEAP M G D	1	4870 C	3455	213	39			538* 318*			1063 959 2305	576 472 1818	*
5 N	10E	31 D 5	100	ΤD	PURE 0C MURRY G	8 A	4850 C	2900	213	39		995 787	510* 302*			931	446	æ
5 N	10E	31 D7	241	TD	PURE &C KROPPEE SC	1 A	4860 C	2902	213	39		1002 813 606	516* 327* 120*					
5 N	10E	33 42	274		PURE OC STIFF J E PALZO & G D	A 1	4760 B	3057	213	45		824	570* 348* 779*			1090 980 2380	614 504 1904	*
5 N	10E	35 E1	1	LD	GULF REF RITTER J C G D	1	5100 D	3033	213	42			587 * 366 *			1025	628 515 1940	
5 N	10E	35 G1			GULF ET AL STIFF C NO 4 G D	1	5000 5	3011	213	42		875	602* 375*	-		1145 1024 1229 2436	645 524 729 1936	•
5 N	10E	35 G 3	94	TD	GULF REF BERRY L G D	1	4980 D	3018	213	42			594* 371*			1134 1018 2430	636 520 1932	*
		1					- -					•		-				

150

KEY BEDS IN RICHLAND COUNTY

RICHLAND COUNTY

Location of Hole			County	Type of	Operator		Op'r's		Surface		Total		Quad.		DoubHul Information			2 — We 3 — Sho	st Fro al Cr	No. 6 t Franklin 1 Creek		2		1 — Coal No. 5 2 — Coal No. 7 3 — Coal No. 4 4 — Glen Dean						
Twp.	Range	9	Sec.	Number	Hole	Operation		Nui	Number		Altitude		Depth		ð 1	×.		Dep (Fee	oth	4 — Pal Altitude (Feet)	T	ickness . In.			Alt	Glen titude eet)		cknes		
5 N	10E	36	E 7	227	TD	G U L R I T P A L	TTE	R	9	C D	2	50	50	Ð	30	37	213	42		10 8 13	54	349	*		10	30 06 96		625 501 091	*	
5 N	1 O E	36	67	95		G U L H A P		С	0	4 Đ	1	50	30	9	3.0	20	213	42		10 8		583 364			10	30 02 08 38	1	587 499 705 935	8 1	
5 N	10E	36	Н 6	240		GUL STE PAI	ERC	: H 3	н		4	50	30	0	30	55	213	43		8	70	579 367 951	*		10	04 26 37	1 5	701 523 934	4	
5 N	11 E	31	A 1	97	τĐ	JAI STI					1	51	70	c	30	53	213	42				588 364			10	49		632 522 985	\$	
5 N	14₩	31	A 5	98	ΤĐ	H E I S T I	LMF ERC	; H -	H R O	S	2	5 0	40	c	30	85	213	42				591 366			10	4025		636 521 736 964	8 #	
5 N	14₩	31	C 3	96	ΤÐ	H E L V N		MĒ		J 4	1	50	4 0	C	30	3.2	213	42				584 357			10	32 16 30 75	7	528 512 726 771	‡	
5 N	14₩	31	C 7	101	ΤD	L E I V N		.₩E	N O	P 4 B	1	5 2	00	C	30	75	213	42				593 368			10	54 39 44 607		634 519 724 987	*	
						3	530	I		1 7 4 1								-												

PENNSYLVANIAN SYSTEM IN ILLINOIS BASIN